Mathematica的内部常数

合集下载

Mathematica的常用函数

Mathematica的常用函数

Mathematica的内部常数Pi , 或π(从基本输入工具栏输入, 或“Esc”+“p”+“Esc”)圆周率πE (从基本输入工具栏输入, 或“Esc”+“ee”+“Esc”)自然对数的底数eI (从基本输入工具栏输入, 或“Esc”+“ii”+“Esc”)虚数单位iInfinity, 或∞(从基本输入工具栏输入, 或“Esc”+“inf”+“Esc”)无穷大∞Degree 或°(从基本输入工具栏输入,或“Esc”+“deg”+“Esc”)度Mathematica的常用内部数学函数指数函数Exp[x]以e为底数对数函数Log[x]自然对数,即以e为底数的对数Log[a,x]以a为底数的x的对数开方函数Sqrt[x]表示x的算术平方根绝对值函数Abs[x]表示x的绝对值三角函数(自变量的单位为弧度)Sin[x]正弦函数Cos[x]余弦函数Tan[x]正切函数Cot[x]余切函数Sec[x]正割函数Csc[x]余割函数反三角函数ArcSin[x]反正弦函数ArcCos[x]反余弦函数ArcTan[x]反正切函数ArcCot[x]反余切函数ArcSec[x]反正割函数ArcCsc[x]反余割函数双曲函数Sinh[x]双曲正弦函数Cosh[x]双曲余弦函数Tanh[x]双曲正切函数Coth[x]双曲余切函数Sech[x]双曲正割函数Csch[x]双曲余割函数反双曲函数ArcSinh[x]反双曲正弦函数ArcCosh[x]反双曲余弦函数ArcTanh[x]反双曲正切函数ArcCoth[x]反双曲余切函数ArcSech[x]反双曲正割函数ArcCsch[x]反双曲余割函数求角度函数ArcTan[x,y]以坐标原点为顶点,x轴正半轴为始边,从原点到点(x,y)的射线为终边的角,其单位为弧度数论函数GCD[a,b,c,...]最大公约数函数LCM[a,b,c,...]最小公倍数函数Mod[m,n]求余函数(表示m除以n的余数)Quotient[m,n]求商函数(表示m除以n的商)Divisors[n]求所有可以整除n的整数FactorInteger[n]因数分解,即把整数分解成质数的乘积Prime[n]求第n个质数PrimeQ[n]判断整数n是否为质数,若是,则结果为True,否则结果为FalseRandom[Integer,{m,n}]随机产生m到n之间的整数排列组合函数Factorial[n]或n!阶乘函数,表示n的阶乘复数函数Re[z]实部函数Im[z]虚部函数Arg(z)辐角函数Abs[z]求复数的模Conjugate[z]求复数的共轭复数Exp[z]复数指数函数求整函数与截尾函数Ceiling[x]表示大于或等于实数x的最小整数Floor[x]表示小于或等于实数x的最大整数Round[x]表示最接近x的整数IntegerPart[x]表示实数x的整数部分FractionalPart[x]表示实数x的小数部分分数与浮点数运算函数N[num]或num//N把精确数num化成浮点数(默认16位有效数字)N[num,n]把精确数num化成具有n个有效数字的浮点数NumberForm[num,n]以n个有效数字表示numRationalize[float]将浮点数float转换成与其相等的分数Rationalize[float,dx]将浮点数float转换成与其近似相等的分数,误差小于dx最大、最小函数Max[a,b,c,...]求最大数Min[a,b,c,...]求最小数符号函数Sign[x]Mathematica中的数学运算符a+b 加法a-b减法a*b (可用空格键代替*)乘法a/b (输入方法为:“ Ctrl ” + “ / ” ) 除法a^b (输入方法为:“ Ctrl ” + “ ^ ” )乘方-a 负号Mathematica的关系运算符==等于<小于>大于<=小于或等于>=大于或等于!=不等于注:上面的关系运算符也可从基本输入工具栏输入。

Mathematica的常用函数.doc

Mathematica的常用函数.doc

Mathematica的内部常数Pi , 或π(从基本输入工具栏输入, 或“Esc”+“p”+“Esc”)圆周率πE (从基本输入工具栏输入, 或“Esc”+“ee”+“Esc”)自然对数的底数eI (从基本输入工具栏输入, 或“Esc”+“ii”+“Esc”)虚数单位iInfinity, 或∞(从基本输入工具栏输入, 或“Esc”+“inf”+“Esc”)无穷大∞Degree 或°(从基本输入工具栏输入,或“Esc”+“deg”+“Esc”)度Mathematica的常用内部数学函数指数函数Exp[x]以e为底数对数函数Log[x]自然对数,即以e为底数的对数Log[a,x]以a为底数的x的对数开方函数Sqrt[x]表示x的算术平方根绝对值函数Abs[x]表示x的绝对值三角函数(自变量的单位为弧度)Sin[x]正弦函数Cos[x]余弦函数Tan[x]正切函数Cot[x]余切函数Sec[x]正割函数Csc[x]余割函数反三角函数ArcSin[x]反正弦函数ArcCos[x]反余弦函数ArcTan[x]反正切函数ArcCot[x]反余切函数ArcSec[x]反正割函数ArcCsc[x]反余割函数双曲函数Sinh[x]双曲正弦函数Cosh[x]双曲余弦函数Tanh[x]双曲正切函数Coth[x]双曲余切函数Sech[x]双曲正割函数Csch[x]双曲余割函数反双曲函数ArcSinh[x]反双曲正弦函数ArcCosh[x]反双曲余弦函数ArcTanh[x]反双曲正切函数ArcCoth[x]反双曲余切函数ArcSech[x]反双曲正割函数ArcCsch[x]反双曲余割函数求角度函数ArcTan[x,y]以坐标原点为顶点,x轴正半轴为始边,从原点到点(x,y)的射线为终边的角,其单位为弧度数论函数GCD[a,b,c,...]最大公约数函数LCM[a,b,c,...]最小公倍数函数Mod[m,n]求余函数(表示m除以n的余数)Quotient[m,n]求商函数(表示m除以n的商)Divisors[n]求所有可以整除n的整数FactorInteger[n]因数分解,即把整数分解成质数的乘积Prime[n]求第n个质数PrimeQ[n]判断整数n是否为质数,若是,则结果为True,否则结果为FalseRandom[Integer,{m,n}]随机产生m到n之间的整数排列组合函数Factorial[n]或n!阶乘函数,表示n的阶乘复数函数Re[z]实部函数Im[z]虚部函数Arg(z)辐角函数Abs[z]求复数的模Conjugate[z]求复数的共轭复数Exp[z]复数指数函数求整函数与截尾函数Ceiling[x]表示大于或等于实数x的最小整数Floor[x]表示小于或等于实数x的最大整数Round[x]表示最接近x的整数IntegerPart[x]表示实数x的整数部分FractionalPart[x]表示实数x的小数部分分数与浮点数运算函数N[num]或num//N把精确数num化成浮点数(默认16位有效数字)N[num,n]把精确数num化成具有n个有效数字的浮点数NumberForm[num,n]以n个有效数字表示numRationalize[float]将浮点数float转换成与其相等的分数Rationalize[float,dx]将浮点数float转换成与其近似相等的分数,误差小于dx最大、最小函数Max[a,b,c,...]求最大数Min[a,b,c,...]求最小数符号函数Sign[x]Mathematica中的数学运算符a+b 加法a-b减法a*b (可用空格键代替*)乘法a/b (输入方法为:“ Ctrl ” + “ / ” ) 除法a^b (输入方法为:“ Ctrl ” + “ ^ ” )乘方-a 负号Mathematica的关系运算符==等于<小于>大于<=小于或等于>=大于或等于!=不等于注:上面的关系运算符也可从基本输入工具栏输入。

Mathematica学习笔记(自己总结)

Mathematica学习笔记(自己总结)

Mathematica学习笔记(⾃⼰总结)Mathematica 学习笔记⼀、Mathematica介绍Mathematica在Notebook界⾯下,可以通过交互⽅式完成各种运算,如函数作图,求极限,解⽅程等,也可以编写结构化程序。

在Mathematical系统中定义了许多功能强⼤的内建函数(built-in function),这些函数分为两类:⼀类是数学意义上的函数:⼆类是命令意义上的函数:注意:Mathematica严格区分⼤⼩写,⼀般地,内建函数的⾸写字母必须⼤写,有时⼀个函数名由⼏个单词构成,则每个单词的⾸字母也必须⼤写,例如求局部极⼩值函数FindMinimum [f[x], {x, x0}]⼆、表达式的输⼊1、 Mathematica中提供了两种格式的数学表达式,形如 x/(2+3x)+y*(x-w) 的称为⼀维格式,形如x2+3x +yx?w称为⼆维格式。

