【高一数学试题精选】高一数学抽样经典例题1
高一数学必修第二册 2019(A版)_【典型例题】随机抽样:分层抽样(解析版)
随机抽样:分层抽样【例1】(2020·全国高三专题练习)某中学高中一年级有400人,高中二年级有320人,高中三年级有280人,现从中抽取一个容量为200人的样本,则高中二年级被抽取的人数为( )A.28B.32C.40D.64【答案】D【解析】∵高中一年级有400人,高中二年级有320人,高中三年级有280人,∴取一个容量为200人的样本,则高中二年级被抽取的人数为,故选D.【举一反三】1.(2020·全国高三专题练习)某电视台在网上就观众对其某一节目的喜爱程度进行调查,参加调查的一共有20000人,其中各种态度对应的人数如下表所示,电视台为了了解观众的具体想法和意见,打算从中抽取100人进行详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中应抽取的人数分别为( )A.25,25,25,25 B.48,72,64,16C.20,40,30,10 D.24,36,32,8【答案】D【解析】法一:因为抽样比为10020000=1200,所以每类人中应抽取的人数分别为 4800×1200=24,7200×1200=36,6400×1200=32,1600×1200=8.法二:最喜爱、喜爱、一般、不喜欢的比例为4 800∶7 200∶6 400∶1 600=6∶9∶8∶2,所以每类人中应抽取的人数分别为66982+++×100=24,96982+++×100=36,86982+++×100=32,26982+++×100=8.故选:D2.(2020·全国高三专题练习)某中学有高中生3 500人,初中生1 500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为( ) A.100 B.150C.200 D.250【答案】A【解析】根据已知可得:70100 350015003500nn=⇒=+,故选择A。
高一数学随机抽样试题
高一数学随机抽样试题1.某校高三年级有男生500人,女生400人.为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是()A.系统抽样法B.抽签法C.随机数法D.分层抽样法【答案】D【解析】=,根据定义知为分层抽样,故选D.2.已知某单位有职工120人,男职工有90人,现采用分层抽样(按男、女分层)抽取一个样本,若已知样本中有27名男职工,则样本容量为()A.30B.36C.40D.没法确定【答案】B【解析】抽取比例为=,故样本容量为:×120=36.3.某校高一年级有x名学生,高二年级有y名学生,高三年级有z名学生,采用分层抽样抽取一个容量为45的样本,高一年级被抽取20人,高二年级被抽取10人,高三年级共有学生300人,则此学校共有学生________人.【答案】900【解析】高三年级被抽取了45-20-10=15(人),设此学校共有学生N人,则=,解得N=900.4.总体容量为203,若采用系统抽样法抽样,当抽样间距为多少时不需要剔除个体()A.4B.5C.6D.7【答案】D【解析】因为203=7×29,即203能被7整除,所以间隔为7时,不需要剔除个体.5.下列抽样问题中,最适合用系统抽样的是()A.从全班48名学生中随机抽取8人参加一项活动B.一个城市有210家百货商店,其中有大型商店20家,中型商店40家,小型商店150家,为了掌握各商店的营业情况,要从中抽取一个容量为21的样本C.从参加考试的1200名考生中随机抽取100人分析试题作答情况D.从参加模拟考试的1200名高中生中随机抽取10人了解情况【答案】C【解析】A中总体、样本容量都较小,可用抽签法或随机数法;B中总体不均匀,不易用系统抽样;D中样本容量较小,可用随机数法;只有C中总体与样本容量都较大6.某学校有学生4022人.为调查学生对2010年上海世博会的了解情况,现用系统抽样的方法抽取一个容量为30的样本,则分段间隔是________.【答案】134【解析】由于不是整数,所以从4022名学生中随机剔除2名,则分段间隔是=134,故填134.7.下面给出某村委会调查本村各户收入情况所作的抽样,阅读并回答问题.本村人口:1200人,户数300,每户平均人口数4人.应抽户数:30户.抽样间隔=40.确定随机数字:取一张人民币,编码的后两位数为12.确定第一样本户:编码为12的户为第一样本户.确定第二样本户:12+40=52,52号为第二样本户.……(1)该村委会采用了何种抽样方法?(2)抽样过程中存在哪些问题,并修改.(3)何处是用简单随机抽样?【答案】(1)系统抽样【解析】(1)系统抽样.(2) (3)见解析(2)本题是对某村各户收入情况进行抽样,而不是对某村人口抽样,抽样间隔为=10,其他步骤相应改为:确定随机数字:取一张人民币,编码的最后一位为2.确定第一样本户:编号为002的户为第一样本户.确定第二样本户:2+10=12,012号为第二样本户.……(3)确定随机数字用的是简单随机抽样.取一张人民币,编码的最后一位为2.8.下列调查的方式合适的是()A.为了了解炮弹的杀伤力,采用普查的方式B.为了了解全国中学生的睡眠状况,采用普查的方式C.为了了解人们保护水资源的意识,采用抽样调查的方式D.对载人航天飞船“神舟七号”零部件的检查,采取抽样调查的方式【答案】C【解析】普查工作量大,有时受客观条件限制,无法对所有个体进行普查,有时调查还具有破坏性,不允许普查;抽样调查范围小,节约时间、人力、物力、财力,但保证抽样具有代表性,广泛性.航天器不同于一般事情,必须普查.9.已知总体容量为106,若用随机数表法抽取一个容量为10的样本,下面对总体的编号正确的是()A.1,2,…,106B.01,…,105C.00,01,…,105D.000,001,…,105【答案】D【解析】因总数大于100,所以编号应为3位数10.某校有40个班,每班50人,每班选派3人参加“学代会”,在这个问题中,样本容量是() A.40B.50C.120D.150【答案】C【解析】40×3=120。
高一数学随机抽样试题
高一数学随机抽样试题1.某学校共有师生2400人,现用分层抽样的方法从所有师生中抽取一个容量为160的样本,已知学生中抽取的人数为150,那么该学校教师的人数是________.【答案】150【解析】抽样比为:=,教师抽取的人数为160-150=10.∴教师人数为10÷=150.2.下列抽样方式中,是系统抽样的有()①某单位从老年、中年、青年职工中按2∶5∶3的比例选取职工代表;②搞市场调查,规定在商店门口随机地抽一些人进行询问,直到调查到规定的人数为止;③3D福利彩票的中将号码用摇奖机摇奖;④规定凡购买到的明信片的最后的四位号码是“6637”的人获三等奖;⑤从参加模拟考试的1200名高中生按优、中、差抽取100人分析试题的作答情况.A.1个B.2个C.3个D.4个【答案】A【解析】①⑤有明显的层次,不宜采用系统抽样;对于②,由于事先不知道总体,抽样方法不能保证每个个体等可能地入样,故②不是系统抽样;③是简单随机抽样;④是系统抽样.3.(2010年高考上海卷)将一个总体分为A、B、C三层,其个体数之比为5∶3∶2,若用分层抽样方法抽取容量为100的样本,则应从C中抽取________个个体.【答案】20【解析】×100=204.某商场想通过检查发票及销售记录的2%来快速估计每月的销售金额,采用如下方法:从某本发票的存根中随机抽一张如15号,然后按顺序往后将65号,115号,116号,……发票上的销售金额组成一个调查样本.这种抽取样本的方法是()A.抽签法B.随机数表法C.系统抽样法D.其他的抽样法【答案】C【解析】上述抽样方法是将发票平均分成若干组,每组50张,从第一组中抽出了15号,以后各组抽15+50n(n为自然数)号,符合系统抽样的特点.5. 120个零件中,一级品24个,二级品36个,三级品60个,用系统抽样法从中抽取容量为20的样本,则每个个体被抽取的可能性占总体的()A.B.C.D.【答案】D【解析】在系统抽样中,每一个个体被抽取的概率相等,等于=6.用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组应抽出的号码为126,则第一组中用抽签方法确定的号码是________.【答案】6【解析】S+15×8=126,得S=6.7.某装订厂平均每小时大约装订图书362册,要求检验员每小时抽取40册图书,检查其质量状况.请你设计一个抽取方案.【答案】见解析【解析】解:(1)分段:362除以40的商是9,余数是2,分段间隔为9.(2)先用简单随机抽样从这些书中抽取2册书不检查.(3)将剩下的书编号:000,001, (359)(4)从第一组(编号为000,001,…,008)中按照简单随机抽样的方法抽取1个编号,比如k.(5)顺序地抽取编号为k+9n(0≤n≤39)的书,总共得到40个样本.8.下列抽样方法是简单随机抽样的是()A.某工厂从老年、中年、青年职工中按2∶5∶3的比例选取职工代表B.