一元二次方程应用题经典题型汇总含答案

合集下载

一元二次方程应用题(含答案)整理版

一元二次方程应用题(含答案)整理版

一元二次方程应用题(含答案)整理版

1、某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?解:设没件降价为x,则可多售出5x件,每件服装盈利44-x元,依题意x≤10∴(44-x)(20+5x)=1600展开后化简得:x-44x+144=0即(x-36)(x-4)=0∴x=4或x=36(舍)即每件降价4元

2、游行队伍有8行12列,后又增加了69人,使得队伍增加的行、列数相同,增加了多少行多少列?解:设增加x (8+x)(12+x)=96+69 x=3增加了3行3列

3、某化工材料经售公司购进了一种化工原料,进货价格为每千克30元、物价部门规定其销售单价不得高于每千克70元,也不得低于30元、市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算)、如果日均获利1950元,求销售单价解: (1)若销售单价为x元,则每千克降低了(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元、依题意得: y=(x-30)[60+2(70-x)]-500 =-2x^2+260x-6500 (30<=x<=70)

(2)当日均获利最多时:单价为65元,日均销售量为60+2(70-65)=70kg,那么获总利为1950*7000/70=元,当销售单价最高时:单价为70元,日均销售60kg,将这批化工原料全部售完

一元二次方程应用题(含答案)

一元二次方程应用题(含答案)

一元二次方程应用题(含答案)精品文档

1:某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?

解:设没件降价为x,则可多售出5x件,每件服装盈利44-x元。

依题意x≤10

44-x)(20+5x)=1600

展开后化简得:x²-44x+144=0

即(x-36)(x-4)=0

x=4或x=36(舍)

即每件降价4元

要找准关系式

2.游行队伍有8行12列,后又增加了69人,使得队伍增加的行·列数相同,增加了多少行多少列?

解:设增加x。(8+x)(12+x)=96+69.x=3

增加了3行3列

3.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价

解: (1)若销售单价为x元,则每千克降低了(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元.

依题意得:

y=(x-30)[60+2(70-x)]-500

2x^2+260x-6500

30<=x<=70)

元,而>时且-=元.

销售单价最高时获总利最多,且多获利元.

精品文档

佳构文档

4.运动员起跑20m后速度才能达到最大速度10m/s,若运动员的速度是均匀增加的,则他起跑开始到10m处时需要多少s?

一元二次方程应用(含答案)(经典+精华,例题+习题)

一元二次方程应用(含答案)(经典+精华,例题+习题)
数字问题:(位置值)
4、一个三位数,十位上的数字比百位上的数字大3,个位上的数字等于百位上的数字与十位上的数字的和。已知这个三位数比个位上的数字的平方的5倍大12,求这个三位数。
面积问题
例5、如图某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长a=18m),另三边用木栏围成,木栏长35m。①鸡场的面积能达到150m2吗?②鸡场的面积能达到180m2吗?如果能,请你给出设计方案;如果不能,请说明理由。
A.x+3×4.25%x=33825B.x+4.25%x=33825
C.3×4.25%x=33825D.3(x+4.25%x)=33825
5、(2013•黔西南州)某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是( )
A.
50(1+x2)=196
C.
36(1﹣x)2=48
D.
36(1+x)2=48
故选D.
4、(2013山西,9,2分)王先生到银行存了一笔三年期的定期存款,年利率是4.25%,若到期后取出得到本息和(本金+利息)33852元。设王先生存入的本金为x元,则下面所列方程正确的是( )
A.x+3×4.25%x=33825B.x+4.25%x=33825
一元二次方程应用题(后附答案)

一元二次方程应用题精选含答案

一元二次方程应用题精选含答案

一元二次方程应用题精选

一、数字问题

1、有两个连续整数,它们的平方和为25,求这两个数。

2、一个两位数,十位数字与个位数字之和是6,把这个数的个位数字与十位数字对调后,所得的新两位数与原来的两位数的积是1008,求这个两位数.

