阜阳市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阜阳市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 已知向量=(1,2),=(x ,﹣4),若∥,则x=( ) A . 4 B . ﹣4 C . 2 D . ﹣2
2. 函数
的定义域是( )
A .[0,+∞)
B .[1,+∞)
C .(0,+∞)
D .(1,+∞)
3. 已知向量=(1,1,0),=(﹣1,0,2)且k +与2﹣互相垂直,则k 的值是( )
A .1
B .
C .
D .
4. 设a 是函数
x 的零点,若x 0>a ,则f (x 0)的值满足( )
A .f (x 0)=0
B .f (x 0)<0
C .f (x 0)>0
D .f (x 0)的符号不确定
5. 双曲线4x 2+ty 2﹣4t=0的虚轴长等于( )
A .
B .﹣2t
C .
D .4
6. 设l ,m ,n 表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题: ①若m ∥l ,m ⊥α,则l ⊥α; ②若m ∥l ,m ∥α,则l ∥α;
③若α∩β=l ,β∩γ=m ,γ∩α=n ,则l ∥m ∥n ; ④若α∩β=l ,β∩γ=m ,γ∩α=n ,n ∥β,则l ∥m . 其中正确命题的个数是( )
A .1
B .2
C .3
D .4
7. 已知直线l 1 经过A (﹣3,4),B (﹣8,﹣1)两点,直线l 2的倾斜角为135°,那么l 1与l 2( ) A .垂直 B .平行 C .重合 D .相交但不垂直
8. 函数()()f x x R Î是周期为4的奇函数,且在02[,]上的解析式为(1),01
()sin ,12x x x f x x x ì-#ï=íp <?ïî
,则
1741
()()46f f +=( ) A .716 B .916 C .1116 D .1316
【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能
力.
9. 已知一个算法的程序框图如图所示,当输出的结果为
2
1
时,则输入的值为( )
A .2
B .1-
C .1-或2
D .1-或10
10.如图所示,在平行六面体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面对角线A 1C 1的中点,若=
+x
+y
,
则( )
A .x=﹣
B .x=
C .x=﹣
D .x=
11.在定义域内既是奇函数又是减函数的是( )
A .y=
B .y=﹣x+
C .y=﹣x|x|
D .y=
12.对于任意两个正整数m ,n ,定义某种运算“※”如下:当m ,n 都为正偶数或正奇数时,m ※n=m+n ;当m ,n 中一个为正偶数,另一个为正奇数时,m ※n=mn .则在此定义下,集合M={(a ,b )|a ※b=12,a ∈N *,b ∈N *}中的元素个数是( ) A .10个 B .15个 C .16个 D .18个
二、填空题
13.设α为锐角,若sin (α﹣
)=,则cos2α= .
14.一个椭圆的长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 .
15.已知面积为的△ABC 中,∠A=若点D 为BC 边上的一点,且满足=,则当AD 取最小时,
BD 的长为 .
16.小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是 米.(太阳光线可看作为平行光线)
17.在等差数列}{n a 中,20161-=a ,其前n 项和为n S ,若
28
108
10=-S S ,则2016S 的值等于 . 【命题意图】本题考查等差数列的通项公式、前n 项和公式,对等差数列性质也有较高要求,属于中等难度. 18.已知函数f (x )是定义在R 上的单调函数,且满足对任意的实数x 都有f[f (x )﹣2x ]=6,则f (x )+f (﹣x )的最小值等于 .
三、解答题
19.已知梯形ABCD 中,AB ∥CD ,∠B=,DC=2AB=2BC=2
,以直线AD 为旋转轴旋转一周的都如图
所示的几何体
(Ⅰ)求几何体的表面积
(Ⅱ)判断在圆A 上是否存在点M ,使二面角M ﹣BC ﹣D 的大小为45°,且∠CAM 为锐角若存在,请求出CM 的弦长,若不存在,请说明理由.
