一元二次方程应用题(含答案)整理版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1:某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元

解:设没件降价为x,则可多售出5x件,每件服装盈利44-x元,

依题意x≤10

∴(44-x)(20+5x)=1600

展开后化简得:x²-44x+144=0

即(x-36)(x-4)=0

∴x=4或x=36(舍)

即每件降价4元

2.游行队伍有8行12列,后又增加了69人,使得队伍增加的行·列数相同,增加了多少行多少列

解:设增加x (8+x)(12+x)=96+69 x=3

增加了3行3列

3.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价

解: (1)若销售单价为x元,则每千克降低了(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元.

依题意得:

y=(x-30)[60+2(70-x)]-500

=-2x^2+260x-6500

(30<=x<=70)

(2)当日均获利最多时:单价为65元,日均销售量为60+2(70-65)=70kg,那

么获总利为1950*7000/70=195000元,当销售单价最高时:单价为70元,日均

销售60kg,将这批化工原料全部售完需7000/60约等于117天,那么获总利为

(70-30)*7000-117*500=221500

元,而221500>195000时且22=26500元.

∴销售单价最高时获总利最多,且多获利26500元.

4.一辆警车停在路边,当警车发现一辆一8M/S的速度匀速行驶的货车有违

章行为,决定追赶,经过,警车行驶100m追上货车.试问

(1)从开始加速到追上货车,警车的速度平均每秒增加多少m

(2)从开始加速到行驶64m处是用多长时间

解:

*8=20 100-20=80 80/8=10

100/【(0+10a)/2】=10解方程为2

64/【(0+2a)/2】=a解方程为8

5.用一个白铁皮做罐头盒,每张铁皮可制作25个盒身,或制作盒底40个,

一个盒身和两个盒底配成一套罐头盒。现在有36张白铁皮,用多少张制盒身,

多少张制盒底可以使盒身和盒底正好配套?

6、解:设用 X 张制罐身用 Y 张制罐底则X+Y=36 X=36-Y 25X=40Y/2 X=4Y/5 4Y/5=36-Y Y=20 X=16

7.现有长方形纸片一张,长19cm,宽15cm,需要剪去边长多少的小正方形

才能做成底面积为77平方cm的无盖长方形的纸盒

解:设边长x

则(19-2x)(15-2x)=77

4x^2-68x+208=0

x^2-17x+52=0

(x-13)(x-4)=0,当x=13时19-2x<0不合题意,舍去

故x=4

8. 某超市一月分销售额是20万元,以后每月的利润都比上个月的利润增长10%,则二月分销售额是多少 3月的销售额是多少

解:二月20*(1+)=22 三月22*(1+)=

9. 某企业2007年利润为50万元,如果以后每年的利润都比上年的利润增长x%。那么2009年的年利润将达到多少万元

解:50*(1+x%)^2

10. 某厂经过两年体制改革和技术革新,生产效率翻了一番,求平均每年的增长率(精确到%)

解:设平均每年的增长率x

(x+1)^2=2

x=

11. 一拖拉机厂,一月份生产出甲、乙两种新型拖拉机,其中乙型16台,从二月份起,甲型每月增产10台,乙型每月按相同的增长率逐月递增,又知二月份甲、乙两型的产量之比为3:2,三月份甲、乙两型产量之和为65台,求乙型拖拉机每月增长率及甲型拖拉机一月份的产量。

解:设乙的增长率为X,那么二月乙就是16(1+X)台,甲就是16(1+X)×3÷2;三月乙就是16(1+X)²台,甲就是16(1+X)×3÷2+10台,所以列出算式16(1+X)²+16(1+X)×3÷2+10=65求解,然后可以分别算出一月二月乙的产量,然后就可以解得甲的产量了17.

12.如图,出发沿BC匀速向点C运动。已知点N的速度每秒比点M快1cm,两点同时出发,运动3秒后相距10cm。求点M和点N运动的速度。

解:设M速度x,则N为(x+1),(BC—3x)的

平方=10的平方,解得x=1或x=5/3又因为AC=7,所

1m/s,N的速度2m/s

13.用长为100cm的金属丝做一个矩形框.李明做的矩形框的面积为400平方厘米,而王宁做的矩形框的面积为600平方厘米,你知道这是为什么吗

解:设矩形一边长为X厘米,则相邻一边长为1/2(100-2X)厘米,即(50-X)厘米,依题意得:

X*(50-X)=400 解之得:X1=40,X2=10;

X*(50-X)=600 解之得:X1=20,X2=30;

所以李明做的矩形的长是40厘米,宽是10厘米;

王宁做的矩形的长是30厘米,宽是20厘米。

14.某商品进价为每件40元,如果售价为每件50元,每个月可卖出210件,如果售价超过50元,但不超过80元,每件商品的售价每上涨10元,每个月少卖1件,如果售价超过80元后,若再涨价,每件商品的售价每涨1元,每个月少卖3件。设该商品的售价为X元。

(1)、每件商品的利润为元。若超过50元,但不超过80元,每月售件。

若超过80元,每月售件。(用X的式子填空。)

(2)、若超过50元但是不超过80元,售价为多少时利润可达到7200元

(3)、若超过80元,售价为多少时利润为7500元。

解: 1)x-40 210-(x-40)\10 210-(x-40)\10-3(x-80)

(2)设售价为a (a-40)[210-(a-40)\10=7200

相关文档
最新文档