叶集区高级中学2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
叶集区高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 已知 m 、n 是两条不重合的直线,α、β、γ是三个互不重合的平面,则下列命题中 正确的是( ) A .若 m ∥α,n ∥α,则 m ∥n B .若α⊥γ,β⊥γ,则 α∥β
C .若m ⊥α,n ⊥α,则 m ∥n
D .若 m ∥α,m ∥β,则 α∥β
2. 随机变量x 1~N (2,1),x 2~N (4,1),若P (x 1<3)=P (x 2≥a ),则a=( ) A .1 B .2
C .3
D .4
3. 已知点A (0,1),B (3,2),C (2,0),若AD →=2DB →,则|CD →
|为( )
A .1 B.4
3
C.53
D .2 4. 已知2,0
()2, 0
ax x x f x x x ⎧+>=⎨-≤⎩,若不等式(2)()f x f x -≥对一切x R ∈恒成立,则a 的最大值为( )
A .716-
B .916-
C .12-
D .14
-
5. 某三棱锥的三视图如图所示,该三棱锥的体积是( ) A . 2 B .4 C .
34 D .3
8
【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.
6. 执行如图所示的程序框图,则输出结果S=( )
A .15
B .25
C .50
D .100
7. 设f (x )=(e -x -e x )(12x +1-1
2
),则不等式f (x )<f (1+x )的解集为( )
A .(0,+∞)
B .(-∞,-1
2
)
C .(-12,+∞)
D .(-1
2,0)
8. 若命题p :∃x ∈R ,x ﹣2>0,命题q :∀x ∈R ,<x ,则下列说法正确的是( )
A .命题p ∨q 是假命题
B .命题p ∧(¬q )是真命题
C .命题p ∧q 是真命题
D .命题p ∨(¬q )是假命题
9. 已知a >b >0,那么下列不等式成立的是( )
A .﹣a >﹣b
B .a+c <b+c
C .(﹣a )2>(﹣b )2
D .
10.某几何体的三视图如图所示,则它的表面积为( )
A .
B .
C .
D .
11.已知双曲线和离心率为4
sin
π
的椭圆有相同的焦点21F F 、,P 是两曲线的一个公共点,若 2
1
cos 21=
∠PF F ,则双曲线的离心率等于( ) A . B .25 C .26 D .27
12.方程(x 2﹣4)2+(y 2﹣4)2=0表示的图形是( )
A .两个点
B .四个点
C .两条直线
D .四条直线
13.一个几何体的三视图如图所示,则该几何体的体积是( ) A .64 B .72 C .80 D .112
【命题意图】本题考查三视图与空间几何体的体积等基础知识,意在考查空间想象能力与运算求解能力. 14.在ABC ∆中,2
2
2
sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )1111] A .(0,
]6π
B .[,)6ππ C. (0,]3π D .[,)3
π
π 15.S n 是等差数列{a n }的前n 项和,若3a 8-2a 7=4,则下列结论正确的是( ) A .S 18=72 B .S 19=76 C .S 20=80
D .S 21=84
二、填空题
16.设函数
,若用表示不超过实数m 的最大整数,则函数
的值域为 .
17.过抛物线C :y 2=4x 的焦点F 作直线l 交抛物线C 于A ,B ,若|AF|=3|BF|,则l 的斜率是 .
18.不等式()2
110ax a x +++≥恒成立,则实数的值是__________.
19.设,x y 满足条件,
1,
x y a x y +≥⎧⎨
-≤-⎩,若z ax y =-有最小值,则a 的取值范围为 .
三、解答题
20.已知f (x )=(1+x )m +(1+2x )n (m ,n ∈N *)的展开式中x 的系数为11.
(1)求x 2
的系数取最小值时n 的值.
(2)当x 2
的系数取得最小值时,求f (x )展开式中x 的奇次幂项的系数之和.
21.某农户建造一座占地面积为36m2的背面靠墙的矩形简易鸡舍,由于地理位置的限制,鸡舍侧面的长度x 不得超过7m,墙高为2m,鸡舍正面的造价为40元/m2,鸡舍侧面的造价为20元/m2,地面及其他费用合计为1800元.
