高二数学数列的概念练习试题百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、数列的概念选择题
1.若数列的前4项分别是
1111,,,2345
--,则此数列的一个通项公式为( ) A .1(1)n n --
B .(1)n n -
C .1
(1)1
n n +-+
D .(1)1
n n -+
2.已知数列{}n a 满足11a =
),2n N n *=
∈≥,且()2cos
3
n n n a b n N π
*=∈,则数列{}n b 的前18项和为( ) A .120
B .174
C .204-
D .
373
2
3.在数列{}n a 中,10a =
,1n a +,则2020a =( )
A .0
B .1
C
.D
4.设数列{}n a 的前n 项和为n S 已知(
)*
123n n a a n n N
++=+∈且1300n
S
=,若
23a <,则n 的最大值为( )
A .49
B .50
C .51
D .52
5.已知数列{}n a 前n 项和为n S ,且满足*
112(N 3)33n n n n S S S S n n --+≤+∈≥+,,则( )
A .63243a a a ≤-
B .2736+a a a a ≤+
C .7662)4(a a a a ≥--
D .2367a a a a +≥+
6.已知数列{}n a 的前n 项和为n S ,且2
1n S n n =++,则{}n a 的通项公式是( )
A .2n a n =
B .3,1
2,2n n a n n =⎧=⎨
≥⎩
C .21n a n =+
D .3n a n =
7.已知数列{}n a 的前n 项和为(
)*
22n
n S n =+∈N ,则3
a
=( )
A .10
B .8
C .6
D .4
8.数列{}n a 中,11a =,12n n a a n +=+,则n a =( ) A .2n n 1-+
B .21n +
C .2(1)1n -+
D .2n
9.已知数列{}n a 中,11a =,23a =且对*n N ∈,总有21n n n a a a ++=-,则2019a =( ) A .1
B .3
C .2
D .3-
10.在数列{}n a 中,()11
11,1(2)n
n
n a a n a --==+
≥,则5a 等于
A .
32
B .
53
C .85
D .
23
11.已知数列{}n a 的前n 项和为n S ,已知1
3n n S +=,则34a a +=( )
A .81
B .243
C .324
D .216
12.已知数列{}n a 的前n 项和为n S ,且满足1221,1n n a a S a +===-,则下列命题错误的是
A .21n n n a a a ++=+
B .13599100a a a a a ++++=
C .2499a a a a ++
+=
D .12398100100S S S S S +++
+=-
13.已知等差数列{}n a 中,13920a a a ++=,则574a a -=( ) A .30
B .20
C .40
D .50
14.数列{}n a 的前n 项和记为n S ,()
*
11N ,2n n n a a a n n ++=-∈≥,12018a =,
22017a =,则100S =( )
A .2016
B .2017
C .2018
D .2019
15.历史上数列的发展,折射出许多有价值的数学思想方法,对时代的进步起了重要的作用.比如意大利数学家列昂纳多—斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233…即121a a ==,当n ≥3时,
12n n n a a a --=+,此数列在现代物理及化学等领域有着广泛的应用.若此数列的各项依次被
4整除后的余数构成一个新的数列{}n b ,记数列{}n b 的前n 项和为n S ,则20S 的值为( ) A .24
B .26
C .28
D .30
16.定义:在数列{}n a 中,若满足
21
1n n n n
a a d a a +++-=( *,n N d ∈为常数),称{}n a 为“等差比数列”,已知在“等差比数列”{}n a 中,1231,3a a a ===,则2020
2018
a a 等于( ) A .4×20162-1
B .4×20172-1
C .4×20182-1
D .4×20182
17.已知lg3≈0.477,[x ]表示不大于x 的最大整数.设S n 为数列{a n }的前n 项和,a 1=2且S n +1=3S n -2n +2,则[lg(a 100-1)]=( ) A .45
B .46
C .47
D .48
18.历史上数列的发展,折射出很多有价值的数学思想方法,对时代的进步起了重要的作用,比如意大利数学家列昂纳多·斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233……即F (1)=F (2)=1,F (n )=F (n -1)+F (n -2),(
)*
3n n N
≥∈,,此数列在现代物理及化学等领域有着广泛的应用,
若此数列被4整除后的余数构成一个新数列{}n b ,则b 2020=( ) A .3
B .2
C .1
D .0
19.已知数列{}n a 满足1N a *
∈,1,2+3,n
n n n n a a a a a +⎧⎪=⎨⎪⎩为偶数为奇数
,若{}n a 为周期数列,则1a 的
可能取到的数值有( ) A .4个
B .5个
C .6个
D .无数个
20.已知数列{}n a 的通项公式为23n
n a n ⎛⎫= ⎪⎝⎭
,则数列{}n a 中的最大项为( ) A .
89
B .
23
C .
6481
D .
