有理数二
第二章 有理数及其运算(知识归纳+题型突破)(解析版)
第二章有理数1.了解具有相反意义的量,正负数的概念;2.理解有理数、相反数、绝对值、倒数的概念,能正确解题;3.理解数轴的概念,并能正确画出数轴,,在数轴上表示数;4.理解有理数加法、减法、乘法、除法法则、;5.理解有理数乘方定义及运算;6.能掌握加法、减法的运算定律和运算技巧,熟练计算;能掌握乘法的运算定律和运算技巧,熟练计算;7.通过将减法转化成加法和将除法转化成乘法,初步培养学生数学的归一思想8.进一步掌握有理数的五则混合运算;9.理解科学记数法,了解近似数;10.能运用科学记数法表示较大的数.知识点1 正数和负数1.概念正数:大于0的数叫做正数。
负数:在正数前面加上负号“—”的数叫做负数。
注:0既不是正数也不是负数,是正数和负数的分界线,是整数,自然数,有理数。
(不是带“—”号的数都是负数,而是在正数前加“—”的数。
)2.意义:在同一个问题上,用正数和负数表示具有相反意义的量。
知识点2:有理数1.概念整数:正整数、0、负整数统称为整数。
分数:正分数、负分数统称分数。
(有限小数与无限循环小数都是有理数。
)注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
2.分类:两种⑴按正、负性质分类:⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数知识点3:数轴1.概念:规定了原点、正方向、单位长度的直线叫做数轴。
三要素:原点、正方向、单位长度2.对应关系:数轴上的点和有理数是一一对应的。
比较大小:在数轴上,右边的数总比左边的数大。
3.应用求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。
(注意不带“+”“—”号)知识点3 :相反数1.概念代数:只有符号不同的两个数叫做相反数。
(0的相反数是0)几何:在数轴上,离原点的距离相等的两个点所表示的数叫做相反数。
2.性质:若a与b互为相反数,则a+b=0,即a=-b;反之,若a+b=0,则a与b互为相反数。
北师大版数学七年级上册《 第二章 有理数及其运算 》教案
北师大版数学七年级上册《第二章有理数及其运算》教案一. 教材分析《第二章有理数及其运算》这一章主要介绍了有理数的概念、分类及有理数的运算规则。
内容涵盖了有理数的概念、分类、加减乘除运算、乘方运算等。
这部分内容是整个初中数学的基础,对于学生理解和掌握后续知识具有重要意义。
二. 学情分析学生在学习这一章内容时,已经具备了初步的数学运算能力,对数学概念有一定的理解。
但部分学生可能对有理数的概念和分类理解不深,对于有理数的运算规则容易混淆。
因此,在教学过程中,需要注重对学生概念的理解和运算规则的训练。
三. 教学目标1.理解有理数的概念,掌握有理数的分类。
2.掌握有理数的加减乘除运算规则,能够熟练进行计算。
3.理解有理数的乘方运算规则,能够进行相应的计算。
4.培养学生的运算能力和逻辑思维能力。
四. 教学重难点1.有理数的概念和分类。
2.有理数的运算规则,特别是乘方运算。
五. 教学方法采用讲解、示例、练习、讨论等教学方法,通过引导学生自主探究、合作交流,让学生在实践中掌握知识,提高能力。
六. 教学准备1.准备相关的教学课件和教学素材。
2.准备练习题,包括基础题和拓展题。
七. 教学过程1.导入(5分钟)通过复习小学学过的加减乘除运算,引出有理数的概念和分类。
2.呈现(15分钟)讲解有理数的概念和分类,示例说明有理数的运算规则。
3.操练(15分钟)让学生进行有理数的加减乘除运算,引导学生掌握运算规则。
4.巩固(10分钟)让学生进行一些有关有理数的运算题目,巩固所学知识。
5.拓展(10分钟)讲解有理数的乘方运算规则,让学生进行相关的计算。
6.小结(5分钟)对本节课的主要内容进行总结,强调重点和难点。
7.家庭作业(5分钟)布置一些有关有理数运算的题目,让学生课后巩固。
8.板书(课后整理)整理本节课的主要板书内容,方便学生复习。
教学过程每个环节所用时间共计50分钟,剩余10分钟用于学生自主学习和教师解答疑问。
针对以上教案对教学情境和教学活动的分析如下:一、教学情境本节课的主题是有理数及其运算,我通过创设生动有趣的教学情境,激发学生的学习兴趣。
苏教版七年级数学上册 第2章《有理数》考点归纳(含答案)
第2章《有理数》考点归纳知识梳理重难点分类解析考点1相反意义的量【考点解读】中考中对于相反意义的量的考查主要涉及用正负数表示相反意义的量,解此类题的关键是要深刻理解正数、负数的意义.例1一个物体做左右方向的运动,规定向右运动4m记作+4m,那么向左运动4m记作()A.-4mB.4mC.8mD.-8m分析:若向右运动4 m记作+4 m,则向左运动4 m记作-4 m.答案:A【规律·技法】解题时要抓住以下几点:①记住区分相反意义的量;②记住相反意义的量的表示方法.【反馈练习】1.某财务科为保密起见采取新的记账方式,以5万元为1个记数单位,并记100万元为0,少于100万元记为负,多于100万元记为正.例如:95万元记为-1,105万元记为1.依此类推,75万元应记为( )A. -3B. -4C. -5D. -6 点拨:每多5万元记为+1,每少5万元记为-1.2. (2017·苏州期末)一个物体做左右方向的运动,规定向右运动5m 记作+5m ,那么向左运 动5m 记作( )A. -5mB.5mC.10mD. -10 m 点拨:若向右为正,则向左为负. 考点2 数轴【考点解读】中考中对于数轴的考查主要涉及数轴的认识以及数形结合的思想.用数轴上的点来表示有理数,这是运用了数形结合的思想.利用数轴这一工具,加强数形结合的训练可沟通知识间的联系.例2 如图,四个有理数在数轴上的对应点分别为,,,M P N Q ,若点,M N 表示的有理数互 为相反数,则图中表示绝对值最小的数的点是( )A.点MB.点NC.点ND.点Q 分析:因为点,M N 表示的有理数互为相反数,所以原点的位置在线段MN 的中点,所以表示绝对值最小的数的点是点P . 答案:C【规律·技法】解答与数轴有关的问题时要抓住以下几点:①记住数轴上的点与有理数的对应关系;②相反数、点与点之间的距离在数轴上的表示方法;③数轴常常与相反数、距离、绝对值结合考查. 【反馈练习】3.有理数,a b 在数轴上的位置如图所示,则下列各式正确的是( )A. 0a b +<B. 0a b -<C. 0ab >D. 0a b -> 点拨:先判断,a b 的正负和大小关系.4. (2017·苏州期末)有理数,a b 在数轴上的位置如图所示,则下列各式正确的是( )A. 0ab >B. b a <C. 0b a <<D. 0a b +>点拨:先判断,a b的正负和大小关系.考点3绝对值、相反数、倒数【考点解读】中考中对于绝对值、相反数、倒数的考查主要涉及概念的理解,因此掌握基本概念是解题关键.例3(1)(2017·盐城)-2的绝对值是( )A. 2B. -2C. 12D.12-(2)-3的相反数是,-3的绝对值是.(3) 23的倒数是.分析:根据相反数、绝对值、倒数的定义解答.符号不同、绝对值相同的两个数互为相反数,0的相反数是0;正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;乘积为1的两个数互为倒数.答案:(1) A (2) 3 3 (3) 3 2【规律·技法】(1)正确理解相反数的概念是关健;(2)数a的绝对值要由字母a本身的取值来确定:①当a是正数时,a的绝对值是它本身;②当a是负数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零;(3)应熟练掌握倒数的定义,需要注意的是负数的倒数还是负数,正数的倒数还是正数,0没有倒数.【反馈练习】5.23-的相反数是( )A.23- B.23C.32- D.32点拨:符号相反、绝对值相同的两个数互为相反数.6.若a与1互为相反数,则1a+等于( )A.-1B. 0C.1D.2点拨:互为相反数的两个数的和为0.考点4有理数大小的比较【考点解读】比较有理数大小的基本方法:①绝对值法:两个正数,绝对值大的正数大;两个负数,绝对值大的负数小;②数轴法:在数轴上表示的两个有理数,右边的点表示的数总比左边的点表示的数大.例4 (1) (2017·扬州)下列各数中,比-2小的数是()A.-3B.-1C. 0D. 1(2)下列各式中,计算结果最大的是( )A. 25 X 132-152B. 16 X 172-182C. 9 X 212-132D. 4X312-122分析:(1)比-2小的数是负数,且绝对值大于2,故只有选项A符合.(2) 25X132-152=(5X13)2-152=4 000 ;16X172-182=(4X17)2-182=4 300;9X212-132=(3X21)2-132=3 800;4X312-122=(2X31)2-122=3700.因为4300>4000>3800>3700,所以计算结果最大的式子是16X172-182. 答案:(1) A (2) B【规律·技法】解答有关有理数大小的比较问题时要抓住以下几点:①比较有理数的大小时,正数大于0,负数小于0,两个负数比较大小,绝对值大的反而小;②比较两个有理数的大小有以下五种情况:正数与正数、正数与负数、0与正数、0与负数、负数与负数的比较. 【反馈练习】7. (2017·扬州期末)在-2,0,1,-4这四个数中,最小的数是()A. -4B. 0C. 1D. -2 点拨:负数小于0,正数大于0;两个负数,绝对值大的负数小.8. (2017·泰州期中)在数轴上把下列各数表示出来,并用“<”号连接各数: 2112.5,1,(2),(1),222----+--.点拨:先把需要化简计算的式子计算出结果,再来画数轴. 考点5 有理数的混合运算 【考点解读】 解答有关有理数运算的问题时要抓住以下几点:(1)符号的判断;(2)运算顺序的选择;(3)运算律的使用.有理数的运算在中考中一般不单独命题,常常与以后学习的实数结合命题考查.例5 (1)计算: 42201721(3)2(1)-÷---⨯-;(2)计算: 1133()33-⨯÷⨯-; (3)若2a ba b a+*=,则(42)(1)**-= . 分析:(1)先算乘方,再算乘除,最后算加减;(2)先将除法运算转化为乘法运算,再根据有理数乘法法则计算;(3)根据新定义计算. 4224224+⨯*==,22(1)(42)(1)2(1)02+⨯-**-=*-==. 解答:(1) 42201721(3)2(1)1682220-÷---⨯-=-÷+=-+=. (2) 111111()33()3()333339-⨯÷⨯-=-⨯⨯⨯-=. (3) 0【规律·技法】有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先算括号内的. 【反馈练习】9. (2017·徐州期末)计算: 2018142(3)-+-+⨯-.点拨:注意运算顺序和符号. 10.计算: 517()(24)8612--+⨯-.点拨:运用乘法分配律计算.考点6 科学记数法【考点解读】 解答有关科学记数法的问题时要抓住以下几点:①对于大于10的数,在科学记数法的表示形式10na ⨯中,110a ≤<,n 为正整数;②小数点移动的位数与指数的关系;③理解近似数的意义. 例6 据报道,2015年全国普通高考报考人数约为9 420 000人,数据9 420 000用科学记数法表示为9.42 X 10n ,则n 的值是( )A. 4B. 5C. 6D. 7 分析:对于大于10的数,科学记数法的表示形式为10na ⨯,其中110a ≤<,n 为正整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.确定10na ⨯(110a ≤<,n 为整数)中n 的值时,由于9 420 000是七位数,所以可以确定n =7-1=6. 答案:C【规律·技法】用科学记数法表示大于10的数时,确定a 与n 的值是关健.其中110a ≤<,n等于原数的整数位数减1. 【反馈练习】11. (2017·庐州)“五一”期间,某市共接待海内外游客约567 000人次,将567 000用科学 记数法表示为( )A. 567 X 103B. 56.7 X 104C. 5.67 X 105D. 0.567 X 106 点拨: 110a ≤<.12. (2017·宁波)2017年2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮— “泰欧”轮,其中45万吨用科学记数法表示为( )A. 0.45 X 106吨B. 4.5 X 105吨C. 45 X 104吨D. 4.5 X 1 04吨 点拨:单位要统一,万吨化为吨. 易错题辨析例1 给出下列各数: ①0.363 663 666 3…(每两个3之间依次多一个6);②2.121 121 112;③355113;④3π-.其中为无理数的是 .(填序号) 错误解答:①③④ 错因分析:把355113化成小数后,误以为是无限不循环小数,其实是循环小数. 正确解答:①④易错辨析:识别无理数时,要抓住其“无限不循环”的定义.本题若忽视无理数是无限小数,就会误认为有限小数2.121 121 112是无理数;若在把分数355113化成小数时,除了几位后,没有继续除下去,会错误的判断它不是循环小数,错误地认为它是无理数.实质上,所有的分数都是有理数,不是无理数. 易错点2 忽视分类讨论例2 在数轴上,点A 表示的数是-3,那么与点A 相距5个单位长度的点表示的数是多少? 它与132-相比较,大小关系如何? 错误解答:与点A 相距5个单位长度的点表不的数是-3+5=2,它与132-的大小关系为1322-<. 错因分析:考虑问题不全面.正确解答:如图,在数轴上,与点A 相距5个单位长度的点有,B C 两个.由点,B C 在数轴上的位置可知它们所表示的数分别为-8,2.在数轴上找到表示132-的点,观察点,B C 与表示132-的点在数轴上的位置,容易发现它们与132-之间的大小关系为13132,822>--<-. 易错辨析:一般地,在数轴上与某点相距一定单位长度的点有两个,分别位于该点的左、右两侧,不要遗漏.易错点3 乘法的分配律对除法不适用例3 计算:11(15)()53-÷- 错误解答:原式=11(15)(15)75453053-÷--÷=-+=-.错因分析:除法没有分配律. 正确解答:原式=215225(15)()(15)()1522-÷-=-⨯-=. 易错辨析:有的同学会错误地认为除法也有分配律,其实除法没有分配律.易错点4 幂的底数识别不清例4 计算:(1) 4(2)-= , 42-= ; (2) 32()3= , 323= .错误解答:(1)-16 -16 (2)827 827错因分析:负数的偶次幂的运算结果是正数,计算分数的幂时,注意分子、分母应分别乘方.在323中,注意是2的3次方,而不是23的3次方.(1) 4(2)-表示4个-2相乘,即它是底数为-2,指数为4的幂,所以4(2)-=16;42-表示42的相反数,即-2不是底数,所以42-=-16.(2)因为32()3表示3个23相乘,即它是底数为23,指数为3的幂,所以322228()333327=⨯⨯=.因为323表示3个2相乘的积与3的商,所以23不是底数,所以322228333⨯⨯==. 正确解答:(1) 16 -16 (2)827 83易错辨析:在进行幂的运算时,首先要区分底数和指数,然后根据幂的意义计算,得出正确结果.易错点5 混合运算顺序不清例5 计算: 23272(2)()83-÷⨯-. 错误解答:原式=2784()4(1)4827÷⨯-=÷-=-. 错因分析:易知328()327-=-,勿将“278”与“827-”结合运算,导致出错.