(1)把鸡舍总造价y表示成x的函数,并写出该函数的定义域.
(2)当侧面的长度为多少时,总造价最低?最低总造价是多少?
22.已知不等式ax2﹣3x+6>4的解集为{x|x<1或x>b},
(1)求a,b;
(2)解不等式ax2﹣(ac+b)x+bc<0.
23.(本小题满分10分)选修4-1:几何证明选讲1111]
CP=.
如图,点C为圆O上一点,CP为圆的切线,CE为圆的直径,3
(1)若PE交圆O于点F,16
EF=,求CE的长;
5
⊥于D,求CD的长.
(2)若连接OP并延长交圆O于,A B两点,CD OP
24.【2017-2018第一学期东台安丰中学高三第一次月考】已知函数()2
ln f x ax x =+,
()21145ln 639f x x x x =
++,()221
22
f x x ax =+,a R ∈ (1)求证:函数()f x 在点()(),e f e 处的切线恒过定点,并求出定点的坐标; (2)若()()2f x f x <在区间()1,+∞上恒成立,求a 的取值范围; (3)当2
3
a =
时,求证:在区间()0,+∞上,满足()()()12f x g x f x <<恒成立的函数()g x 有无穷多个.(记ln5 1.61,6 1.79ln ==)
25.(本小题满分10分)选修4-1:几何证明选讲.
如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于E ,过E 的切线与AC 交于D .
(1)求证:CD =DA ;
(2)若CE =1,AB =2,求DE 的长.
叶集区高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题
1. 【答案】C
【解析】解:对于A ,若 m ∥α,n ∥α,则 m 与n 相交、平行或者异面;故A 错误; 对于B ,若α⊥γ,β⊥γ,则 α与β可能相交,如墙角;故B 错误; 对于C ,若m ⊥α,n ⊥α,根据线面垂直的性质定理得到 m ∥n ;故C 正确; 对于D ,若 m ∥α,m ∥β,则 α与β可能相交;故D 错误; 故选C .
【点评】本题考查了空间线线关系.面面关系的判断;熟练的运用相关的定理是关键.
2. 【答案】C
【解析】解:随机变量x 1~N (2,1),图象关于x=2对称,x 2~N (4,1),图象关于x=4对称, 因为P (x 1<3)=P (x 2≥a ), 所以3﹣2=4﹣a , 所以a=3, 故选:C .
【点评】本题主要考查正态分布的图象,结合正态曲线,加深对正态密度函数的理解.
3. 【答案】
【解析】解析:选C.设D 点的坐标为D (x ,y ), ∵A (0,1),B (3,2),AD →=2DB →
,
∴(x ,y -1)=2(3-x ,2-y )=(6-2x ,4-2y ),
∴⎩⎪⎨⎪⎧x =6-2x ,y -1=4-2y
即x =2,y =53
,
∴CD →
=(2,53)-(2,0)=(0,53
),
∴|CD →
|=02+(53)2=53,故选C.
4. 【答案】C
【解析】解析:本题考查用图象法解决与函数有关的不等式恒成立问题.
当0a >(如图1)、0a =(如图2)时,不等式不可能恒成立;当0a <时,如图3,直线2(2)y x =--与函数2
y ax x =+图象相切时,916
a =-,切点横坐标为83,函数2
y ax x =+图象经过点(2,0)时,12a =-,
观察图象可得1
2
a ≤-
,选C .
6. 【答案】C
【解析】解:根据程序框图,S=(﹣1+3)+(﹣5+7)+…+(﹣97+99)=50,输出的S 为50. 故选:C .
【点评】本题主要考查了循环结构的程序框图,模拟执行程序框图,正确得到程序框图的功能是解题的关键,属于基础题.
7. 【答案】
【解析】选C.f (x )的定义域为x ∈R ,
由f (x )=(e -x -e x )(12x +1-1
2)得
f (-x )=(e x -e -x )(12-x +1-1
2)
=(e
x
-e -x )(
-1
2x +1+12
) =(e -x -e x )(12x +1-1
2)=f (x ),
∴f (x )在R 上为偶函数,
∴不等式f (x )<f (1+x )等价于|x |<|1+x |,
即x 2<1+2x +x 2,∴x >-1
2
,
即不等式f (x )<f (1+x )的解集为{x |x >-1
2
},故选C.