可以使⽤快捷⽅式输⼊⼆维格式,也可以使⽤基本⼯具栏输⼊⼆维格式。

2、特殊符号的输⼊三、数据类型和常数1、数值类型在Mathematica中,基本的数值类型有四种:整数、有理数、实数和复数。

如果计算机的内存⾜够⼤,Mathematica可以表⽰任意长度的精确实数,⽽不受所⽤的计算机字长的影响。

整数与整数的计算结果仍是精确地整数或是有理数。

在Mathematica中允许使⽤分数,⽤有理数表⽰化简过的分数。

当两个整数相除⽽不能整除时,系统就⽤有理数来表⽰,即有理数是由两个整数的⽐来组成。

实数有两种⽅法表⽰:⼀种是⼩数点,另⼀种是指数⽅法表⽰的。

实数也可以与整数,有理数进⾏混合运算,结果还是⼀个实数。

复数是由实部和虚部组成,实部和虚部可以⽤整数,实数,有理数表⽰,在Mathematica中,⽤i表⽰虚数单位,如:3+0.7i2、不同类型数的转换在Mathematica的不同应⽤中,通常对数字的类型要求是不同的。

例如在公式推导中的数字常⽤整数或有理数表⽰,⽽在数值计算中数字常⽤实数表⽰。

07Mathematica简介

07Mathematica简介

三、求多项式方程的根
n次多项式方程的一般形式为: a0 +a1x+ a2x2 +…+anx n = 0
式中a0 ,a1, a2,…,an为常数。
求多项式方程的根的一般形式为 Solve [ 方程或方程组, 变量或变量表 ] 或 NSolve [ 方程或方程组, 变量或变量表 ] 具体形式有:
命令形式1: Solve[eqn, x] 功能:求多项式方程eqn的所有根,当多项式方程的次数 n4时,给出eqn所有根的准确形式, 当n>4时,不一定能 求出所有的根, 此时,命令输出形式为
(2) Mathematica自定义函数
函数名[自变量名1_, 自变量名2_ ,]:= 表达式 这里函数名与变量名的规定相同,方括号中的每个自变量名后都要有一 个下划线“_”,中部的定义号“: =”的两个符号是一个整体,中间不能有 空格。 常用的自定义函数命令有: 定义一个一元函数 函数名[自变量名_]:= 表达式 例如 : 定义一个函数 y=asin x+x5, a是参数 命令: In[44]: = y[x_ ]:= a*Sin[x]+x^5


变量替换类似于数学中的计算函数在某一点的函数值。
Mathematica中变量替换的一般形式为: 表达式 / . 变量名1 >表达式1 或 表达式 / . {变量名1 >表达式1, 变量名2 >表达式2,…}
这里符号“/.”是由键盘上的两个符号“/”和“.”组成的,中间不能有空格。 同样,“>”也是由键盘上的两个符号“”和“>”组成的, 中间也不能有空 格。
例1:展开多项式(2+3x)4,并取出它的第3项。 解: Mathematica 命令为: In[1]:= p=Expand[(2+3 x)^4] Out[1]=16+96x +216x 2 +216x3 +81x4 In[2]:= Part[p, 3] Out[2]= 216 x2