实际上,本题中只有乘、除运算,故应从左往右按步计算. 正确解答:原式=278882564()4()8272727729÷⨯-=⨯⨯-=-. 易错辨析:乘、除是同级运算,应遵循从左往右的计算顺序.【反馈练习】1. (2016·宜昌)给出下列各数:1.414,1.732 050 8…,13-,0,其中为无理数的是( ) A. 1.414 B. 1.732 050 8… C . 13- D. 0 点拨:无理数即为无限不循环小数.2.已知数轴上有,A B 两点,点A 与原点的距离为2, ,A B 两点间的距离为1,则满足条件的 点B 所表示的数为 . 点拨:注意分类讨论.3.计算:(1) 23(2)(1)4-⨯-; (2) 22439-÷;(3) 2225(3)[()](6)439-⨯-+---÷; (4) 2017231(1)[2(1)(3)]6--⨯⨯---;点拨:注意有理数混合运算的顺序. 4.阅读下面的材料,并完成下列问题.计算: 12112()()3031065-÷-+-. 解法一:原式=12111112()()()()3033010306305-÷--÷+-÷-÷-=1111203512-+-+=16.解法二:原式=12112()[()()]3036105-÷+-+=151()()3062-÷-=1330-⨯ 110-.解法三:原式的倒数=21121()()3106530-+-÷- =2112()(30)31065-+-⨯- =203512-+-+ =10-.综上所述,原式=110-(1)上述三种解法得出的结果不同,肯定有错误的解法,解法 是错误的; (2)在正确的解法中,解法 最简便; (3)利用最简便的解法计算: 11322()()4261437-÷-+-.点拨:可以转化为先求原式的倒数. 探究与应用探究1 复杂的有理数混合运算 例1 计算:(1) 86[47(18.751)2]0.461525--÷⨯÷; (2) 32017201723(0.2)(50)(1)()35-⨯-+-⨯-. 点拨:按照有理数的运算法则进行计算即可. 解答:(1)原式=31556100[47(181)]482546--⨯⨯⨯=751556100[47()]482546--⨯⨯=13556100(47)82546-⨯⨯=4610020546⨯=(2)原式=20172017153()(50)()()12535-⨯-+-⨯-=2017253[()()]535+-⨯-=27155+=.规律·提示在有理数的混合运算过程中,要善于观察与思考,在正常运算较繁琐时,要根据算式的特点,灵活选择正确而简洁的解法(如运算律的运用等).对于复杂运算,更要保持不急不躁的态度,切不可跳步,欲速则不达. 【举一反三】 1.计算:(1) 222353()34()8()3532-⨯-÷-⨯+⨯-;(2) 321116(0.5)[2(3)]0.52338---÷⨯-----.探究2 错位相减法巧算例2 求23201712222S =++++⋅⋅⋅+的值.点拨:观察和式,不难发现:后面一个数是它前面一个数的2倍.为此,在和式两边同乘一个常数2后,再与原和式两边分别相减(这里的相减是错位相减),可使计算简便. 解答:因为23201712222S =++++⋅⋅⋅+①, 所以2342018222222S =++++⋅⋅⋅+②,所以②-①,得201821S =-.规律·提示:当一和式乘一个恰当的常数后,得到的新和式与原和式中绝大部分数相同时,应用错位相减法可以简化计算. 【举一反三】2.求23201613333++++⋅⋅⋅+的值.例3 求232017111112222S =++++⋅⋅⋅+的值. 点拨:观察和式,不难发现:后面一个数是它前面一个数的12.那么类似例2,在和式两边同乘一个常数12后,再与原和式两边分别相减(这里的相减是错位相减),可使计算简便. 解答:因为232017111112222S =++++⋅⋅⋅+①,所以2342018111111222222S =++++⋅⋅⋅+②.①-②,得201811122S =-,所以2017122S =-.规律·提示应用错位相减法时,一定要选择一个合适的常数. 【举一反三】 3.计算: 11112481024+++⋅⋅⋅+.探究3 拆项分解法巧算例4 计算: 111112123123100+++⋅⋅⋅+++++++⋅⋅⋅+. 点拨:因为(1)1232n n n ++++⋅⋅⋅+=,所以11222(1)123(1)12n n n n n n n ===-++++⋅⋅⋅+++,所以 111112123123100+++⋅⋅⋅+++++++⋅⋅⋅+可转化为 222222123341001001+-+-+⋅⋅⋅+-+.进一步通过加法的结合律计算,得22121001+-+,至此问题解决. 解答:原式=22222229912123341001001101101+-+-+⋅⋅⋅+-=-=+. 规律·提示(1)12342n n n +++++⋅⋅⋅+=. 这是初中数学计算中的一条重要公式. 再进一步拆分,得1111111,()(1)1()n n n n n n m m n n m=-=-++++.也可以类推三个及三个以上的数的积的拆项. 【举一反三】 4.求111113355720152017+++⋅⋅⋅+⨯⨯⨯⨯的值.探究4 整体换元法巧算例5 计算: 7737121738(172711)(1385)271739172739+-÷+-. 点拨: 73472437761716,2726,1110272717173939===,通过观察可以发现,这3个数分别是第2个括号内3个数的2倍.解答:令1217381385172739A =+-. 因为77373424761727111626102271739271739A +-=+-=, 所以原式=22A A ÷=. 规律·提示把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫做换元法.换元法是常用的解题方法,它能化复杂为简单,明确题目的结构特征,丰富解题思路.【举一反三】5.已知33331231514400+++⋅⋅⋅+=,求333324630+++⋅⋅⋅+的值.探究5 配对、分组巧算例6 计算:11212312341235859()()()()23344455556060606060++++++++++⋅⋅⋅++++⋅⋅⋅++. 点拨:观察每个括号内式子的特点,依特征求解;也可用一个符号表示所求的式子,将式子进行整体变形,寻找内在关系,简化运算.解答:解法一:原式=(0.529.5)590.51 1.5229.58852+⨯++++⋅⋅⋅+==. 解法二:原式=0.51 1.5229.5++++⋅⋅⋅+=(0.51 1.5229.5)(1229)++++⋅⋅⋅++++⋅⋅⋅+ (0.529.5)30(129)2988522+⨯+⨯=+= 解法三:设原式之和为S ,对每个括号内的各项都交换位置再相加,显然其和不变, 即121321432159585721()()()()23344455556060606060S =++++++++++⋅⋅⋅++++⋅⋅⋅++. 将原序和倒序相加,其相应两项之和为1,则有 (159)59212345930592S +⨯=++++⋅⋅⋅+==⨯, 所以1559885S =⨯=.规律·提示计算时需要观察规律,本例三种解法分别从三个角度着眼:解法一是配成59个“对子”;解法二是分组计算; 解法三是倒序与正序的综合运用.上述三种解法在计算中的运用都十分广泛.【举一反三】6.计算:(1234)(5678)(9101112)(2013201420152016)+--++--++--+⋅⋅⋅++--.参考答知识梳理负数 分数 不循环 正方向 单位长度 距离 本身 相反数0 绝对值1 异号 相反数 正 负 不等于0 倒数 相同 幂 正整数重难点分类解析【反馈练习】1.C2.A3.B4.C5.B6.B7.A8. 2112 2.5(1)1(2)22-<--<+-<<--9.原式=―310.原式=511.C 12.B易错题辨析1.B2. 3或1或―1或―33. (1) 原式=1;(2) 原式=38-;(3) 原式=―20;(4) 原式= 356-;4.(1)一 (2) 三(3)原式=114-探究与应用【举一反三】1.(1) 原式=7279;(2) 原式=―3.895.2.23201613333++++⋅⋅⋅+= 201713-12(). 3.11112481024+++⋅⋅⋅+= 102310244.111113355720152017+++⋅⋅⋅+⨯⨯⨯⨯= 10082017. 5. 333324630+++⋅⋅⋅+=115200.6. 原式=―2016。
第二章有理数及其运算教案
第二章 有理数2.1有理数教学目标1.理解有理数的概念,掌握有理数的分类方法;(重点) 2.会把所给的有理数填入相应的集合;(难点)3.经历对有理数进行分类探索的过程,初步感受分类讨论的数学思想.(重点)板书设计:1.有理数的概念(1)整数:正整数、零和负整数统称整数.(2)有理数:正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数. 2.有理数的分类①按定义分类为: ②按性质分类为:有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数零负整数分数⎩⎪⎨⎪⎧正分数负分数有理数⎩⎪⎨⎪⎧正有理数⎩⎪⎨⎪⎧正整数正分数零负有理数⎩⎪⎨⎪⎧负整数负分数例题:探究点一:有理数的有关概念例1下列各数:-45,1,8.6,-7,0,56,-423,+101,-0.05,-9中,( )A .只有1,-7,+101,-9是整数B .其中有三个数是正整数C .非负数有1,8.6,+101,0D .只有-45,-445,-0.05是负分数解析:根据有理数的有关概念,整数包括:1,-7,0,+101,-9,故选项A 错误;正整数只有两个,即1和+101,故选项B 错误;非负数包括有1,8.6,+101,0,56,故选项C 错误;负分数包括-45,-423,-0.05,故选项D 正确.故选D.方法总结:当有理数只含有单个符号时,带负号的数即为负数.然后再区分是整数还是分数. 探究点二:有理数的分类例2把下列各数填入相应的集合内.-10,8,-712,334,-10%,3101,2,0,3.14,-67,37,0.618,-1,0.3080080008…正数集合{ …}; 负数集合{ …}; 整数集合{ …};分数集合{ …}.解析:要将各数填入相应的集合里,首先要弄清楚有理数的分类标准,其次要弄清楚每个数的特征.在填入相应的集合时,要注意每个有理数,身兼不同的身份,所以解答时不要顾此失彼.解:正数集合{8,334,3101,2,3.14,37,0.618,0.3080080008… …};负数集合{-10,-712,-10%,-67,-1 …};整数集合{-10,8,2,0,-67,-1 …};分数集合{-712,334,-10%,3101,3.14,37,0.618,0.3080080008… …}.方法总结:在填数时要注意以下两种方法:(1)逐个考察给出的每一个数,看它是什么数,是否属于某一集合;(2)逐个填写相应集合,从给出的数中找出属于这个集合的数,避免出现漏数的现象2.2数轴教学目标1.掌握数轴的概念,理解数轴上的点和有理数的对应关系;(重点) 2.会正确地画出数轴,会用数轴上的点表示给定的有理数;(难点) 3.会根据数轴上的点读出所表示的有理数;(难点) 4.感受在特定的条件下数与形是可以相互转化的.板书设计:1.数轴 (1)原点 (2)正方向 (3)单位长度2.数轴上的点与有理数间的关系 (1)原点表示零(2)原点右边的点表示正数 (3)原点左边的点表示负数例题:探究点一:数轴的概念例1 下列图形中是数轴的是( )A. B. C. D.解析:A 中的没有单位长度,错误;B 中没有正方向,错误;C 中满足原点,正方向,单位长度,正确;D 中没有原点,错误.故选C.方法总结:要判断一条直线是不是数轴,要抓住它的三要素:原点、正方向和单位长度,三者缺一不可.探究点二:有理数与数轴的关系【类型一】 读出数轴上的点所表示的数例2指出如图中所表示的数轴上的A 、B 、C 、D 、E 、F 各点所表示的数.解析:要确定数轴上的点所表示的数可利用以下方法:(1)确定符号,在原点右边为正数,在原点左边为负数;(2)确定数字,即距离原点是几个单位长度.解:由图可知,A 点表示:-4.5;B 点表示:4;C 点表示:-2;D 点表示:5.5;E 点表示:0.5;F 点表示7.方法总结:在确定数字时,要认真观察已知点是在原点的左边还是右边,对于A 、D 这种情况,要注意它们所表示的数是在哪两个数之间.【类型二】 在数轴上表示有理数例3 画出数轴,并用数轴上的点表示下列各数:-5,2.5,3,-52,0,-3,312.解析:(1)画数轴必须具备“三要素”,三者缺一不可;单位长度必须一致,不能长短不一;正方向向右;(2)用数轴上的点表示数时,注意数的符号和该数到原点的距离.解:如图:方法总结:用数轴上的点表示数时,首先由数的性质符号确定该数应在原点的左边还是右边,然后再根据该数到原点的距离,确定位置.【类型三】 数轴上两点间的距离问题例4 数轴上的点A 表示的数是+2,那么与点A 相距5个单位长度的点表示的数是( ) A .5 B .±5 C .7 D .7或-3解析:与点A 相距5个单位长度的点表示的数有2个,分别是7或-3,故选D.方法总结:解答此类问题要注意考虑两种情况,即要求的点在已知点的左侧或右侧.另外,点在数轴上移动时也要分向左、向右两种情况.2.3相反数教学目标:1.借助数轴理解相反数的概念,并能求给定数的相反数;(重点) 2.了解一对相反数在数轴上的位置关系;(重点) 3.掌握双重符号的化简;(难点)4.通过从数和形两个方面理解相反数,初步体会数形结合的思想方法.板书设计:1.相反数(1)只有符号不同的两个数.(2)a 的相反数是-a ,0的相反数是0. (3)互为相反数的两个数和为0. 2.多重符号的化简(1)偶数个“-”号,结果为正数. (2)奇数个“-”号,结果为负数.例题:探究点一:相反数的意义【类型一】 相反数的代数意义例1 写出下列各数的相反数:16,-3,0,-12015,m ,-n .解析:只需将各数前面的正、负号换一下即可,但要注意0的相反数是0. 解:-16,3,0,12015,-m ,n .方法总结:求一个数的相反数,只需改变它前面的符号,符号后面的数不变;0的相反数是0. 【类型二】 相反数的几何意义例2(1)数轴上离原点3个单位长度的点所表示的数是________,它们的关系为____________.(2)在数轴上,若点A 和点B 分别表示互为相反数的两个数,点A 在点B 的左侧,并且这两个数的距离是12.8,则A =______,B =______.解析:(1)左边距离原点3个单位长度的点是-3;右边距离原点3个单位长度的点是3,∴距离原点3个单位长度的点所表示的数是3或-3.它们互为相反数;(2)∵点A 和点B 分别表示互为相反数的两个数,∴原点到点A 与点B 的距离相等,∵A 、B 两点间的距离是12.8,∴原点到点A 和点B 的距离都等于6.4.∵点A 在点B 的左侧,∴这两点所表示的数分别是-6.4,6.4.方法总结:本题考查了相反数的几何意义,解题时应从相反数的意义入手,明确互为相反数的两数到原点距离相等,这种“利用概念解题,回到定义中去”是一种常用的解题技巧.【类型三】 相反数与数轴相结合的问题 例3如图,图中数轴(缺原点)的单位长度为1,点A 、B 表示的两数互为相反数,则点C 所表示的数为( )A .2B .-4C .-1D .0 解析:由题意如图,数轴向右为正方向,数轴(缺原点)的单位长度为1,∴点C 所表示的数为-1,故应选C.