【解析】解:∃x ∈R ,x ﹣2>0,即不等式x ﹣2>0有解,∴命题p 是真命题; x <0时,<x 无解,∴命题q 是假命题;
∴p ∨q 为真命题,p ∧q 是假命题,¬q 是真命题,p ∨(¬q )是真命题,p ∧(¬q )是真命题;
故选:B .
【点评】考查真命题,假命题的概念,以及p ∨q ,p ∧q ,¬q 的真假和p ,q 真假的关系.
9. 【答案】C
【解析】解:∵a >b >0,∴﹣a <﹣b <0,∴(﹣a )2>(﹣b )2,
故选C .
【点评】本题主要考查不等式的基本性质的应用,属于基础题.
10.【答案】 A 【解析】解:由三视图知几何体为半个圆锥,且圆锥的底面圆半径为1,高为2,
∴母线长为
,
圆锥的表面积S=S
底面+S 侧面=×π×12
+×2×2+×π×
=2+
.
故选A .
【点评】本题考查了由三视图求几何体的表面积,解题的关键是判断几何体的形状及三视图的数据所对应的几何量.
11.【答案】C 【解析】
试题分析:设椭圆的长半轴长为1a ,双曲线的实半轴长为2a ,焦距为c 2,m PF =1,n PF =2,且不妨设
n m >,由12a n m =+,22a n m =-得21a a m +=,21a a n -=,又2
1
c os 21=
∠PF F ,∴由余弦定理可知:mn n m c -+=2224,2
221234a a c +=∴,432
221=+
∴c a c a ,设双曲线的离心率为,则432
2122=+e
)(,解得2
6
=e .故答案选C .
考点:椭圆的简单性质.
【思路点晴】本题主要考查圆锥曲线的定义和离心率.根据椭圆和双曲线的定义,由P 为公共点,可把焦半径1PF 、2PF 的长度用椭圆的半长轴以及双曲线的半实轴21,a a 来表示,
接着用余弦定理表示2
1
cos 21=∠PF F ,成为一个关于21,a a 以及的齐次式,等式两边同时除以2
c ,即可求得离心率.圆锥曲线问题在选择填空中以考
查定义和几何性质为主. 12.【答案】B
【解析】解:方程(x 2﹣4)2+(y 2﹣4)2
=0 则x 2﹣4=0并且y 2
﹣4=0,
即,
解得:
,
,
,
,
得到4个点. 故选:B .
【点评】本题考查二元二次方程表示圆的条件,方程的应用,考查计算能力.
13.【答案】C. 【
解
析
】
14.【答案】C 【
解
析
】
考点:三角形中正余弦定理的运用. 15.【答案】
【解析】选B.∵3a 8-2a 7=4, ∴3(a 1+7d )-2(a 1+6d )=4,
即a 1+9d =4,S 18=18a 1+18×17d 2=18(a 1+17
2d )不恒为常数.
S 19=19a 1+19×18d
2=19(a 1+9d )=76,
同理S 20,S 21均不恒为常数,故选B.
二、填空题
16.【答案】{0,1}.
【解析】解:
=[﹣]+[+]
=[﹣]+[+],
∵0<<1,
∴﹣<﹣<,<+<,
①当0<<时,
0<﹣<,<+<1,
故y=0;
②当=时,
﹣=0,+=1,
故y=1;
③<<1时,
﹣<﹣<0,1<+<,
故y=﹣1+1=0;
故函数的值域为{0,1}.
故答案为:{0,1}.
【点评】本题考查了学生的化简运算能力及分类讨论的思想应用.
17.【答案】.
【解析】解:∵抛物线C方程为y2=4x,可得它的焦点为F(1,0),∴设直线l方程为y=k(x﹣1),
由,消去x
得.
设A (x 1,y 1),B (x 2,y 2), 可得y 1+y 2
=,y 1y 2=﹣4①. ∵|AF|=3|BF|,
∴y 1+3y 2=0,可得y 1=﹣3y 2,代入①得﹣2y 2
=,且﹣3y 22
=﹣4, 消去y 2得k 2
=3,解之得k=
±
.