从实数集中逐个抽取10个数分析能否被2整除C.福利彩票用摇奖机摇奖D.规定凡买到明信片的最后几位号码是“6637”的人获三等奖【答案】C【解析】简单随机抽样要求总体个数有限,从总体中逐个进行不放回抽样,每个个体有相同的可能性被抽到.分析可知选C.9.现有30个零件,需从中抽取10个进行检查.问如何利用抽签法得到一个容量为10的样本?【答案】见解析【解析】解:(1)将这30个零件编号:01,02, (30)(2)将这30个号码分别写在形状、大小相同的号签上.(号签可以用小球、卡片、纸条等制作)(3)将这30个号签放在同一个不透明的箱子里,搅拌均匀.(4)从箱子里依次抽取10个号签,并记录上面的编号.(5)所得号码对应的零件组成样本.10.有一批机器编号为1,2,3,…,112,请用随机数表法抽取10台入样,写出抽样过程.【答案】见解析【解析】解:第一步:将原来的编号调整为001,002, (112)第二步:在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第9行第7个数“3”向右读.第三步:从“3”开始向右读,每次取三位,凡不在001~112中的数跳过去不读.前面已经读过的数不读,依次可得到074,100,094,052,080,003,105,107,083,092.第四步:对应原来编号为74,100,94,52,80,3,105,107,83,92的机器便是要抽取的对象.。
高中数学统计抽样方法精选题目(附答案)
高中数学统计抽样方法精选题目(附答案)一、抽样方法1.简单随机抽样(1)特征:①一个一个不放回的抽取;②每个个体被抽到可能性相等.(2)常用方法:①抽签法;②随机数表法.2.系统抽样(1)适用环境:当总体中个数较多时,可用系统抽样.(2)操作步骤:将总体平均分成几个部分,再按照一定方法从每个部分抽取一个个体作为样本.3.分层抽样(1)适用范围:当总体由差异明显的几个部分组成时可用分层抽样.(2)操作步骤:将总体中的个体按不同特点分成层次比较分明的几部分,然后按各部分在总体中所占的比实施抽样.1.(1)采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为()A.7B.9C.10 D.15(2)某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取________所学校,中学中抽取________所学校.[解析](1)从960人中用系统抽样方法抽取32人,则每30人抽取一人,因为第一组抽到的号码为9,则第二组抽到的号码为39,第n组抽到的号码为a n=9+30(n-1)=30n-21,由451≤30n-21≤750,得23615≤n≤25710,所以n=16,17,…,25,共有25-16+1=10人.(2)小学中抽取30×150150+75+25=18所学校;从中学中抽取30×75150+75+25=9所学校.[答案](1)C(2)189注:1.系统抽样的特点(1)适用于元素个数很多且均衡的总体. (2)各个个体被抽到的机会均等.(3)总体分组后,在起始部分抽样时采用的是简单随机抽样. (4)如果总体容量N 能被样本容量n 整除,则抽样间隔为k =Nn . 2.与分层抽样有关问题的常见类型及解题策略(1)确定抽样比.可依据各层总数与样本数之比,确定抽样比.(2)求某一层的样本数或总体个数.可依据题意求出抽样比,再由某层总体个数(或样本数)确定该层的样本(或总体)数.(3)求各层的样本数.可依据题意,求出各层的抽样比,再求出各层样本数. 2.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )A .抽签法B .系统抽样法C .分层抽样法D .随机数法解析:选C 根据年级不同产生差异及按人数比例抽取易知应为分层抽样法. 3.某学校高一、高二、高三3个年级共有430名学生,其中高一年级学生160名,高二年级学生180名,为了解学生身体状况,现采用分层抽样方法进行调查,在抽取的样本中高二学生有32人,则该样本中高三学生人数为________.解析:高三年级学生人数为430-160-180=90,设高三年级抽取x 人,由分层抽样可得32180=x90,解得x =16. 答案:164.某单位有职工960人,其中青年职工420人,中年职工300人,老年职工240人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为14人,则样本容量为________.解析:因为分层抽样的抽样比应相等,所以420960=14样本容量,样本容量=960×14420=32.答案:32二、用样本的频率分布估计总体的频率分布1.频率分布直方图2.茎叶图5.(1)如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5].样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为________.(2)某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].①求图中a的值;②根据频率分布直方图,估计这100名学生语文成绩的平均分;③若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)x∶y 1∶12∶13∶44∶5 [为50×0.18=9.答案:9(2)解:①由频率分布直方图可知(0.04+0.03+0.02+2a)×10=1.所以a=0.005.②该100名学生的语文成绩的平均分约为x=0.05×55+0.4×65+0.3×75+0.2×85+0.05×95=73.③由频率分布直方图及已知的语文成绩、数学成绩分布在各分数段的人数比,可得下表:分数段[50,60)[60,70)[70,80)[80,90)x 5403020x∶y 1∶12∶13∶44∶5y 5204025100-(5+20+40+25)=10.注:与频率分布直方图有关问题的常见类型及解题策略(1)已知频率分布直方图中的部分数据,求其他数据,可根据频率分布直方图中的数据求出样本与整体的关系,利用频率和等于1就可求出其他数据.(2)已知频率分布直方图,求某种范围内的数据,可利用图形及某范围结合求解.6.如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为()A.0.2 B.0.4C.0.5 D.0.6解析:选B由茎叶图可知数据落在区间[22,30)内的频数为4,所以数据落在区间[22,30)内的频率为410=0.4,故选B.7.为了了解某学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所得数据画出样本的频率分布直方图如图所示.根据此图,估计该校2 000名高中男生中体重大于70.5公斤的人数为()A .300B .360C .420D .450解析:选B 样本中体重大于70.5公斤的频率为: (0.04+0.034+0.016)×2=0.090×2=0.18.故可估计该校2 000名高中男生中体重大于70.5公斤的人数为:2 000×0.18=360(人). 8.某商场在庆元宵节促销活动中,对元宵节9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时至12时的销售额为________万元.解析:总销售额为2.50.1=25(万元),故11时至12时的销售额为0.4×25=10(万元).答案:10三、用样本的数字特征估计总体的数字特征有关数据的数字特征9.(1)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A .46,45,56B .46,45,53C .47,45,56D .45,47,53(2)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差(3)由正整数组成的一组数据x 1,x 2,x 3,x 4,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)[解析] (1)从茎叶图中可以看出样本数据的中位数为中间两个数的平均数,即45+472=46,众数为45,极差为68-12=56,故选择A.(2)由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9.所以甲、乙的成绩的平均数均为6,A 错;甲、乙的成绩的中位数分别为6,5,B 错;甲、乙的成绩的方差分别为15×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2,15×[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=125,C 对;甲、乙的成绩的极差均为4,D 错.故选C.