方法总结:先在数轴上找到原点,从而确定点C 所表示的数,同时牢记互为相反数的两个点到原点的距离相等.探究点二:化简多重符号 例4 化简下列各数. (1)-(-8)=________;(2)-(+1518)=________;(3)-[-(+6)]=________; (4)+(+35)=________.解:(1)-(-8)=8; (2)-(+1518)=-1518;(3)-[-(+6)]=-(-6)=6;(4)+(+35)=35.方法总结:化简多重符号时,只需数一下数字前面有多少个负号,若有偶数个,则结果为正;若有奇数个,则结果为负.2.4绝对值教学目标1.理解绝对值的概念及其几何意义,通过从数、形两个方面理解绝对值的意义,初步了解数形结合的思想方法;(重点)2.会求一个数的绝对值,知道一个数的绝对值,会求这个数;(难点)3.通过应用绝对值解决实际问题,培养学生的学习兴趣,提高学生对数学的好奇心和求知欲.板书设计:1.绝对值的几何定义:一般地,数轴上表示数a 的点与原点的距离叫作数a 的绝对值,记作|a |. 2.绝对值的代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.用符号表示为:|a |=⎩⎪⎨⎪⎧a (a >0)0(a =0)-a (a <0)或|a |=⎩⎪⎨⎪⎧a (a ≥0)-a (a <0)例题:探究点一:绝对值的意义及求法【类型一】 求一个数的绝对值 例1 -3的绝对值是( ) A .3B .-3C .-13 D.13解析:根据一个负数的绝对值是它的相反数,所以-3的绝对值是3.故选A.方法总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 【类型二】 利用绝对值求有理数例2 如果一个数的绝对值等于23,则这个数是__________.解析:∵23或-23的绝对值都等于23,∴绝对值等于23的数是23或-23.方法总结:解答此类问题容易漏解、考虑问题不全面,所以一定要记住:绝对值等于某一个数的值有两个,它们互为相反数,0除外.【类型三】 化简绝对值例3 化简:|-35|=______;-|-1.5|=______;|-(-2)|=______.解析:|-35|=35;-|-1.5|=-1.5;|-(-2)|=|2|=2.方法总结:根据绝对值的意义解答.即若a >0,则|a |=a ;若a =0,则|a |=0;若a <0,则|a |=-a .探究点二:绝对值的性质及应用【类型一】绝对值的非负性及应用例4 若|a-3|+|b-2015|=0,求a,b的值.解析:由绝对值的性质可知|a-3|≥0,|b-2015|≥0,则有|a-3|=|b-2015|=0.解:由绝对值的性质得|a-3|≥0,|b-2015|≥0,又因为|a-3|+|b-2015|=0,所以|a-3|=0,|b-2015|=0,所以a=3,b=2015.方法总结:如果几个非负数的和为0,那么这几个非负数都等于0.【类型二】绝对值在实际问题中的应用例5 第53届世乒赛于2015年4月26日至5月3日在苏州举办,此次比赛中用球的质量有严格的规定,下表是6个乒乓球质量检测的结果(单位:克,超过标准质量的克数记为正数,不足标准重量的克数记为负数).(1)请找出三个误差相对较小一些的乒乓球,并用绝对值的知识说明.(2)若规定与标准质量误差不超过0.1g的为优等品,超过0.1g但不超过0.3g的为合格品,在这六个乒乓球中,优等品、合格品和不合格品分别是哪几个乒乓球?请说明理由.解析:由绝对值的几何定义可知,一个数的绝对值越小,离原点越近,将实际问题转化为距离标准质量越小,即绝对值越小,就越接近标准质量.解:(1)四号球,|0|=0正好等于标准的质量,五号球,|-0.08|=0.08,比标准球轻0.08克,二号球,|+0.1|=0.1,比标准球重0.1克.(2)一号球|-0.5|=0.5,不合格,二号球|+0.1|=0.1,优等品,三号球|0.2|=0.2,合格品,四号球|0|=0,优等品,五号球|-0.08|=0.08,优等品,六号球|-0.15|=0.15,合格品.方法总结:判断质量、零件尺寸等是否合格,关键是看偏差的绝对值的大小,而与正、负数无关.2.5有理数大小的比较教学目标1.掌握有理数大小的比较法则;(重点)2.会比较有理数的大小,并能正确地使用“>”或“<”号连接;(重点)3.能初步进行有理数大小比较的推理和书写.(难点)板书设计:1.借助数轴比较有理数的大小:在数轴上右边的数总比左边的数大2.运用法则比较有理数的大小:正数与0的大小比较负数与0的大小比较正数与负数的大小比较负数与负数的大小比较例题:探究点一:借助数轴比较有理数的大小【类型一】借助数轴直接比较数的大小例1 画出数轴,在数轴上表示下列各数,并用“<”连接:+5,-3.5,12,-112,4,0.解析:画出数轴,在数轴上标出表示各数的点,然后根据右边的数总比左边的数大进行比较.解:如图所示:因为在数轴上右边的数大于左边的数,所以-3.5<-112<0<12<4<+5.方法总结:此类问题是考查有理数的意义以及数轴的有关知识,正确地画出数轴是解决本题的关键.【类型二】 借助数轴间接比较数的大小例2 已知有理数a 、b 在数轴上的位置如图所示.比较a 、b 、-a 、-b 的大小,正确的是( )A .a <b <-a <-bB .b <-a <-b <aC .-a <a <b <-bD .-b <a <-a <b解析:由图可得a <0<b ,且|a |<|b |,则有:-b <a <-a <b .故选D.方法总结:解答本题的关键是结合数轴和绝对值的相关知识,从数轴上获取信息,判断数的大小. 探究点二:运用法则比较有理数的大小 【类型一】 直接比较大小例3 比较下列各对数的大小: (1)3和-5; (2)-3和-5;(3)-2.5和-|-2.25|; (4)-35和-34.解析:(1)根据正数大于负数;(2)、(3)、(4)根据两个负数比较大小,绝对值大的数反而小. 解:(1)因为正数大于负数,所以3>-5;(2)因为|-3|=3,|-5|=5,3<5,所以-3>-5; (3)因为|-2.5|=2.5,-|-2.25|=-2.25,|-2.25|=2.25,2.5>2.25,所以-2.5<-|-2.25|; (4)因为|-35|=35,|-34|=34,35<34,所以-34<-35.方法总结:在比较有理数的大小时,应先化简各数的符号,再利用法则比较数的大小.【类型二】 有理数的最值问题例4 设a 是绝对值最小的数,b 是最大的负整数,c 是最小的正整数,则a 、b 、c 三数分别为( ) A .0,-1,1 B .1,0,-1 C .1,-1,0 D .0,1,-1解析:因为a 是绝对值最小的数,所以a =0,因为b 是最大的负整数,所以b =-1,因为c 是最小的正整数,所以c =1,综上所述,a 、b 、c 分别为0、-1、1.故选A.方法总结:要理解并记住以下数值:绝对值最小的有理数是0;最大的负整数是-1;最小的正整数是1.2.6有理数加减法1.同号两数相加,取__相同的符号__,并把__绝对值__相加.2.绝对值不相等的异号两数相加,取__绝对值较大的加数__的符号,并用__较大的绝对值__减去__较小的绝对值__.互为相反数的两个数相加得__0__.3.一个数同0相加,仍得__这个数__.1.有理数加法的交换律:两个数相加,交换加数的位置,__和__不变,数学表达式__a +b =b +a __.2.有理数加法的结合律:三个数相加,__先把前两个数相加或先把后两个数相加__,和不变,数学表达式__(a +b )+c =a +(b +c )__.3.在有理数中,所有整数的和为__0__.1.有理数减法法则:__减去一个数,等于加这个数的相反数__,数学表达式是__a -b =a +(-b )__. 2.若a >b ,则a -b__>__0; 若a <b ,则a -b__<__0.3.利用有理数减法法则进行计算,其步骤是 (1)__减数变为其相反数__;(2)__相加__.4.一般地,较小的数减去较大的数,所得差的符号是__负号__.1.根据有理数的减法法则,可以将有理数加减混合运算统一为__加法__运算,然后按__加法__的运算法则进行计算,即a +b -c =a +b +__(-c )__.2.有理数加减混合运算的一般步骤是:(1)__先转化为加法运算__;(2)__运用加法的运算律化简运算__.探究点三 数轴上两点之间的距离活动三:在数轴上,当A ,B 分别表示数a ,b ,利用有理数的减法,分别计算下列情况下A ,B 之间的距离.(1)a =2,b =6; (2)a =0,b =6; (3)a =-2,b =6; (4)a =-2,b =-6. 【展示点评】根据AB =|a -b|,可得:当a>b 时,AB =a -b ;当a =b 时,AB =0,当a<b 时,AB =b -a. 【小组讨论】:两数之差的绝对值与两数之间的距离有什么关系?【反思小结】利用数轴,把数和形结合起来,有利于把抽象的知识直观化.两数之差的绝对值等于表达两数的点之间的距离.例题:1.上升10 m ,再上升-3 m ,则共上升了__7__m. 2.-713的绝对值与513的相反数的和是__2__.3.两数相加,其和小于每一个数,那么( C ) A .这两个加数必定有一个为0B .这两个加数一正一负,且负数的绝对值较大C .这两个加数必定都是负数D .这两个加数的符号不能确定4.数a ,b 表示的点如图所示,则(填“>”“<”或“=”)(1)a +b__>__0;(2)a +(-b)__<__0; (3)(-a)+b__>__0; (4)(-a)+(-b)__<__0.5.计算题:(1)(+3)+(+8); (2)(+14)+(-12);(3)(-312)+(-3.5);(4)(-314)+(+213);(5)|(-19)+8.3|;(6)-3.4+4.3.解:(1)11 (2)-14 (3)-7 (4)-1112(5)10.7 (6)0.91.下列说法正确的是( C ) A .零减去一个数,仍是这个数 B .负数减去负数,结果仍是负数 C .正数减去负数,结果是正数 D .被减数一定大于差2.-7,-12,+2三个数的和比它们的绝对值的和小( D ) A .4 B .-4 C .-38 D .383.温度3℃比-7℃高__10℃__,海拔300 m 比海拔-80 m 高__380__m ,-3比__3__小6,-3比__-9__大6.4.计算:(1)(-5)-(-3); (2)0-(-7); (3)(+25)-(-13); (4)(-11)-(+5). 解:(1)-2 (2)7 (3)38 (4)-165.计算:(1)12-21; (2)(-1.7)-(-2.5); (3)23-(-12); (4)(-16)-(-13). 解:(1)-9 (2)0.8 (3)76 (4)162.7有理数的乘除法1.有理数的乘法法则:两数相乘,同号__得正__,异号__得负__,并把__绝对值相乘__.任何数与0相乘都得0. 2.互为倒数:乘积是__1__的两个数互为倒数.3.有理数乘法运算时,应注意,先__确定符号__,再__确定积的绝对值__.4.几个有理数相乘,如果其中一个因数为0,则积为__0__.两个有理数相乘先确定积的符号,再把绝对值相乘.其法则是:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.3.(1)乘法交换律__ab =ba __;(1)(-25)×39×(-4); (2)乘法结合律__(ab )c =a (bc )__;(3)乘法分配律__a (b +c )=ab +ac __. 用两种方法计算(14+16-12)×12. 1.有理数除法法则:(1)除以一个不等于0的数,等于乘以这个数的__倒数__,即a ÷b =__a ×1b__(b 不等于0); (2)两数相除,同号得__正__,异号得__负__,并把绝对值相__除__. 2.a(a ≠0)的倒数是__1a__.3.若a >0,b <0,则ab__<__0,ab __<__0;若a <0,b <0,则ab__>__0,ab__>__0.1.有理数混合运算,应先__乘除__,再__加减__,如果有括号则先__算括号__里面的. 2.同级运算应按__从左到右__的顺序进行计算.3.有理数的混合运算中,有些能用__乘法的运算律__简化运算.例题:探究点一 有理数的乘法法则 例1 计算:(1)(-3)×9; (2)8×(-1); (3)(-12)×(-2); (4)(-5)×(-7).探究点三 多个有理数相乘的符号法则 活动三:计算:(1)(-3)×56×(-95)×(-14);(2)(-5)×6×(-45)×14.五、达标检测 反思目标1.两个有理数的积是负数,和为0,那么这两个有理数一定是( D ) A .一个为0,另一个数是负数 B .两个都是负数C .一个为正数,另一个为负数D .均不为0,且互为相反数 2.下列运算结果错误的是( D )A .(-2)×(-3)=6B .(+3)×(+4)=12C .(-5)×0=0D .(-12)×(-6)=-33.6×(-9)=__-54__; (-114)×(-45)=__1__;3×(-32)=__-92__; (-54)×32=__-158__. 4.写出下列各数的倒数:1,-1,13,-123,-34,0.45. 解:1,-1,3,-35,-43,2095.计算:(1)13×(-6);(2)(-312)×27; (3)(-35)×(-152);(4)(-123)×(-127). 解:(1)-2 (2)-1 (3)92 (4)157有理数除法法则例1 填空:(1)8÷(-4)=8×______=______;(2)(-15)÷3=(-15)×______=______;(3)(-14)÷(-12)=(-14)×______=______; (4)0÷(-1212)=______;0÷2012=______. (1)18-6÷(-2)×(-13); (2)214×(-76)÷(12-2). 2.8有理数乘方运算板书设计1.有理数乘方的意义2.有理数乘方运算的符号法则:负数的奇次幂是负数,负数的偶次幂是正数.正数的任何次幂都是正数,0的任何正整数次幂都是0.3.与乘方有关的探求规律问题例题:探究点一:乘方的意义例1 把下列各式写成乘方的形式,并指出底数和指数各是什么.(1)(-3.14)×(-3.14)×(-3.14)×(-3.14)×(-3.14); (2)25×25×25×25×25×25解析:首先化成幂的形式,再指出底数和指数各是什么.解:(1)(-3.14)×(-3.14)×(-3.14)×(-3.14)×(-3.14)=(-3.14)5,其中底数是-3.14,指数是5; (2)25×25×25×25×25×25=(25)6,其中底数是25,指数是6;方法总结:乘方是一种特殊的乘法运算,幂是乘方的结果,当底数是负数或分数时,要先用括号将底数括起来再写指数.探究点二:乘方的运算例2 计算:(1)-(-3)3; (2)(-34)2; (3)(-23)3; (4)(-1)2015. 解析:可根据乘方的意义,先把乘方转化为乘法,再根据乘法的运算法则来计算;或者先用符号法则来确定幂的符号,再用乘法求幂的绝对值.解:(1)-(-3)3=-(-33)=33=3×3×3=27;(2)(-34)2=34×34=916; (3)(-23)3=-(23×23×23)=-827; (4)(-1)2015=-1.方法总结:乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数;-1的奇数次幂是-1,-1的偶数次幂是1.2.9有理数的混合运算有理数的混合运算顺序:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.