125
243
二、多选题
21.已知数列{}n a :1,1,2,3,5,…其中从第三项起,每个数等于它前面两个数的和,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68S a = B .733S =
C .135********a a a a a +++
+= D .222
2123202020202021a a a a a a ++++=
22.已知数列0,2,0,2,0,2,
,则前六项适合的通项公式为( )
A .1(1)n
n a =+-
B .2cos
2
n n a π= C .(1)2sin
2
n n a π
+= D .1cos(1)(1)(2)n a n n n π=--+--
23.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足140(2)n n n a S S n -+=≥,114
a =,则下列说法错误的是( ) A .数列{}n a 的前n 项和为4n S n = B .数列{}n a 的通项公式为1
4(1)
n a n n =+
C .数列{}n a 为递增数列
D .数列1n S ⎧⎫
⎨
⎬⎩⎭
为递增数列 24.已知数列{}n a 是等差数列,前n 项和为,n S 且13522,a a S +=下列结论中正确的是( ) A .7S 最小
B .130S =
C .49S S =
D .70a =
25.已知S n 是等差数列{}n a (n ∈N *)的前n 项和,且S 5>S 6>S 4,以下有四个命题,其中正确的有( )
A .数列{}n a 的公差d <0
B .数列{}n a 中S n 的最大项为S 10
C .S 10>0
D .S 11>0
26.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( )
A .1:17:2a d =-
B .180S =
C .当0d >时,6140a a +>
D .当0d <时,614a a >
27.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .911a a = C .当9n =或10时,n S 取得最大值
D .613S S =
28.无穷等差数列{}n a 的前n 项和为S n ,若a 1>0,d <0,则下列结论正确的是( ) A .数列{}n a 单调递减 B .数列{}n a 有最大值 C .数列{}n S 单调递减
D .数列{}n S 有最大值
29.{} n a 是等差数列,公差为d ,前项和为n S ,若56S S <,678S S S =>,则下列结论正确的是( ) A .0d <
B .70a =
C .95S S >
D .170S <
30.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,且32019
11
111
a a e e +≤++,则( ) A .当数列{}n a 为等差数列时,20210S ≥ B .当数列{}n a 为等差数列时,20210S ≤ C .当数列{}n a 为等比数列时,20210T > D .当数列{}n a 为等比数列时,20210T <
31.设{}n a 是等差数列,n S 是其前n 项和,且56678,S S S S S <=>,则下列结论正确的是( ) A .0d < B .70a =
C .95S S >
D .67n S S S 与均为的最大值
32.在数列{}n a 中,若22*
1(2,.n n a a p n n N p --=≥∈为常数),则称{}n a 为“等方差数
列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .{(1)}n -是等方差数列
C .若{}n a 是等方差数列,则{}(
)*
,kn a k N
k ∈为常数)也是等方差数列
D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 33.数列{}n a 满足11,121
n
n n a a a a +=
=+,则下列说法正确的是( ) A .数列1n a ⎧⎫
⎨
⎬⎩⎭是等差数列 B .数列1n a ⎧⎫⎨
⎬⎩⎭
的前n 项和2
n S n =
C .数列{}n a 的通项公式为21n a n =-
D .数列{}n a 为递减数列
34.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则( ) A .45n a n =-
B .23n a n =+
C .2
23n S n n =-
D .2
4n S n n =+
35.已知数列{}n a 是递增的等差数列,5105a a +=,
6914a a ⋅=-.12n n n n b a a a ++=⋅⋅,数列{}n b 的前n 项和为n T ,下列结论正确的是( )
A .320n a n =-
B .325n a n =-+
C .当4n =时,n T 取最小值
D .当6n =时,n T 取最小值
【参考答案】***试卷处理标记,请不要删除
一、数列的概念选择题 1.C 解析:C 【分析】
根据数列的前几项的规律,可推出一个通项公式. 【详解】
设所求数列为{}n a ,可得出()11
1
111
a
+-=
+,()21
2
121
a
+-=
+,()31
3
131
a
+-=
+,()41
4
141
a
+-=
+,
因此,该数列的一个通项公式为()1
11
n n
a n +-=
+.
故选:C. 【点睛】
本题考查利用数列的前几项归纳数列的通项公式,考查推理能力,属于基础题.
2.B
解析:B 【分析】
将题干中的等式化简变形得2
11n n a n a n --⎛⎫
= ⎪⎝⎭
,利用累乘法可求得数列{}n a 的通项公式,由
此计算出(
)32313k k k b b b k N *
--++∈,进而可得出数列{}n
b 的前18项和.
【详解】
)1,2n a n N n *
--=
∈≥,将此等式变形得2
11n n a n a n --⎛⎫= ⎪⎝⎭
,
由累乘法得22
2
3
212
12
11211123n n n a
a a n a a a a a n n
--⎛⎫⎛⎫⎛⎫
=⋅⋅=⨯⨯⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭
⎝⎭, ()
2cos
3n n n a b n N π*=∈,22cos 3
n n b n π
∴=, ()()222
323134232cos 231cos 29cos 233k k k b b b k k k k k k πππππ--⎛⎫⎛⎫∴++=--+--+ ⎪ ⎪⎝⎭⎝
⎭592
k =-,
因此,数列{}n b 的前18项和为()5
91234566921151742
⨯+++++-⨯=⨯
-=. 故选:B. 【点睛】
本题考查并项求和法,同时也涉及了利用累乘法求数列的通项,求出32313k k k b b b --++是解答的关键,考查计算能力,属于中等题.