20.甲、乙两位选手为为备战我市即将举办的“推广妈祖文化•印象莆田”知识竞赛活动,进行针对性训练,近8次的训练成绩如下(单位:分): 甲 83 81 93 79 78 84 88 94 乙 87 89 89 77 74 78 88 98
(Ⅰ)依据上述数据,从平均水平和发挥的稳定程度考虑,你认为应派哪位选手参加?并说明理由; (Ⅱ)本次竞赛设置A 、B 两问题,规定:问题A 的得分不低于80分时答题成功,否则答题失败,答题成功可获得价值100元的奖品,问题B 的得分不低于90分时答题成功,否则答题失败,答题成功可获得价值300元的奖品.答题顺序可自由选择,但答题失败则终止答题.选手答题问题A ,B 成功与否互不影响,且以训练成绩作为样本,将样本频率视为概率,请问在(I )中被选中的选手应选择何种答题顺序,使获得的奖品价值更高?并说明理由.
21.若函数f (x )=sin ωxcos ωx+
sin 2ωx ﹣
(ω>0)的图象与直线y=m (m 为常数)相切,并且切点的横
坐标依次构成公差为π的等差数列. (Ⅰ)求ω及m 的值;
(Ⅱ)求函数y=f (x )在x ∈[0,2π]上所有零点的和.
22.已知函数()2
ln f x x bx a x =+-.
(1)当函数()f x 在点()()
1,1f 处的切线方程为550y x +-=,求函数()f x 的解析式; (2)在(1)的条件下,若0x 是函数()f x 的零点,且()*
0,1,x n n n N ∈+∈,求的值;
(3)当1a =时,函数()f x 有两个零点()1212,x x x x <,且12
02
x x x +=,求证:()00f x '>.
23.(本小题满分12分)某市拟定2016年城市建设,,A B C 三项重点工程,该市一大型城建公司准备参加这三个工程的竞标,假设这三个工程竞标成功与否相互独立,该公司对,,A B C 三项重点工程竞标成功的概率分别为a ,b ,
14()a b >,已知三项工程都竞标成功的概率为124,至少有一项工程竞标成功的概率为34
. (1)求a 与b 的值;
(2)公司准备对该公司参加,,A B C 三个项目的竞标团队进行奖励,A 项目竞标成功奖励2万元,B 项目竞标成功奖励4万元,C 项目竞标成功奖励6万元,求竞标团队获得奖励金额的分布列与数学期望.
【命题意图】本题考查相互独立事件、离散型随机变量分布列与期望等基础知识,意在考查学生的运算求解能力、审读能力、获取数据信息的能力,以及方程思想与分类讨论思想的应用.
24.解关于x 的不等式12x 2﹣ax >a 2(a ∈R ).
阜阳市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1.【答案】D
【解析】:解:∵∥,
∴﹣4﹣2x=0,解得x=﹣2.
故选:D.
2.【答案】A
【解析】解:由题意得:2x﹣1≥0,即2x≥1=20,
因为2>1,所以指数函数y=2x为增函数,则x≥0.
所以函数的定义域为[0,+∞)
故选A
【点评】本题为一道基础题,要求学生会根据二次根式的定义及指数函数的增减性求函数的定义域.3.【答案】D
【解析】解:∵=(1,1,0),=(﹣1,0,2),
∴k+=k(1,1,0)+(﹣1,0,2)=(k﹣1,k,2),
2﹣=2(1,1,0)﹣(﹣1,0,2)=(3,2,﹣2),
又k+与2﹣互相垂直,
∴3(k﹣1)+2k﹣4=0,解得:k=.
故选:D.
【点评】本题考查空间向量的数量积运算,考查向量数量积的坐标表示,是基础的计算题.
4.【答案】C
【解析】解:作出y=2x和y=log x的函数图象,如图:
由图象可知当x0>a时,2>log x0,
∴f(x0)=2﹣log x0>0.
故选:C.
5.【答案】C
【解析】解:双曲线4x2+ty2﹣4t=0可化为:
∴
∴双曲线4x2+ty2﹣4t=0的虚轴长等于
故选C.