例题:探究点一:有理数的混合运算例1 计算:(1)(-5)-(-5)×110÷110×(-5); (2)-1-{(-3)3-[3+23×(-112)]÷(-2)}. 解析:(1)题是含有减法、乘法、除法的混合运算,运算时,一定要注意运算顺序,尤其是本题中的乘除运算.要从左到右进行计算;(2)题有大括号、中括号,在运算时,可从里到外进行.注意要灵活掌握运算顺序.解:(1)(-5)-(-5)×110÷110×(-5)=(-5)-(-5)×110×10×(-5)=(-5)-25=-30; (2)-1-{(-3)3-[3+23×(-112)]÷(-2)}=-1-{-27-[3+23×(-32)]÷(-2)}=-1-{-27-2÷(-2)}=-1-{-27-(-1)}=-1-(-26)=25.方法总结:有理数的混合运算可用下面的口诀记忆:混合运算并不难,符号第一记心间;加法需取大值号,乘法同正异负添;减变加改相反数,除改乘法用倒数;混合运算按顺序,乘方乘除后加减. 探究点二:数字规律探索例2 为了求1+2+22+23+24+…+22015的值,可令S =1+2+22+23+…+22015,则2S =2+22+23+24+…+22016,因此2S -S =22016-1,所以1+2+22+23+…+22015=22016-1,仿照以上推理,那么1+5+52+…+52015=________.解析:观察等式,可发现规律,根据规律即可进行解答.则设S =1+5+52+53+…+52015,5S =5+52+53+54+…+52016,5S -S =52016-1,∴S =52016-14,故填52016-14. 方法总结:解规律性问题的关键在于发现规律,应用规律解题.2.10科学计数法科学记数法:(1)把大于10的数表示成a ×10n 的形式.(2)a 的范围是1≤|a |<10,n 是正整数.(3)n 比原数的整数位数少1.例题:探究点一:用科学记数法表示大数例1 我区深入实施环境污染整治,关停和整改了一些化工企业,使得每年排放的污水减少了167000吨,将167000用科学记数法表示为( )A .167×103B .16.7×104C .1.67×105D .1.6710×106解析:根据科学记数法的表示形式,先确定a ,再确定n ,解此类题的关键是a ,n 的确定.167000=1.67×105,故选C.方法总结:科学记数法的表示形式为a ×10n ,其中1≤|a |<10,n 为整数,表示时关键要正确确定a的值以及n 的值.例2 2014年3月发生了一件举国悲痛的空难事件——马航失联,该飞机上有中国公民154名.噩耗传来后,我国为了搜寻生还者及找到失联飞机,花费了大量的人力物力,已花费人民币大约934千万元.把934千万元用科学记数法表示为______元( )A .9.34×102B .0.934×103C .9.34×109D .9.34×1010解析:934千万=9340000000=9.34×109.故选C.方法总结:对用带“万”“千万”“亿”等单位的数用科学记数法表示时,要化成不带单位的数,再用科学记数法表示.探究点二:将用科学记数法表示的数转换为原数例3 已知下列用科学记数法表示的数,写出原来的数:(1)2.01×104;(2)6.070×105;(3)-3×103.解析:(1)将2.01的小数点向右移动4位即可;(2)将6.070的小数点向右移动5位即可;(3)将-3扩大1000倍即可.解:(1)2.01×104=20100;(2)6.070×105=607000;(3)-3×103=-3000.方法总结:将科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.。
班课讲义有理数(二)绝对值相反数和比较大小
标题: 有理数(二)——相反数、绝对值教学目标重点、难点教 学 内 容一、 知识点梳理+例题(一)相反数1.在数轴上分别找出表示各数的点。
6与―6,―213与213,―1.5与1.5 想一想:在数轴上,表示每对数的点有什么相同?有什么不同?2.观察数6与―6,―213与213,―1.5与1.5有何特点?,观察每组数所对应的两个点的位置关系有什么规律?归纳:每组中的两个数只有符号不同,他们所对应的两点分别在原点的两侧,到原点的距离相等。
3.发现、总结相反数的定义:象这样只有符号不同的两个数称互为相反数 (opposite number)。
理解:代数定义:只有符号不同的两个数互为相反数。
0的相反数是0。
几何定义:在数轴上原点两旁,离开原点距离相等的两个点所表示的两个数互为相反数。
0的相反数是0。
说明:“互为相反数”的含义是相反数,是成对出现的,因而不能说“―6是相反数”。
“0的相反数是0”是相反数定义的一部分。
这是因为0既不是正数,也不是负数,它到原点的距离就是0,这是相反数等于它本身的唯一的数。
补充:一.相反数定义:只有符号不同的两个数叫做互为相反数定义的理解: “只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。
不能理解为只要符号不同的两个数就互为相反数。
另外,“0的相反数是0”也是相反数定义的一部分。
关于“数a 的相反数是-a”,应该明确的是-a 不一定是正数,a 不一定是正数。
关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。
二.相反数的意义(1)只有符号不同的两个数叫做互为相反数,如-1999与1999互为相反数。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。
如5与-5是互为相反数。
(3)0的相反数是0。
也只有0的相反数是它的本身。
第一章有理数 单元复习(二)课件2022-2023学年人教版数学七年级上册
( 6)( 5) 52
3
二.有理数的乘除法
3 . 有 理 数 的 乘 除 混 合 运 算 乘除法统一为乘法
例2 计算:( 3) ( 7) (0.25) 7
45
2
解:原式=
(
3) ( 7) (4) 2
45
7
3 7 4 2 45 7
3 4 7 2 4 5 7
有理数 单元复习(二)
学习目标: 熟练地掌握有理数的加、减、乘、除、乘方及简单的
混合运算.
学习重点: 有理数的运算.
知识结构
有理数的运算
加法
转化 减法
交换律 结合律
分配律
乘法 乘方
除法 转化
一.有理数的加减法 1 . 有 理 数 的 加 法 先定符号,再算绝对值
(1)同号两数相加,取相同符号,并把绝对值相加.
43
3
解:原式= 8 1 2 2 0.25 3 1
43
3
对多个有理数相加减的题目,
8 1 0.25 2 2 3 1
4
33
要观察数的特征,要利用运 算律使计算简便.
86
2
四.有理数的混合运算
例4 计算:(2)( 7 3 5) (24)
12 4 6
解:原式= ( 7 9 10) (24)
12. 在数+8.3,-4,-0.8, 1 ,0,90, 34 ,-|-24|中,负数有______________________________,
5
3
分数有______________________________.
13. 某商店出售三种品牌的洗衣粉,袋上分别标有质量为(500±0.1) g,(500±0.2) g,(500±0.3) g 的
第二章 有理数及其运算
第二章 有理数及其运算2.1 有理数1.在具体情境中,进一步认识负数,学会用正负数表示具有相反意义的量,体会负数是实际生活的需要. 2.会判断一个数是正数还是负数,能按一定的标准对有理数进行分类.(重点)阅读教材P23~24,完成预习内容. (一)知识探究1.正整数、0和负整数统称为整数.正分数和负分数统称为分数. 2.整数和分数统称为有理数. (二)自学反馈1.(1)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示? (2)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克,记作+0.02克,那么-0.03克表示什么? (3)某大米包装袋上标注着“净重量:10 kg ±150 g ”,这里的“10 kg ±150 g ”表示什么? 解:(1)沿顺时针方向转了12圈记作-12圈.(2)-0.03克表示乒乓球的质量低于标准质量0.03克. (3)每袋大米的标准质量应为10 kg ,但实际每袋大米可能有150 g 的误差,即每袋大米的净含量最多是10 kg +150 g ,最少是10 kg -150 g.2.把下列各数写在相应的集合里.-5,10,-4.5,0,+235,-2.15,0.01,+66,-35,15%,227,2 009,-16.正整数集合:{10,+66,2 009,…}负整数集合:{-5,-16,…}负分数集合:{-4.5,-2.15,-35,…}正分数集合:{+235,0.01,15%,227,…}整数集合:{-5,10,0,+66,2 009,-16,…} 负数集合:{-5,-4.5,-2.15,-35,-16,…}正数集合:{10,+235,0.01,+66,15%,227,2 009,…}有理数集合:{-5,10,-4.5,0,+235,-2.15,0.01,+66,-35,15%,227,2 009,-16,…}3.有理数的分类(分两类).有理数的分类标准要统一.活动1 小组讨论例1 在知识竞赛中,如果用“+10”表示加10分,那么扣20分记作什么? 解:记作-20分.例2 在数-5,23,0,-0.24,7,4 076,-59,-2中,正数有23,7,4 076,负数有-5,-0.24,-59,-2,整数有-5,0,7,4 076,-2,分数有23,-0.24,-59,有理数有-5,23,0,-0.24,7,4__076,-59,-2.例3 下列说法不正确的是(A)A .正整数和负整数统称为整数B .正有理数和负有理数和零统称有理数C .整数和分数统称有理数D .正分数和负分数统称为分数 活动2 跟踪训练1.下列说法正确的是(D)A .一个有理数不是正数就是负数B .正有理数和负有理数组成有理数C .有理数是指整数、分数、正有理数、负有理数和零这五类数D .负整数和负分数统称为负有理数2.有理数:-7,3.5,-12,112,0,π,1317中正分数有(C)A .1个B .2个C .3个D .4个3.下列各数:-8,-113,2.03,0.5,67,-44,-0.99,其中整数是-8,-44,负分数有-113,-0.99.4.有理数中,是整数而不是负数的是非负整数,是负有理数而不是分数的是负整数.活动3 课堂小结通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是正整数、零、负整数、正分数、负分数.2.2 数轴1.了解数轴的概念,学会画数轴,知道如何在数轴上表示有理数.(重点)2.能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应.(重点) 3.体会数形结合的思想方法.阅读教材P27~28,完成预习内容. (一)知识探究1.规定了原点、正方向、单位长度的直线叫做数轴. 2.数轴是一条直线,它可以向两端无限延伸. 3.数轴上原点左侧是负数,正数在原点的右侧. (二)自学反馈1.数轴的三要素是原点、正方向、单位长度.2.如图,数轴上点A 、B 表示的数分别是-2.5、2.3.指出图中所画数轴的错误:解:略.活动1 小组讨论例 (1)画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75; (2)画一条数轴,并表示出如下各点:1 000,5 000,-2 000; (3)画一条数轴,在数轴上标出到原点的距离小于3的整数; (4)画一条数轴,在数轴上标出-5和+5之间的所有整数. 解:略.数轴的三要素、画法、适当地选择单位长度和原点的位置.活动2 跟踪训练1.在数轴上点A 表示-4,如果把原点向负方向移动1.5个单位,那么在新数轴上点A 表示的数是(C) A .-512B .-4C .-212D .2122.在数轴上表示-1.2的点在(B)A .-1与0之间B .-2与-1之间C .1与2之间D .-1与1之间 3.数轴上表示-8的点在原点的左侧,距离原点8个单位长度;数轴上点P 距原点5个单位长度,且在原点的左侧,则点P 表示的数是-5.4.在数轴上,表示数-3,2.6,-35,0,413,-223,-1的点中,在原点左边的点有4个.5.写出数轴上点A ,B ,C ,D ,E 所表示的数:解:0,-2,1,2.5,-3.6.画一条数轴表示下列各数,并用“<”把这些数连接起来.1 3,2,-4.5,0,52,-0.5,-14.解:略.7.一个点在数轴上表示的数是-5,这个点先向左边移动3个单位长度,然后再向右边移动6个单位长度,这时它表示的数是多少呢?如果按上面的移动规律,最后得到的点是2,则开始时它表示什么数?解:-2,-1.利用数轴数形结合解题.活动3 课堂小结1.数轴的出现对数学的发展起了重要作用,以它作基础师生共同研究,什么是数轴?如何画数轴?如何在数轴上表示有理数?2.利用数轴很多数学问题都可以借助图直观地表示.2.3 绝对值1.借助数轴,理解绝对值和相反数的概念,知道|a|的含义以及互为相反数的两个数在数轴上的位置关系. 2.能求一个数的绝对值和相反数,会利用绝对值比较两个负数的大小.(重点) 3.通过应用绝对值解决实际问题,体会绝对值的意义和作用.(难点)阅读教材P30~31,完成预习内容. (一)知识探究1.一般地,数轴上表示数a 的点与原点的距离,叫做数a 的绝对值.2.一个正数的绝对值是它本身,即:若a>0,则|a|=a ;一个负数的绝对值是它的相反数,即:若a<0,则|a|=-a ;0的绝对值是0(双重性). (二)自学反馈1.数轴上有一点到原点的距离为6.03,那么这个点表示的数是±6.03.所以|6.03|=6.03,|-6.03|=6.03. 2.(1)|+13|=13; (2)|-8|=8; (3)|+315|=315;(4)|-8.22|=8.22.3.-213的绝对值是213,绝对值等于213的数是±213,它们是一对相反数.非负数的绝对值是它本身,负数的绝对值是它的相反数.活动1 小组讨论例1 -2的相反数是(A)A .2B .-2C .0.5D .-0.5 例2 下列四组数中不相等的是(C)A .-(+3)和+(-3)B .+(-5)和-5C .+(-7)和-(-7)D .-(-1)和|-1| 例3 下列说法正确的是(B)A .一个数的绝对值的相反数一定不是负数B .一个数的绝对值一定不是负数C .一个数的绝对值一定是正数D .一个数的绝对值一定是非正数例4 若|x -3|+|y -2|=0,则x =3,y =2. 例5 比较下列每组数的大小: (1)-1和-5; (2)-56和-2.7.解:(1)-1>-5.(2)-56>-2.7.活动2 跟踪训练1.在|-7|,5,-(+3),-|0|中,负数共有(A)A .1个B .2个C .3个D .4个 2.一个数的绝对值等于这个数本身,这个数是(D) A .1 B .+1,-1,0 C .1或-1 D .非负数3.在数轴上距离原点2个单位长度的点表示的数是±2,也就是说绝对值等于2的数是±2. 4.在数轴上表示下列各数,并求它们的绝对值:-32,6,-3,-8.6. 解:32;6;3;8.6.图略.5.已知|a|=3,|b|=5,a 与b 异号,求a 、b 两数在数轴上所表示的点之间的距离. 解:8.6.比较下列各组数的大小: (1)-110,-27;(2)-0.5,-23;(3)0,|-23|;(4)|-7|,|7|. 解:(1)-110>-27.(2)-0.5>-23.(3)0<|-23|.(4)|-7|=|7|.7.