3.A
解析:A
【分析】
写出数列的前几项,找寻规律,求出数列的周期,问题即可解. 【详解】
10a =,1
n a +
1n =时,
2
a 2n =时,3a 3n =时,4a ; ∴ 数列{}n a 的周期是3
20206733110a a a ⨯+∴===
故选:A. 【点睛】
本题考查周期数列. 求解数列的周期问题时,周期数列的解题方法:根据给出的关系式求出数列的若干项,通过观察归纳出数列的周期,进而求有关项的值或者前n 项的和.
4.A
解析:A 【分析】
对n 分奇偶性分别讨论,当n 为偶数时,可得2+32
n n n
S =,发现不存在这样的偶数能满
足此式,当n 为奇数时,可得21+34
2
n n n S a -=+,再结合23a <可讨论出n 的最大值.
【详解】
当n 为偶数时,12341()()()n n n S a a a a a a -=++++⋅⋅⋅++
(213)(233)[2(1)3]n =⨯++⨯++⋅⋅⋅+-+ 2[13(1)]32n n =⨯++⋅⋅⋅+-+⨯2+32
n n
=,
因为22485048+34850350
1224,132522
S S ⨯+⨯====,
所以n 不可能为偶数;
当n 为奇数时,123451()()()n n n S a a a a a a a -=+++++⋅⋅⋅++
1(223)(243)[2(1)3]a n =+⨯++⨯++⋅⋅⋅+-+
2134
2
n n a +-=+
因为24911493494
12722S a a +⨯-=+=+,
25111513514
13752
S a a +⨯-=+=+,
又因为23a <,125a a +=,所以 12a > 所以当1300n S =时,n 的最大值为49 故选:A 【点睛】
此题考查的是数列求和问题,利用了并项求和的方法,考查了分类讨论思想,属于较难题.
5.C
解析:C 【分析】
由条件可得出11n n n n a a a a -+-≤-,然后可得
3243546576a a a a a a a a a a -≤-≤-≤-≤-,即可推出选项C 正确.
【详解】
因为*
112(N 3)33n n n n S S S S n n --+≤+∈≥+,,
所以12133n n n n S S S S -+-≤--,所以113n n n n a a a a +-≤++ 所以11n n n n a a a a -+-≤-,
所以3243546576a a a a a a a a a a -≤-≤-≤-≤-
所以()6232435465764a a a a a a a a a a a a -=-+-+-+-≤- 故选:C
【点睛】
本题主要考查的是数列的前n 项和n S 与n a 的关系,解答的关键是由条件得到
11n n n n a a a a -+-≤-,属于中档题.
6.B
解析:B 【分析】
根据11,1,2n n
S n a S S n -=⎧=⎨-≥⎩计算可得;
【详解】
解:因为2
1n S n n =++①,
当1n =时,2
11113S =++=,即13a =
当2n ≥时,()()2
1111n S n n -=-+-+②,
①减②得,()()2
2
11112n n n n n n a ⎡⎤++--+-+=⎦
=⎣
所以3,1
2,2n n a n n =⎧=⎨≥⎩
故选:B 【点睛】
本题考查利用定义法求数列的通项公式,属于基础题.
7.D
解析:D 【分析】
根据332a S S =-,代入即可得结果. 【详解】
()()3233222224a S S =-=+-+=.
故选:D. 【点睛】
本题主要考查了由数列的前n 项和求数列中的项,属于基础题.
8.A
解析:A 【分析】
由题意,根据累加法,即可求出结果. 【详解】
因为12n n a a n +=+,所以12n n a a n +-=,
因此212a a -=,324a a -=,436a a -=,…,()121n n a a n --=-,
以上各式相加得:()()()21246.1221..212
n n n a a n n n ⎡⎤-+-⎣⎦
-=
+++==+--,
又11a =,所以2
1n a n n =-+.
故选:A. 【点睛】
本题主要考查累加法求数列的通项,属于基础题型.
9.C
解析:C 【分析】
根据数列{}n a 的前两项及递推公式,可求得数列的前几项,判断出数列为周期数列,即可求得
2019a 的值.
【详解】
数列{}n a 中,11a =,23a =且对*n N ∈,总有21n n n a a a ++=- 当1n =时,321322a a a =-=-= 当2n =时,432231a a a =-=-=- 当3n =时,543123a a a =-=--=- 当4n =时,()654312a a a =-=---=- 当5n =时,()765231a a a =-=---= 当6n =时,()876123a a a =-=--= 由以上可知,数列{}n a 为周期数列,周期为6T = 而201933663=⨯+ 所以201932a a == 故选:C 【点睛】
本题考查了数列递推公式的简单应用,周期数列的简单应用,属于基础题.