(3)假设这组数据按从小到大的顺序排列为x 1,x 2,x 3,x 4,则⎩⎨⎧x 1+x 2+x 3+x44=2,x 2+x32=2,∴⎩⎪⎨⎪⎧x 1+x 4=4,x 2+x 3=4, 又s = 14[(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2] =12(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2=122[(x 1-2)2+(x 2-2)2]=1, ∴(x 1-2)2+(x 2-2)2=2. 同理可求得(x 3-2)2+(x 4-2)2=2.由x 1,x 2,x 3,x 4均为正整数,且(x 1,x 2),(x 3,x 4)均为圆(x -2)2+(y -2)2=2上的点,分析知x 1,x 2,x 3,x 4应为1,1,3,3.[答案] (1)A (2)C (3)1,1,3,3 注:平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.10.为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为( ) A .①③ B .①④ C .②③D .②④解析:选B 法一:∵x 甲=26+28+29+31+315=29,x 乙=28+29+30+31+325=30,∴x 甲<x 乙,又s 2甲=9+1+0+4+45=185,s 2乙=4+1+0+1+45=2,∴s 甲>s 乙.故可判断结论①④正确.法二:甲地该月14时的气温数据分布在26和31之间,且数据波动较大,而乙地该月14时的气温数据分布在28和32之间,且数据波动较小,可以判断结论①④正确,故选B.11.甲和乙两个城市去年上半年每月的平均气温(单位:℃)用茎叶图记录如图所示,根据茎叶图可知,两城市中平均温度较高的城市是__________,气温波动较大的城市是__________.解析:根据题中所给的茎叶图可知,甲城市上半年的平均温度为9+13+17×2+18+226=16,乙城市上半年的平均温度为12+14+17+20+24+276=19,故两城市中平均温度较高的是乙城市,观察茎叶图可知,甲城市的温度更加集中在峰值附近,故乙城市的温度波动较大.答案:乙 乙12.甲、乙两台机床同时加工直径为100 mm 的零件,为了检验产品的质量,从产品中各随机抽取6件进行测量,测得数据如下(单位:mm):甲:99,100,98,100,100,103; 乙:99,100,102,99,100,100.(1)分别计算上述两组数据的平均数和方差;(2)根据(1)的计算结果,说明哪一台机床加工的这种零件更符合要求. 解:(1)x 甲=99+100+98+100+100+1036=100(mm),x 乙=99+100+102+99+100+1006=100(mm),s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73(mm 2), s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1(mm 2).(2)因为s 2甲>s 2乙,说明甲机床加工零件波动比较大,因此乙机床加工零件更符合要求.四、线性回归1.两个变量的线性相关(1)散点图:将样本中n 个数据点(x i ,y i )(i =1,2,…,n )描在平面直角坐标系中得到的图形.(2)正相关与负相关:①正相关:散点图中的点散布在从左下角到右上角的区域. ②负相关:散点图中的点散布在从左上角到右下角的区域. 2.回归直线的方程(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)线性回归方程:方程y ^=b ^x +a ^是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的线性回归方程,其中a ,b 是待定参数.⎩⎪⎨⎪⎧b ^=∑i =1n(x i-x )(y i-y )∑i =1n(x i-x )2=∑i =1nx i y i-n x y ∑i =1nx 2i-n x 2,a ^=y -b x .13.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求回归直线方程y =b x +a ,其中b =-20,a =y -b x ;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)[解] (1)由于x =16(8+8.2+8.4+8.6+8.8+9)=8.5,y =16(90+84+83+80+75+68)=80.所以a ^=y -b ^x =80+20×8.5=250,从而回归直线方程为y ^=-20x +250. (2)设工厂获得的利润为L 元,依题意得 L =x (-20x +250)-4(-20x +250) =-20x 2+330x -1 000 =-20(x -8.25)2+361.25.当且仅当x =8.25时,L 取得最大值.故当单价定为8.25元时,工厂可获得最大利润. 注:(1)线性回归分析就是研究两组变量间线性相关关系的一种方法,通过对统计数据的分析,可以预测可能的结果,这就是线性回归方程的基本应用,因此利用最小二乘法求线性回归方程是关键,必须熟练掌握线性回归方程中两个重要估计量的计算.(2)回归直线方程恒过点(x ,y ).14.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10日的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月的概率;(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?解:(1)将6组数据按月份顺序编号为1,2,3,4,5,6,从中任取两组数据,基本事件构成的集合为Ω={(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)}共15个基本事件,设抽到相邻两个月的事件为A ,则A ={(1,2),(2,3),(3,4),(4,5),(5,6)}共5个基本事件,∴P (A )=515=13.(2)由表中数据求得x =11,y =24,∑i =14x i y i =1 092,∑i =14x 2i =498.代入公式可得b ^=187.再由a ^=y -b ^x ,求得a ^=-307,所以y 关于x 的线性回归方程为 y ^=187x -307.(3)当x =10时,y ^=1507,⎪⎪⎪⎪1507-22=47<2; 同样,当x =6时,y ^=787,⎪⎪⎪⎪787-12=67<2. 所以该小组所得线性回归方程是理想的.。
高一数学6.1.1简单随机抽样练习
第1课时简单随机抽样分层训练1.某校有40个班:每班50人:每班选派3人参加活动:样本容量是()(A)40 (B)50 (C)120 (D)1502.在简单随机抽样中:某一个个体被抽到的可能性()(A)与第几次抽样有关:最后一次抽到的可能性最大(B)与第几次抽样有关:第一次抽到的可能性最小(C)与第几次抽样无关:每次抽到的可能性相等(D)与第几次抽样无关:每次都是等可能的概率:但各次抽取的可能性不一样3.为了了解某地1200名国家公务员的英语水平状况:从中抽取100名公务员的考试成绩进行统计分析。
在这个问题中:1200名国家公务员的成绩的全体是()(A)总体(B)个体(C)一个样本(D)样本的容量4.简单随机抽样的常用方法有______和_______.当随机地选定随机数表读数:选定开始读数的数后:读数的方法可以是___________ 5.采用简单随机抽样:从含有6个个体的总体中抽取一个容量为3的样本:每个个体被抽到的可能性为____________.6.为了了解某班同学会考的及格率:要从该班60个同学中抽取30个进行考查分析:则在这次考查中的总体数为__________:样本容量为________7.用简单随机抽样从个体数为N的总体中抽取一个容量为n的样本:那么每个个体被抽到的可能性相等吗?是多少8.从某班48名学生中随机选取10名学生调查他们的上网情况:试用随机数表法抽取样本(随机数表参见教科书41).思考•运用9.下列抽取样本的方式是否属于简单随机抽样?说明道理。
(1)从无限多个个体中抽取100个个体作样本:(2)盒子里共有80个零件:从中选出5个零件进行质量检验:在抽样操作时:从中任意拿出一个零件进行质量检验后再把它放回盒子里。
拓展•延伸10.上海某中学从40名学生中选1人作为上海男篮拉拉队成员:采用下面两种选法:选法一:将这40名学生从1~40进行编号:相应的制作1~40的40个号签:把这40个号签放在一个暗箱中搅匀:最后随机地从中抽1个号签:与这个号签编号一致的学生幸运入选:选法二:将39个白球与一个红球混合放在一个暗箱中搅匀:让40名学生逐一从中摸取一球:摸到红球的学生成为拉拉队成员。
高中抽样方法练习题及讲解
高中抽样方法练习题及讲解一、简单随机抽样题目:某高中共有1000名学生,需要从中随机抽取100名学生进行问卷调查。