下面的说法是否正确?请将错误的改正过来. (1)有理数的绝对值一定比0大; (2)有理数的相反数一定比0小;(3)如果两个数的绝对值相等,那么这两个数相等; (4)互为相反数的两个数的绝对值相等. 解:(1)错误,可能等于0. (2)错误,可能比0大. (3)错误,可能互为相反数. (4)正确.活动3 课堂小结1.求一个有理数的相反数.2.绝对值的定义:有理数到原点的距离3.化简绝对值. |a|=⎩⎪⎨⎪⎧a (a>0)0(a =0)-a (a<0)4.两个负数比较大小,绝对值大的反而小.2.4 有理数的加法第1课时 有理数的加法法则1.了解有理数加法的意义,理解有理数加法法则的合理性. 2.能运用有理数加法法则正确进行有理数加法运算.(重点)阅读教材P34~36,完成预习内容. (一)知识探究结合课本对两个有理数相加的7个计算式,类似地再列举出相应的计算式并结合数轴解释,得出结果(如(+3)+(+4)、(-3)+(-4)、(-3)+(+4)、(+3)+(-4)、(+3)+(-3)、(-3)+0、(+3)+0),根据以上7个算式,思考:你能总结出有理数相加的符号如何确定?和的绝对值如何确定?互为相反数相加,一个有理数和0相加,和分别为多少?结合以上内容,总结得出有理数加法法则:1.同号两数相加,取相同符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0.3.一个数同0相加,仍得这个数. (二)自学反馈计算:(1)16+(-8)=8; (2)(-12)+(-13)=-56;(3)(+312)+(-72)=0;(4)(+8)+(-3)=5; (5)(-0.125)+(18)=0;(6)0+(-9.7)=-9.7.在进行有理数加法运算时,一要辨别加数是同号还是异号;二要确定和的符号;三要计算和的绝对值.即“一辨、二定、三算”.活动1 小组讨论 例1 计算:(1)(-3)+(-9); (2)(-4.7)+3.9.解:(1)-12. (2)-0.8.例2 足球循环比赛中,红队胜黄队4∶1,黄队胜蓝队1∶0,蓝队胜红队1∶0,计算各队的净胜球数. 解:黄队净胜球:-2,红队净胜球:2,蓝队净胜球:0. 活动2 跟踪训练1.两个数的和为负数,则下列说法中正确的是(D) A .两个均是负数 B .两个数一正一负 C .至少有一个正数 D .至少有一个负数 2.一个正数与一个负数的和是(D)A .正数B .负数C .零D .不能确定符号 3.计算:(1)(+3)+(+8); (2)(+14)+(-12);(3)(-312)+(-3.5);(4)(-314)+(+213);(5)(-19)+8.3;(6)-3.4+4.解:11,-14,-7,-1112,-10.7,0.6.注意计算的符号,特别是负号.4.某县某天夜晚平均气温是-10 ℃,白天比夜晚高12 ℃,那么白天的平均温度是多少? 解:2 ℃.活动3 课堂小结 有理数的加法法则:1.同号相加,取相同的符号,并把绝对值相加.2.异号相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值. 3.任意有理数和零相加,仍得这个数.第2课时 有理数的加法运算律1.掌握有理数加法的运算律,理解小学中加法运算律在有理数中仍然成立.2.能用有理数的运算律对有理数加法进行简便运算,会根据算式的特点选择适当的简便运算方法.(重难点)阅读教材P37~38,完成预习内容. (一)知识探究加法的交换律的文字表达:两个数相加,交换加数的位置,和不变. 加法的交换律的字母表达:a +b =b +a . 加法的交换律的例子说明:1+2=2+1.加法的结合律的文字表达:三个数相加,先用前两个数相加,或者先用后两个数相加,和不变. 加法的结合律的字母表达:(a +b)+c =a +(b +c). 加法的结合律的例子说明:(1+2)+3=1+(2+3). (二)自学反馈 计算:(1)(-7.34)+(-12.74)+7.34+12.4; (2)(-35+15)+(-45);(3)(-37)+(+15)+(+27)+(-115); (4)(-20.75)+314+(-4.25)+1934;(5)(-6.8)+425+(-3.2)+635+(-5.7)+(+5.7).解:(1)-0.34.(2)-65.(3)-117.(4)-2.(5)1.活动1 小组讨论 例1 计算:(1)(-2)+3+1+(-3)+2+(-4); (2)16+(-25)+24+(-35); (3)314+(-235)+534+(-825);(4)(-7)+6+(-3)+10+(-6); 解:(1)-3.(2)-20.(3)-2.(4)0.例2 有一批食品罐头,标准质量为每听454 g ,现抽取10听样品进行检测,结果如下表:听号 1 2 3 4 5 质量/g 444 459 454 459 454 听号 6 7 8 9 10 质量/g454449454459464这10听罐头的总质量是多少? 解:解法一:这10听罐头的总质量为444+459+454+459+454+454+449+454+459+464=4 550(g).解法二:把超过标准质量的克数用正数表示,不足的用负数表示,列出10听罐头与标准质量的差值表:听号 1 2 3 4 5 与标准质 量的差/g -10 +5 0 +5 0 听号 6 7 8 9 10 与标准质 量的差/g-5+5+10这10听罐头与标准质量差值的和为 (-10)+5+0+5+0+0+(-5)+0+5+10=[(-10)+10]+[(-5)+5]+5+5=10(g). 因此,这10听罐头的总质量为454×10+10=4 540+10=4 550(g).注意运算律的运用.活动2 跟踪训练1.用适当的方法计算:(1)23+(-17)+6+(-22); (2)1+(-12)+13+(-16);(3)1.125+(-325)+(-18)+(-0.6);(4)(-2.48)+(+4.33)+(-7.52)+(-4.33). 解:(1)-10.(2)23.(3)-3.(4)-10.2.某出租司机某天下午营运全是在东西走向的人民大道进行的,如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米):+15,+14,-3,-11,+10,-12,+4,-15,+16,-18(1)他将最后一名乘客送到目的地,该司机距下午出发点的距离是多少千米? (2)若汽车耗油量为a 公升/千米,这天下午汽车共耗油多少公升?解:(1)15+14-3-11+10-12+4-15+16-18=0,距出发地0千米. (2)118a.活动3 课堂小结有理数加法交换律、结合律: 1.加法交换律:a +b =b +a ;加法结合律:(a +b)+c =a +(b +c). 2.简便运算: ①运用运算律;②运用相反数的和为零; ③凑整.2.5 有理数的减法1.掌握有理数的减法法则,熟练地进行有理数的减法运算.(重点) 2.了解加与减两种运算的对立统一关系,掌握数学学习中转化的思想.阅读教材P40~41,完成预习内容. (一)知识探究通过实际例子,一方面,利用加法与减法互为逆运算可知:计算4-(-3),就是求一个数x ,使x +(-3)=4,易知x =7,所以4-(-3)=7.① 另一方面,4+(+3)=7,② 由①②有4-(-3)=4+(+3).再试把减数-3换成正数,任意列出一些算式进行计算,如: 计算:9-8与9+(-8);15-7与15+(-7). 由上述内容,得出减法法则:减去一个数,等于加这个数的相反数.用字母表示为:a -b =a +(-b).减法法则渗透了一种重要的数学思想方法——转化,有了相反数,减法就可以转化为加法,加减就可以统一为加法.有理数的减法法则是:减去一个数,等于加这个数的相反数; 用字表示为:a -b =a +(-b). (二)自学反馈 计算:(1)(-3)-(-6); (2)0-8; (3)6.4-(-3.6);(4)-312-(+514).解:(1)3.(2)-8. (3)10.(4)-834.(1)减法转化为加法,减数要变成相反数.(2)法则适用于任何两有理数相减.(3)用字母表示一般形式为:a -b =a +(-b)活动1 小组讨论 例 计算:(1)(-38)-(-36); (2)0-(-711);(3)1.7-(-3.5); (4)(-234)-(-112);(5)323-(-234);(6)(-334)-(+1.75).解:(1)-2.(2)711.(3)5.2.(4)-114.(5)6512.(6)-5.5.活动2 跟踪训练1.计算:(1)(-23)-(+112)-(-14);(2)(-0.1)-(-813)-1123-(-110);(3)(-1.5)-(-1.4)-(-3.6)-4.3-(+5.2);(4)(5-6)-(7-9).解:(1)-2312.(2)-313.(3)-6.(4)1.2.根据题意列出式子计算.(1)一个加数是1.8,和是-0.81,求另一个加数; (2)-13的绝对值的相反数与23的相反数的差.解:(1)-0.81-1.8=-2.61. (2)-|-13|-(-23)=-13+23=13.活动3 课堂小结1.有理数的减法法则:a -b =a +(-b). 2.转化原则:减号变加号,减数变成相反数.2.6 有理数的加减混合运算 第1课时 有理数的加减混合运算1.会把有理数的加减混合运算统一为加法运算.2.熟悉有理数加减运算的运算律,能把有理数加法运算省略加号和括号,理解有理数的和.(重难点)阅读教材P43,完成预习内容. (一)知识探究把下列算式统一为加法,并写成省略加号的形式:(-20)+(+3)-(-5)-(+7)=(-20)+(+3)+(+5)+(-7)=-20+3+5-7, (-7)+(+5)+(-4)-(-10)=(-7)+(+5)+(-4)+(+10)=-7+5-4+10. 认识算式:①2-5;②-5+3;③-2-8;④-4+2-6的意义.注意有理数的加减混合运算写成省略加号的和的形式的意义.(二)自学反馈把(+23)+(-45)-(+15)-(-13)-(+1)写成省略加号的和的形式,并计算.解:23-45-15+13-1=-1.活动1 小组讨论例1 计算:(1)(+27)+(-49)-(+59)-(-57)-(+1);(2)-7-(-8)-(-712)-(+9)+(-10)+1112;(3)-99+100-97+98-95+96+ (2)(4)-1-2-3- (100)解:(1)-1.(2)1.(3)50.(4)-5 050.例2 银行储蓄所办理了8件工作业务,取出950元,存进500元,取出800元,存进1 200元,存进了2 500元,取出1 025元,取出200元,存进400元,这时,银行现款是增加了,还是减少了?增加或减少了多少元? 解:增加了,增加了1 625元.例3 把-a +(+b)-(-c)+(-d)写成省略加号的和的形式为-a +b +c -d .总结:有理数的加减混合运算的计算有如下几个步骤:(1)将减法转化成加法运算; (2)省略加号和括号;(3)运用加法交换律和结合律,将同号两数相加; (4)按有理数加法法则计算. 活动2 跟踪训练1.把下列算式先统一为加法运算再写成省略括号和的形式,并把结果用两种读法读出来. (1)(+9)-(+10)+(-2)-(-8)+3; (2)(-13)-(+22)+(-17)-(-18). 解:(1)9-10-2+8+3. (2)-13-22-17+18. 2.计算:(1)(-7)-(+5)+(-4)-(-10); (2)1-4+3-0.5;(3)34-72+(-16)-(-23)-1; (4)-2.4+3.5-4.6+3.5.解:(1)-6.(2)-0.5.(3)-314.(4)0.活动3 课堂小结1.有理数的加减混合运算可以利用运算顺序进行计算. 2.熟练进行含有整数、小数、分数的加减混合运算.第2课时 有理数加减混合运算中的简便计算1.运用加法交换律和结合律简化有理数加减混合运算.(重难点) 2.能熟练地进行有理数的加减混合运算.阅读教材P44~45,完成预习内容. (一)知识探究计算:4.5+(-3.2)+1.1+(-1.4). 解:原式=4.5+1.1+[(-3.2)+(-1.4)] =5.6+(-4.6) =1.运用加法交换律和结合律可以简化运算.(二)自学反馈运用交换律和结合律计算: (1)3-10+7=3+7-10=0;(2)-6+12-3-5=-6-3-5+12=-2.活动1 小组讨论 例1 计算:(1)(-9)-(-7)+(-6)-(+4)-(-5); (2)(+4.3)-(-4)+(-2.3)-(+4).解:(1)原式=-9+7-6-4+5=(-9-6-4)+7+5=-19+12=-7. (2)原式=4.3+4-2.3-4=2.例2 已知上周周五(周末不开盘)收盘时股市指数以2 880点报收,本周内股市涨跌情况如下表,则本周四收盘时的股市指数为(D)星期 一 二 三 四 五 股指变化+50-21-100+78-78A.2 880 B .2 877 正数表示涨,负数表示跌,每天的变化是相对于前一天来比较的,所以周四的股市指数为2 880+50-21-100+78=2 887.总结:有理数的加减混合运算的计算有如下几个步骤:(1)将减法转化成加法运算; (2)省略加号和括号;(3)运用加法交换律和结合律,将同号两数相加; (4)按有理数加法法则计算. 活动2 跟踪训练 1.计算:(1)(-8)-(-15)+(-9)-(-12); (2)(-13)-15+(-23);(3)(-18)-(-65)+(+8)-(+710);(4)-23+(-16)-(-14)-12.解:(1)10.(2)-16.(3)-9.5.(4)-1312.2.甲、乙两队进行拔河比赛,标志物先向乙队方向移动了0.2米,又向甲队方向移动了0.5米,相持一会后,又向乙队方向移动了0.4米,随后又向甲队方向移动了1.3米,在大家的欢呼鼓励中,标志物又向甲队方向移动了0.9米,若规定标志物向某队方向移动2米该队即可获胜,那么现在谁赢了?用算式说明你的判断.解:甲队获胜,因为-0.2+(+0.5)+(-0.4)+(+1.3)+(+0.9)=+2.1(米)>2(米),所以甲队获胜.活动3 课堂小结在加减运算时,适当运用加法运算律,把正数与负数分别相加,可使运算简便.但要注意交换加数的位置时,要连同前面的符号一起交换.第3课时有理数加减混合运算的应用1.能综合运用有理数及其加、减法的有关知识灵活地解决简单的实际问题.(重难点)2.感受到有理数运算的实用性,增强学好数学的信心.阅读教材P47,完成预习内容.知识探究折线统计图可以表示同一种量在不同时间的变化规律,如北京周一到周日的天气变化情况.正确地画出折线统计图是观察变化情况的依据.画法及步骤:①写出统计图名称,如天气、水位等;②画出横、纵两条互相垂直的数轴(有时不画箭头,一般向上为正方向,向右为正方向),分别表示两个量,标出单位和单位长度;③根据统计数据,分别描出对应点,描点时可借助三角板来完成;④用线段把所描的点顺次连接起来.活动1 小组讨论例下表是一个水文站在雨季对某条河一周内水位变化情况的记录.其中,水位上升用正数表示,水位下降用负数表示(水位变化的单位:米).星期一二三四五六日变化+0.4 -0.3 -0.4 -0.3 +0.2 +0.2 +0.1 注:①表中记录的数据为每天12时的水位与前一天12时水位的变化量.②上周日12时的水位高度为2米.(1)请你通过计算说明本周末水位是上升了还是下降了.(2)用折线图表示本周每天的水位,并根据折线图说明水位在本周内的升降趋势.分析:计算这七天水位变化量的和,看结果是正、还是负,若是正,说明周末水位上升了;若是负,说明水位下降了.解:(1)因为(+0.4)+(-0.3)+(-0.4)+(-0.3)+(+0.2)+(+0.2)+(+0.1)=0.4-0.3-0.4-0.3+0.2+0.2+0.1=-0.1(米),所以本周末水位下降了.