10.D
解析:D 【解析】
分析:已知1a 逐一求解234512
2323a a a a ====,,,. 详解:已知1a 逐一求解234512
2323
a a a a ==
==,,,.故选D 点睛:对于含有()1n
-的数列,我们看作摆动数列,往往逐一列举出来观察前面有限项的规律.
11.D
解析:D 【分析】
利用项和关系,1n n n a S S -=-代入即得解. 【详解】
利用项和关系,1332443=54=162n n n a S S a S S a S S -=-∴=-=-,
34216a a ∴+=
故选:D 【点睛】
本题考查了数列的项和关系,考查了学生转化与划归,数学运算能力,属于基础题.
12.C
解析:C 【分析】
21n n S a +=-,则111n n S a -+=-,两式相减得到A 正确;由A 选项得到
13599a a a a +++⋯+=1123459798a a a a a a a a ++++++⋯++=981001S a +=进而得到B
正确;同理可得到C 错误;由21n n S a +=-得到
12398S S S S +++⋯+=123451002111......1a a a a a a +-+-+-+-++-=100100.S -进
而D 正确. 【详解】
已知21n n S a +=-,则111n n S a -+=-,两式相减得到2121n n n n n n a a a a a a ++++=-⇒=+,故A 正确;根据A 选项得到
13599a a a a +++⋯+=1123459798a a a a a a a a ++++++⋯++=981001S a +=,故B 正
确;
24698a a a a +++⋯+=2234569697a a a a a a a a ++++++⋯++=
1234569697a a a a a a a a ++++++⋯++=97991S a =-,故C 不正确;根据2123981n n S a S S S S +=-+++⋯+=
,123451002111......1a a a a a a +-+-+-+-++-= 100100.S -
故D 正确. 故答案为C. 【点睛】
这个题目考查了数列的应用,根据题干中所给的条件进行推广,属于中档题,这类题目不是常规的等差或者等比数列,要善于发现题干中所给的条件,应用选项中正确的结论进行其它条件的推广.
13.B
解析:B 【分析】
利用等差数列{}n a 的通项公式代入可得574a a -的值. 【详解】
由13920a a a ++=,得131020a d +=,
则有5711144(4)631020a a a d a d a d -=+--=+=. 故选:B. 【点睛】
考查等差数列通项公式的运用,知识点较为简单.
14.A
解析:A 【分析】
根据题意,由数列的递推公式求出数列的前8项,分析可得数列{}n a 是周期为6的数列,且1234560a a a a a a +++++=,进而可得1001234S a a a a =+++,计算即可得答案. 【详解】
解:因为12018a =,22017a =,()
*
11N ,2n n n a a a n n +-=-∈≥,
则321201720181a a a =-=-=-, 432(1)20172018a a a =-=--=-, 543(2018)(1)2017a a a =-=---=-, 654(2017)(2018)1a a a =-=---=,
76511(2017)2018a a a a =-=--==, 8762201812017a a a a =-=-==,
…,所以数列{}n a 是周期数列,周期为6, 因为12560a a a a ++⋅⋅⋅++=,所以
()100125697989910016S a a a a a a a a =++⋅⋅⋅++++++
12342016a a a a =+++=.
故选:A . 【点睛】
本题考查数列的递推公式的应用,关键是分析数列各项变化的规律,属于基础题.
15.B
解析:B 【分析】
先写出新数列的各项,找到数列的周期,即得解. 【详解】
由题意可知“斐波那契数列”的各项依次被4整除后的余数构成一个新的数列{}n b , 此数列的各项求得:1,1,2,3,1,0,1,1,2,3,1,0,1……,则其周期为6, 其中1+1+2+3+1+0=8,
则201819201812S S b b S b b =++=++381126=⨯++=, 故选:B.
16.C
解析:C 【分析】
根据“等差比”数列的定义,得到数列1n n a a +⎧⎫
⎨⎬⎩⎭
的通项公式,再利用202020202019201820192019a a a a a a =⨯求解. 【详解】
由题意可得:3
23a a =,
211a a = ,3221
1a a a a -=, 根据“等差比数列”的定义可知数列1n n a a +⎧⎫
⎨⎬⎩⎭
是首先为1,公差为2的等差数列,
则()1
11221n n
a n n a +=+-⨯=-, 所以20202019220191220181a a =⨯-=⨯+,2019
2018
220181a a =⨯-, 所以
()()2202020202019
201820192019
220181220181420181a a a a a a =⨯=⨯+⨯-=⨯-. 故选:C 【点睛】
本题考查数列新定义,等差数列,重点考查理解题意,转化思想,计算能力,属于中档题型.
17.C
解析:C 【分析】
利用数列的递推式,得到a n +1=3a n -2,进而得到a n =3n -1+1,然后代入[lg(a 100-1)]可求解 【详解】
当n ≥2时,S n =3S n -1-2n +4,则a n +1=3a n -2,于是a n +1-1=3(a n -1),当n =1时,S 2=3S 1-2+2=6,所以a 2=S 2-S 1=4.此时a 2-1=3(a 1-1),则数列{a n -1}是首项为1,公比为3的等比数列.所以a n -1=3n -1,即a n =3n -1+1,则a 100=399+1,则lg(a 100-1)=99lg3≈99×0.477=47.223,故[lg(a 100-1)]=47. 故选C
18.A
解析:A 【分析】
根据条件得出数列{}n b 的周期即可.