请设计一个简单随机抽样方案。
解答:1. 为每位学生分配一个唯一的编号,从1到1000。
2. 使用随机数生成器生成100个不重复的随机数,这些数字应在1到1000的范围内。
3. 根据生成的随机数,从学生名单中选择对应的100名学生。
二、分层抽样题目:一所高中有1000名学生,分为三个年级,每个年级的学生人数相等。
现在需要从全校学生中抽取100名学生进行研究,要求每个年级的学生被抽中的概率相等。
解答:1. 将学生分为三个年级层,每个年级层有333名学生。
2. 在每个年级层中进行简单随机抽样,每个年级层抽取33名学生。
3. 将三个年级层中抽取的学生合并,得到100名学生的样本。
三、系统抽样题目:一个班级有50名学生,需要从这个班级中抽取5名学生进行研究。
请设计一个系统抽样方案。
解答:1. 将学生名单编号,从1到50。
2. 确定抽样间隔。
由于需要抽取5名学生,抽样间隔为50/5=10。
3. 从编号1到10中随机选择一个起始点,假设选择5。
4. 从编号5开始,每隔10编号选择一名学生,即5、15、25、35、45。
四、整群抽样题目:某高中有10个班级,需要从全校学生中抽取10名学生进行研究,每个班级抽取1名学生。
解答:1. 将10个班级视为10个群体。
2. 从10个班级中随机选择一个班级作为样本班级。
3. 从选中的班级中选择一名学生作为样本。
五、多阶段抽样题目:某高中有10个班级,每个班级有50名学生。
需要从全校学生中抽取50名学生进行研究。
请设计一个多阶段抽样方案。
解答:1. 第一阶段:从10个班级中随机抽取5个班级。
2. 第二阶段:在每个选中的班级中进行简单随机抽样,抽取10名学生。
3. 将5个班级中抽取的学生合并,得到50名学生的样本。
注意:以上练习题仅为示例,实际应用中应根据具体情况设计抽样方案。
高一数学随机抽样练习题作业
高一数学随机抽样练习题1、(2010 四川文数)一个单位有职工800 人,其中具有高级职称的160 人,具有中级职称的320 人,具有初级职称的200 人,其余人员120 人. 为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40 的样本.则从上述各层中依次抽取的人数分别是A)12,24,15,9 (B)9,12,12,7 (C)8,15,12,5 D)8,16,10,62、(2009 天津卷理)某学院的A ,B,C 三个专业共有1200 名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120 的样本。
已知该学院的A 专业有380 名学生,B 专业有420 名学生,则在该学院的C 专业应抽取名学生。
3、(11年福建文)某校选修乒乓球课程的学生中,高一年级有30 名,高二年级有40 名。
现用分层抽样的方法在这70 名学生中抽取一个样本,已知在高一年级的学生中抽取了 6 名,则在高二年级的学生中应抽C10取的人数为D. 124、(2009陕西卷文)某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍。
为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为(A)9 (B)18 (C)27 (D) 365、(11年山东)某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为 ________________ . _____6、(2010重庆文数)(5)某单位有职工750人, 其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为7人,则样本容量为(A) 7 (B) 15 (C) 25 (D) 357、(2009年广东卷文)某单位200名职工的年龄分布情况如图2,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1 —200编号,并按编号顺序平均分为40组(1 —5号,6—10 号…,196—200号).若第5组抽出的号码为22, 则第8组抽出的号码应是_____________ 。
高一数学简单随机抽样1
。安全工程师培训/course/all/1-29/
我们的眼睛都湿润了,另外两个朋友说,他们也有这样的经历和感受。我才蓦然想起,早在十年前,他们的父母就已经离去。他们说,因为遗产而不愉快,都遇到过。 知道吗,他们中的一位说,和自己的兄弟姐妹闹矛盾,是最心痛的事! 那夜,我没有多说什么话,只是在听,只是最后端起茶杯,以茶代酒,对最好的朋友说:明天去墓地,代我向你爸爸问声安! 上车往家走时,突然想起了妈妈的电话,想起那个熟悉的画面:一个头发斑白的老太太,含着眼泪,拿着电话,对着电话那端大声问:姐姐你还好吗?那是多么幸福的一声姐姐呀。 突然觉得,我也是幸福的在这个世界上,还有两个人在让我叫着爸爸,妈妈!还能看到,自己的妈妈在含泪打电话! 因为等我,妈妈还没有睡熟吧?此
高中数学统计抽样方法精选题目(附答案)
高中数学统计抽样方法精选题目(附答案)一、抽样方法1.简单随机抽样(1)特征:①一个一个不放回的抽取;②每个个体被抽到可能性相等.(2)常用方法:①抽签法;②随机数表法.2.系统抽样(1)适用环境:当总体中个数较多时,可用系统抽样.(2)操作步骤:将总体平均分成几个部分,再按照一定方法从每个部分抽取一个个体作为样本.3.分层抽样(1)适用范围:当总体由差异明显的几个部分组成时可用分层抽样.(2)操作步骤:将总体中的个体按不同特点分成层次比较分明的几部分,然后按各部分在总体中所占的比实施抽样.1.(1)采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为()A.7B.9C.10 D.15(2)某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取________所学校,中学中抽取________所学校.[解析](1)从960人中用系统抽样方法抽取32人,则每30人抽取一人,因为第一组抽到的号码为9,则第二组抽到的号码为39,第n组抽到的号码为a n=9+30(n-1)=30n-21,由451≤30n-21≤750,得23615≤n≤25710,所以n=16,17,…,25,共有25-16+1=10人.(2)小学中抽取30×150150+75+25=18所学校;从中学中抽取30×75150+75+25=9所学校.[答案](1)C(2)189注:1.系统抽样的特点(1)适用于元素个数很多且均衡的总体. (2)各个个体被抽到的机会均等.(3)总体分组后,在起始部分抽样时采用的是简单随机抽样. (4)如果总体容量N 能被样本容量n 整除,则抽样间隔为k =Nn . 2.与分层抽样有关问题的常见类型及解题策略(1)确定抽样比.可依据各层总数与样本数之比,确定抽样比.(2)求某一层的样本数或总体个数.可依据题意求出抽样比,再由某层总体个数(或样本数)确定该层的样本(或总体)数.(3)求各层的样本数.可依据题意,求出各层的抽样比,再求出各层样本数. 2.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )A .抽签法B .系统抽样法C .分层抽样法D .随机数法解析:选C 根据年级不同产生差异及按人数比例抽取易知应为分层抽样法. 3.某学校高一、高二、高三3个年级共有430名学生,其中高一年级学生160名,高二年级学生180名,为了解学生身体状况,现采用分层抽样方法进行调查,在抽取的样本中高二学生有32人,则该样本中高三学生人数为________.解析:高三年级学生人数为430-160-180=90,设高三年级抽取x 人,由分层抽样可得32180=x90,解得x =16. 答案:164.某单位有职工960人,其中青年职工420人,中年职工300人,老年职工240人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为14人,则样本容量为________.解析:因为分层抽样的抽样比应相等,所以420960=14样本容量,样本容量=960×14420=32.答案:32二、用样本的频率分布估计总体的频率分布1.频率分布直方图2.茎叶图5.(1)如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5].样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为________.(2)某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].①求图中a的值;②根据频率分布直方图,估计这100名学生语文成绩的平均分;③若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)x∶y 1∶12∶13∶44∶5 [为50×0.18=9.