(2)折线图如图所示:由折线图可看出,本周水位先上升,再下降,最后上升.①画折线统计图时,要先确定哪一个量或哪一个数值为0,即基准;②要标出横线和竖线的单位;③选择单位长度时要考虑使统计图有明显的上升和下降的幅度,能看出变化情况.活动2 跟踪训练1.光明中学初一(1)班学生的平均身高是160厘米.(1)下表给出了该班6名同学的身高情况(单位:厘米),试完成下表:姓名小明小彬小丽小亮小颖小山身高159 154 165身高与平均-1 +2 0 +3身高的差值(2)谁最高?谁最矮?(3)最高和最矮的学生身高相差多少?解:(1)依次填入:162 160 163 -6 +5.(2)小山最高,小亮最矮.(3)最高和和最矮的学生身高相差11厘米.2.9.11事故后,美国股市出现狂跌,股市指数一度跌到历史最低点,后经政府宏观调控,稍有反弹,下表是某周(周末不开盘)(1)本周内哪天股市指数最高?哪天股市指数最低?(2)本周五的股市指数比上周五的股市指数高还是低?(3)若将上周五的股市指数记为0点,请你画出本周的股市指数折线图.解:(1)本周内星期四股市指数最高,星期二股市指数最低.(2)本周五的股市指数比上周五的股市指数高(3)图略.活动3 课堂小结1.知识归纳:利用正、负数表示相反意义的量,进行有理数的加减混合运算解决实际问题.2.数学思想方法:用已学知识解决新问题的转化思想.2.7 有理数的乘法第1课时 有理数的乘法法则1.了解有理数乘法的实际意义.2.理解有理数的乘法法则,能熟练地进行有理数乘法运算.(重点)阅读教材P49~51,完成预习内容. (一)知识探究有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.通过有理数的乘法,进一步体会有理数运算包含两步思考:先确定积的符号,再计算积的绝对值. 乘积为1的两个数互为倒数.如:-3的倒数是-13,0.5的倒数是2,-212的倒数是-25.看书第50、51页的内容,体会几个不等于零的有理数相乘,积的符号的确定方法:几个不为0的数相乘,积的符号由负因数的个数决定.当负因数的个数是偶数时,积为正;负因数的个数是奇数时,积为负.几个数相乘,如果其中有一个因数是0,积等于0. (二)自学反馈1.计算:(-114)×(-45)=1,(+3)×(-2)=-6,0×(-4)=0,123×(-115)=-2,(-15)×(-13)=5,-│-3│×(-2)=6.2.计算:(-2)×(-3)×(-5)=-30, (-723)×3×(-123)=1,(-9.89)×(-6.2)×(-26)×(-30.7)×0=0.(1)运用乘法法则,先确定积的符号,再把绝对值相乘;(2)0没有倒数.活动1 小组讨论例1 计算:(+5)×(+3)=15, (+5)×(-3)=-15, (-5)×(+3)=-15, (-5)×(-3)=15, (+6)×0=0, 6×(-4)=-24,(-6)×4=-24, (-6)×(-4)=24. 例2 计算:(1)(-112)×815×(-23)×(-214)=-115;(2)14×(-16)×(-45)×(-114)×8×(-0.25)=8. 活动2 跟踪训练 1.计算:(1)(-5)×0.2=-1; (2)(-8)×(-0.25)=2; (3)(-312)×(-27)=1;(4)0.1×(-0.01)=-0.001;(5)(-59)×0.01×0=0;(6)(-2)×(-5)×(+56)×(-30)=-250;(7)312×(-47)+(-25)×(-334)=-12.2.a ×(-56)=1则a =-65.一个有理数的倒数的绝对值是7,则这个有理数是±17.3.判断对错:(1)两数相乘,若积为正数,则这两个因数都是正数.(×) (2)两数相乘,若积为负数,则这两个数异号.(√) (3)两个数的积为0,则两个数都是0.(×) (4)互为相反的数之积一定是负数.(×)(5)正数的倒数是正数,负数的倒数是负数.(√) 活动3 课堂小结1.有理数的乘法法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘. 任何数同0相乘,都得0.2.倒数:乘积是1的两个数互为倒数.(负倒数:乘积为-1)3.几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.第2课时 有理数的乘法运算律1.进一步应用乘法法则进行有理数的乘法运算.2.能自主探究理解乘法交换律、结合律、分配律在有理数运算中的应用.(重难点)阅读教材P52~53,完成预习内容.(一)知识探究 乘法的交换律文字表达:两个数相乘,交换因数的位置,积相等. 乘法的交换律字母表达:ab =ba . 乘法的结合律文字表达:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等. 乘法的结合律字母表达:(ab)c =a(bc).乘法的分配律文字表达:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. 乘法的分配律字母表达:a(b +c)=ab +ac .(二)自学反馈1.计算:(-3)×56×(-95)×(-14)×(-8)×(-1). 解:-9.2.计算:(1)-34×(8-43-1415);(2)191819×(-15). 解:(1)-4310.(2)-299419. 运用运算律进行简便运算.活动1 小组讨论例 计算:(1)(-0.5)×(-316)×(-8)×113; 解:-1.(2)-10556×12; 解:-1 270.(3)(-34+156-78)×(-24); 解:-5.(4)317×(317-713)×722×2122; 解:-4.(5)(23-49+527)×27-1117×8+117×8. 解:3.活动2 跟踪训练1.运用分配律计算(-3)×(-4+2-3),下面有四种不同的结果,其中正确的是(D)A .(-3)×4-3×2-3×3B .(-3)×(-4)-3×2-3×3C .(-3)×(-4)+3×2-3×3D .(-3)×(-4)-3×2+3×32.在运用分配律计算3.96×(-99)时,下列变形较合理的是(C)A .(3+0.96)×(-99)B .(4-0.04)×(-99)C .3.96×(-100+1)D .3.96×(-90-9)3.对于算式2 007×(-8)+(-2 007)×(-18),逆用分配律写成积的形式是(C)A .2 007×(-8-18)B .-2 007×(-8-18)C .2 007×(-8+18)D .-2 007×(-8+18)4.计算1357×316最简便的方法是(D) A .(13+57)×316B .(14-27)×316C .(10+357)×316D .(16-227)×316 5.计算:(1)(-4)×8×(-2.5)×0.1×(-0.125)×10;(2)(134-78-112)×117; (3)(-5.25)×(-4.73)-4.73×(-19.75)-25×(-5.27).解:(1)-10.(2)1921.(3)250. 活动3 课堂小结1.有理数乘法交换律.2.有理数乘法结合律.3.有理数乘法分配律.2.8 有理数的除法1.理解除法的意义,掌握有理数的除法法则.2.能熟练进行有理数的除法运算.(重点)3.感受转化、归纳的数学思想.阅读教材P55~56,完成预习内容.(一)知识探究1.有理数除法法则除以一个不等于0的数,等于乘这个数的倒数. 2.两数相除,同号得正,异号得负,并把绝对值相除.0除以任何不等于0的数仍得0. (二)自学反馈(1)(-18)÷6=-3; (2)5÷(-15)=-25; (3)(-27)÷(-9)=3;(4)0÷(-2)=0. 0不能作除数.活动1 小组讨论例1 计算:(1)(-15)÷(-3); (2)12÷(-14); (3)(-0.75)÷0.25;(4)(-12)÷(-112)÷(-100). 解:(1)5.(2)-48.(3)-3.(4)-1.44.例2 计算:(1)(-18)÷(-23); (2)16÷(-43)÷(-98). 解:(1)27.(2)323. 乘除混合运算要先将除法化成乘法,然后确定积的符号,最后求出结果.活动2 跟踪训练1.两个不为零的有理数的和等于0,那么它们的商是(B)A .正数B .-1C .0D .±12.两个不为0的数相除,如果交换它们的位置,商不变,那么(D)A .两数相等B .两数互为相反数C .两数互为倒数D .两数相等或互为相反数3.计算:(1)-0.125÷(-38); (2)(-215)÷1110; (3)(-112)÷34÷1.4. 解:(1)13.(2)-2;(3)-107. 活动3 课堂小结1.法则1:a ÷b =a ·1b. 2.法则2:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不为0的数仍得0.3.化简分数.2.9 有理数的乘方1.理解有理数乘方的意义,理解乘方运算、幂、底数等概念的意义.2.正确进行有理数乘方运算.(重点)阅读教材P58~59,完成预习内容.(一)知识探究1.求n 个相同因数a 的积的运算叫乘方,乘方的结果叫幂,a 叫底数,n 叫指数.乘方a n 有双重含义:(1)表示一种运算,这时读作“a 的n 次方”;(2)表示乘方运算的结果,这时读作“a 的n 次幂”. 2.正数的任何次幂都是正数,0的任何正整数次幂都是0;负数的奇次幂是负数,偶次幂是正数. (二)自学反馈 1.在(-2)6中,底数是-2,指数是6,运算结果是64;在-26中,底数是2,指数是6,运算结果是-64.(特别注意)2.底数是-23,指数是3的幂是-827. 3.(-1)2 017=-1,02 017=0,(-0.1)4=0.000__1.在书写乘方时,若底数为负数、分数时一定要加括号.3.(-12)4表示的意义是4个-12相乘,23×23×23×23可写成(23)4. 4.计算:(-25)3=-8125;3×23=24;(3×2)3=216;(-3)3×(-42)=432;(-324)2-324=4516.活动1 小组讨论例 计算:(1)(-2)2×(-2)3; (2)5×(-3)2;(3)(-2)4-(-4)2; (4)(-3×2)2-3×22.解:(1)-32.(2)45.(3)0.(4)24.活动2 跟踪训练1.如果一个数的平方与这个数的差等于零,那么这个数只能是(D)A .0B .-1C .1D .0或12.下列说法正确的是(D)A .一个数的偶次幂一定是正数B .一个正数的平方比原数大C .一个负数的立方比原数小D .互为相反数的两个数的立方仍互为相反数3.任何一个有理数的二次幂是(B)A .正数B .非负数C .负数D .无法确定4.当n 为整数时,(-1)2n -1+(-1)2n 的值为(B)A .-2B .0C .1D .25.某种细胞每过30分钟便由1个分裂成2个,经过5小时后,这种细胞1个能分裂成多少个?(1)细胞每30分钟分裂一次,则5个小时共分裂10次;(2)5个小时后,细胞的个数一共有=1__024个,为了简便可以记作210.6.①边长为a 的正方形的面积为a 2;②棱长为a 的正方体的体积为a 3;③把一张纸对折一次可裁成两张,对折2次可裁成4张,问对折3次可裁成几张?用算式如何表示?23.如果对折10次、100次,用算式如何表示?210,2100.7.计算(-2)3,(-3)3,(-12)3,(-13)3,并找出其中最大的数和最小的数.解:(-2)3=-8,(-3)3=-27,(-12)3=-18,(-13)3=-127. 其中最大的数为-127,最小的数为-27. 活动3 课堂小结1.乘方2.乘方的计算:3.乘方的性质.。
有理数 概念 第二讲
数学教师辅导讲义讲义编号:学员姓名:宋春国年级:初一课时数:2 数学教师:宋老师课题有理数的认识授课日期及时段教学目标学习正数、负数、有理数的概念,会用正、负数表示具有相反意义的量,能正确地将有理数进行分类.〔重点难点〕正数、负数的概念对有理数的建立起关键性的作用,是本节课重点.正数、负数的概念的建立是学生从来未经历过的数学的抽象过程,是本节的难点.教学过程1.2.1 有理数一.教学过程1.创设情景,引入新课同学们你们还记不记上一节课老师请你们举了一些生活当中的例子,这些例子用自然数,分数,小数是不能解决的,当时我们都举了哪些例子啊?我记得同学们好象讲到了温度计当中零下的温度,还有地下室,还有欠银行的钱如何表示,还有路标向东向西,扣分如何表示等等等等.那么温度的零上、零下,路程的向东、向西,钱的收入和支出,得分和扣分这些量是不是相互对立的?因此我们称它们为具有相反意义的量,那么如何把这些具有相反意义的量表示出来呢?2.合作探索,寻求新知师:为了表示具有相反意义的量,我们把一种意义的量规定为正,比如我们会把零上的温度规定为正,路程当中会把向东方向规定为正方向,钱的收入规定为正,把另一种与之意义相反的量规定为负,而这些规定为正的量一般比较容易表示,比如规定向东为正,则向东22千米,记作22千米,而与之相反的量就不好表示,如果也记作22千米,别人一看就分不清是向东还是向西,所以我们必须引进新的数来表示这些相反意义的量.师:把过去学过的数(除零外)规定为正数,如123,15,2/3等,正数前面有时也可以放上“+”(读做正号);在这些数的前面放上“-”(读做负号)就表示负数,如-123,-15,-2/3等.负数是在正数的前面加上“—”得到的,大家现在来举一队正数和负数?那下面老师来举一个例子:0是正数,-1是负数,对吗?那么1是正数,0是负数.正数里有没有包括0,负数会不会包括0,所以零既不是正数,也不是负数.(强调)有了负数,相反意义的量就好表示了,规定向东为正,则向东22千米,记作22千米,向西走50米,就记作-50米.那现在我来问大家:如果上升8米,记作+8,那么下降5米,应该怎么记呢?做一做:第二题这样我们学过的数中,又增加了新的数,我们以前学的整数如1,2,3,4,更准确地说是正整数,那么-1,-2,-3,-4应该称为什么?1/2,3/2,5.4为正分数,则-1/2,-3/2,-5.4为 .正整数可以化成分数形式,负整数也可以化成分数形式,正小数、负小数化成分数形式,像这种能化成分数形式的数,正整数、0、负整数、正分数、负分数统称为有理数。
有理数(二)
“正负术”是正负数加减法则。其中有一段话是 “同名相除,异名相宜,正无入负之,负无入正之。” 你知道它的意思吗?其实它就是减法法则,以现代算 式为例,可以将这段话解释如下: “同名相除”,即同号两数相减时,括号前为被减 数的符号,括号内为被减数的绝对值加减数的绝对值。
/
例如 (+5)-(-3)= +(5-3) (-5)-(-3)= -(5-3) “异名相宜”,即异号两数相减时,括号前为被减 数的符号,括号内为被减数的绝对值加减数的绝对值。 例如 (+5)-(-3)= +(5+3) (-5)-(+3)= -(5+3) “正无入负之,负无入正之”,即0减正数得负,0减 负得正。例如 0 -(+3)= -3 0 -(-3)= +3 史料证明:追溯到两千多年前,中国人已经开始使 用负数,并应用到生产和生活中,例如,在古代商业活 动中,以收入为正,支出为负;以盈余为正,亏欠为负。 在古代农业活动中,以增产为正,减产为负。中国人使 用负数在世界上是首创。
/
(1)(-3)+(-9); (2)(-4.7)+3.9. 解 (1)(-3)+(-9)=-(3+9)=-12; (2)(-4.7)+3.9=-(4.7-3.9)=-0.8。
=-8的意义。
我们以前学过加法交换律、结合律,在有理 数的加法中它们还使用吗? 探究
计算: 30+(-20),(-20)+30 两次所得的和相同吗?换几个加数再试一试。 从上述计算中,你能得出什么结论?