【详解】
由题意可知“兔子数列”被4整除后的余数构成一个新数列为:1,1,2,3,1,0,1,1,2,3,1,0,……
则可得到周期为6,所以b 2020=b 4=3, 故选:A
19.B
解析:B 【分析】
讨论出当1a 分别取1、2、3、4、6时,数列{}n a 为周期数列,然后说明当19a ≥时,分1a 为正奇数和正偶数两种情况分析出数列{}n a 不是周期数列,即可得解. 【详解】
已知数列{}n a 满足1N a *
∈,1,2
+3,n
n n n n a a a a a +⎧⎪=⎨⎪⎩为偶数为奇数
. ①若11a =,则24a =,32a =,41a =,54a =,
,以此类推,可知对任意的
n *∈N ,3n n a a +=,此时,{}n a 为周期数列;
②若12a =,则21a =,34a =,42a =,51a =,
,以此类推,可知对任意的
n *∈N ,3n n a a +=,此时,{}n a 为周期数列;
③若13a =,则26a =,33a =,46a =,
,以此类推,可知对任意的n *∈N ,
2n n a a +=,此时,{}n a 为周期数列;
④若14a =,则22a =,31a =,44a =,52a =,
,以此类推,可知对任意的
n *∈N ,3n n a a +=,此时,{}n a 为周期数列;
⑤若15a =,则28a =,34a =,42a =,51a =,64a =,,以此类推,可知对任意
的2n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列; ⑥若16a =,则23a =,36a =,43a =,
,以此类推,可知对任意的n *∈N ,
2n n a a +=,
此时,{}n a 为周期数列;
⑦若17a =,则210a =,35a =,48a =,54a =,,以此类推,可知对任意的2
n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列; ⑧若18a =,则24a =,32a =,41a =,54a =,,以此类推,可知对任意的2
n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列.
下面说明,当19a ≥且1N a *
∈时,数列{}n a 不是周期数列.
(1)当(
34
12,2a ⎤∈⎦
且1N a *
∈时,由列举法可知,数列{}n a 不是周期数列; (2)假设当(
()1
12,23,k k a k k N +*⎤∈≥∈⎦且1N a *∈时,数列{}n a 不是周期数列,那么
当(
()1
212
,23,k k a k k N ++*
⎤∈≥∈⎦时.
若1a 为正偶数,则(11
22,22
k k a a +⎤=
∈⎦,则数列{}n a 从第二项开始不是周期数列,从而可知,数列{}n a 不是周期数列; 若1a 为正奇数,则(
(1
213
2132
3,232,2k k k k a a ++++⎤⎤=+∈++⊆⎦⎦且2a 为偶数,
由上可知,数列{}n a 从第二项开始不是周期数列,进而可知数列{}n a 不是周期数列.
综上所述,当19a ≥且1N a *
∈时,数列{}n a 不是周期数列.
因此,若{}n a 为周期数列,则1a 的取值集合为{}1,2,3,4,6. 故选:B. 【点睛】
本题解题的关键是抓住“数列{}n a 为周期数列”进行推导,对于1a 的取值采取列举法以及数学归纳法进行论证,对于这类问题,我们首先应弄清问题的本质,然后根据数列的基本性质以及解决数列问题时常用的方法即可解决.
20.A
解析:A 【分析】
由12233n
n n n a a +-⎛⎫
-=⋅ ⎪⎝⎭
,当n <2时,a n +1-a n >0,当n <2时,a n +1-a n >0,从而可得
到n =2时,a n 最大. 【详解】
解:112222(1)3333n n n
n n n a a n n ++-⎛⎫⎛⎫⎛⎫-=+-=⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭
⎝⎭, 当n <2时,a n +1-a n >0,即a n +1>a n ;
当n =2时,a n +1-a n =0,即a n +1=a n ; 当n >2时,a n +1-a n <0,即a n +1<a n . 所以a 1<a 2=a 3,a 3>a 4>a 5>…>a n ,
所以数列{}n a 中的最大项为a 2或a 3,且2328239
a a ⎛⎫==⨯= ⎪⎝⎭. 故选:A . 【点睛】
此题考查数列的函数性质:最值问题,属于基础题.
二、多选题
21.BCD 【分析】
根据题意写出,,,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】
对A ,,,故A 不正确; 对B ,,故B 正确; 对C ,由,,
解析:BCD 【分析】
根据题意写出8a ,6S ,7S ,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】
对A ,821a =,620S =,故A 不正确; 对B ,761333S S =+=,故B 正确;
对C ,由12a a =,342a a a =-,564a a a =-,…,202120222020a a a =-,可得
135********a a a a a +++⋅⋅⋅+=,故C 正确;
对D ,该数列总有21n n n a a a ++=+,2
121a a a =,则()222312321a a a a a a a a =-=-,
()233423423a a a a a a a a =-=-,…,()220182018201920172018201920172018a a a a a a a a =-=-, 22019a =2019202020192018a a a a -,220202020202120202019a a a a a =-, 故2222
123202*********a a a a a a +++⋅⋅⋅+=,故D 正确.