Mathematica软件简介

Mathematica软件简介

实验一Mathematica软件简介实验目的: 1.掌握软件的基本功能,为数学实验提供工具。

2.掌握用Mathematica软件作函数图形的语句或作图方法。

实验过程与要求:教师利用多媒体组织教学,边讲边操作示范。

实验的内容:Mathematica系统是目前世界上应用最广泛的符号计算系统,它是由美国伊利诺大学复杂系统研究中心主任、物理学、数学和计算机科学教授Stephen Wolfram负责研制的,能够完成符号运算,数学图形绘制,甚至动画制作等多种操作.这里主要介绍Windows环境下的4. 1版本在高等数学等领域的应用,其它版本类似.一、Mathematica软件功能简介(1)作函数的图像:用作图程序,当输入被作函数时,计算机直接作出该函数的图像.(2)数值计算:可简单地计算函数值,积分值等,可求微分方程的数值解等.(3)符号运算:可计算函数的极限,导数,不定积分,求微分方程的通解等.在这以前,计算机只能作数值计算,不能作符号运算.二、Mathematica的启动与基本操作(1)启动:系统安装好以后,在Windows98中,用鼠标点击开始—程序—Mathematica 4.1—Mathematica 4.1菜单即可进入系统.计算机屏幕出现Mathematica的主工作窗口(图1).(2)基本操作:进入系统后,出现Mathematica的主工作窗口,即可键入指令.如键入1+2,然后同时按下Shift+Enter,即可得到结果.窗口显示如图2,其中In[1]为第一输入行的标志,Out[1] 为第一输出行的标志(注意:输入行的标志In[1]:=,In[2]:=,……;输出行的标志Out[1]=,Out[2]=,……均是计算机自动给出的).如果输入的语句和表达式不能在一行显示完,可以按Enter键后在下一行继续输入,但一个命令或表达式在没写完需换行则要加“\”,在后面接着按Enter后继续输入.图1图2三、Mathematica中的数、运算符、变量与表达式1.数Mathematica的数据分为两大类:一类是我们平常写出的数,叫普通数,另一类是系统内部的常数,有固定的写法.Mathematica中的普通数有整数、有理数、实数、复数四种类型,见表1Mathematica的系统内部常数是指用特定的字符串表示的数学常数,如:Pi—表示π,E—表示自然对数的底e,Degree—表示角度制单位的度,I—表示虚数单位i,Infinity表示∞.要注意这些数书写时必须以大写字母开头.2.运算符(1)算术运算符+、-、*、/、^分别表示加、减,乘、除、乘方的运算,其中在不引起混淆的情况下乘法运算符“*”也可省略不写,另外开方可以表示成分数指数,上述运算的优先顺序同数学运算完全一致.(2)关系运算符= =、!=、>、>=、<、<=分别表示等于、不等于、大于、大于等于、小于、小于等于.(3)逻辑运算符逻辑运算符及其意义见表2表23.变量Mathematica中变量的名称是以小写字母(不能以数字开头)开头的字符或字符串,但不能有空格和标点符号,例如:abc和g2均是合法的变量名.在Mathematica中,变量即取即用,不需先说明变量的类型后再使用.在Mathematica中变量不仅可存放一个整数或复数,还可存放一个多项式或复杂的算式.4.表达式表达式是以变量、常量、运算符构成的式子、表、甚至是图形,例如3*x^3-2*x+5和x<=0分别是算术表达式和关系表达式.写表达式时,要注意以下几点:(1)所有表达式必须以线性形式写出.因此分子、分母、指数、下标等都必须写在同一行上.(2)只能使用合法的标识符(字符或字符串).(3)为了指定运算的次序可以利用括号.括号必须成对出现,且只有一种括号“(”与“)”,除了特定符号外不得使用方括号“[”与“]”及花括号“{”与“}”.变量的赋值,格式为:变量名=表达式或变量名1=变量名2=表达式.例如:a=3*5^2y=2*x^2-1代数式中的变量也可以用另一个变量(或代数式)替换,如把上例中变量y中的x用Pi-x 替换,可表述为y=2*x^2-1;y/.x->Pi-xx->Pi-x中的“->”是由键盘上的减号及大于号组成的,以后各节中不在说明.变量的清除,当一个变量a无用时,可以用命令Clear[a]加以清除,以免影响后面计算的结果.注意在Mathematica中,内部函数或命令都是以大写字母开头的标识符(字符或字符串).四、用Mathematica作算术运算与代数运算1.算术运算进入系统后,出现Mathematica的主工作窗口(图1),此时可以通过键盘输入要计算的表达式,再按Shift+Enter键得运算结果.实验1计算80!.解在主工作窗口用户区输入80!.按下Shift+Enter键得运算结果(图3).图3实验2 先求表达式)41(10532+÷-⨯的值,再求该表达式的平方.解 在主工作窗口用户区输入表达式3*5^2-10/(1+4)后按下Shift+Enter 键得该表达式运算结果,然后输入%^2按下Shift+Enter 键得该表达式平方运算结果(图4).其中%代表上一输出结果,该例中指73;如果输入行的标志In[1]:=, In[2]:=,……;输出行的标志Out[1]=,Out[2]=,……代表的表达式是唯一的,则可将其写入以后的运算表达式中代表其对应的表达式参与运算.例如上例中求表达式的平方还可输入为In[1]^2或Out[1]^2后按下Shift+Enter 键得该表达式平方运算结果.图42.代数运算Mathematica 的一个重要的功能是进行代数公式演算,即符号运算.实验3 设有多项式1232---x x x 和. (1)求二者的和,差,积; (2)将二者的积分解因式;(3)将二者的积展开成单项式的和. 解 In[1]:=p 1=x ^2-x -2Out[1]=-2-x In[2]:=p 2=x ^3-1 Out[2]=1 In[3]:=p 1+p 2 Out[3]=-3-x +x In[4]:=p 1-p 2Out[4]=-1-x +x In[5]:=p 1*p 2 Out[5]=In[6]:=Factor[p 1*p 2] Out[6]=In[7]:=Expand[p 1*p 2]Out[7]=2+x -x 2-2x 3-x 其中Factor[多项式]表示将其括号内的多项式分解因式;Expand[多项式] 表示将其括号内的多项式展开成按升幂排列的单项式之和的形式.值得注意的是,上面提到的Factor[多项式]和 Expand[多项式]均是Mathematica 系统中的函数,其中Factor 和 Expand 分别为其函数名(函数名的第一个字母必须大写).事实上Mathematica 系统中含有丰富的函数,后面将结合具体内容介绍有关函数命令.课后实验一1.计算下列各式:!90)3(169)2((1)61152.将多项式.5623分解因式x x x +-3.设有多项式152222343-+-+--x x x x x 和,求二者的和、差、积.五、函数运算 (一)常用函数Mathematica 系统中的数学函数是根据定义规则命名的.就大多数函数而言,其名字通常是英文单词的全写.对于一些非常通用的函数,系统使用传统的缩写.下面给出一些常用函数的函数名及功能.1.数值函数N[x ,k ] 求出表达式的近似值,其中k 为可选项,它指有效数字的位数Round[x] 舍入取整Abs[x] 取绝对值Max[x1,x2,…] 取x1,x2,…中的最大值Min[x1,x2,…] 取x1,x2,…中的最小值x+I y复数x+i yRe[z] 复数z的实部Im[z] 复数z的虚部Abs[z] 复数z的模Arg[z] 复数z的辐角PrimeQ[n] n为素数时为真,否则为假Mod[m,n] m被n除的正余数GCD[n1,n2,…] n1,n2…的最大公约数LCM[n1,n2,…] n1,n2…的最小公倍数Sqrt[x] 求平方根2.基本初等函数Exp[x] 以e为底的指数函数Log[a,x] 以a为底的对数函数Log[x] 以e为底的对数函数Sin[x] 正弦函数Cos[x] 余弦函数Tan[x] 正切函数Cot[x] 余切函数Sec[x] 正割函数Csc[x] 余割函数ArcSin[x] 反正弦函数ArcCos[x] 反余弦函数ArcTan[x] 反正切函数ArcCot[x] 反余切函数使用Mathematica系统中的数学函数要注意以下几点:(1)Mathematica系统中的函数都以大写字母开头.如果用户输入的函数没有用大写字母开头,Mathematica将不能识别,并提出警告信息;(2)Mathematica系统中的函数的自变量都应放在方括号内;(3)这些函数的自变量可以是数值,也可以是算术表达式;(4)计算三角函数时,要注意使用弧度制,如果要使用角度制,不妨把角度制先乘以Degree常数(Degree=π/180),转换为弧度制.实验4求表达式lg2+ln3的值.解In[1]:=Log[10,2]+Log[3]In[2]:=N[Log[10,2]+Log[3],6]Out[2]= 1.3In[3]:=Log[10.0,2]+Log[3.]Out[3]= 1.3实验4中,对应于输入语句In[1],输出语句Out[1]并没有给出lg2及ln3的“数值结果”,这是由于Mathematica符号计算系统的“对于只含有准确数的输入表达式也只进行完全准确的运算并输出相应的准确结果”的特性所决定的.在In[2]中用数值转换函数N[Log[10,2]+Log[3],6],将对表达式Log[10,2]+Log[3]的运算转换成了计算结果具有6位有效数字的实数形式运算,所以输出结果Out[2]=1.3.在In[3]:=Log[10.0,2]+Log[3.]中,用实数10.0代替整数10,用实数3.代替整数3,这里10.0及3.都是实数的表示法,两种表示可以任选其一.计算时欲得“数值结果”输入数时用实数形式. 实验5 求sin90o .解 In[4]:=Sin[90Pi/180] (二)自定义函数1.不带附加条件的自定义函数在Mathematica 系统中,所有的输入都是表达式,所有的操作都是调用转化规则对表达式求值.一个函数就是一条规则,定义一个函数就是定义一条规则.定义一个一元函数的规则是:f [x _ ]:=表达式其中表达式是以x 为自变量的,x _称为形式参数,f 是函数名,函数名的命名规则同变量名的命名规则.调用自定义函数f [x _ ],只需用实在参数(变量或数值等)代替其中的形式参数x _即可. 在运行中,可用“f [x _ ]:=.”清除函数f [x _ ]的定义,用Clear[f ]清除所有以f 为函数名的函数定义.实验6 定义函数x x x x f sin 2)(3++=,先分别求2,1.5,1π=x 时的函数值,再求)(2x f .