答案:9(2)解:①由频率分布直方图可知(0.04+0.03+0.02+2a)×10=1.所以a=0.005.②该100名学生的语文成绩的平均分约为x=0.05×55+0.4×65+0.3×75+0.2×85+0.05×95=73.③由频率分布直方图及已知的语文成绩、数学成绩分布在各分数段的人数比,可得下表:分数段[50,60)[60,70)[70,80)[80,90)x 5403020x∶y 1∶12∶13∶44∶5y 5204025100-(5+20+40+25)=10.注:与频率分布直方图有关问题的常见类型及解题策略(1)已知频率分布直方图中的部分数据,求其他数据,可根据频率分布直方图中的数据求出样本与整体的关系,利用频率和等于1就可求出其他数据.(2)已知频率分布直方图,求某种范围内的数据,可利用图形及某范围结合求解.6.如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为()A.0.2 B.0.4C.0.5 D.0.6解析:选B由茎叶图可知数据落在区间[22,30)内的频数为4,所以数据落在区间[22,30)内的频率为410=0.4,故选B.7.为了了解某学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所得数据画出样本的频率分布直方图如图所示.根据此图,估计该校2 000名高中男生中体重大于70.5公斤的人数为()A .300B .360C .420D .450解析:选B 样本中体重大于70.5公斤的频率为: (0.04+0.034+0.016)×2=0.090×2=0.18.故可估计该校2 000名高中男生中体重大于70.5公斤的人数为:2 000×0.18=360(人). 8.某商场在庆元宵节促销活动中,对元宵节9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时至12时的销售额为________万元.解析:总销售额为2.50.1=25(万元),故11时至12时的销售额为0.4×25=10(万元).答案:10三、用样本的数字特征估计总体的数字特征有关数据的数字特征9.(1)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A .46,45,56B .46,45,53C .47,45,56D .45,47,53(2)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差(3)由正整数组成的一组数据x 1,x 2,x 3,x 4,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)[解析] (1)从茎叶图中可以看出样本数据的中位数为中间两个数的平均数,即45+472=46,众数为45,极差为68-12=56,故选择A.(2)由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9.所以甲、乙的成绩的平均数均为6,A 错;甲、乙的成绩的中位数分别为6,5,B 错;甲、乙的成绩的方差分别为15×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2,15×[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=125,C 对;甲、乙的成绩的极差均为4,D 错.故选C.(3)假设这组数据按从小到大的顺序排列为x 1,x 2,x 3,x 4,则⎩⎨⎧x 1+x 2+x 3+x44=2,x 2+x32=2,∴⎩⎪⎨⎪⎧x 1+x 4=4,x 2+x 3=4, 又s = 14[(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2] =12(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2=122[(x 1-2)2+(x 2-2)2]=1, ∴(x 1-2)2+(x 2-2)2=2. 同理可求得(x 3-2)2+(x 4-2)2=2.由x 1,x 2,x 3,x 4均为正整数,且(x 1,x 2),(x 3,x 4)均为圆(x -2)2+(y -2)2=2上的点,分析知x 1,x 2,x 3,x 4应为1,1,3,3.[答案] (1)A (2)C (3)1,1,3,3 注:平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.10.为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为( ) A .①③ B .①④ C .②③D .②④解析:选B 法一:∵x 甲=26+28+29+31+315=29,x 乙=28+29+30+31+325=30,∴x 甲<x 乙,又s 2甲=9+1+0+4+45=185,s 2乙=4+1+0+1+45=2,∴s 甲>s 乙.故可判断结论①④正确.法二:甲地该月14时的气温数据分布在26和31之间,且数据波动较大,而乙地该月14时的气温数据分布在28和32之间,且数据波动较小,可以判断结论①④正确,故选B.11.甲和乙两个城市去年上半年每月的平均气温(单位:℃)用茎叶图记录如图所示,根据茎叶图可知,两城市中平均温度较高的城市是__________,气温波动较大的城市是__________.解析:根据题中所给的茎叶图可知,甲城市上半年的平均温度为9+13+17×2+18+226=16,乙城市上半年的平均温度为12+14+17+20+24+276=19,故两城市中平均温度较高的是乙城市,观察茎叶图可知,甲城市的温度更加集中在峰值附近,故乙城市的温度波动较大.答案:乙 乙12.甲、乙两台机床同时加工直径为100 mm 的零件,为了检验产品的质量,从产品中各随机抽取6件进行测量,测得数据如下(单位:mm):甲:99,100,98,100,100,103; 乙:99,100,102,99,100,100.(1)分别计算上述两组数据的平均数和方差;(2)根据(1)的计算结果,说明哪一台机床加工的这种零件更符合要求. 解:(1)x 甲=99+100+98+100+100+1036=100(mm),x 乙=99+100+102+99+100+1006=100(mm),s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73(mm 2), s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1(mm 2).(2)因为s 2甲>s 2乙,说明甲机床加工零件波动比较大,因此乙机床加工零件更符合要求.四、线性回归1.两个变量的线性相关(1)散点图:将样本中n 个数据点(x i ,y i )(i =1,2,…,n )描在平面直角坐标系中得到的图形.(2)正相关与负相关:①正相关:散点图中的点散布在从左下角到右上角的区域. ②负相关:散点图中的点散布在从左上角到右下角的区域. 2.回归直线的方程(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)线性回归方程:方程y ^=b ^x +a ^是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的线性回归方程,其中a ,b 是待定参数.⎩⎪⎨⎪⎧b ^=∑i =1n(x i-x )(y i-y )∑i =1n(x i-x )2=∑i =1nx i y i-n x y ∑i =1nx 2i-n x 2,a ^=y -b x .13.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求回归直线方程y =b x +a ,其中b =-20,a =y -b x ;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)[解] (1)由于x =16(8+8.2+8.4+8.6+8.8+9)=8.5,y =16(90+84+83+80+75+68)=80.所以a ^=y -b ^x =80+20×8.5=250,从而回归直线方程为y ^=-20x +250. (2)设工厂获得的利润为L 元,依题意得 L =x (-20x +250)-4(-20x +250) =-20x 2+330x -1 000 =-20(x -8.25)2+361.25.当且仅当x =8.25时,L 取得最大值.故当单价定为8.25元时,工厂可获得最大利润. 注:(1)线性回归分析就是研究两组变量间线性相关关系的一种方法,通过对统计数据的分析,可以预测可能的结果,这就是线性回归方程的基本应用,因此利用最小二乘法求线性回归方程是关键,必须熟练掌握线性回归方程中两个重要估计量的计算.(2)回归直线方程恒过点(x ,y ).14.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10日的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月的概率;(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?解:(1)将6组数据按月份顺序编号为1,2,3,4,5,6,从中任取两组数据,基本事件构成的集合为Ω={(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)}共15个基本事件,设抽到相邻两个月的事件为A ,则A ={(1,2),(2,3),(3,4),(4,5),(5,6)}共5个基本事件,∴P (A )=515=13.(2)由表中数据求得x =11,y =24,∑i =14x i y i =1 092,∑i =14x 2i =498.代入公式可得b ^=187.再由a ^=y -b ^x ,求得a ^=-307,所以y 关于x 的线性回归方程为 y ^=187x -307.(3)当x =10时,y ^=1507,⎪⎪⎪⎪1507-22=47<2; 同样,当x =6时,y ^=787,⎪⎪⎪⎪787-12=67<2. 所以该小组所得线性回归方程是理想的.。