故选:BCD 【点睛】
关键点睛:解答本题的关键是对CD 的判断,即要善于利用21n n n a a a ++=+对所给式子进行变形.
22.AC 【分析】
对四个选项中的数列通项公式分别取前六项,看是否满足题意,得出答案. 【详解】
对于选项A ,取前六项得:,满足条件; 对于选项B ,取前六项得:,不满足条件; 对于选项C ,取前六项得:,
解析:AC 【分析】
对四个选项中的数列通项公式分别取前六项,看是否满足题意,得出答案. 【详解】
对于选项A ,1(1)n
n a =+-取前六项得:0,2,0,2,0,2,满足条件;
对于选项B ,2cos 2
n n a π
=取前六项得:0,2,0,2,0,2--,不满足条件; 对于选项C ,(1)2sin
2
n n a π
+=取前六项得:0,2,0,2,0,2,满足条件; 对于选项D ,1cos(1)(1)(2)n a n n n π=--+--取前六项得:0,2,2,8,12,22,不满足条件; 故选:AC
23.ABC 【分析】
数列的前项和为,且满足,,可得:,化为:,利用等差数列的通项公式可得,,时,,进而求出. 【详解】
数列的前项和为,且满足,, ∴,化为:,
∴数列是等差数列,公差为4, ∴,可得
解析:ABC 【分析】
数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),11
4
a =,可得:1140n n n n S S S S ---+=,化为:1114n n S S --=,利用等差数列的通项公式可得1
n
S ,n S ,2n ≥时,()()
111144141n n n a S S n n n n -=-=
-=---,进而求出n a . 【详解】
数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),11
4
a =, ∴1140n n n n S S S S ---+=,化为:
1
11
4n n S S --=, ∴数列1n S ⎧⎫
⎨
⎬⎩⎭
是等差数列,公差为4, ∴()1
4414n n n S =+-=,可得14n S n
=,
∴2n ≥时,()()
111144141n n n a S S n n n n -=-=
-=---, ∴()1
(1)41(2)41n n a n n n ⎧=⎪⎪
=⎨⎪-≥-⎪⎩
,
对选项逐一进行分析可得,A ,B ,C 三个选项错误,D 选项正确. 故选:ABC. 【点睛】
本题考查数列递推式,解题关键是将已知递推式变形为
1
11
4n n S S --=,进而求得其它性质,考查逻辑思维能力和运算能力,属于常考题
24.BCD 【分析】
由是等差数列及,求出与的关系,结合等差数列的通项公式及求和公式即可进行判断. 【详解】
设等差数列数列的公差为. 由有,即
所以,则选项D 正确.
选项A. ,无法判断其是否有最小
解析:BCD 【分析】
由{}n a 是等差数列及13522,a a S +=,求出1a 与d 的关系,结合等差数列的通项公式及求和公式即可进行判断. 【详解】
设等差数列数列{}n a 的公差为d .
由13522,a a S +=有()111254
2252
a a a d d ⨯+=++,即160a d += 所以70a =,则选项D 正确. 选项A. ()71176
773212
S a d a d d ⨯=+=+=-,无法判断其是否有最小值,故A 错误. 选项B. 113
137131302
a S a a +=
⨯==,故B 正确. 选项C. 9876579450a a a a S a a S -=++++==,所以49S S =,故C 正确. 故选:BCD
【点睛】
关键点睛:本题考查等差数列的通项公式及求和公式的应用,解答本题的关键是由条件
13522,a a S +=得到160a d +=,即70a =,然后由等差数列的性质和前n 项和公式判断,
属于中档题.
25.AC 【分析】
由,可得,且,然后逐个分析判断即可得答案 【详解】
解:因为,所以,且,
所以数列的公差,且数列中Sn 的最大项为S5,所以A 正确,B 错误, 所以,,
所以C 正确,D 错误, 故选:AC
解析:AC 【分析】
由564S S S >>,可得650,0a a ,且650a a +>,然后逐个分析判断即可得答案 【详解】
解:因为564S S S >>,所以650,0a a ,且650a a +>,
所以数列的公差0d <,且数列{}n a 中S n 的最大项为S 5,所以A 正确,B 错误, 所以110105610()
5()02a a S a a +=
=+>,11111611()1102
a a S a +==<, 所以C 正确,D 错误, 故选:AC
26.ABC 【分析】
因为是等差数列,由可得,利用通项转化为和即可判断选项A ;利用前项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质即可判断选项C ;由可得且,即可判断选项D ,进而得出正确选项
解析:ABC 【分析】
因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质
961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,
140a <即可判断选项D ,进而得出正确选项.