故答案为:.
【点评】本题考查了抛物线的简单性质,着重考查了舍而不求的解题思想方法,是中档题.
18.【答案】1a = 【解析】
试题分析:因为不等式()2110ax a x +++≥恒成立,所以当0a =时,不等式可化为10x +≥,不符合题意;当0a ≠时,应满足2
(1)40
a a a >⎧⎨
∆=+-≤⎩,即2
0(1)0
a a >⎧⎨
-≤⎩,解得1a =.1
考点:不等式的恒成立问题. 19.【答案】[1,)+∞ 【解析】解析:不等式,
1,
x y a x y +≥⎧⎨
-≤-⎩表示的平面区域如图所示,由z ax y =-得y ax z =-,当01a ≤<时,
平移直线1l 可知,z 既没有最大值,也没有最小值;当1a ≥时,平移直线2l 可知,在点A 处z 取得最小值;当10a -<<时,平移直线3l 可知,z 既没有最大值,也没有最小值;当1a ≤-时,平移直线4l 可知,在点A 处z 取得最大值,综上所述,1a ≥.
三、解答题
20.【答案】
【解析】
【专题】计算题.
【分析】(1)利用二项展开式的通项公式求出展开式的x的系数,列出方程得到m,n的关系;利用二项展开式的通项公式求出x2的系数,
将m,n的关系代入得到关于m的二次函数,配方求出最小值
(2)通过对x分别赋值1,﹣1,两式子相加求出展开式中x的奇次幂项的系数之和.
【解答】解:(1)由已知C m1+2C n1=11,∴m+2n=11,
x2的系数为C m2+22C n2=+2n(n﹣1)=+(11﹣m)(﹣1)=(m﹣)2+.
∵m∈N*,∴m=5时,x2的系数取得最小值22,
此时n=3.
(2)由(1)知,当x2的系数取得最小值时,m=5,n=3,∴f(x)=(1+x)5+(1+2x)3.
设这时f(x)的展开式为
f(x)=a0+a1x+a2x2++a5x5,
令x=1,a0+a1+a2+a3+a4+a5=25+33,
令x=﹣1,a0﹣a1+a2﹣a3+a4﹣a5=﹣1,
两式相减得2(a1+a3+a5)=60,
故展开式中x的奇次幂项的系数之和为30.
【点评】本题考查利用二项展开式的通项公式求二项展开式的特殊项问题;利用赋值法求二项展开式的系数和问题.
21.【答案】
【解析】解:(1)…
=…
定义域是(0,7]…
(2)∵,…
当且仅当即x=6时取=…
∴y≥80×12+1800=2760…
答:当侧面长度x=6时,总造价最低为2760元.…
22.【答案】
【解析】解:(1)因为不等式ax2﹣3x+6>4的解集为{x|x<1或x>b},所以x1=1与x2=b是方程ax2﹣3x+2=0的两个实数根,
且b >1.由根与系的关系得,解得,所以得. (2)由于a=1且 b=2,所以不等式ax 2
﹣(ac+b )x+bc <0, 即x 2
﹣(2+c )x+2c <0,即(x ﹣2)(x ﹣c )<0.
①当c >2时,不等式(x ﹣2)(x ﹣c )<0的解集为{x|2<x <c}; ②当c <2时,不等式(x ﹣2)(x ﹣c )<0的解集为{x|c <x <2}; ③当c=2时,不等式(x ﹣2)(x ﹣c )<0的解集为∅.
综上所述:当c >2时,不等式ax 2
﹣(ac+b )x+bc <0的解集为{x|2<x <c};
当c <2时,不等式ax 2
﹣(ac+b )x+bc <0的解集为{x|c <x <2};
当c=2时,不等式ax 2
﹣(ac+b )x+bc <0的解集为∅.
【点评】本题考查一元二次不等式的解法,一元二次不等式与一元二次方程的关系,属于基础题.