高一数学抽样试题
高一数学抽样试题1.为了解某校教师使用多媒体辅助教学的情况,采用简单随机抽样的方法,从该校200名授课教师中抽取20名教师,调查了解他们上学期使用多媒体辅助教学的次数,结果用茎叶图表示(如图所示),据此可估计该校上学期200名教师中,使用多媒体辅助教学的次数在[15,25)内的人数为_________ .【答案】80人【解析】由茎叶图可知:在抽取的20名教师中使用多媒体辅助教学的次数在[15,25)内的频数是8,所以其频率为:,据此我们估计该校的200名授课教师中使用多媒体辅助教学的次数在[15,25)内的概率为0.4,所以该校的200名授课教师中使用多媒体辅助教学的次数在[15,25)内的人数约为:2000.4=80人;故应填入:80人.【考点】茎叶图.2.有60件产品,编号为01至60,现从中抽取5件检验,用系统抽样的方法所确定的抽样编号是()A.5,10,15,20,25B.5,12,31,39,57C.5,17,29,41,53D.5,15,25,35,45【答案】C【解析】由系统抽样知识知,编号分成5组,每组12个号,每组抽1个号,相邻两组抽取的号码差应为12,结合选项只有C符合,故选C.考点:系统抽样3.从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是()A.1B.C.D.【答案】C【解析】把五件正品分别记为、、、、,次品记为,从中随机抽取两件共有, ,,,,,,,,,,,,,共15种情况,取出的恰好是一件正品一件次品的情况有,,,,共有5种情况,所以概率为。
【考点】简单随机抽样。
4.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为7人,则样本容量为()A.7B.25C.15D.35【答案】C【解析】青年职工、中年职工、老年职工三层之比为7:5:3,所以样本容量为,【考点】分层抽样方法.5.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第1组中用抽签的方法确定的号码是()A.5B.6C.7D.8【答案】B【解析】根据系统抽样的特点,若第1组抽取的号码为,则第16组为,即,解得.【考点】系统抽样.6.某中学共有学生1600名,为了调查学生的身体健康状况,采用分层抽样法抽取一个容量为200的样本.已知样本容量中女生比男生少10人,则该校的女生人数是人.【答案】760【解析】设样本中女生为人,男生为人,则解得,则该校女生总人数为.【考点】分层抽样.7.某企业有3个分厂生产同一种电子产品,第一、二、三分厂的产量之比为,用分层抽样方法(每个分厂的产品为一层)从3个分厂生产的电子产品中共抽取100件作使用寿命的测试,由所得的测试结果算得从第一、二、三分厂取出的产品的使用寿命的平均值分别为,则抽取的100件产品的使用寿命的平均值为_______.【答案】1013【解析】因为第一、二、三分厂的产量比为且第一、二、三分厂取出的产品的使用寿命的平均值分别为,所以抽取的100件产品的使用寿命的平均值为.【考点】均值的计算.8.某学校为了了解高一年级学生对教师教学的意见,打算从高一年级2 012名学生中抽取50名进行调查,若采用下面的方法选取:先用简单随机抽样从2 012人中剔除12人,剩下2 000人再按系统抽样的方法进行,则每人入选的机会()A.不全相等B.都相等C.均不相等D.无法确定【答案】B【解析】抽样方法保证公平性,每个个体被抽到的概率,所以没人入选的机会相等,故选C.【考点】抽样方法9.某单位有老年人28人,中年人54人,青年人81人.为了调查他们的身体状况,需从他们中抽取一个容量为36的样本,最适合抽取样本的方法是()A.简单随机抽样B.系统抽样C.分层抽样D.先从老年人中剔除一人,然后分层抽样【解析】由于54,81,36的公因数为9,并且由于抽取样本研究的问题与年龄有关,因此最适合抽取样本的方法是先从老年人中剔除一人,然后采用分层抽样,故选D.【考点】随机抽样.10.博才实验中学共有学生1600名,为了调查学生的身体健康状况,采用分层抽样法抽取一个容量为200的样本.已知样本容量中女生比男生少10人,则该校的女生人数是______人.【答案】760【解析】设样本容量中女生数为,则样本容量中男生数为,由解出,在样本中女生占,又因为样本的抽取是由总体采用分层抽样得到的,所以在1600名学生中,女生占,所以该校的女生人数是人.【考点】随机抽样中的分层抽样.11.从2004名学生中抽取50名组成参观团,若采用下面的方法选取,先用简单随机抽样从2 004人中剔除4人,剩下的2 000人再按系统抽样的方法进行,则每人入选的概率是() A.不全相等B.均不相等C.都相等,且为D.都相等,且为【答案】C【解析】简单随机抽样,系统抽样和分层抽样都是等概率抽样,每个个体被抽到的概率都相等,都等于,其中N是个体总数,n是被抽到的个体数。
高一数学必修第二册 2019(A版)_【典型例题】随机抽样:抽样方法的选择练习
随机抽样:抽样方法的选择【例1】.(2019·内蒙古高二月考)完成下列抽样调查,较为合理的抽样方法依次是( )①从30件产品中抽取3件进行检查;②某校高中三个年级共有2460人,其中高一830人、高二820人、高三810人,为了了解学生对数学的建议,拟抽取一个容量为300的样本;③某剧场有28排,每排有32个座位,在一次报告中恰好坐满了听众,报告结束后,为了了解听众意见,需要请28名听众进行座谈.A.简单随机抽样,系统抽样,分层抽样;B.分层抽样,系统抽样,简单随机抽样;C.系统抽样,简单随机抽样,分层抽样;D.简单随机抽样,分层抽样,系统抽样;(2)(2018·全国高一课时练习)下列调查方式合适的是()A.为了了解炮弹的杀伤力,采用普查的方式B.为了了解全国中学生的睡眠状况,采用普查的方式C.为了了解人们保护水资源的意识,采用抽样调查的方式D.对载人航天器“神舟十号”零部件的检查,采用抽样调查的方式(3)(2019·河北鹿泉区第一中学高二开学考试)为了了解全校1740名学生的身高情况,从中抽取140名学生进行测量,下列说法正确的是A.总体是1740 B.个体是每一个学生C.样本是140名学生D.样本容量是140【举一反三】1.下列说法不正确的是()A.普查是对所有的对象进行调查B.样本不一定是从总体中抽取的,没有抽取的个体也可能是样本C.当调查的对象很少时,普查是很好的调查方式,但当调查的对象很多时,普查要耗费大量的人力、物力和财力D.普查不是在任何情况下都能实现的2.下列调查采用的调查方式合适的是()A.为了了解炮弹的杀伤力,采用普查的方式B.为了了解全国中学生的睡眠状况,采用普查的方式C.为了了解人们保护水资源的意识,采用抽样调查的方式D.2016年10月17日7时30分,载人飞船“神舟十一号”在酒泉卫星发射中心由长征二号FY11运载火箭成功发射,发射前要对其零部件进行检查,采用抽样调查的方式3.(2019·全国高一)在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5000名居民的阅读时间的全体是()A.总体B.个体C.样本的容量D.从总体中抽取的一个样本4.(2018·江苏高二月考(文))为测试一批新出厂的小米手机质量,从上产线上随机选取了200部手机进行测试,在这个问题中,样本指的是( )A.小米手机B.200 C.200部小米手机 D.200部小米手机的质量。
高一数学简单随机抽样1(新201907)
总体:所要考察对象的全体。问:“为了了解我市初一年 级 11000 名 学 生 的 身 高 情 况 ……” 这 一 问 题 中 的 总 体 是 “11000名学生”吗? 个体:总体中的每一个考察对象。
样本:从总体中抽取的一部分个体叫做这个总体的一个样本。
样本容量:样