【详解】
因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:
1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=,
对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确; 对于选项B :()
()
11891018181802
2
a a a a S ++=
=
=,故选项B 正确;
对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;
对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <,
所以614a a <,故选项D 不正确, 故选:ABC 【点睛】
关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可.
27.ABD 【分析】
由题意利用等差数列的通项公式、求和公式可得,结合等差数列的性质,逐一判断即可得出结论. 【详解】
∵等差数列的前项和为,, ∴,解得, 故,故A 正确; ∵,,故有,故B 正确; 该数
解析:ABD 【分析】
由题意利用等差数列的通项公式、求和公式可得19a d =-,结合等差数列的性质,逐一判断即可得出结论. 【详解】
∵等差数列{}n a 的前n 项和为n S ,1385a a S +=, ∴()11187
5282
a a d a d ⨯++=+
,解得19a d =-, 故10190a a d =+=,故A 正确;
∵918a a d d d =+=-=,11110a a d d =+=,故有911a a =,故B 正确; 该数列的前n 项和()21119
2
22
n n n n S na d d d n -=+
=-⋅ ,它的最值,还跟d 的值有关,
故C 错误; 由于61656392S a d d ⨯=+=-,1311312
13392
S a d d ⨯=+=-,故613S S =,故D 正确, 故选:ABD. 【点睛】
思路点睛:利用等差数列的通项公式以及前n 项和公式进行化简,直接根据性质判断结果.
28.ABD 【分析】
由可判断AB ,再由a1>0,d <0,可知等差数列数列先正后负,可判断CD. 【详解】
根据等差数列定义可得,所以数列单调递减,A 正确; 由数列单调递减,可知数列有最大值a1,故B 正
解析:ABD 【分析】
由10n n a a d +-=<可判断AB ,再由a 1>0,d <0,可知等差数列数列{}n a 先正后负,可判断CD. 【详解】
根据等差数列定义可得10n n a a d +-=<,所以数列{}n a 单调递减,A 正确; 由数列{}n a 单调递减,可知数列{}n a 有最大值a 1,故B 正确;
由a 1>0,d <0,可知等差数列数列{}n a 先正后负,所以数列{}n S 先增再减,有最大值,C 不正确,D 正确. 故选:ABD.
29.ABD 【分析】
结合等差数列的性质、前项和公式,及题中的条件,可选出答案. 【详解】
由,可得,故B 正确; 由,可得, 由,可得,
所以,故等差数列是递减数列,即,故A 正确; 又,所以,故C 不正确
解析:ABD 【分析】
结合等差数列的性质、前n 项和公式,及题中的条件,可选出答案. 【详解】
由67S S =,可得7670S S a -==,故B 正确; 由56S S <,可得6560S S a -=>, 由78S S >,可得8780S S a -=<,
所以876a a a <<,故等差数列{}n a 是递减数列,即0d <,故A 正确; 又()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确; 又因为等差数列{}n a 是单调递减数列,且80a <,所以90a <, 所以()
117179171702
a a S a +=
=<,故D 正确.
故选:ABD. 【点睛】
关键点点睛:本题考查等差数列性质的应用,解题的关键是熟练掌握等差数列的增减性及前n 项和的性质,本题要从题中条件入手,结合公式()12n n n a S S n --≥=,及
()
12
n n n a a S +=
,对选项逐个分析,可判断选项是否正确.考查学生的运算求解能力与逻辑推理能力,属于中档题. 30.AC 【分析】
将变形为,构造函数,利用函数单调性可得,再结合等差数列与等比数列性质即可判断正确选项 【详解】 由,可得,令, ,
所以是奇函数,且在上单调递减,所以, 所以当数列为等差数列时,;
解析:AC 【分析】 将
3201911111a a e e +≤++变形为32019
1111
01212
a a e e -+-≤++,构造函数()11
12
x
f x e =
-+,利用函数单调性可得320190a a +≥,再结合等差数列与等比数列性质即可判断正确选项 【详解】 由
3201911111a a e e +≤++,可得32019111101212a a e e -+-≤++,令()11
12
x f x e =-+, ()()1111101111
x x x x x e f x f x e e e e --+=+-=+-=++++,
所以()11
12
x
f x e =
-+是奇函数,且在R 上单调递减,所以320190a a +≥, 所以当数列{}n a 为等差数列时,()
320192*********
a a S +=
≥;
当数列{}n a 为等比数列时,且3a ,1011a ,2019a 同号,所以3a ,1011a ,2019a 均大于零, 故()2021
202110110T a =>.
故选:AC 【点睛】
本题考查等差数列与等比数列,考查逻辑推理能力,转化与化归的数学思想,属于中档题
31.ABD 【分析】
由,判断,再依次判断选项. 【详解】 因为,,
,所以数列是递减数列,故,AB 正确; ,所以,故C 不正确;
由以上可知数列是单调递减数列,因为可知,的最大值,故D 正确. 故选:AB
解析:ABD 【分析】
由1n n n S S a --=()2n ≥,判断6780,0,0a a a >=<,再依次判断选项. 【详解】
因为5665600S S S S a <⇒->⇒>,677670S S S S a =⇒-==,
788780S S S S a >⇒-=<,所以数列{}n a 是递减数列,故0d <,AB 正确;
()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确;
由以上可知数列{}n a 是单调递减数列,因为6780,0,0a a a >=<可知,67n S S S 与均为的最大值,故D 正确. 故选:ABD 【点睛】
本题考查等差数列的前n 项和的最值,重点考查等差数列的性质,属于基础题型.