解 In[5]:=f [x _]:=x ^3+2Sqrt[x ]+Sin[x ]In[6]:=f [1.]Out[6]=3.8In[7]:=f [5.1]Out[7]=136In[8]:=f [N[Pi]/2.] Out[8]=7.3In[9]:=f [x ^2]在Out[9]中,由于系统不知道变量x 的符号,所以没有对2x 进行开方运算. 2. 带附加条件的自定义函数在使用“f [x _ ]:=表达式”定义规则时,可以给规则附加条件,附加条件放在定义规则表达式后面,通过“/;”与表达式连接.规则的附加条件形式为:f [x _ ]:=表达式/;条件在调用上述规则时,实在参数必须满足附加条件,系统才调用规则.“附加条件”经常写成用关系运算符连接着的两个表达式,即关系表达式.用一个关系表达式只能表示一个条件,如表示多个条件的组合,必须用逻辑运算符将多个关系表达式组合到一起.实验7 设有分段函数).100()2(),5.1(),100(0ln 0sin )(f f f f ex xe x xx x e x f x 及求-⎪⎩⎪⎨⎧>≤<≤=解 In[10]:=f [x _]:=Exp[x ]Sin[x ]/;x <=0In[11]:=f [x _]:=Log[x ]/;(x >0)&&(x <=E) In[12]:=f [x _]:=Sqrt[x ]/;x >E In[13]:=f [-100.0]Out[13]=1.88372´ In[14]:=f [1.5]Out[14]=0.40In[15]:=f [2.0] Out[15]=0.69 In[16]:=f [100.0] Out[16]=课后实验二1.求表达式lg100+lne-lg5的值.2.求sin30o .3.求复数3+2i 的模,辐角,实部及虚部.4.设f(x)=sin2x -5ln x -e x ,求f (1.3),f (2)及f (100).5.设函数⎩⎨⎧≥+<+=0)1ln(01)(2x x x x x f ,求f (-1.5)及f (2).六、方程与方程组的解法Solve 是解方程或方程组的函数,其格式为: Solve[eqns,vars]其中eqns 可以是单个方程,也可以是方程组,单个方程用exp==0的形式(其中exp 为关于未知元的表达式);方程组写成用大括号括起来的中间逗号分割的若干个单个方程的集合;vars 为未知元表,其形式为{x 1,x 2,…,x n }.实验1 解方程0652=+-x x . 解 In[17]:=Solve[x ^2-5x +6==0,x ] 其中方程中的等号应连输2个“=”. 实验2 解方程050)5(2352=--x x . 解 In[18]:=Solve[5^(2x )-23(5^x )-50==0,x ]Out[18]={{x →2}}实验3 解方程组⎩⎨⎧=-=+13122yxy x .解 In[19]:=Solve[{x +y ==1,3x ^2-y ^2==0},{x ,y }] 七、不等式与不等式组的解法在Mathematica 系统中解不等式 格式为:<<Algebra`InequalitySolve`InequalitySolve[ineq, x ]其中“<”为键盘上的小于号,“`”为数字键1的左侧的`,<<Algebra`InequalitySolve`是装载程序包, ineq 可以是单个不等式,也可以是不等式组,不等式组写成用大括号括起来的中间逗号分割的若干个单个不等式的集合.注意前面简介的Mathematica 函数,都可以通过输入函数和适当的参数而直接使用,这些函数我们称之为系统的内部函数.还有一些系统扩展的功能不是作为系统的内部函数的,而这些功能是以文件的形式存储在磁盘上的,要使用它们,必须用一定的方式来调用这些文件,这些文件我们称之为程序包.此处InequalitySolve 及后面要学习的Rsolve 、FourierTrigSeries 等都属于这种情况.实验4 解不等式组⎪⎩⎪⎨⎧>-<--0101222x x x .解 In[20]:= <<Algebra`InequalitySolve`In[21]:=InequalitySolve[{x ^2-5x -6<0,x ^2-1>0}, x ] Out[21]= 1< 实验5 解不等式3)3(12>--x x .解 In[22]:= <<Algebra`InequalitySolve`In[23]:=InequalitySolve[Abs[x -1](x ^2-3) > 3, x ] Out[23]=即不等式的解为x <-2 或x >)131(21+.八、由递推式求数列的通项公式在Mathematica 系统中由递推式求数列的通项公式 格式为:<<DiscreteMath`RSolve` RSolve[{eqn, a [1]==k }, a [n ], n ]其中“<”为键盘上的小于号,“`”为数字键1的左侧的`,<<DiscreteMath`RSolve`是装载程序包,eqn 为递推式, a [1]==k 为数列的第一项.实验6 设.,1,11求数列的通项公式==-a na a n n解 In[24]:=<<DiscreteMath`RSolve`In[25]:=RSolve[{a [n ]==n a [n -1], a [1]==1}, a [n ], n ]实验一1.解下列方程:(1) 0122=--x x (2) 03241=-++x x2. 解方程组⎩⎨⎧=-=+1231y x y x .3. 解不等式0232>+-x x .4. 设.,1,31021求数列的通项公式==+=--a a a a a n n n九、作函数图像1、作图函数与输入格式在Mathematica 系统中用函数Plot 可以很方便地作出一元函数的静态图像,基本格式为:Plot[{f 1,f 2,…},{x ,xmin ,xmax },可选参数]其中表{f 1,f 2,…}的fi (i =1,2,3,…)是绘制图形的函数名,表{x ,xmin ,xmax }中x 为函数fi (i =1,2,3,…)的自变量,xmin 和xmax 是自变量的取值区间的左端点和右端点.实验7 作y =x 2-1在[-2,2]内的图像和作y =lg x 在[0.3,4]内的图像,其输入和输出如图7-5.图7-52、作图时的可选参数1)参数AspectRatio(面貌比)平时我们作图时,两个坐标轴的单位长度应该一致,即1:1.但在Mathematica系统中根据美学原理系统默认的纵横之比为1:0.618,而将参数AspectRatio的值设置为Automatic(自动的)时可使纵横比为1:1.实验8(1)作y=sin x和y=cos x在[0,2π]内的图像,且两坐标轴上的单位比为0.618.(2)作y=sin x和y=cos x在[0,2π]内的图像,且两坐标轴上的单位比为1:1.其输入和输出如图7-6.图7-62)参数PlotStyle(画图风格)PlotStyle的值是一个表,它决定画线的虚实、宽度、色彩等.(1)取值RGBColor[r,g,b]—决定画线的色彩.r,g,b分别表示红,绿,蓝色的强度,其值为[0,1]之间的数.实验9作y=sin x在[0,2π]内的图像,线条用红色.输入:Plot[Sin[x],{x,0,2Pi},PlotStyle->{RGBColor[1,0,0]}]表示画出的曲线为红色.(2) 取值Thickness[t](厚度,浓度)—决定画线的宽度.t是一个介于0,1之间的数,且远远小于1,因为整个图形的宽度为1.实验10 作y=sin x在[0,2π]内的图像,线条厚度t=0.02.输入:Plot[Sin[x],{x,0,2Pi},PlotStyle->Thickness[0.02]]输出如图7-7图7-7(3) 取值Dashing[{d1,d2,…}]—决定画线的虚实,其中表{d1,d2,…}确定线的虚实分段方式,di(i=1,2,…)的取值介于0,1之间.实验11作y=sin x在[0,2π]内的图像,线条用虚线.输入:Plot[Sin[x],{x,0,2Pi},PlotStyle->Dashing[{0.03,0.07}]]输出如图7-8图7-8实验12 作y=sin x和y=cos x在[0,2π]内的图像,且两坐标轴上的单位比为1:1,线条用蓝色虚线.输入:Plot[{Sin[x],Cos[x]},{x,0,2Pi},AspectRatio->Automatic,PlotStyle->{{RGBColor[0,0,1],Dashing[{0.02,0.05}]}}]输出如图7-9图7-93)参数DisplayFunction(显示函数)该参数决定图形的显示与否,当取值为Identity 时,图形不显示出来.当取值为$DisplayFunction时恢复图形的显示.1、图形的组合显示函数ShowPlot的作用可以同时在同一坐标系的同一区间内作出不同函数的图像,但有时需要在同一坐标系的不同区间作出不同函数的图像,或者在同一坐标系作一个函数而要求函数的各个部分具有不同的形态(像分段函数),这个时候就需要使用Show 函数.实验13 在同一坐标系中作出y =e x 和y =ln x 的图像,并说明它们的图像关于直线y =x 对称.输入:a =Plot[Exp[x ],{x ,-2,2},AspectRatio->Automatic,PlotStyle->RGBColor[0,1,0], DisplayFunction->Identity]b =Plot[Log[x ],{x ,0.3,3},AspectRatio->Automatic,PlotStyle->RGBColor[1,0,0], DisplayFunction->Identity]c =Plot[x ,{x ,-2,2},AspectRatio->Automatic,PlotStyle->Dashing[{0.09,0.04}], DisplayFunction->Identity]Show[a ,b ,c,DisplayFunction →$DisplayFunction]输出如图7-10.实验二.0ln 01.5.)42sin(3.4.log .3.)21(.2..122141的图像作分段函数在一个周期内的图像作函数的图像作函数的图像作函数的图像作函数⎩⎨⎧>≤+=+====x xx x y x y x y y x y x π6.在同一坐标系中作出y=x,y=sin x,x∈[-π/2,π/2]和y=arcsin x, x∈[-1,1]的图像, 且要求两坐标轴上的单位比为1:1, y=x用虚线和红色,y=sin x用绿色,y=arcsin x用蓝色.本次课小结:Mathematica软件是一个集成化的软件系统,正是由于它的主要功能的三个方面,即符号演算,数值计算和图形功能,使它成为我们学习数学知识解决实际问题中困难的助手和工具.该功能有自身的规定.我们在学习中一定要按规定执行,对基本的指令和语法等要熟记。