二、销售利润问题

3、某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增

加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:

(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?

(2)要使商场平均每天赢利最多,请你帮助设计方案.

4.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家

电下乡”政策的实施,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台,商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?

5.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价O.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利2O0元,应将每千克小型西瓜的售价降低多少元?

三、平均变化率问题增长率

(1)原产量+增产量=实际产量.

(2)单位时间增产量=原产量×增长率.

(3)实际产量=原产量×(1+增长率).

6.某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增长的百分率是多少?

(完整版)一元二次方程应用题经典题型汇总含答案

(完整版)一元二次方程应用题经典题型汇总含答案

z一元二次方程应用题经典题型汇总

一、增长率问题

例1恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.

解设这两个月的平均增长率是x.,则根据题意,得200(1-20%)(1+x)2=193.6,即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去).

答这两个月的平均增长率是10%.

说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中m<n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1-x)2=n即可求解,其中m>n.

二、商品定价

例2益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?

解根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0,

解这个方程,得a1=25,a2=31.

因为21×(1+20%)=25.2,所以a2=31不合题意,舍去.

所以350-10a=350-10×25=100(件).

答需要进货100件,每件商品应定价25元.

说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点.

例3王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)

(完整版)一元二次方程应用题精选(附答案)

(完整版)一元二次方程应用题精选(附答案)

一元二次方程应用题精选

1、有两个连续整数,它们的平方和为25,求这两个数。

2、一个两位数,十位数字与个位数字之和是6,把这个数的个位数字与十位数字对调后,所得的新两位数与原来的两位数的积是1008,求这个两位数.

3、某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施。经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。求:

(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)要使商场平均每天赢利最多,请你帮助设计方案。

4.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台,商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?

5.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价O.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利2O0元,应将每千克小型西瓜的售价降低多少元?

6. 某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增长的百分率是多少?

7. 某产品原来每件600元,由于连续两次降价,现价为384元,如果两个降价的百分数相同,求每次降价百分之几?

一元二次方程应用题题型汇总含答案

一元二次方程应用题题型汇总含答案

z一元二次方程应用题经典题型汇总

一、增长率问题

例1恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.

解设这两个月的平均增长率是x.,则根据题意,得200(1-20%)(1+x)2=193.6,

即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去).

答这两个月的平均增长率是10%.

说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中m<n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1-x)2=n即可求解,其中m>n.

二、商品定价

例2益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?

解根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0,解这个方程,得a1=25,a2=31.

因为21×(1+20%)=25.2,所以a2=31不合题意,舍去.

所以350-10a=350-10×25=100(件).

答需要进货100件,每件商品应定价25元.

说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点.

三、储蓄问题

例3王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)解设第一次存款时的年利率为x.

(完整版)一元二次方程应用题经典题型汇总含答案

(完整版)一元二次方程应用题经典题型汇总含答案

z 一元二次方程应用题经典题型汇总

一、增长率问题

例 1 恒利商厦九月份的销售额为200 万元,十月份的销售额下降了20% ,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6 万元,求这两个月的平均增长率.

解设这两个月的平均增长率是X.,则根据题意,得200(1 —20%)(1+ x)2= 193.6 ,

即(1+x)2= 1.21,解这个方程,得x i = 0.1 , X2=— 2.1 (舍去).

答这两个月的平均增长率是10%.

说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中

每一个数据的意义,即可利用公式m(1+x)2= n求解,其中m v n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1 —x)2= n即可求解,其中m >n.

二、商品定价

例2 益群精品店以每件21 元的价格购进一批商品, 该商品可以自行定价, 若每件商品售价a元,则可卖出(350 —10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400 元,

需要进货多少件?每件商品应定价多少?

解根据题意,得(a—21)(350 —10a) = 400,整理,得a2—56a+775 = 0 ,

解这个方程,得a1 = 25 , a2 = 31.

因为21 p+20%) = 25.2,所以a2=31不合题意,舍去.