6.【答案】B
【解析】解:∵①若m∥l,m⊥α,
则由直线与平面垂直的判定定理,得l⊥α,故①正确;
②若m∥l,m∥α,则l∥α或l⊂α,故②错误;
③如图,在正方体ABCD﹣A1B1C1D1中,
平面ABB1A1∩平面ABCD=AB,
平面ABB1A1∩平面BCC1B1=BB1,
平面ABCD∩平面BCC1B1=BC,
由AB、BC、BB1两两相交,得:
若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n不成立,故③是假命题;
④若α∩β=l,β∩γ=m,γ∩α=n,n∥β,
则由α∩γ=n 知,n ⊂α且n ⊂γ,由n ⊂α及n ∥β,α∩β=m , 得n ∥m ,同理n ∥l ,故m ∥l ,故命题④正确. 故选:B .
【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.
7. 【答案】A
【解析】解:由题意可得直线l 1的斜率k 1=
=1,
又∵直线l 2的倾斜角为135°,∴其斜率k 2=tan135°=﹣1, 显然满足k 1•k 2=﹣1,∴l 1与l 2垂直 故选A
8. 【答案】C
9. 【答案】D 【解析】
试题分析:程序是分段函数⎩⎨⎧=x y x lg 2 0
0>≤x x ,当0≤x 时,212=x
,解得1-=x ,当0>x 时,21lg =x ,
解得10=x ,所以输入的是1-或10,故选D.
考点:1.分段函数;2.程序框图.11111] 10.【答案】A
【解析】解:根据题意,得;
=+(+)
=
++
=﹣+,
又∵=+x+y,
∴x=﹣,y=,
故选:A.
【点评】本题考查了空间向量的应用问题,是基础题目.
11.【答案】C
【解析】解:A.在定义域内没有单调性,∴该选项错误;
B.时,y=,x=1时,y=0;
∴该函数在定义域内不是减函数,∴该选项错误;
C.y=﹣x|x|的定义域为R,且﹣(﹣x)|﹣x|=x|x|=﹣(﹣x|x|);
∴该函数为奇函数;
;
∴该函数在[0,+∞),(﹣∞,0)上都是减函数,且﹣02=02;
∴该函数在定义域R上为减函数,∴该选项正确;
D.;
∵﹣0+1>﹣0﹣1;
∴该函数在定义域R上不是减函数,∴该选项错误.
故选:C.
【点评】考查反比例函数的单调性,奇函数的定义及判断方法,减函数的定义,以及分段函数单调性的判断,二次函数的单调性.
12.【答案】B
【解析】解:a※b=12,a、b∈N*,
若a和b一奇一偶,则ab=12,满足此条件的有1×12=3×4,故点(a,b)有4个;
若a和b同奇偶,则a+b=12,满足此条件的有1+11=2+10=3+9=4+8=5+7=6+6共6组,故点(a,b)有2×6﹣1=11个,
所以满足条件的个数为4+11=15个.
故选B
二、填空题
13.【答案】 ﹣ .
【解析】解:∵α为锐角,若sin (α﹣)=,
∴cos (α﹣)=,
∴sin
=
[sin (α﹣
)+cos (α﹣
)]=
,
∴cos2α=1﹣2sin 2
α=﹣
.
故答案为:﹣.
【点评】本题主要考查了同角三角函数关系式,二倍角的余弦函数公式的应用,属于基础题.
14.【答案】
.
【解析】解:由题意可得,2a ,2b ,2c 成等差数列 ∴2b=a+c
∴4b 2=a 2+2ac+c 2
①
∵b 2=a 2﹣c 2
②
①②联立可得,5c 2+2ac ﹣3a 2=0
∵
∴5e 2
+2e ﹣3=0
∵0<e <1
∴
故答案为:
【点评】本题主要考查了椭圆的性质的应用,解题中要椭圆离心率的取值范围的应用,属于中档试题
15.【答案】
.