数学软件Mathematica详解教程

数学软件Mathematica详解教程

23
自定义函数
Mathematica 允许用户自定义函数,一般格式为
函数名[自变量名1_, 自变量名2_, ...]:= 表达式
这里函数名与变量名的规定相同 方括号中的每个自变量名后都要有一个下划线 “_” 中间的 “:=” 为定义号 注意符号表达式与函数的区别

f[x_]:=2*x-3
② 大多数函数名与数学中的名称相同 ③ 当函数名分为几段时,每一段的头一个字母大写,后面 的用小写字母,如:ArcSin[x]
寻求帮助: ??函数名
In[1]:= ?? Sign[x] Power[x,y] Sqrt[x] Exp[x] Log[x], Log[b,x] 绝对值 符号函数 幂函数 x y 平方根 以 e 为底的指数函数 以 e 和 b 为底的对数函数
m 除以 n 的整数商 三角函数 反三角函数 双曲函数
ArcSinh, ArcCosh, ...
Prime[k] PrimeQ[n] Binomial[n,m]
反双曲函数
第 k 个素数 判断 n 是否为素数 m Cn 二项式系数
20
随机函数
Random[]
Random[Real, a] Random[Real, {a,b}]
定义一个一元函数
f[x_,y_]:=Log[x/y]-Power[x,y]
Clear[f]

定义一个二元函数
清除自定义的函数
自定义函数前,最好先清除自变量的值,否则可能会 出现意想不到的错误
24
自定义函数
In[1]:= f=2*x+y In[2]:= g[x_,y_]:=2*x+y In[3]:= f[2,3] (* 符号表达式 *) (* 函数 *)