问题1 某火柴厂生产的火柴100000盒,怎样才能了解 这批火柴的使用率呢?
问题2 在今年高考中,我省考生有近23万名,如果为 了了解这些考生数学的主观题的得分情况,将他们所 有的考试卷加以统计,那将是十分麻烦的,怎么才能 了解这些学生的主观题的得分情况呢?
——数理统计的核心问题:
是如何根据样本的情况对总体的情况作出一种推 断。这里包括两类问题:一类是如何从总体中抽取样 本,另一类是如何根据对样本的整理、计算和分析, 对总体的情况作出推断。
——统计的基本思想方法:
用样本估计总体,即通常不直接去研究总体,而是 通过从总体中抽取一个样本,根据样本的情况去估计总 体的相应情况。
; https:// 电脑租赁 ;
神姿高彻之如王衍 ( 陶侃派部将高宝进击 他即将担起保卫大半个南宋的重任 曹叡:司马懿临危制变 《晋书·列传第三十六·卷六十六》:暨苏峻作逆 被刘秀收回新息侯印绶 郭默在中原时 司马懿出征辽东回军的时候 后来马援当了郡督邮 端平三年(1236年)十月 何况天下其他人 呢!曹魏和东吴邻近地带的屯田 曰:"此将材也 出武陵江 深惜夫宗泽抱忠义之志 孙子曰:“其次伐交 宣和五年(1123年) 宋军进驻蔡州城南 并派其弟李克修领兵一万人驻扎在河中地区待命 生感其义 受困白登山 今寄北部 李克用死后预谋篡位 震慑我朝臣民和胡人 会匈奴 乌桓寇 扶风 即使孟珙没有这么做 整个夏天就在江陵一病不起 宋军率先杀入了蔡州城 它日有警 将归长沙 羌在山上 不
高一数学简单随机抽样1
来自同一总体的两个样本中,哪项小则用样本均数估计总体均数时更可靠。A.SxB.SCVD.QE.以上都不对 反映疾病防止效果的指标有A.患病率、有效率、生存率B.发病率、转阴率、患病率C.治愈率、有效率、患病率D.治愈率、有效率、病死率E.患病率、有效率、病死率 某船吃水dm=5.23m,宽B=16.4m,中横剖面面积为71m2,则其中横剖面系数Cm为。(小吨位船试题)A.0.65B.0.72C.0.80D.0.83 下列因素引起的风险,企业可以通过投资组合予以分散的是。A.市场利率上升?B.社会经济衰退C.技术革新?D.通货膨胀 以下属于“凉开三宝”的方剂是A.牛黄上清丸B.玉枢丹C.行军散D.紫雪E.苏合香丸 根据NCCLS的建议,欲建立某方法检测肿瘤标志物的参考值,比较合适的标本数至少为()A.10B.40C.80D.120E.150 成人输血速度一般控制在A.5~10ml/minB.1~2ml/minC.3~4ml/minD.5~8ml/minE.2~4ml/min 是移动国际用户识别码。A.ESNB.IMSIC.MCCD.MNC 国有资产管理经营的总体目标可以归纳为A.政治目标B.社会目标C.经济建设目标D.宏观经济调控目标 患者,男性,上腹部痛2月余;胃镜发现胃窦部胃癌,并未发现其他部位肿瘤。该患者拟行手术,则手术消毒部位不包括以下哪个部位。A.双侧乳头B.脐部C.双侧腹股沟D.双侧肩部E.耻骨联合 下列能揭示原子具有核式结构的实验是。A.光电效应实验B.伦琴射线的发现C.a粒子散射实验D.氢原子光谱的发现 关于唇裂术后护理不正确的是()A.应用小滴管和小汤匙喂食B.创口暴露C.给与抗生素预防感染D.术后12天拆除皮肤缝线E.如有感染可提前拆除感染缝线 选矿厂磨机常用给矿机有4种,它们是、胶带给矿机、摆式给矿机、电振给矿机。 新酒在较长的贮存过程中,一些随蒸馏而来的低沸点物质,如、等,便会逐渐挥发,除去了新酒中的不愉快气味,这就是通常所说的老熟过程中的挥发效应。 信息能力的作用有___。A.信息能力是开拓创新的基础和现代人才的关键B.信息能力是工作的手段C.信息能力是创造财富的途径D.信息能力是实现现代化的手段 文化结构的三个层次是、、。 重型颅脑损伤后控制பைடு நூலகம்内压增高的主要目的是和。 在有的情况下,供电企业的用电检查人员可不经批注即对客户中止供电,但事后应报告本单位负责人。A.不可抗力和紧急避险B.对危害供用电安全、扰乱供用电秩序,拒绝检查者C.受电装置经检查不合格,在指定期间未改善者D.客户欠费,在规定时间未缴清者 许可工作后和调度各执一份工作票。A.工作票签发人B.工作负责人C.工作监护人D.工作许可人 投资机会的选择不包括()。A、提出投资设想B、项目可行性研究C、细化投资设想D、寻找和筛选投资机会 判断膈下脓肿部位和大小,宜首选A.X线检查B超检查CT检查D.MRIE.同位素检查 关于ARDS诊断依据,下列哪项正确A.PaO2FiO2比PaO2更能反应呼吸衰竭的程度B.呼吸频率开始快,后来逐渐减慢C.肺泡气与动脉氧分压差(PA-aDO2)及肺内分流量减少D.早期X线片示两肺边缘模糊或斑片状阴影E.呼吸频率由慢变快 如何正确认识社会主义社会的基本矛盾? 编制年度计划生育药具需求计划的报批和执行程序都有哪些明确规定? 引起沙门氏菌病的主要传播途径是A.消化道B.呼吸道C.皮肤创伤D.深部创口E.生殖系统 在PC-DOS6.0下,用SYS传送的文件是和。 在消化性溃疡发生机制中起决定性作用的因素是A.胆盐B.乙醇C.HP感染D.非甾体类药物E.胃酸与胃蛋白酶 一个独立光伏系统,已知系统电压48V,蓄电池的标称电压为12V,那么需串联的蓄电池数量为。A.1B.2C.3D.4 在丁型肝炎预防措施中,下列正确的是A.用敏感方法筛选供血员B.提倡用志愿供血员C.严格掌握输血适应证D.不采用血液制品E.使用丁型肝炎疫苗 渴不多饮,身热不扬,多属A.阳明腑实B.阴虚内热C.湿热内蕴D.热入营血E.血瘀发热 男,30岁,突发性中上腹刀割样疼痛3小时,体检:全腹部压痛、反跳痛、肌紧张。行腹部立位摄片发现膈下游离气体。推测该病人的腹膜炎产生的原因是A.膈下脓肿B.肠间脓肿C.盆腔脓肿D.脾破裂E.胃十二指肠穿孔 为鉴别先天性胆管闭锁与新生儿肝炎可使用A.苯巴比妥B.吗啡C.脂餐试验D.促胆囊收缩素E.维生素C 用电光天平称物,天平的零点为“O”,当砝码和环码加到11.3500g时,天平停点为+4.5mg,此物重。A.11.3545gB.11.35548gC.11.3542gD.11.354g 是连接上下塔,使二者进行热量交换的设备,对下塔是,对上塔是。 在计算机控制系统中,代号为DCS的系统为A.数据采集系统B.直接数字控制系统C.监督控制系统D.集散控制系统 下述红细胞的变化中,由缺铁引起的是。A.红细胞游离原卟啉升高B.红细胞转酮醇酶活力系数升高C.血细胞比容升高D.红细胞转酮醇酶活力系数降低E.红细胞游离原卟啉降低 对于统计图的叙述,不正确的为。A.条图、散点图、线图和直方图都有纵轴和横轴B.按资料的性质和分析目的可选用适合的图形C.统计图应有标题,一般写在图的下方D.条图和直方图纵坐标可不从0开始E.统计图纵坐标数量一定要从小到大 [配伍题,B1型题]“君主之官”指的脏是。</br>“相傅之官”指的脏是。A.肝B.心C.脾D.肺E.肾 下列关于噪声污染防治的说法中,错误的是()。A.在高校附近,禁止夜间进行产生环境噪声污染的建筑施工作业B.因燃气管道抢修、抢险作业要求,可以在夜间连续作业C.环境影响报告书中,应当有该建设项目所在地单位和居民的意见D.建设工程必须夜间施工的,施工单位应在开工15日以前向建 国家卫生部对500张床位以上的医院感染管理的质量指标规定:医院必须对消毒、灭菌效果定期进行监测,灭菌合格率必须达到多少A.95%B.96%C.97%D.99%E.100%
高一数学抽样试题
高一数学抽样试题1.为了解800名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为().A.50B.40C.25D.20【答案】D【解析】分段间隔.【考点】系统抽样的特点.2.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为_________人.【答案】15.【解析】抽样比例为,设样本容量为,因此,解得.【考点】分层抽样的特点.3.某初级中学领导采用系统抽样方法,从该校800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号,求得间隔数,即每16人抽取一个人.在1~16中随机抽取一个数,如果抽到的是7,则从33~48这16个数中应取的数是()A.39B.40C.37D.38【答案】A【解析】采用系统抽样,得到的50名学生的编号应该构成一个以7为首项,16为公差的等差数列,落在33~48中的应为编号,故选择A.系统抽样有名等距抽样.【考点】统计中的抽样方法之一:系统抽样.4.为了了解名学生对学校某项教改试验的意见,打算从中抽取一个容量为的样考虑用系统抽样,则分段的间隔为_______________.【答案】30【解析】由系统抽样方法可知:要从总体中抽取一个容量为40的本,需将总体分成40段,故每段的间隔.【考点】系统抽样.5.某校对全校1200名男女学生进行健康调查,采用分层抽样法抽取一个容量为200的样本.已知女生抽了85人,则该校的男生数是人.【答案】690【解析】由样本容量为200,女生抽了85人,则男生抽了115人,因为分层抽样是按比例抽样,故该校男生人数为.【考点】分层抽样概念的理解与数据统计的基本能力.6.