23.【答案】(1)4CE =;(2)CD =. 【解析】
试题分析:(1)由切线的性质可知ECP ∆∽EFC ∆,由相似三角形性质知::EF CE CE EP =,可得4CE =;(2)由切割线定理可得2
(4)CP BP BP =+,求出,BP OP ,再由CD OP OC CP ⋅=⋅,求出CD 的值. 1 试题解析:
(1)因为CP 是圆O 的切线,CE 是圆O 的直径,所以CP CE ⊥,0
90CFE ∠=,所以ECP ∆∽EFC ∆,
设CE x =,EP =,又因为ECP ∆∽EFC ∆,所以::EF CE CE EP =,
所以2
x =
4x =.
考点:1.圆的切线的性质;2.切割线定理;3.相似三角形性质. 24.【答案】(1)切线恒过定点1,22e ⎛⎫
⎪⎝⎭
.(2) a 的范围是11,22⎡⎤
-⎢⎥⎣⎦ (3) 在区间()1,+∞上,满足
()()()12f x g x f x <<恒成立函数()g x 有无穷多个
【解析】试题分析:(1)根据导数的几何意义求得切线方程为11222e y ae x e ⎛⎫⎛⎫-
=+- ⎪⎪⎝⎭⎝⎭,故过定点1,22e ⎛⎫
⎪⎝⎭
;
试题解析:
(1)因为()12f x ax x '=+
,所以()f x 在点()(),e f e 处的切线的斜率为1
2k ae e
=+, 所以()f x 在点()(),e f e 处的切线方程为()2121y ae x e ae e ⎛
⎫=+-++ ⎪⎝
⎭,
整理得11222e y ae x e ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭,所以切线恒过定点1,22e ⎛⎫
⎪⎝⎭
.
(2)令()()()2p x f x f x =-=212ln 02a x ax x ⎛
⎫--+< ⎪⎝
⎭,对()1,x ∈+∞恒成立,
因为()()1212p x a x a x =--+'()2
2121a x ax x --+=()()()
1211*x a x x
⎡⎤---⎣⎦=
令()0p x '=,得极值点11x =,21
21
x a =-,
①当112a <<时,有211x x >=,即1
12
a <<时,在()2,x +∞上有()0p x '>,
此时()p x 在区间()2,x +∞上是增函数,并且在该区间上有()()()2,p x p x ∈+∞,不合题意;
②当1a ≥时,有211x x <=,同理可知,()p x 在区间()1,+∞上,有()()()
1,p x p ∈+∞,也不合题意; ③当1
2
a ≤
时,有210a -≤,此时在区间()1,+∞上恒有()0p x '<, 从而()p x 在区间()1,+∞上是减函数;
要使()0p x <在此区间上恒成立,只须满足()111022
p a a =--≤⇒≥-, 所以11
22
a -
≤≤. 综上可知a 的范围是11,22⎡⎤
-
⎢⎥⎣⎦
. (利用参数分离得正确答案扣2分) (3)当23a =
时,()21145ln 639f x x x x =++,()221423
f x x x =+
记()()22115
ln 39
y f x f x x x =-=
-,()1,x ∈+∞. 因为22565399x x y x x
='-=-,
令0y '=,得x =
所以()()21y f x f x =-在⎛ ⎝
为减函数,在⎫+∞⎪⎪⎭上为增函数,
所以当x =时,min 59
180y =
设()()()159
01180
R x f x λλ=+<<,则()()()12f x R x f x <<, 所以在区间()1,+∞上,满足()()()12f x g x f x <<恒成立函数()g x 有无穷多个
25.【答案】
【解析】解:(1)证明:
如图,连接AE , ∵AB 是⊙O 的直径, AC ,DE 均为⊙O 的切线, ∴∠AEC =∠AEB =90°, ∠DAE =∠DEA =∠B , ∴DA =DE .
∠C =90°-∠B =90°-∠DEA =∠DEC , ∴DC =DE , ∴CD =DA .
(2)∵CA 是⊙O 的切线,AB 是直径, ∴∠CAB =90°,
由勾股定理得CA 2=CB 2-AB 2, 又CA 2=CE ×CB ,CE =1,AB =2, ∴1·CB =CB 2-2,
即CB2-CB-2=0,解得CB=2,∴CA2=1×2=2,∴CA= 2.
由(1)知DE=1
2CA=
2 2,
所以DE的长为2
2.。