【解析】解:AD 取最小时即AD ⊥BC 时,根据题意建立如图的平面直角坐标系, 根据题意,设A (0,y ),C (﹣2x ,0),B (x ,0)(其中x >0),
则
=(﹣2x ,﹣y ),
=(x ,﹣y ),
∵△ABC 的面积为
,
∴⇒=18,
∵=cos=9,
∴﹣2x2+y2=9,
∵AD⊥BC,
∴S=••=⇒xy=3,
由得:x=,
故答案为:.
【点评】本题考查了三角形的面积公式、利用平面向量来解三角形的知识.16.【答案】 3.3
【解析】
解:如图BC为竿的高度,ED为墙上的影子,BE为地面上的影子.
设BC=x,则根据题意
=,
AB=x,
在AE=AB﹣BE=x﹣1.4,
则=,即=,求得
x=3.3(米)
故树的高度为3.3米,
故答案为:3.3.
【点评】本题主要考查了解三角形的实际应用.解题的关键是建立数学模型,把实际问题转化为数学问题.
17.【答案】2016
18.【答案】6.
【解析】解:根据题意可知:f(x)﹣2x是一个固定的数,记为a,则f(a)=6,
∴f(x)﹣2x=a,即f(x)=a+2x,
∴当x=a时,
又∵a+2a=6,∴a=2,
∴f(x)=2+2x,
∴f(x)+f(﹣x)=2+2x+2+2﹣x=2x+2﹣x+4
≥2+4=6,当且仅当x=0时成立,
∴f(x)+f(﹣x)的最小值等于6,
故答案为:6.
【点评】本题考查函数的最值,考查运算求解能力,注意解题方法的积累,属于中档题.
三、解答题
19.【答案】
【解析】解:(1)根据题意,得;
该旋转体的下半部分是一个圆锥,
上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,
其表面积为S=×4π×2×2=8π,
或S=×4π×2+×(4π×2﹣2π×)+×2π×=8π;
(2)作ME⊥AC,EF⊥BC,连结FM,易证FM⊥BC,
∴∠MFE为二面角M﹣BC﹣D的平面角,
设∠CAM=θ,∴
EM=2sinθ,EF=,
∵tan∠MFE=1,∴,∴tan=,∴,
∴CM=2.
【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目.
20.【答案】
【解析】解:(I)记甲、乙两位选手近8次的训练的平均成绩分别为、,方差分别为、
.,
.…
,
.…
因为
,
,所以甲、乙两位选手的平均水平相当,但甲的发挥更稳定,故应派甲参加.…
(II )记事件C 表示为“甲回答问题A 成功”,事件D 表示为“甲回答问题B 成功”,则P (C )=,P (D )=,且事件C 与事件D 相互独立. …
记甲按AB 顺序获得奖品价值为ξ,则ξ的可能取值为0,100,400.
P (ξ=0)=P ()=,P (ξ=100)=P ()=
,P (ξ=400)=P (CD )=.
ξ
0 100 400
所以甲按AB 顺序获得奖品价值的数学期望
.…
记甲按BA 顺序获得奖品价值为η,则η的可能取值为0,300,400.
P (η=0)=P ()=,P (η=300)=P ()=
,P (η=400)=P (DC )=,
η
所以甲按BA 顺序获得奖品价值的数学期望
.…
因为E ξ>E η,所以甲应选择AB 的答题顺序,获得的奖品价值更高.…
【点评】本小题主要考查平均数、方差、古典概型、相互独立事件的概率、离散型随机变量分布列、数学期望等基础知识,考查数据处理能力、运算求解能力、应用意识,考查必然与或然思想、分类与整合思想.
21.【答案】
【解析】解:(Ⅰ)∵f (x )=sin ωxcos ωx+sin 2
ωx ﹣
=
ωx+
(1﹣cos2ωx )﹣
=
2ωx ﹣
2ωx=sin (2ωx ﹣
),
依题意得函数f (x )的周期为π且ω>0,
∴2ω=
,
∴ω=1,则m=±1;
(Ⅱ)由(Ⅰ)知f (x )=sin (2ωx ﹣
),∴
,
∴.
又∵x ∈[0,2π],
∴
.
∴y=f (x )在x ∈[0,2π]上所有零点的和为
.