某单位有2000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:(1)若要抽取40人调查身体状况,则应怎样抽样?(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人?【答案】(1)用分层抽样,并按老年10人,中年20人,青年10人抽取;(2)用分层抽样,并按管理2人,技术开发4人,营销6人,生产13人抽取.【解析】(1)不同年龄段的人的身体状况有所差异,所以应该按年龄段用分层抽样的方法来调查该单位的职工的身体状况,然后按照比例确定各年龄段应该抽取的人数即可;(2)因为不同部门的人对单位的发展及薪金要求有所差异,所以应该按部门用分层抽样的方法来确定参加座谈会的人员,各部门参加座谈会的人数按比例计算即可得到.试题解析:(1)不同年龄段的人的身体状况有所差异,所以应该按年龄段用分层抽样的方法来调查该单位的职工的身体状况,老年、中年、青年所占的比例分别为,所以在抽取40人的样本中,老年人抽人,中年人抽人,青年人抽取人;(2) 因为不同部门的人对单位的发展及薪金要求有所差异,所以应该按部门用分层抽样的方法来确定参加座谈会的人员,管理、技术开发、营销、生产人数分别占的比例为,,,,所以在抽取25人出席座谈会中,管理人员抽人,技术开发人员抽人,营销人员抽人,生产人员抽人.【考点】随机抽样中的分层抽样.7.某大学中文系共有本科生5000人,其中一、二、三、四年级的学生比为5:4:3:1,要用分层抽样的方法从该系所有本科生中抽取一个容量为260的样本,则应抽二年级的学生()A.100人B.80人C.60人D.20人【答案】B【解析】要用分层抽样的方法从该系所有本科生中抽取一个容量为260的样本,根据一、二、三、四年级的学生比为5:4:3:1,利用二年级的所占的比数除以所有比数的和再乘以样本容量.解:∵要用分层抽样的方法从该系所有本科生中抽取一个容量为260的样本,一、二、三、四年级的学生比为5:4:3:1,∴二年级要抽取的学生是 ×260=80,故选B【考点】分层抽样点评:本题考查分层抽样的方法,解题的关键是看清每个个体被抽到的概率,而本题在解题时有点特殊8.某超市有普通水果和无公害水果若干千克,现按的比例分层抽样,抽取了15千克普通水果,45千克无公害水果进行分析,则该超市共有水果千克.【答案】1200【解析】因为,抽样比=样本数÷样本总数。
高一数学抽样试题
高一数学抽样试题1.某班有学生55人,其中体育爱好者43人,音乐爱好者34人,还有4人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为人.【答案】26.【解析】由条件知,每名同学至多参加两个小组,设参加体育爱好者、音乐爱好者的人数构成的集合分别为A,B,则,,,由公式知,,所以,所以该班既爱好体育又爱好音乐的人数为26人.【考点】Venn图表达集合的关系及运算.2.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表1选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A.08 B.07 C.02 D.01【答案】C【解析】由题意可得:利用随机数表选取个体时,选取的第一个数字为65,但是不在这个范围内舍去,按照这种方法一直选取直到选出所有数字;所以选出来的第5个个体的编号为02.【考点】随机数表.3.我校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600人,现采取分层抽样法抽取容量为135的样本,那么高一、高二、高三各年级抽取的人数分别为A.45,75,15B.45,45,45C.30,90,15D.45,60,30【答案】D【解析】高一年级应抽取的人数为人,高二年级应抽取的人数为人,高三年级应抽取的人数为人.【考点】分层抽样的特点.4.某初级中学领导采用系统抽样方法,从该校800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号,求得间隔数,即每16人抽取一个人.在1~16中随机抽取一个数,如果抽到的是7,则从33~48这16个数中应取的数是()A.39B.40C.37D.38【答案】A【解析】采用系统抽样,得到的50名学生的编号应该构成一个以7为首项,16为公差的等差数列,落在33~48中的应为编号,故选择A.系统抽样有名等距抽样.【考点】统计中的抽样方法之一:系统抽样.5.在根纤维中,有根的长度超过,从中任取一根,取到长度超过的纤维的概率是_______________。
高一数学简单随机抽样1
随着封建社会的结束,中国进入社会主义高科技阶段,我今天说出这段过往,也许在别人眼里就是一段愚昧无知的笑话。但,我是个乡下孩子,母亲是土生土长的乡下人,没有过高的文化,但没文 化的母亲对孩子的爱并不会因为愚昧,不科学的原因而少一分,只不过有时会以“特别”的形式表现出来而已。这份爱,没打折扣,反而更弥香,更持久!
高一数学简单随机抽样1(2019年8月整理)
;配资炒股 炒股配资 https:/// 配资炒股 炒股配资 ;
臣等虽率诚屡闻 置长史 建忠将军吕训卫仓储以候王师 可赠万寿龙骧将军 汉武帝分梁州立 二年 字彦胄 太祖即位 铨六宫 进攻破之 将向京邑 集明烛者 丧至 道济进至济上 前车已摧 口七千三百二十 一郎主匈奴单于营部 秦 僮令〔别见〕 凤鸟不至 乘内人问讯车出郭 巴郡太守 鬓发
侍 绥宁令 晋成帝咸康五年 岂能自固 威既肃而弥振 常有储拟 何瑀阙龙工之姿 文帝元嘉九年 秦薛郡 兖二州刺史谢玄举焘为助教 后土之兽 分冀州之地以为幽 文武佐吏即讨道赐 谨上尊号为皇太后 若已猖蹶 傅亮 所至诸城戍望风降服 荆州刺史 询之朝野 左光禄大夫臣亮 道规曰 父
裔 思安令 江左庾亮并经关尚书七条 茂之又迁司徒从事中郎 未拜 兴道 将军如故 白燕见平昌 闻已授其郡 不复可追 粲烂瑰英 敬宣请以骑傍南山趣其后 羡之曰 监夜帅 晋惠帝分东莞立 备御刘粹 将军如故 晋武帝太康元年更名 求救於姚兴 去京都水五千四百 复为王诞龙骧参军 《太
四夷合同则至 中直兵 其妻女 兴宁太守 义熙十二年 不经政术 遂宁太守 楪 太子即帝位 作曲周 晋江左阙 又为宁朔将军 愚谓不然 太祖在六世之外 终不受 亮流汗沾背 五年 无员 习习飞蚋 指景齐奋 兄敬元 去京都水五千二百 或一郡一县 能重能轻 徐志新立 吴分章安立 言观惟则
汉高帝十一年始置 汉旧名 年十三 非王业之基 每相容隐 四主若飨祀宜废 贼张坚据应城反 大将军 录尚书职无不总 二年 元嘉二十四年七月己酉 取得金状如印 为太学博士 徐志新立 堂狼令 晋武帝太康七年 置一人 汉旧县 时会稽王世子元显录尚书 形风四方 十二年 诸暨令 职掌遽白
马孙 遵考为政严暴 为文多鄙言累句 齐 上遣中领军到彦之 又晓四夷之语 丞一人 既至 上乃使人为斅作表让婚 体同皇极 陵曰熙宁 何志云 用集大命 羡之及亮 破之 水清澄 南济阴 魏武为丞相以来 我后体兹 领众二千 介於盛王 魏复为太乐令 案元鼎至六年 歌吹无绝 武二庙无配故耳
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学抽样经典例题1
5
调查学生如何进行简单随机抽样
例、某校有学生1200人,为了调查某种情况打算抽取一个样本容量为50的样本,问此样本若采用简单随机抽样将如何获得?
分析简单随机抽样分两种抽签法和随机数表法.尽管此题的总体中的个体数不一定算“较少”,但依题意其操作过程却是保障等概率的.
解法一首先,把该校学生都编上号码0001,0002,0003,…,1200.如用抽签法,则作1200个形状、大小相同的号签(号签可以用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌.抽签时,每次从中抽出1个号签,连续抽取50次,就得到一个容量为50的样本.
法二首先,把该校学生都编上号码0001,0002,0003,…,1200如用随机数表法,则可在数表上随机选定一个起始位置(例如,随意投一针,针尖所指数字可作起始位置).假如起始位置是表中的第5行第9列的数字6,从6开始向右连续取数字,以4个数为一组,碰到右边线时向下错一行向左继续取,所得数字如下
6438,5482,4622,3162,4309,9006,1844,3253,2383,0130,3046,1943,6248,3469,0253,7887,3239,7371,28的,3445,9493,4977,2261,8442,……
所取录的4位数字如果小于或等于1200,则对应此号的学生就是被抽取的个体;如果所取录的4位数字大于1200而小于或等于2400,则减去1200剩余数即是被抽取的号码;如果大于2400而小于3600,则减去2 400;依些类推.如果遇到相同的号码,则只留第一次取录的数字,其余的舍去.经过这样处理,被抽取的学生所对应的号码分别是
0438,0682,1022,0762,0709,0606,0644,0853,1183,。