Mathematica函数大全(内置)

Mathematica函数大全(内置)

Mathematica函数大全--运算符及特殊符号一、运算符及特殊符号Line1;执行Line,不显示结果Line1,line2顺次执行Line1,2,并显示结果name关于系统变量name的信息name关于系统变量name的全部信息!command执行Dos命令n! N的阶乘!!filename显示文件内容<Expr>> filename打开文件写Expr>>>filename打开文件从文件末写() 结合率[]函数{}一个表<*Math Fun*> 在c语言中使用math的函数(*Note*)程序的注释#n第n个参数##所有参数rule& 把rule作用于后面的式子%前一次的输出%%倒数第二次的输出%n第n个输出var::note变量var的注释"Astring "字符串Context ` 上下文a+b 加a-b减a*b或a b 乘a/b除a^b 乘方base^^num以base为进位的数lhs&&rhs且lhs||rhs或!lha非++,-- 自加1,自减1+=,-=,*=,/= 同C语言>,<,>=,<=,==,!=逻辑判断(同c)lhs=rhs立即赋值lhs:=rhs建立动态赋值lhs:>rhs建立替换规则expr//funname相当于filename[expr]expr/.rule将规则rule应用于exprexpr//.rule 将规则rule不断应用于expr知道不变为止param_ 名为param的一个任意表达式(形式变量)param__名为param的任意多个任意表达式(形式变量)二、系统常数Pi 3.1415....的无限精度数值E 2.17828...的无限精度数值Catalan 0.915966..卡塔兰常数EulerGamma 0.5772....高斯常数GoldenRatio 1.61803...黄金分割数Degree Pi/180角度弧度换算I复数单位Infinity无穷大-Infinity负无穷大ComplexInfinity复无穷大Indeterminate不定式三、代数计算Expand[expr]展开表达式Factor[expr]表达式因式分解Factor[poly,Modulus->p] Z p域分解Factor[poly,Extension->{a1, a2,… }] 代数数域分解Factor[poly,GaussianIntegers->True] 复整数域分解Factor[poly,Extension->Automatic]poly的系数所在数域分解(以下函数都可在各数域内进行)Simplify[expr]化简表达式FullSimplify[expr]将特殊函数等也进行化简PowerExpand[expr]展开所有的幂次形式ComplexExpand[expr,{x1,x2...}]按复数实部虚部展开FunctionExpand[expr]化简expr中的特殊函数Collect[expr, x]合并同次项Collect[expr, {x1,x2,...}]合并x1,x2,...的同次项Together[expr]通分Apart[expr]部分分式展开Apart[expr, var] 对var的部分分式展开Cancel[expr]约分ExpandAll[expr]展开表达式ExpandAll[expr, patt] 展开表达式FactorTerms[poly]提出共有的数字因子FactorTerms[poly, x] 提出与x无关的数字因子FactorTerms[poly, {x1,x2...}]提出与xi无关的数字因子Coefficient[expr, form]多项式expr中form的系数Coefficient[expr, form, n]多项式expr中form^n的系数Exponent[expr, form]表达式expr中form的最高指数Numerator[expr] 表达式expr的分子Denominator[expr]表达式expr的分母ExpandNumerator[expr]展开expr的分子部分ExpandDenominator[expr]展开expr的分母部分ExpandDenominator[expr]展开expr的分母部分TrigExpand[expr]展开表达式中的三角函数TrigFactor[expr]给出表达式中的三角函数因子TrigFactorList[expr]给出表达式中的三角函数因子的表TrigReduce[expr]对表达式中的三角函数化简TrigToExp[expr] 三角到指数的转化ExpToTrig[expr]指数到三角的转化RootReduce[expr]ToRadicals[expr]四、解方程Solve[eqns, vars]从方程组eqns中解出varsSolve[eqns, vars, elims] 从方程组eqns中削去变量elims,解出vars DSolve[eqn, y, x]解微分方程,其中y是x的函数DSolve[{eqn1,eqn2,...},{y1,y2...},x]解微分方程组,其中yi是x的函数DSolve[eqn, y, {x1,x2...}]解偏微分方程RSolve[eqn, a[n], n] 解函数方程例1、RSolve u x2x1u x1zu x2,u x,x{{u[x] BesselJ[x,z] C[1]+BesselY[x,z] C[2]}} 2、RSolve[{y[x+2]==ay[x+1]+y[x],y[0]==0,y[1]==1},y,x]RSolve[{eqn1, eqn2, … }, {a1[n], a2[n], …}, n]RSolve[eqn, a[n1, n2, …], {n1, n2, …}]Resolve[expr]Resolve[expr, dom]FindInstance[expr, vars]求不定方程的特解FindInstance[expr, vars, dom]求不定方程的特解(在dom数域内)FindInstance[expr, vars, dom, n]求不定方程的n个特解Eliminate[eqns, vars] 把方程组eqns中变量vars约去SolveAlways[eqns, vars] 给出等式成立的所有参数满足的条件Reduce[eqns, vars] 化简并给出所有可能解的条件Reduce x22y21&&x0&&y0&&x y Integers,x,y LogicalExpand[expr] 用&&和||将逻辑表达式展开InverseFunction[f] 求函数f的逆函数Root[f, k] 求多项式函数的第k个根Roots[lhs==rhs, var] 得到多项式方程的所有根五、微积分函数D[f, x]求f[x]的微分∂f/∂xD[f, {x, n}]求f[x]的n阶微分n f x nD[f,x1,x2..] 求f[x]对x1,x2...偏微分x1x2...fDt[f, x]求f[x]的全微分df/dxDt[f]求f[x]的全微分dfDt[f, {x, n}] n阶全微分df^n/dx^nDt[f,x1,x2..]对x1,x2..的偏微分d d x1d d x2...fIntegrate[f, x] f[x]对x在的不定积分Integrate[f, {x, xmin, xmax}] f[x]对x在区间(xmin,xmax)的定积分Integrate[f, {x, xmin, xmax}, {y, ymin, ymax}] f[x,y]的二重积分Limit[expr, x->x0] x趋近于x0时expr的极限Limit[expr, x->x0, Direction -> 1] x趋近于x0+时expr的极限Limit[expr, x->x0, Direction ->-1] x趋近于x0-时expr的极限Residue[expr, {x,x0}] expr在x0处的留数Series[f, {x, x0, n}] 给出f[x]在x0处的幂级数展开Series[f, {x, x0,nx}, {y, y0, ny}]先对y幂级数展开,再对xNormal[expr]化简并给出最常见的表达式(可截断Series的误差O[x])SeriesCoefficient[series, n]给出级数中第n次项的系数SeriesCoefficient[series, {n1,n2...}]' 或Derivative[n1,n2...][f]一阶导数InverseSeries[s, x] 给出逆函数的级数ComposeSeries[serie1,serie2...] 给出两个基数的组合SeriesData[x,x0,{a0,a1,..},nmin,nmax,den]表示一个在x0处x的幂级数,其中aii 为系数O[x]^n n阶小量x^nO[x, x0]^n n阶小量(x-x0)^n六、多项式函数Variables[poly]给出多项式poly中独立变量的列表CoefficientList[poly, var]给出多项式poly中变量var的系数CoefficientList[poly, {var1,var2...}]给出多项式poly中变量var(i)的系数列? PolynomialMod[poly, m] poly中各系数mod m同余后得到的多项式,m可为整式PolynomialQuotient[p, q, x]以x为自变量的两个多项式之商式p/q PolynomialRemainder[p, q, x] 以x为自变量的两个多项式之余式PolynomialGCD[poly1,poly2,...] poly(i)的最大公因式PolynomialLCM[poly1,poly2,...] poly(i)的最小公倍式PolynomialReduce[poly, {poly1,poly2,...},{x1,x2...}]得到一个表{{a1,a2,...},b}其中Sum[ai*polyi]+b=polyResultant[poly1,poly2,var] 约去poly1,poly2中的varFactor[poly] 因式分解(在整式范围内)FactorTerms[poly] 提出poly 中的数字公因子FactorTerms[poly, {x1,x2...}] 提出poly 中与xi 无关项的数字公因子FactorList[poly] 给出poly 各个因子及其指数{{poly1,exp1},{...}...}FactorSquareFreeList[poly] 同上FactorTermsList[poly,{x1,x2...}] 给出各个因式列表,第一项是数字公因子,第二项是与xi 无关的因式,其后是与xi 有关的因式按升幂的排排?Cyclotomic[n, x] C n x k x e 2i k n (割圆多项式,即单位根的极小多项式)Decompose[poly, x] 迭代分解,给出{p1,p2,...},其中p1(p2(...))=polyInterpolatingPolynomial[data, var] 在数据data 上的插值多项式 data 可以写为{f1,f2..}相当于{{x1=1,y1=f1}..} data 可以写为{{x1,f1,df11,df12,..},{x2,f2,df21..} 可以指定数据点上的n 阶导数值RootSum[f, form] 得到f[x]=0的所有根,并求得Sum[form[xi]]七、随机函数Random[type,range] 产生type 类型且在range 范围内的均匀分布随机数,type 可以为Integer,Real,Complex,不写默认为Real ,range 为{min,max},不写默认为{0,1} Random[] 0~1上的随机实数SeedRandom[n] 以n 为seed 产生伪随机数 如果采用了 <在 2.0版本为 <<"D:\\Math\\PACKAGES\\STATISTI\\Continuo.m"Random[distribution]可以产生各种分布如Random[BetaDistribution[alpha, beta]]stribution[alpha, beta]}Random[NormalDistribution[miu,sigma]]等常用的分布如BetaDistribution,CauchyDistribution,ChiDistribution, NoncentralChiSquareDistribution,ExponentialDistribution, ExtremeValueDistribution,NoncentralFRatioDistribution,GammaDistribution,HalfNormalDistribution, LaplaceDistribution, LogNormalDistribution,LogisticDistribution,RayleighDistribution,NoncentralStudentTDistribution,UniformDistribution, WeibullDistribution八、数值函数N[expr] 表达式的机器精度近似值N[expr, n]表达式的n位近似值,n为任意正整数NSolve[lhs==rhs, var]求方程数值解NSolve[eqn, var, n] 求方程数值解,结果精度到n位NDSolve[eqns, y, {x, xmin, xmax}]微分方程数值解NDSolve[eqns, {y1,y2,...}, {x, xmin, xmax}]FindRoot[lhs==rhs, {x,x0}]以x0为初值,寻找方程数值解FindRoot x52,x,1,WorkingPrecision100精确到100位有效数字FindRoot[lhs==rhs, {x, xstart, xmin, xmax}]NSum[f, {i,imin,imax,di}] 数值求和,di为步长NSum[f, {i,imin,imax,di}, {j,..},..] 多维函数求和NProduct[f, {i, imin, imax, di}]函数求积NIntegrate[f, {x, xmin, xmax}] 函数数值积分优化函数:FindMinimum[f, {x,x0}]以x0为初值,寻找函数最小值FindMinimum[f, {x, xstart, xmin, xmax}]LinearProgramming[c,m,b]解线性组合c.x在m.x>=b&&x>=0约束下的最小值,x,b,c为向量,m为矩阵LatticeReduce[{v1,v2...}]向量组vi的极小无关组数据处理:Fit[data,funs,vars]用指定函数组对数据进行最小二乘拟和data可以为{{x1,y1,..f1},{x2,y2,..f2}..}多维的情况emp: Fit[{10.22,12,3.2,9.9}, {1, x, x^2,Sin[x]}, x]Interpolation[data]对数据进行差值,data同上,另外还可以为{{x1,{f1,df11,df12}},{x2,{f2,.}..}指定各阶导数InterpolationOrder默认为3次,可修改ListInterpolation[array]对离散数据插值,array可为n维ListInterpolation[array,{{xmin,xmax},{ymin,ymax},..}] FunctionInterpolation[expr,{x,xmin,xmax}, {y,ymin,ymax},..]以对应expr[xi,yi]的为数据进行插值Fourier[list] 对复数数据进行付氏变换InverseFourier[list]对复数数据进行付氏逆变换Min[{x1,x2...},{y1,y2,...}]得到每个表中的最小值Max[{x1,x2...},{y1,y2,...}]得到每个表中的最大值Select[list, crit] 将表中使得crit为True的元素选择出来Count[list, pattern] 将表中匹配模式pattern的元素的个数Sort[list] 将表中元素按升序排列Sort[list,p]将表中元素按p[e1,e2]为True的顺序比较list 的任两个元素e1,e2,实际上Sort[list]中默认p=Greater集合论:Union[list1,list2..] 表listi的并集并排序Intersection[list1,list2..]表listi的交集并排序Complement[listall,list1,list2...]从全集listall中对listi的差集九、虚数函数Re[expr]复数表达式的实部Im[expr] 复数表达式的虚部Abs[expr] 复数表达式的模Arg[expr]复数表达式的辐角Conjugate[expr] 复数表达式的共轭十、数的头及模式及其他操作Integer _Integer整数Real _Real实数Complex _Complex复数Rational_Rational 有理数(*注:模式用在函数参数传递中,如MyFun[Para1_Integer,Para2_Real]规定传入参数的类型,另外也可用来判断If[Head[a]==Real,...]*) IntegerDigits[n,b,len]数字n以b近制的前len个码元RealDigits[x,b,len]类上FromDigits[list] IntegerDigits的反函数Rationalize[x,dx] 把实数x有理化成有理数,误差小于dxChop[expr, delta]将expr中小于delta的部分去掉,dx默认为10^-10 Accuracy[x]给出x小数部分位数,对于Pi,E等为无限大Precision[x]给出x有效数字位数,对于Pi,E等为无限大SetAccuracy[expr, n] 设置expr显示时的小数部分位数SetPrecision[expr, n] 设置expr显示时的有效数字位数十一、区间函数Interval[{min, max}] 区间[min, max](* Solve[3 x+2==Interval[{-2,5}],xx]*) IntervalMemberQ[interval, x] x在区间内吗?IntervalMemberQ[interval1,interval2]区间2在区间1内吗?IntervalUnion[intv1,intv2...] 区间的并IntervalIntersection[intv1,intv2...]区间的交十二、矩阵操作a.b.c或Dot[a, b, c]矩阵、向量、张量的点积Inverse[m] 矩阵的逆Transpose[list]矩阵的转置Transpose[list,{n1,n2..}]将矩阵list 第k行与第nk列交换Det[m]矩阵的行列式Eigenvalues[m]特征值Eigenvectors[m]特征向量Eigensystem[m]特征系统,返回{eigvalues,eigvectors}LinearSolve[m, b] 解线性方程组m.x==bNullSpace[m] 矩阵m的零空间,即m.NullSpace[m]==零向量RowReduce[m] m化简为阶梯矩阵Minors[m, k] m的所有k*k阶子矩阵的行列式的值(伴随阵,好像是) MatrixPower[mat, n] 阵mat自乘n次MatrixExp[mat]e matOuter[f,list1,list2..] listi中各个元之间相互组合,并作为f的参数的到的矩矩? Outer[Times,list1,list2]给出矩阵的外积SingularValues[m] m的奇异值,结果为{u,w,v},m=Conjugate[Transpose[u]].DiagonalMatrix[w].vPseudoInverse[m] m的广义逆QRDecomposition[m] QR分解SchurDecomposition[m] Schur分解LUDecomposition[m] LU分解Norm[z]=Abs[z];Norm[v]=Sqrt[v.Conjugate[v]];向量的模(内积开平方)Norm[v, p]=Total[Abs[v^p]]^(1/p)。