【点评】本题主要考查三角函数两倍角公式、辅助角公式、等差数列公差、等差数列求和方法、函数零点基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归转化思想,是中档题.
22.【答案】(1)()26ln f x x x x =--;(2)3n =;(3)证明见解析. 【解析】
试
题解析: (1)()2a
f'x x b x =+-
,所以(1)251(1)106
f'b a b f b a =+-=-=-⎧⎧⇒⎨⎨=+==⎩⎩, ∴函数()f x 的解析式为2
()6ln (0)f x x x x x =-->;
(2)22
626
()6ln '()21x x f x x x x f x x x x
--=--⇒=--=,
因为函数()f x 的定义域为0x >,
令(23)(2)3
'()02
x x f x x x +-=
=⇒=-或2x =, 当(0,2)x ∈时,'()0f x <,()f x 单调递减,
当(2,)x ∈+∞时,'()0f x >,函数()f x 单调递增, 且函数()f x 的定义域为0x >,
(3)当1a =时,函数2
()ln f x x bx x =+-,
21111()ln 0f x x bx x =+-=,2
2222()ln 0f x x bx x =+-=,
两式相减可得22
121212()ln ln 0x x b x x x x -+--+=,121212ln ln ()x x b x x x x -=
-+-. 1'()2f x x b x =+-,0001
'()2f x x b x =+-,因为1202x x x +=,
所以12120121212
ln ln 2
'()2()2x x x x f x x x x x x x +-=⋅+-+-
-+ 212121221221122112211
1
21ln ln 2()211ln ln ln 1x x x x x x x x x x x x x x x x x x x x x x ⎡⎤
⎛⎫-⎢⎥ ⎪⎡⎤--⎝⎭⎢⎥=-=--=-⎢⎥⎢⎥-+-+-⎣⎦+⎢⎥⎢⎥⎣⎦
设21
1x
t x =>,2(1)()ln 1t h t t t -=-+,
∴22
222
14(1)4(1)'()0(1)(1)(1)
t t t h t t t t t t t +--=-==>+++, 所以()h t 在(1,)+∞上为增函数,且(1)0h =,
∴()0h t >,又
21
1
0x x >-,所以0'()0f x >.
考点:1、导数几何意义及零点存在定理;2、构造函数证明不等式.
【方法点睛】本题主要考查导数几何意义及零点存在定理、构造函数证明不等式,属于难题.涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路. 23.【答案】
【解析】(1)由题意,得1
1424131(1)(1)(1)44ab a b ⎧=⎪⎪⎨⎪----=⎪⎩,因为a b >,解得1213a b ⎧=⎪⎪⎨⎪=
⎪⎩
.…………………4分
(Ⅱ)由题意,令竞标团队获得奖励金额为随机变量X , 则X 的值可以为0,2,4,6,8,10,12.…………5分
而4
1
433221)0(=⨯⨯==X P ;1231(2)2344P X ==⨯⨯=;
1131(4)2348P X ==⨯⨯=; 1211135
(6)23423424P X ==⨯⨯+⨯⨯=;
1211(8)23412P X ==⨯⨯=; 1111
(10)23424P X ==⨯⨯=;
1111
(12)23424
P X ==⨯⨯=.…………………9分
所以X 的分布列为:
于是,11()0123
456
44824
122424
E X =⨯+⨯+⨯+
⨯+⨯
+⨯+
⨯12
=
.……………12分
24.【答案】
【解析】解:由12x 2﹣ax ﹣a 2
>0⇔(4x+a )(3x ﹣a )>0⇔(x+)(x ﹣)>0,
①a >0时,﹣<,解集为{x|x <﹣或x >}; ②a=0时,x 2>0,解集为{x|x ∈R 且x ≠0}; ③a <0时,﹣>,解集为{x|x <或x >﹣}. 综上,当a >0时,﹣<,解集为{x|x <﹣或x >};
当a=0时,x 2
>0,解集为{x|x ∈R 且x ≠0};
当a<0时,﹣>,解集为{x|x<或x>﹣}.。