32.BCD 【分析】
根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】
对于A ,若是等差数列,如,
则不是常数,故不是等方差数列,故A 错误; 对于B ,数列中,是常数, 是等方差数
解析:BCD 【分析】
根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】
对于A ,若{}n a 是等差数列,如n a n =,
则12222
(1)21n n a a n n n --=--=-不是常数,故{}
n a 不是等方差数列,故A 错误;
对于B ,数列
(){}1n
-中,222121
[(1)][(1)]0n n n n a
a ---=---=是常数, {(1)}n ∴-是等方差数列,故B 正确;
对于C ,数列{}n a 中的项列举出来是,1a ,2a ,,k a ,,2k a ,
数列{}kn a 中的项列举出来是,k a ,2k a ,3k a ,
,
()(
)()()
22222222
12132221k k k k k k k k a
a a a a a a a p +++++--=-=-==-=,将这k 个式子累加得()()()()
22
222
2221
2
1
3
2
221k k
k k k k k k a
a a a a a a a kp +++++--+-+-+
+-=,222k k a a kp ∴-=,
()
221kn k n a a kp +∴-=,{}*(,kn a k N ∴∈k 为常数)是等方差数列,故C 正确; 对于D ,
{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+
{}n a 是等方差数列,
()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,22
10n n a a --=是常数,故D 正确.
故选:BCD. 【点睛】
本题考查了数列的新定义问题和等差数列的定义,属于中档题.
33.ABD 【分析】
首项根据得到,从而得到是以首项为,公差为的等差数列,再依次判断选项即可. 【详解】
对选项A ,因为,, 所以,即
所以是以首项为,公差为的等差数列,故A 正确. 对选项B ,由A 知:
解析:ABD
首项根据11,121n n n a a a a +=
=+得到
1112n n a a +-=,从而得到1n a ⎧⎫
⎨⎬⎩⎭
是以首项为1,公差为2的等差数列,再依次判断选项即可.
【详解】
对选项A ,因为121
n
n n a a a +=
+,11a =, 所以121112n n n n a a a a ++==+,即1112n n
a a +-= 所以1n a ⎧⎫
⎨⎬⎩⎭
是以首项为1,公差为2的等差数列,故A 正确.
对选项B ,由A 知:
1
121
21n
n n a
数列1n a ⎧⎫⎨⎬⎩⎭
的前n 项和()21212n n n S n +-==,故B 正确.
对选项C ,因为1
21n n a =-,所以121
n a n =-,故C 错误. 对选项D ,因为1
21
n a n =-,所以数列{}n a 为递减数列,故D 正确. 故选:ABD 【点睛】
本题主要考查等差数列的通项公式和前n 项和前n 项和,同时考查了递推公式,属于中档题.
34.AC 【分析】
由求出,再由可得公差为,从而可求得其通项公式和前项和公式 【详解】
由题可知,,即,所以等差数列的公差, 所以,. 故选:AC. 【点睛】
本题考查等差数列,考查运算求解能力.
解析:AC 【分析】
由535S =求出37a =,再由411a =可得公差为434d a a =-=,从而可求得其通项公式和前n 项和公式
由题可知,53535S a ==,即37a =,所以等差数列{}n a 的公差434d a a =-=, 所以()4445n a a n d n =+-=-,()2451232
n n n S n n --==-.
故选:AC. 【点睛】
本题考查等差数列,考查运算求解能力.
35.AC 【分析】
由已知求出数列的首项与公差,得到通项公式判断与;再求出,由的项分析的最小值. 【详解】
解:在递增的等差数列中, 由,得, 又,联立解得,, 则,. .
故正确,错误;
可得数列的
解析:AC 【分析】
由已知求出数列{}n a 的首项与公差,得到通项公式判断A 与B ;再求出n T ,由{}n b 的项分析n T 的最小值. 【详解】
解:在递增的等差数列{}n a 中, 由5105a a +=,得695a a +=,
又6914a a =-,联立解得62a =-,97a =, 则967(2)
3963
a a d ---=
==-,16525317a a d =-=--⨯=-. 173(1)320n a n n ∴=-+-=-.
故A 正确,B 错误;
12(320)(317)(314)n n n n b a a a n n n ++==---
可得数列{}n b 的前4项为负,第5项为正,第六项为负,第六项以后均为正. 而5610820b b +=-=>.
∴当4n =时,n T 取最小值,故C 正确,D 错误.
故选:AC.
【点睛】
本题考查等差数列的通项公式,考查数列的求和,考查分析问题与解决问题的能力,属于中档题.。