Mathematica函数大全(内置)

Mathematica函数大全(内置)

Mathematica函数大全--运算符及特殊符号一、运算符及特殊符号Line1;执行Line,不显示结果Line1,line2顺次执行Line1,2,并显示结果name关于系统变量name的信息name关于系统变量name的全部信息!command执行Dos命令n! N的阶乘!!filename显示文件内容<Expr>> filename打开文件写Expr>>>filename打开文件从文件末写() 结合率[]函数{}一个表<*Math Fun*> 在c语言中使用math的函数(*Note*)程序的注释#n第n个参数##所有参数rule& 把rule作用于后面的式子%前一次的输出%%倒数第二次的输出%n第n个输出var::note变量var的注释"Astring "字符串Context ` 上下文a+b 加a-b减a*b或a b 乘a/b除a^b 乘方base^^num以base为进位的数lhs&&rhs且lhs||rhs或!lha非++,-- 自加1,自减1+=,-=,*=,/= 同C语言>,<,>=,<=,==,!=逻辑判断(同c)lhs=rhs立即赋值lhs:=rhs建立动态赋值lhs:>rhs建立替换规则expr//funname相当于filename[expr]expr/.rule将规则rule应用于exprexpr//.rule 将规则rule不断应用于expr知道不变为止param_ 名为param的一个任意表达式(形式变量)param__名为param的任意多个任意表达式(形式变量)二、系统常数Pi 3.1415....的无限精度数值E 2.17828...的无限精度数值Catalan 0.915966..卡塔兰常数EulerGamma 0.5772....高斯常数GoldenRatio 1.61803...黄金分割数Degree Pi/180角度弧度换算I复数单位Infinity无穷大-Infinity负无穷大ComplexInfinity复无穷大Indeterminate不定式三、代数计算Expand[expr]展开表达式Factor[expr]表达式因式分解Factor[poly,Modulus->p] Z p域分解Factor[poly,Extension->{a1, a2,… }] 代数数域分解Factor[poly,GaussianIntegers->True] 复整数域分解Factor[poly,Extension->Automatic]poly的系数所在数域分解(以下函数都可在各数域内进行)Simplify[expr]化简表达式FullSimplify[expr]将特殊函数等也进行化简PowerExpand[expr]展开所有的幂次形式ComplexExpand[expr,{x1,x2...}]按复数实部虚部展开FunctionExpand[expr]化简expr中的特殊函数Collect[expr, x]合并同次项Collect[expr, {x1,x2,...}]合并x1,x2,...的同次项Together[expr]通分Apart[expr]部分分式展开Apart[expr, var] 对var的部分分式展开Cancel[expr]约分ExpandAll[expr]展开表达式ExpandAll[expr, patt] 展开表达式FactorTerms[poly]提出共有的数字因子FactorTerms[poly, x] 提出与x无关的数字因子FactorTerms[poly, {x1,x2...}]提出与xi无关的数字因子Coefficient[expr, form]多项式expr中form的系数Coefficient[expr, form, n]多项式expr中form^n的系数Exponent[expr, form]表达式expr中form的最高指数Numerator[expr] 表达式expr的分子Denominator[expr]表达式expr的分母ExpandNumerator[expr]展开expr的分子部分ExpandDenominator[expr]展开expr的分母部分ExpandDenominator[expr]展开expr的分母部分TrigExpand[expr]展开表达式中的三角函数TrigFactor[expr]给出表达式中的三角函数因子TrigFactorList[expr]给出表达式中的三角函数因子的表TrigReduce[expr]对表达式中的三角函数化简TrigToExp[expr] 三角到指数的转化ExpToTrig[expr]指数到三角的转化RootReduce[expr]ToRadicals[expr]四、解方程Solve[eqns, vars]从方程组eqns中解出varsSolve[eqns, vars, elims] 从方程组eqns中削去变量elims,解出vars DSolve[eqn, y, x]解微分方程,其中y是x的函数DSolve[{eqn1,eqn2,...},{y1,y2...},x]解微分方程组,其中yi是x的函数DSolve[eqn, y, {x1,x2...}]解偏微分方程RSolve[eqn, a[n], n] 解函数方程例1、RSolve u x2x1u x1zu x2,u x,x{{u[x] BesselJ[x,z] C[1]+BesselY[x,z] C[2]}} 2、RSolve[{y[x+2]==ay[x+1]+y[x],y[0]==0,y[1]==1},y,x]RSolve[{eqn1, eqn2, … }, {a1[n], a2[n], …}, n]RSolve[eqn, a[n1, n2, …], {n1, n2, …}]Resolve[expr]Resolve[expr, dom]FindInstance[expr, vars]求不定方程的特解FindInstance[expr, vars, dom]求不定方程的特解(在dom数域内)FindInstance[expr, vars, dom, n]求不定方程的n个特解Eliminate[eqns, vars] 把方程组eqns中变量vars约去SolveAlways[eqns, vars] 给出等式成立的所有参数满足的条件Reduce[eqns, vars] 化简并给出所有可能解的条件Reduce x22y21&&x0&&y0&&x y Integers,x,y LogicalExpand[expr] 用&&和||将逻辑表达式展开InverseFunction[f] 求函数f的逆函数Root[f, k] 求多项式函数的第k个根Roots[lhs==rhs, var] 得到多项式方程的所有根五、微积分函数D[f, x]求f[x]的微分∂f/∂xD[f, {x, n}]求f[x]的n阶微分n f x nD[f,x1,x2..] 求f[x]对x1,x2...偏微分x1x2...fDt[f, x]求f[x]的全微分df/dxDt[f]求f[x]的全微分dfDt[f, {x, n}] n阶全微分df^n/dx^nDt[f,x1,x2..]对x1,x2..的偏微分d d x1d d x2...fIntegrate[f, x] f[x]对x在的不定积分Integrate[f, {x, xmin, xmax}] f[x]对x在区间(xmin,xmax)的定积分Integrate[f, {x, xmin, xmax}, {y, ymin, ymax}] f[x,y]的二重积分Limit[expr, x->x0] x趋近于x0时expr的极限Limit[expr, x->x0, Direction -> 1] x趋近于x0+时expr的极限Limit[expr, x->x0, Direction ->-1] x趋近于x0-时expr的极限Residue[expr, {x,x0}] expr在x0处的留数Series[f, {x, x0, n}] 给出f[x]在x0处的幂级数展开Series[f, {x, x0,nx}, {y, y0, ny}]先对y幂级数展开,再对xNormal[expr]化简并给出最常见的表达式(可截断Series的误差O[x])SeriesCoefficient[series, n]给出级数中第n次项的系数SeriesCoefficient[series, {n1,n2...}]' 或Derivative[n1,n2...][f]一阶导数InverseSeries[s, x] 给出逆函数的级数ComposeSeries[serie1,serie2...] 给出两个基数的组合SeriesData[x,x0,{a0,a1,..},nmin,nmax,den]表示一个在x0处x的幂级数,其中aii 为系数O[x]^n n阶小量x^nO[x, x0]^n n阶小量(x-x0)^n六、多项式函数Variables[poly]给出多项式poly中独立变量的列表CoefficientList[poly, var]给出多项式poly中变量var的系数CoefficientList[poly, {var1,var2...}]给出多项式poly中变量var(i)的系数列? PolynomialMod[poly, m] poly中各系数mod m同余后得到的多项式,m可为整式PolynomialQuotient[p, q, x]以x为自变量的两个多项式之商式p/q PolynomialRemainder[p, q, x] 以x为自变量的两个多项式之余式PolynomialGCD[poly1,poly2,...] poly(i)的最大公因式PolynomialLCM[poly1,poly2,...] poly(i)的最小公倍式PolynomialReduce[poly, {poly1,poly2,...},{x1,x2...}]得到一个表{{a1,a2,...},b}其中Sum[ai*polyi]+b=polyResultant[poly1,poly2,var] 约去poly1,poly2中的varFactor[poly] 因式分解(在整式范围内)FactorTerms[poly] 提出poly 中的数字公因子FactorTerms[poly, {x1,x2...}] 提出poly 中与xi 无关项的数字公因子FactorList[poly] 给出poly 各个因子及其指数{{poly1,exp1},{...}...}FactorSquareFreeList[poly] 同上FactorTermsList[poly,{x1,x2...}] 给出各个因式列表,第一项是数字公因子,第二项是与xi 无关的因式,其后是与xi 有关的因式按升幂的排排?Cyclotomic[n, x] C n x k x e 2i k n (割圆多项式,即单位根的极小多项式)Decompose[poly, x] 迭代分解,给出{p1,p2,...},其中p1(p2(...))=polyInterpolatingPolynomial[data, var] 在数据data 上的插值多项式 data 可以写为{f1,f2..}相当于{{x1=1,y1=f1}..} data 可以写为{{x1,f1,df11,df12,..},{x2,f2,df21..} 可以指定数据点上的n 阶导数值RootSum[f, form] 得到f[x]=0的所有根,并求得Sum[form[xi]]七、随机函数Random[type,range] 产生type 类型且在range 范围内的均匀分布随机数,type 可以为Integer,Real,Complex,不写默认为Real ,range 为{min,max},不写默认为{0,1} Random[] 0~1上的随机实数SeedRandom[n] 以n 为seed 产生伪随机数 如果采用了 <在 2.0版本为 <<"D:\\Math\\PACKAGES\\STATISTI\\Continuo.m"Random[distribution]可以产生各种分布如Random[BetaDistribution[alpha, beta]]stribution[alpha, beta]}Random[NormalDistribution[miu,sigma]]等常用的分布如BetaDistribution,CauchyDistribution,ChiDistribution, NoncentralChiSquareDistribution,ExponentialDistribution, ExtremeValueDistribution,NoncentralFRatioDistribution,GammaDistribution,HalfNormalDistribution, LaplaceDistribution, LogNormalDistribution,LogisticDistribution,RayleighDistribution,NoncentralStudentTDistribution,UniformDistribution, WeibullDistribution八、数值函数N[expr] 表达式的机器精度近似值N[expr, n]表达式的n位近似值,n为任意正整数NSolve[lhs==rhs, var]求方程数值解NSolve[eqn, var, n] 求方程数值解,结果精度到n位NDSolve[eqns, y, {x, xmin, xmax}]微分方程数值解NDSolve[eqns, {y1,y2,...}, {x, xmin, xmax}]FindRoot[lhs==rhs, {x,x0}]以x0为初值,寻找方程数值解FindRoot x52,x,1,WorkingPrecision100精确到100位有效数字FindRoot[lhs==rhs, {x, xstart, xmin, xmax}]NSum[f, {i,imin,imax,di}] 数值求和,di为步长NSum[f, {i,imin,imax,di}, {j,..},..] 多维函数求和NProduct[f, {i, imin, imax, di}]函数求积NIntegrate[f, {x, xmin, xmax}] 函数数值积分优化函数:FindMinimum[f, {x,x0}]以x0为初值,寻找函数最小值FindMinimum[f, {x, xstart, xmin, xmax}]LinearProgramming[c,m,b]解线性组合c.x在m.x>=b&&x>=0约束下的最小值,x,b,c为向量,m为矩阵LatticeReduce[{v1,v2...}]向量组vi的极小无关组数据处理:Fit[data,funs,vars]用指定函数组对数据进行最小二乘拟和data可以为{{x1,y1,..f1},{x2,y2,..f2}..}多维的情况emp: Fit[{10.22,12,3.2,9.9}, {1, x, x^2,Sin[x]}, x]Interpolation[data]对数据进行差值,data同上,另外还可以为{{x1,{f1,df11,df12}},{x2,{f2,.}..}指定各阶导数InterpolationOrder默认为3次,可修改ListInterpolation[array]对离散数据插值,array可为n维ListInterpolation[array,{{xmin,xmax},{ymin,ymax},..}] FunctionInterpolation[expr,{x,xmin,xmax}, {y,ymin,ymax},..]以对应expr[xi,yi]的为数据进行插值Fourier[list] 对复数数据进行付氏变换InverseFourier[list]对复数数据进行付氏逆变换Min[{x1,x2...},{y1,y2,...}]得到每个表中的最小值Max[{x1,x2...},{y1,y2,...}]得到每个表中的最大值Select[list, crit] 将表中使得crit为True的元素选择出来Count[list, pattern] 将表中匹配模式pattern的元素的个数Sort[list] 将表中元素按升序排列Sort[list,p]将表中元素按p[e1,e2]为True的顺序比较list 的任两个元素e1,e2,实际上Sort[list]中默认p=Greater集合论:Union[list1,list2..] 表listi的并集并排序Intersection[list1,list2..]表listi的交集并排序Complement[listall,list1,list2...]从全集listall中对listi的差集九、虚数函数Re[expr]复数表达式的实部Im[expr] 复数表达式的虚部Abs[expr] 复数表达式的模Arg[expr]复数表达式的辐角Conjugate[expr] 复数表达式的共轭十、数的头及模式及其他操作Integer _Integer整数Real _Real实数Complex _Complex复数Rational_Rational 有理数(*注:模式用在函数参数传递中,如MyFun[Para1_Integer,Para2_Real]规定传入参数的类型,另外也可用来判断If[Head[a]==Real,...]*) IntegerDigits[n,b,len]数字n以b近制的前len个码元RealDigits[x,b,len]类上FromDigits[list] IntegerDigits的反函数Rationalize[x,dx] 把实数x有理化成有理数,误差小于dxChop[expr, delta]将expr中小于delta的部分去掉,dx默认为10^-10 Accuracy[x]给出x小数部分位数,对于Pi,E等为无限大Precision[x]给出x有效数字位数,对于Pi,E等为无限大SetAccuracy[expr, n] 设置expr显示时的小数部分位数SetPrecision[expr, n] 设置expr显示时的有效数字位数十一、区间函数Interval[{min, max}] 区间[min, max](* Solve[3 x+2==Interval[{-2,5}],xx]*) IntervalMemberQ[interval, x] x在区间内吗?IntervalMemberQ[interval1,interval2]区间2在区间1内吗?IntervalUnion[intv1,intv2...] 区间的并IntervalIntersection[intv1,intv2...]区间的交十二、矩阵操作a.b.c或Dot[a, b, c]矩阵、向量、张量的点积Inverse[m] 矩阵的逆Transpose[list]矩阵的转置Transpose[list,{n1,n2..}]将矩阵list 第k行与第nk列交换Det[m]矩阵的行列式Eigenvalues[m]特征值Eigenvectors[m]特征向量Eigensystem[m]特征系统,返回{eigvalues,eigvectors}LinearSolve[m, b] 解线性方程组m.x==bNullSpace[m] 矩阵m的零空间,即m.NullSpace[m]==零向量RowReduce[m] m化简为阶梯矩阵Minors[m, k] m的所有k*k阶子矩阵的行列式的值(伴随阵,好像是) MatrixPower[mat, n] 阵mat自乘n次MatrixExp[mat]e matOuter[f,list1,list2..] listi中各个元之间相互组合,并作为f的参数的到的矩矩? Outer[Times,list1,list2]给出矩阵的外积SingularValues[m] m的奇异值,结果为{u,w,v},m=Conjugate[Transpose[u]].DiagonalMatrix[w].vPseudoInverse[m] m的广义逆QRDecomposition[m] QR分解SchurDecomposition[m] Schur分解LUDecomposition[m] LU分解Norm[z]=Abs[z];Norm[v]=Sqrt[v.Conjugate[v]];向量的模(内积开平方)Norm[v, p]=Total[Abs[v^p]]^(1/p)。