所以350 —10 a= 350 —10 X25 = 100 (件).

答需要进货100 件,每件商品应定价25元.

说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点

一元二次方程应用题精选(含答案)

一元二次方程应用题精选(含答案)

1:某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元

解:设没件降价为x,则可多售出5x件,每件服装盈利44-x元,

依题意x≤10

∴(44-x)(20+5x)=1600

展开后化简得:x²-44x+144=0

即(x-36)(x-4)=0

∴x=4或x=36(舍)

即每件降价4元

要找准关系式

2.游行队伍有8行12列,后又增加了69人,使得队伍增加的行·列数相同,增加了多少行多少列

解:设增加x (8+x)(12+x)=96+69 x=3

增加了3行3列

3.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价

解: (1)若销售单价为x元,则每千克降低了(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元.

依题意得:

y=(x-30)[60+2(70-x)]-500

=-2x^2+260x-6500

(30<=x<=70)

(2)当日均获利最多时:单价为65元,日均销售量为60+2(70-65)=70kg,那么获总利为1950*7000/70=195000元,当销售单价最高时:单价为70元,日均销售60kg,将这批化工原料全部售完需7000/60约等于117天,那么获总利为(70-30)*7000-117*500=221500

一元二次方程应用题精选(含答案)

一元二次方程应用题精选(含答案)

1:某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?

解:设没件降价为x,则可多售出5x件,每件服装盈利44-x元,

依题意x≤10

∴(44-x)(20+5x)=1600

展开后化简得:x²-44x+144=0

即(x-36)(x-4)=0

∴x=4或x=36(舍)

即每件降价4元

要找准关系式

2.游行队伍有8行12列,后又增加了69人,使得队伍增加的行·列数相同,增加了多少行多少列?

解:设增加x (8+x)(12+x)=96+69 x=3

增加了3行3列

3.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价

解: (1)若销售单价为x元,则每千克降低了(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元.

依题意得:

y=(x-30)[60+2(70-x)]-500

=-2x^2+260x-6500

(30<=x<=70)

(2)当日均获利最多时:单价为65元,日均销售量为60+2(70-65)=70kg,那

么获总利为1950*7000/70=195000元,当销售单价最高时:单价为70元,日均销售60kg,将这批化工原料全部售完需7000/60约等于117天,那么获总利为(70-30)*7000-117*500=221500

一元二次方程应用题经典题型汇总含答案

一元二次方程应用题经典题型汇总含答案

z一元二次方程应用题经典题型汇总

一、增长率问题

例1恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.

解设这两个月的平均增长率是x.,则根据题意,得200(1-20%)(1+x)2=193.6,即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去).

答这两个月的平均增长率是10%.

说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中m<n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1-x)2=n即可求解,其中m>n.

二、商品定价

例2益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?

解根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0,

解这个方程,得a1=25,a2=31.

因为21×(1+20%)=25.2,所以a2=31不合题意,舍去.

所以350-10a=350-10×25=100(件).

答需要进货100件,每件商品应定价25元.

说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点.

例3王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)

一元二次方程应用题(含答案)

一元二次方程应用题(含答案)

一元二次方程应用题

1:某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?

解:设没件降价为x,则可多售出5x件,每件服装盈利44-x 元,

依题意x≤10

∴(44-x)(20+5x)=1600

2.游行队伍有8行12列,后又增加了69人,使得队伍增加的行·列数相同,增加了多少行多少列?

解:设增加

x(8+x)(12+x)=96+69

x=3

增加了3行3列

3.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发

现:单价每千克70元时日均销

售60kg;单价每千克降低一元,

日均多售2kg。在销售过程中,

每天还要支出其他费用500元

(天数不足一天时,按一天计算).

如果日均获利1950元,求销售

单价

解: (1)若销售单价为x元,

则每千克降低了(70-x)元,日均

多售出2(70-x)千克,日均销售

量为[60+2(70-x)]千克,每千克

获利(x-30)元.

依题意得:

y=(x-30)[60+2(70-x)]-500

=-2x^2+260x-6500

(30<=x<=70)

(2)当日均获利最多时:单价为

65元,日均销售量为60+2

(70-65)=70kg,那么获总

利为1950*7000/70=

195000元,当销售单价最高时:

单价为70元,日均销售60kg,

将这批化工原料全部售完需

7000/60约等于117天,那么获

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

z一元二次方程应用题经典题型汇总

一、增长率问题

例1恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.

解设这两个月的平均增长率是x.,则根据题意,得200(1-20%)(1+x)2=193.6,即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去).

答这两个月的平均增长率是10%.

说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中m<n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1-x)2=n即可求解,其中m>n.

二、商品定价

例2益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?

解根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0,

解这个方程,得a1=25,a2=31.

因为21×(1+20%)=25.2,所以a2=31不合题意,舍去.

所以350-10a=350-10×25=100(件).

答需要进货100件,每件商品应定价25元.

说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点.

例3王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)

解设第一次存款时的年利率为x.

则根据题意,得[1000(1+x)-500](1+0.9x)=530.整理,得90x2+145x-3=0.

解这个方程,得x1≈0.0204=2.04%,x2≈-1.63.由于存款利率不能为负数,所以将x2≈-1.63舍去.

答第一次存款的年利率约是2.04%.

说明这里是按教育储蓄求解的,应注意不计利息税.

四、趣味问题

例4一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?

解设渠道的深度为x m,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m.

则根据题意,得(x+0.1+x+1.4+0.1)·x=1.8,整理,得x2+0.8x-1.8=0.

解这个方程,得x1=-1.8(舍去),x2=1.

所以x+1.4+0.1=1+1.4+0.1=2.5.

答渠道的上口宽2.5m,渠深1m.

说明求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解.

例5读诗词解题:(通过列方程式,算出周瑜去世时的年龄).

大江东去浪淘尽,千古风流数人物;

而立之年督东吴,早逝英年两位数;

十位恰小个位三,个位平方与寿符;

哪位学子算得快,多少年华属周瑜?

解设周瑜逝世时的年龄的个位数字为x,则十位数字为x-3.

则根据题意,得x2=10(x-3)+x,即x2-11x+30=0,解这个方程,得x=5或x=6.

当x=5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;

当x=6时,周瑜年龄为36岁,完全符合题意.

答周瑜去世的年龄为36岁.

六、象棋比赛

例6象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979,1980,1984,1985.经核实,有一位同学统计无误.试计算这次比赛共有多少个选手参加.

解设共有n个选手参加比赛,每个选手都要与(n-1)个选手比赛一局,共计n(n-1)局,但两个选手的对局从每个选手的角度各自统计了一次,因此实际比赛总局数应为n(n -1)局.由于每局共计2分,所以全部选手得分总共为n(n-1)分.显然(n-1)与n为相邻的自然数,容易验证,相邻两自然数乘积的末位数字只能是0,2,6,故总分不可能是1979,1984,1985,因此总分只能是1980,于是由n(n-1)=1980,得n2-n-1980=0,解得n1=45,n2=-44(舍去).

答参加比赛的选手共有45人.

说明类似于本题中的象棋比赛的其它体育比赛或互赠贺年片等问题,都可以仿照些方法求解.

七、情景对话

例7春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准. 某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游?

解设该单位这次共有x名员工去天水湾风景区旅游.因为1000×25=25000<27000,所以员工人数一定超过25人.

则根据题意,得[1000-20(x-25)]x=27000.

整理,得x2-75x+1350=0,解这个方程,得x1=45,x2=30.

当x=45时,1000-20(x-25)=600<700,故舍去x1;

当x2=30时,1000-20(x-25)=900>700,符合题意.

答:该单位这次共有30名员工去天水湾风景区旅游.

说明求解本题要时刻注意对话框中的数量关系,求得的解还要注意分类讨论,从中找出符合题意的结论.

相关文档
最新文档