你不妨动手试一试,看看会不会出现所有牌 都反面向上。 事实上,不论你翻多少次,都不能使9张牌 都反面向上。从这个结果,你能想到其中的数学 道理吗?
北师大版七年级上册数学第二章:有理数及运算讲义(二)2.2数轴(无答案)
第二章:有理数(二)2.2数轴1.数轴(1)定义:规定了原点、正方向和单位长度的直线叫做数轴,如图.①数轴有三要素:原点、正方向、单位长度,三者缺一不可;②原点的选定,单位长度大小的确定,都是根据实际需要“规定”的.通常取向右的方向为正方向. (2)数轴的画法画一条数轴的步骤可概括为:一画、二定、三选、四标. ①画直线:就是先画一条直线,一般画成水平的直线;②定原点:通常原点选在你所画直线居中的位置,若问题中负数的个数较多时,原点选得靠右些;正数的个数较多时,原点选得靠左些.③选正方向:通常取原点向右的方向为正方向,并选取适当的长度为单位长度,将表示刻度的点用短竖线表示.④标数:在数轴上依次标出1,2,3,4,0,-1,-2,-3,-4等各点,相应的数0,±1,±2,…写在数轴的下方;将需要在数轴上表示出的数或字母写在数轴的上方,相应的点表示为实心小圆点.要是在数轴上用到30,那得标多少单位啊! 适当的长度有两层含义:①可取实际1 cm 作为一个单位长度,也可以取2 cm 或其他实际数据作为一个单位长度; ②一个单位长度可表示1,也可表示10或更多!如图所示就能做到啦!【例1】四位同学画数轴如下图所示,你认为正确的是( ) A .B .C .D .2.有理数与数轴上的点的关系任何一个有理数都可以用数轴上的一个点来表示,即每个有理数都对应数轴上的一个点.(1)表示正数的点都在原点的右侧;(2)表示负数的点都在原点的左侧;(3)表示0的点就是原点. 【思考】数轴上是否只能表示有理数?能不能表示无理数,比如π?【例2】画出数轴并在数轴上标出表示下列有理数的点并用“<”将这些数连起来: 1.5, —2, 2, —2.5, 92, 23, 0;【例3】在数轴上表示下列各点,并写出这些点所对应的数. (1)在原点的左侧,距离原点3个单位长度; (2) 在原点的右侧,距离原点3个单位长度; (3) 在原点的左侧,距离原点0.5个单位长度; (4) 在原点的右侧,距离原点0.5个单位长度.【例4】如图,分别指出数轴上A 、B 、C 、D 、E 各点所表示的数.点技巧 “数形结合”思想(1)根据已知数在数轴上标出对应点,分三步:①画数轴;②确定点,并用实心小圆点描出;③标数,即在实心小圆点的上方标出所表示的数.(2)根据数轴上的点读数,原点表示0,原点向右为正数,原点向左为负数.都体现了“数形结合”的思想.3.利用数轴比较有理数的大小(1)数轴上两个点表示的数,右边的总比左边的大.(2)正数大于0,负数小于0,正数大于负数.(3)多个有理数比较大小:①把各个数在数轴上表示出来;②根据各数在数轴上的顺序,用“<”或“>”连接.析规律 两个有理数比较大小的方法 分情况比较:①若两数同号(都为正数或都为负数),数轴上左边的数<右边的数; ②若两数异号,则正数>0>负数.【例5】比较下列这组数的大小,并用“<”连接起来.-412,12,1,-2, 3, 0,-0.5.【例6】 有理数a ,b 在数轴上的位置如图所示,试用“=”“>”或“<”填空:a __________0,b __________0,a __________b .4.数轴上点的移动(1)相对于原点的移动:从原点向右a (a >0)个单位长度,则表示的数是a ;从原点向左a (a >0)个单位长度,则表示的数是-a .(2)两个相对点的移动:点A 相对于点B 向右移动或向左移动一定的距离,最后表示的数要看点A 移动结束时对应点距离原点的距离和位置.【例7】一探险队要沿着一东西走向的河流进行考察,第一天沿河岸向上游走了5 km ,第二天又向上游走了4.3 km ,第三天开始计划有变,向下游走了4.8 km ,第四天又向下游走了3 km ,你知道第四天之后,该探险队在出发点的上游还是下游吗?距离出发点多远?5.利用数轴求数轴上的点表示的数在数学里,数与形是密切联系的,数轴的引进使有理数与直线上的点联系了起来,利用数轴可以比较容易地写出数轴上某区域中的整数、正整数、负整数等.如,写出大于-5而小于3的所有整数.可以先画出数轴,在数轴上标出-5与3这两个点,再在这两个点之间找出满足题意的整数-4,-3,-2,-1,0,1,2即可.DC BA 【例8】小红做题时,不小心把墨水洒在了数轴上,如图所示,请根据图中的数值,写出墨迹盖住的所有整数.【题组训练】:1.如图所示,正确的数轴是( )2.若a ,b ,c 在数轴上的位置如图所示,则a ,b ,c 所表示的数是( ) A . a ,b ,c 均为正数 B .a ,b ,c 均为负数 C . a ,b 是正数,c 是负数 D .a ,b 是负数,c 是正数3.数轴上点A 表示-4,如果把原点O 向正方向移动1个单位,那么在新数轴上点A 表示的数是( ) A.-5, B.-4 C.-3 D.-24.若有理数m >n ,在数轴上点M 表示数m ,点N 表示数n ,则( ) A .点M 在点N 的右边 B .点M 在点N 的左边 C .点M 在原点右边,点N 在原点左边 D .点M 和点N 都在原点右边5.将一刻度尺沿着数轴的正方向正放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0 cm ”和“15 cm ”分别对应数轴上的6.3-和x ,则( )A 、109<<xB 、 1110<<xC 、 1211<<xD 、 1312<<x6.A 、B 两点在数轴上,点A 表示的数是2,若线段AB 的长为3,则点B 所表示的数为______7.数轴上表示整数的点称为整点,某数轴的单位长度是1cm ,若在这个数轴上随意画一条长为2013cm 的线段AB ,则线段AB 盖住的整点的个数是 。
第二章有理数的意义与运算
第二章 有理数的意义与运算1、有理数的意义:(1)有理数:整数和分数统称为有理数(2)有理数的分类。
注意①0既不是正数,也不是负数,它是一个中性数,是正数和负数的分界点。
②自然数:自然数是指0和正整数,既0、1、2、3、4、…2、几个概念:(1)数轴:①原点、正方向、单位长度是数轴的三要素,缺一不可。
②数轴的用途:用数轴表示数:所有的实数都可以用数轴上的点来表示,数轴上的任一点都表示一个实数,实数和数轴上的点是一一对应的。
用数轴可以表示两个数大小。
(2)相反数:①定义:只有符号不同的两个数,其中一个是另一个的相反数,0的相反数是0。
②特点:相反数是两个数之间的一种相互关系,是成对出现的,缺一不可。
③性质:㈠ 任何一个数都有一个相反数,并且只有一个相反数。
㈡正数的相反数是负数,负数的相反数是正数,0的相反数是0。
㈢互为相反数的两个数之和为0,和为0的两个数互为相反数。
④求法:求一个数的相反数只需在这个数前面加上一个负号就可以了。
(3)绝对值:①几可意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离,数a 的绝对值记作a 。
②代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
③数a 的绝对的表示:a = ⎪⎩⎪⎨⎧<-=>)0()(0)0(a a a a a (4)有效数字:①精确度:一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。
②定义:在近似数中,从左边第一个不是零的数字起,到由四舍五入到的数位止,所有的数字,都叫做这个数的有效数字,一共包含的数字的个数,叫做有效数字的个数。
③用法:在对一个数取近似数时,近似程度经常用保留几个有效数字来表示。
(5)科学记数法:把一个数写成±a ×10n 形式(其中1≤a <10,n 是整数),这种记数法叫科学记数法,具体记数的方法为:①a 是只有一位整数的数。
②当原数≥1时,n是正整数,n 等于原数的整数位数减1,如31400=3.14×104;当原数<1时,n 是负整数,它的绝对值等于原数中左起第一个非零数前零的个数(含整数位上的零),如0.000035=3.5×10-5。
沪教版 有理数综合复习(二)1
【解析】
(1)(﹣5×2+12)÷6﹣ 1 (﹣5﹣6) 3
= 1 + 11 33
=4
(2)[2(2m﹣3n)+12)]÷6﹣ 1 [(2m+3n)﹣6)] 3
= 1 2m 3n 2 1 2m 3n 2
3
3
=4
第4 页
(3)结论:无论小丽一开始想的数是多少,得出的结果都是 4.
第1 页
倒数的概念: 乘积为 1 的两个有理数互为倒数.由于任何一个有理数与 0 的积为 0,不可能是 1,所以 0 没 有倒数. 四、 除法的运算法则: 法则一:除以一个数等于乘上这个数的倒数,即:a÷b=a• (b≠0) 法则一表明了有理数的除法和乘法可以互相转化,由于 0 没有倒数,所以除数不能为 0. 法则二:两数相除,同号得正,异号得负,并把绝对值相除.
6
3
4
(﹣
1 )] 2
=[(﹣5)+(﹣9)+(+17)+(﹣3)]+[(﹣ 5 )+(﹣ 2 )+(+ 3 )
6
3
4
+(﹣ 1 )] 2
=0+(﹣1 1 ) 4
=﹣1 1 4
上面这种方法叫拆项法.仿照上述方法计算:
(2)(﹣2008 5 )+(﹣2007 2 )+ 4017 2 +(﹣1 1 )
6
.
【解析】
∵x<0,y>0,且|x|=2,|y|=3,∴x=﹣2,y=3, 故 x+y=﹣2+3=1.故答案为:1.
【例题4】
小明对小丽说:“请你任意想一个数,把这个数乘 2 后加 12,然后除以 6,再减去 你原来所想的那个数与 6 的差的三分之一,我可以知道你计算的结果.”请你根据 小明的说法探索: (1)如果小丽一开始想的那个数是﹣5,请列式并计算结果; (2)如果小丽一开始想的那个数是 2m﹣3n,请列式并计算结果; (3)根据(1)、(2),尝试写出一个结论.
第一讲有理数 (2)
第一讲 有 理 数一、有理数的概念及分类。
二、有理数的计算:1、善于观察数字特征;2、灵活运用运算法则;3、掌握常用运算技巧(凑整法、分拆法等)。
三、例题示范1、数轴与大小例1、已知数轴上有A、B两点,A、B之间的距离为1,点A与原点O 的距离为3,那么满足条件的点B与原点O的距离之和等于多少?满足条件的点B有多少个?例2、将这四个数按由小到大的顺序,用“”连结起来。
提示1:四个数都加上1不改变大小顺序;提示2:先考虑其相反数的大小顺序;提示3:考虑其倒数的大小顺序。
例3、观察图中的数轴,用字母a、b、c依次表示点A、B、C对应的数。
试确定三个数的大小关系。
分析:由点B在A右边,知b-a0,而A、B都在原点左边,故ab0,又c10,故要比较的大小关系,只要比较分母的大小关系。
例4、在有理数a与b(ba)之间找出无数个有理数。
提示:P=(n为大于是的自然数)注:P的表示方法不是唯一的。
2、符号和括号在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。
例5、在数1、2、3、…、1990前添上“+”和“ —”并依次运算,所得可能的最小非负数是多少?提示:造零:n-(n+1)-(n+2)+(n+3)=0注:造零的基本技巧:两个相反数的代数和为零。
3、算对与算巧例6、计算 123 (200020012002)提示:1、逆序相加法。
2、求和公式:S=(首项+末项)项数2。
例7、计算 1+234+5+678+9+…2000+2001+2002提示:仿例5,造零。
结论:2003。
例8、计算提示1:凑整法,并运用技巧:199…9=10n+99…9,99…9=10n 1。
例9、计算提示:字母代数,整体化:令,则例10、计算(1);(2)提示:裂项相消。
常用裂项关系式:(1);(2);(3);(4)。
例11 计算(n为自然数)例12、计算 1+2+22+23+…+22000提示:1、裂项相消:2n=2n+12n;2、错项相减:令S=1+2+22+23+…+22000,则S=2SS=220011。
第二章 有理数单元2
第1课时 2.4有理数的加法与减法(加法法则)目的与要求了解加法的意义,会用有理数的加法法则进行运算。
知识与技能渗透数形结合和转化的数学思想,培养运用这种思想解决实际问题的能力。
情感、态度与价值观感知数学知识来源于生活,并应用于生活;利用转化思想,渗透事物向普遍联系。
教学过程一、情境创设引入小明在一条东西方向的跑道上,先走了20米,又走了30米,能否确定他现在位于原来位置的哪个方向,与原来位置相距多少米?你能把所有情况设想完整吗?二、探索知识我们先看一个简单的问题:甲乙两队进行足球比赛,如果甲队在主场以4∶1蠃了3球,在客场以1∶3输了2个球,那么两场累计净胜1球。
若蠃3球记作“+3”,输2球记作“-2”,则累计得球用数学表达式表示为:(+3)+(-2)=+1对于情境问题,可讨论如下:(1)若两次都是向东走,通过实验我们知道他一共向东走了50米。
可表示为:(+20)+(+30)=+50,即小明在原来的位置的东方50米处。
(2)若两次都是向西走,由实验可知,小明位于西方50米。
可表示为:(-20)+(-30)=-50,(3)若第一次向东,第二次向西,通过实验可知,小明位于原来位置的西方10米处。
可表示为:(+20)+(-30)=-10(4)若第一次向西,第二次向东,通过实验可知,小明位于原来位置的东方10米处。
可表示为:(-20)+(+30)=+10总结与归纳:(1)(2)是同号两数相加,(3)(4)是异号两数相加。
同学们,能探索出两数相加的法则吗?有理数加法(addition)法则同号两数相加,取相同的符号,并把它们的绝对值相加。
异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值。
一个数与0相加,仍得这个数。
例1、计算:(1)(-180)+(+20)(2)(-15)+(-3)(3)5+(-5)(4)0+(-2)解答:(1)-160(2)-18(3)0(4)-2例2、一个水利勘察队,第一天沿江向上游走了千米,第二天又向上走了千米,第三天向下游走了千米,问此时勘察队在出发点的上游还是下游,距出发点多远?解答:例3、有理数a,b 之间的关系如图所示 你能判断下列计算结果是正数还是负数吗? (1)a+b (2)a+(-b) (3)(-a)+b (4)(-a)+(-b)解答:(1)正数 (2)负数 (3)正数 (4)负数 三、随堂练习1、下列说法正确的是( )A 、两数相加,和大于任何一个加数B 、两数相加,和的符号与较大加数的符号相同。
有理数(一 二)基本概念 比较大小 分类题
(一)概念类型(一)有理数的判断1、两个互为相反数的有理数相乘,积为 。
2、当a 是 ,a 和-a 必有一个是负数;3、下列说法中正确的是( )A. - a 一定是负数B.∣a ∣一定是负数C. ∣-a ∣一定不是负数D.∣2a ∣一定是负数4、在-4,722,0,2π,3.14159,1..3,0.121121112……中,有理数的个数有( )个A.2个B.3个C.4个D.5个5、绝对值小于4的整数有( )个,它们的乘积是( )。
(二)数的大小、正负判断和求值1、若a >0,b <0,则a-b 0;若a <0,b >0,则a-b 0。
2、若0<a <1,则a,a 2 ,2a 1的大小关系是 。
3、如果∣-a ∣=∣-3∣,则a= 。
4、a 、b 、c 、d 四个不相等的整数,且a ×b ×c ×d=9,则a+b+c+d 的值是( )A.0B.3C.9D.125、999819991998989719981997----,,,这四个数由小到大的排列顺序是( )6、如图半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到的点A ’的位置上,则点A ’表示的数是( )7、如图,四个有理数在数轴上的对应点分别为MPNQ ,若点MN 表示的有理数互为相反数,则表示的数绝对值最小的点( )。
8、如图,在数轴上,点ABC 对应的数分别为abc ,若以下三个式子:①c b <,②a+c <0,③a+b <0,都成立,则原点在( )A 、在A 点的左侧B 、点A 和点B 之间C 、点B 和点C 之间D 、点C 的左侧9、数轴上到原点的距离小于2的整数点的个数为x ,距离不大于2的整数点的个数为y ;距离等于2的整数点的个数为z ,求x+y+z 的值。
10、a ,b ,c ,d ,e ,f 是互不相等的整数,且(a-1)×(b-1)×(c-1)×(d-1)×(e-1)×(f-1)= -36,则a+b+c+d+e+f 的值( )A.4B.5C.6D.711、设三个互不相等的有理数,既可以表示为1,a+b ,a ,又可以表示为0,b a ,b 的形式,求a 1999+b 2000的值是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数(二)一、内容综述:1.加法:1)同号两数相加,取相同的符号,并把绝对值相加。
2)异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
3)互为相反数的两个数相加得零。
4)一个数与零相加,仍得这个数。
提示:在进行有理数的加法运算时,第一步先确定和的符号,第二部确定和的绝对值。
加法交换律:两个数相加,交换加数的位置,和不变。
即:a+b=b+a加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
即:(a+b)+c=a+(b+c)提示:使用加法交换律、加法结合律的目的是使计算简化。
2.减法:减去一个数等于加上这个数的相反数即:a-b=a+(-b)提示:把减法运算转化为加法运算,体现了数学的转化思想。
3.乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零。
乘法交换律:两个数相乘,交换因数的位置,积不变。
即:a·b=b·a乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。
即:(a·b)·c=a·(b·c)乘法分配律:一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加。
即:a·(b+c)=a·b+a·c提示:几个不等于零的数相乘,积的符号由负因数的个数决定:1)当负因数有奇数个时,积为负2)当负因数有偶数个时,积为正。
几个数相乘,只要有一个因数为零,积为零。
4.除法:除以一个数等于乘以这个数的倒数。
(零不能作除数)两数相除,同号得正,异号得负,并把绝对值相除;零除以任何一个不等于零的数,都得零。
提示:把除法转化为乘法进行运算,又一次体现了数学中的转化思想。
5.倒数:乘积得1的两个数互为倒数。
即:若a·b=1,则a与b互为倒数,且反之也成立。
提示:零没有倒数。
互为倒数的两个数的符号相同。
要与相反数区别开:相加为0的两个数互为相反数。
即:a+b=0, 则a与b互为相反数,且反之也成立。
二、例题例1、求:(+16)-(+27)+(-5)-(-42)解:原式=(+16)+(-27)+(-5)+(+42)(统一为加法)=+16-27-5+42(省略加号的代数和)=+16+42-27-5(用交换律化简)=58-32=26例2、计算:1) 1998+89-95-997解法一:原式=(2000-2)+(100-11)-(100-5)-(1000-3)=(2000+100-100-1000)+(-2-11+5+3)=1000-5=995解法二:原式=(1998-997)+(89-95)=1001-6=9952) (-41)+(+12)+(-59)+(+78)原式=[(+12)+(+78)]+[(-41)+(-59)]=90+(-100)=-103) ++……+原式=1-+-+……+-=1-=-=4) 1+(-2)+3+(-4)+5+(-6)+……+(-100)原式=[1+(-2)]+[3+(-4)]+[5+(-6)]+……+[99+(-100)]=(-1)+(-1)+……+(-1)=-505) -分析:观察两个分式的特点,先把191919、767676、1919、7676分解,然后约分,然后再相减解:原式=-=-=-4=-3.75例3、求数轴上表示+3与-7的两点间的距离分析:求数轴上两点间的距离就是求这两点所表示的有理数之差的绝对值。
解:|(+3)-(-7)|=|3+7|=10注意:数轴上表示有理数a,b两点间的距离可用|a-b|来求。
例4、填空:1)有理数中,是整数而不是正数的是_________,是负数而不是分数的是_________。
2)-3-[4-(5-7)]=_________。
答:1)零或负整数,负整数。
2)-9例5、选择题:1.如果两数的和是负数,那么一定不可能的是()。
(A).这两个数都是负数(B).这两个一个是负数,一个是零(C).这两个数中一个是正数,另一个是负数,且负数的绝对值较大(D).这两个数都是正数2.对于有理数a,b有下面说法:①.若a+b=0,则a与b是互为相反数的数;②.若a+b<0,则a与b异号;③.若a+b>0,且a与b同号,则a>0,b>0;④.若|a|>|b|,且a,b异号,则a+b>0;⑤.若|a|<b,则a+b>0;其中,正确的说法有()。
(A).4个(B).3个(C).2 个(D).1个3.一个数是11,另一个数比11的相反数大2,那么这两个数的和是()。
(A).2(B).-2(C).24(D).-244.如果一个整数减去-6是正数,减去-4是负数,则这个数减去9等于()。
(A).-4(B).4(C).-14(D).14答:1) D2)B3)A4)C例6.解答题:用简便方法计算。
(1).(-17)-(-8)-(-9)-(+6)-(-14)原式=(-17)+(+8)+(+9)+(-6)+(+14)=(-17)+(-6)+(+8)+(+9)+(+14)=(-23)+(+31)=8(2).已知m是5的相反数,n比m的相反数小6,求n-m解:∵m=-5, n=-m-6=-(-5)-6=-1∴n-m=(-1)-(-5)=(-1)+(+5)=4(3).在-7和37之间插入三个数,使5个数的每两个之间的距离相等,求这三个数。
解:∵37-(-7)=37+7=4444÷4=11∴这三个数是:-7+11=44+11=1515+11=26(4).什么数加上-13所得的结果是-21的相反数?解:∵()+(-13)=21∴()=21-(-13)∴所求的数是:34(5).大于-8且小于15的所有3的倍数的和是多少?解:∵大于-8且小于15的所有3的倍数分别是:-6,-3,0,3,6,9,12,∴(-6)+(-3)+0+3+6+9+12=21(6).初三数学升学考试某考场30名学生的成绩如下:759288739795857295988885 84861007899 8582948376917985 9169568782①.以85分为标准分,超过的部分记为正数,不足的部分记为负数,列出新的数表;-10,7,3,-12,12,10,0,-13,10,13,3,0,-1,1,15,-7,14,0,-3,9,-2,-9,6,-6,0,6,-16,-29,2,-3②.计算出新的数表中各数之和;(-10)+7+3+(-12)+12+10+0+(-13)+10+13+3+0+(-1)+1+15+(-7)+14+0+(-3)+9+(-2)+(-9)+6+(-6)+0+6+ (-16)+(-29)+2+(-3)=0③.求30名学生数学成绩的平均分。
85+0=85(7)数轴上有两个数a,b,如图用>把a,b,-a,-b,a+b,a-b连接起来。
解:-a>b>-b>a+b>a>a-b(提示:可以用特殊值法)例7:计算:1) (+3)(3-7)分析:如果采用从左到右的方法进行计算,计算量比较大,运用计算律比较快捷。
原式=(3-7)=(3-7)=-=3-7=-4例8:判断下列积的符号(1)(-2)×3×4×(-1)(2)(-5)×(-6)×3×(-2)(3)(-2)×(-2)×(-2)(4)(-3)×(-3)×(-3)×(-3)答:(1)+号,(2)-号,(3)-号,(4)+号例9:计算(1)(-3)××(-1)×(-)(2)(-5)×8×(-7)×0.25(3)(-)××1×(-)(4)7.8×(-8.1)×0×(-19.6)(5)(+5.9)×(-1998)×(+199)×(-2000)×0(6)1×2×3×4×(-5);(7)1×2×3×(-4)×(-5);(8)1×2×(-3)×(-4)×(-5);(9)1×(-2)×(-3)×(-4)×(-5);(10)(-1)×(-2)×(-3)×(-4)×(-5);答:(1)-,(2)70,(3),(4)0,(5)0,(6)-120,(7)120,(8)-120,(9)120,(10)-120 例10:计算1) 120÷(-120)+0÷(-31906)-421×(-1)解:原式=-1+0+421=4202) (-2.5)×(-)÷(-)÷(-5)解:原式=(-2.5)×(-)×(-)×(-)=0.0453) (+12)÷(-1.4)-(-6)÷(-1.4)+9÷1.4解:原式=(12+6-9)÷(-1.4)=9×(-)=-64) (-9)××(-1)÷(-)×(-9)解:原式=(-9)××(-1)×(-9)×(-9)=81 5) {1+[-(-)]×(-6)}÷(--0.25) 略解:原式=3。