(完整版)mathematica命令大全

(完整版)mathematica命令大全

<< Statistics`DescriptiveStatistics`
或者加载整个统计函数库,加载方法为:
<<Statistics`
求数据data的众数。

数据data的格式为:{ a1,a2,…}
Mode[data]
如何用mathematica求方差和标准差
首先要加载Statistics`DescriptiveStatistics`函数库,加载方法为:
<< Statistics`DescriptiveStatistics`
或者加载整个统计函数库,加载方法为:
<<Statistics`
求数据data的样本方差。

数据data的格式为:{ a1,a2,…} Variance[data]
VarianceMLE[data] 求数据data的母体方差。

数据data的格式为:{ a1,a2,…} StandardDeviation[data] 求数据data的样本标准差。

数据data的格式为:{a1,a2,…} StandardDeviationMLE[data] 求数据data的母体标准差。

数据data的格式为:{ a1,a2,…}
如何用mathematica求协方差和相关系数
首先要加载Statistics`MultiDescriptiveStatistics`函数库,加载方法为:
<< Statistics`MultiDescriptiveStatistics`
或者加载整个统计函数库,加载方法为:
<<Statistics`
求数据data1和data2的样本协方差。

数据的格式为:{a1,a2,…}。

Mathematica使用教程

Mathematica使用教程

Mathematica 使用教程一、要点● Mathematica 是一个敏感的软件. 所有的Mathematica 函数都以大写字母开头;● 圆括号( ),花括号{ },方括号[ ]都有特殊用途, 应特别注意;● 句号“.”,分号“;”,逗号“,”感叹号“!”等都有特殊用途, 应特别注意;● 用主键盘区的组合键Shfit+Enter 或数字键盘中的Enter 键执行命令.二、介绍案例1. 输入与输出例1 计算 1+1:在打开的命令窗口中输入1+2+3并按组合键Shfit+Enter 执行上述命令,则屏幕上将显示:In[1] : =1+2+3Out[1] =6这里In[1] : = 表示第一个输入,Out[1]= 表示第一个输出,即计算结果.2. 数学常数Pi 表示圆周率π; E 表示无理数e; I 表示虚数单位i ;Degree 表示π/180; Infinity 表示无穷大.注:Pi,Degree,Infinity 的第一个字母必须大写,其后面的字母必须小写.3. 算术运算Mathematica 中用“+”、“-”、“*”、“/” 和“^”分别表示算术运算中的加、减、乘、除和乘方.例2 计算 π⋅⎪⎭⎫ ⎝⎛⋅+⎪⎭⎫ ