山东省日照第一中学2018-2019学年上学期高三期中数学模拟题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省日照第一中学2018-2019学年上学期高三期中数学模拟题 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 已知在数轴上0和3之间任取一实数,则使“2log 1x <”的概率为( ) A .
14 B .18 C .23 D .112
2. 满足下列条件的函数)(x f 中,)(x f 为偶函数的是( )
A.()||x f e x =
B.2()x x f e e =
C.2
(ln )ln f x x = D.1
(ln )f x x x
=+
【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力. 3. 若直线:1l y kx =-与曲线C :1
()1e
x f x x =-+没有公共点,则实数k 的最大值为( )
A .-1
B .
1
2
C .1
D 【命题意图】考查直线与函数图象的位置关系、函数存在定理,意在考查逻辑思维能力、等价转化能力、运算求解能力.
4. ABC ∆中,“A B >”是“cos 2cos 2B A >”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件
【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力. 5. 已知命题:()(0x
p f x a a =>且1)a ≠是单调增函数;命题5:(,)44
q x ππ
∀∈,sin cos x x >.
则下列命题为真命题的是( )
A .p q ∧
B .p q ∨⌝ C. p q ⌝∧⌝ D .p q ⌝∧ 6. 2016年3月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取
20名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为350,500,150,按分
层抽样的方法,应从青年职工中抽取的人数为( ) A. 5 B.6 C.7
D.10
【命题意图】本题主要考查分层抽样的方法的运用,属容易题. 7. 某三棱锥的三视图如图所示,该三棱锥的体积是( ) A . 2 B .4 C .
34 D .3
8
【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.
8. 以下四个命题中,真命题的是( ) A .(0,)x π∃∈,sin tan x x =
B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<
C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数
D .ABC ∆中,“sin sin cos cos A B A B +=+”是“2
C π
=
”的充要条件
【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.
9. 已知e 为自然对数的底数,若对任意的1
[,1]x e
∈,总存在唯一的[1,1]y ∈-,使得2ln 1y x x a y e -++= 成立,则实数a 的取值范围是( )
A.1[,]e e
B.2(,]e e
C.2(,)e +∞
D.21(,)e e e
+
【命题意图】本题考查导数与函数的单调性,函数的最值的关系,函数与方程的关系等基础知识,意在考查运用转化与化归思想、综合分析问题与解决问题的能力.
10.在ABC ∆中,10a =,60B =,45C =,则等于( )
A .10
B .1)
C 1
D .
11.487被7除的余数为a (0≤a <7),则展开式中x ﹣3
的系数为( )
A .4320
B .﹣4320
C .20
D .﹣20
12.若当R x ∈时,函数|
|)(x a x f =(0>a 且1≠a )始终满足1)(≥x f ,则函数3
|
|log x x y a =
的图象大致是 ( )
【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等.
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.直线20x y t +-=与抛物线216y x =交于A ,B 两点,且与x 轴负半轴相交,若O 为坐标原点,则
OAB ∆面积的最大值为 .
【命题意图】本题考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,意在考查分析问题以及解决问题的能力.
14.已知正整数m 的3次幂有如下分解规律:
113=;5323+=;119733++=;1917151343+++=;…
若)(3+∈N m m 的分解中最小的数为91,则m 的值为 .
【命题意图】本题考查了归纳、数列等知识,问题的给出比较新颖,对逻辑推理及化归能力有较高要求,难度中等.
15.在ABC ∆中,90C ∠=,2BC =,M 为BC 的中点,1
sin 3
BAM ∠=
,则AC 的长为_________. 16.已知a 、b 、c 分别是ABC ∆三内角A B C 、、的对应的三边,若C a A c cos sin -=,则
3
s i n c o s ()4
A B π
-+的取值范围是___________.
【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想.
三、解答题(本大共6小题,共70分。

解答应写出文字说明、证明过程或演算步骤。


17.某实验室一天的温度(单位:
)随时间(单位;h )的变化近似满足函数关系;
(1) 求实验室这一天的最大温差; (2) 若要求实验室温度不高于
,则在哪段时间实验室需要降温?
18.(本小题满分12分)
已知平面向量(1,)a x =,(23,)b x x =+-,()x R ∈. (1)若//a b ,求||a b -;
(2)若与夹角为锐角,求的取值范围.
19.(本题满分13分)已知函数x x ax x f ln 22
1)(2
-+=. (1)当0=a 时,求)(x f 的极值;
(2)若)(x f 在区间]2,3
1[上是增函数,求实数a 的取值范围.
【命题意图】本题考查利用导数知识求函数的极值及利用导数来研究函数单调性问题,本题渗透了分类讨论思想,化归思想的考查,对运算能力、函数的构建能力要求高,难度大.
20.(本小题满分10分)已知函数f (x )=|x -a |+|x +b |,(a ≥0,b ≥0). (1)求f (x )的最小值,并求取最小值时x 的范围; (2)若f (x )的最小值为2,求证:f (x )≥a +b .
21.(本小题满分12分)设f (x )=-x 2+ax +a 2ln x (a ≠0). (1)讨论f (x )的单调性;
(2)是否存在a >0,使f (x )∈[e -1,e 2]对于x ∈[1,e]时恒成立,若存在求出a 的值,若不存在说明理由.
22.(本小题满分12分)已知函数2
()(21)ln f x x a x a x =-++(a R ∈).
(I )若1
2
a >,求)(x f y =的单调区间; (II )函数()(1)g x a x =-,若0[1,]x e ∃∈使得00()()f x g x ≥成立,求实数a 的取值范围.
山东省日照第一中学2018-2019学年上学期高三期中数学模拟题(参考答案)
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 【答案】C 【解析】
试题分析:由2log 1x <得02x <<,由几何概型可得所求概率为202
303
-=-.故本题答案选C. 考点:几何概型. 2. 【答案】D. 【



3. 【答案】C
【解析】令()()()()1
11e
x g x f x kx k x =--=-+,则直线l :1y kx =-与曲线C :()y f x =没有公共点,等价于方程()0g x =在R 上没有实数解.假设1k >,此时()010g =>,1
1
11101e k g k -⎛⎫
=-+< ⎪-⎝⎭
.又函数()g x 的图象连续不断,由零点存在定理,可知()0g x =在R 上至少有一解,与“方程()0g x =在R 上没
有实数解”矛盾,故1k ≤.又1k =时,()1
0e
x g x =>,知方程()0g x =在R 上没有实数解,所以k 的最大值为1,故选C .
4. 【答案】A.
【解析】在ABC ∆中2
2
2
2
cos 2cos 212sin 12sin sin sin sin sin B A B A A B A B >⇒->-⇔>⇔>
A B ⇔>,故是充分必要条件,故选A.
5. 【答案】D
【解析】
考点:1、指数函数与三角函数的性质;2、真值表的应用. 6.【答案】C
7.【答案】B
8.【答案】D
9.【答案】B
【解析

10.【答案】B 【解析】
试题分析:由题意得,60B =,45C =,所以0
75A =,由正弦定理,得
sin sin a c
A C
=
10sin 10sin 45
1)sin sin 75a C c A ⨯
⇒=
===,故选B .1 考点:正弦定理. 11.【答案】B
解析:解:487=(49﹣1)7
=

+…
+
﹣1,
∵487被7除的余数为a (0≤a <7), ∴a=6,

展开式的通项为T r+1
=

令6﹣3r=﹣3,可得r=3,

展开式中x ﹣3
的系数为
=﹣4320,
故选:B .. 12.【答案】C
【解析】由|
|)(x a x f =始终满足1)(≥x f 可知1>a .由函数3
|
|log x x y a =
是奇函数,排除B ;当)1,0(∈x 时,0||log <x a ,此时0|
|log 3
<=
x
x y a ,排除A ;当+∞→x 时,0→y ,排除D ,因此选C . 二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.【



14.【答案】10
【解析】3
m 的分解规律恰好为数列1,3,5,7,9,…中若干连续项之和,3
2为连续两项和,3
3为接下来三项和,故3
m 的首个数为12
+-m m .
∵)(3+∈N m m 的分解中最小的数为91,∴9112
=+-m m ,解得10=m .
15.【解析】
考点:1、正弦定理及勾股定理;2诱导公式及直角三角形的性质.
【方法点睛】本题主要考查正弦定理及勾股定理、诱导公式及直角三角形的性质,属于难题,高考三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正弦定理、余弦定理解三角形为主,难度中等,因此只要掌握基本的解题方法与技巧即可,对于三角函数与解三角形相结合的题目,要注意通过正余弦定理以及面积公式实现边角互化,求出相关的边和角的大小,有时也要考虑特殊三角形的特殊性质(如正三角形,直角三角形等).
16.【答案】(1,
2
【解析】
三、解答题(本大共6小题,共70分。

解答应写出文字说明、证明过程或演算步骤。

)17.【答案】
【解析】(1)∵f(t)=10﹣=10﹣2sin(t+),t∈[0,24),
∴≤t+<,故当t+=时,函数取得最大值为10+2=12,
当t+=时,函数取得最小值为)由题意可得,当f (时,需要降温,由(Ⅰ)可得f (t )=10﹣2sin (
t+),(t+)>(t+)<﹣,即 ≤t+<,
【解析】
试题分析:(1)本题可由两向量平行求得参数,由坐标运算可得两向量的模,由于有两解,因此模有两个值;
(2)两向量,a b 的夹角为锐角的充要条件是0a b ⋅>且,a b 不共线,由此可得范围.
试题解析:(1)由//a b ,得0x =或2x =-, 当0x =时,(2,0)a b -=-,||2a b -=,
当2x =-时,(2,4)a b -=-,||25a b -=.
(2)与夹角为锐角,0a b ∙>,2230x x -++>,13x -<<, 又因为0x =时,//a b ,
所以的取值范围是(1,0)(0,3)-.
考点:向量平行的坐标运算,向量的模与数量积.
【名师点睛】由向量的数量积cos a b a b θ⋅=可得向量的夹角公式,当为锐角时,cos 0θ>,但当cos 0θ>时,可能为锐角,也可能为0(此时两向量同向),因此两向量夹角为锐角的充要条件是0a b a b ⋅>且,a b 不同
向,同样两向量夹角为钝角的充要条件是
0a b a b ⋅<且,a b 不反向.
19.【答案】 【解析】(1)函数的定义域为),0(+∞,因为x x ax x f ln 22
1)(2-+=,当0=a 时,x x x f ln 2)(-=,则x x f 12)('-
=.令012)('=-=x x f ,得2
1=x .…………2分 所以的变化情况如下表:
所以当2
1=x 时,)(x f 的极小值为2ln 1)21(+=f ,函数无极大值.………………5分
20.【答案】
【解析】解:(1)由|x -a |+|x +b |≥|(x -a )-(x +b )|
=|a +b |得,
当且仅当(x -a )(x +b )≤0,即-b ≤x ≤a 时,f (x )取得最小值,
∴当x ∈[-b ,a ]时,f (x )min =|a +b |=a +b .
(2)证明:由(1)知a +b =2, (a +b )2=a +b +2ab ≤2(a +b )=4, ∴a +b ≤2,
∴f (x )≥a +b =2≥a +b ,
即f (x )≥a +b .
21.【答案】
【解析】解:(1)f (x )=-x 2+ax +a 2
ln x 的定义域为{x |x >0},f ′(x )=-2x +a +a 2x
=-2(x+a
2
)(x-a)
x.
①当a<0时,由f′(x)<0得x>-a
2

由f′(x)>0得0<x<-a
2.
此时f(x)在(0,-a
2
)上单调递增,
在(-a
2
,+∞)上单调递减;
②当a>0时,由f′(x)<0得x>a,
由f′(x)>0得0<x<a,
此时f(x)在(0,a)上单调递增,在(a,+∞)上单调递减.
(2)假设存在满足条件的实数a,
∵x∈[1,e]时,f(x)∈[e-1,e2],
∴f(1)=-1+a≥e-1,即a≥e,①
由(1)知f(x)在(0,a)上单调递增,
∴f(x)在[1,e]上单调递增,
∴f(e)=-e2+a e+e2≤e2,即a≤e,②
由①②可得a=e,
故存在a=e,满足条件.
22.【答案】
【解析】【命题意图】本题考查导数的应用等基础知识,意在考查转化与化归思想的运用和综合分析问题解决问题的能力.
请。

相关文档
最新文档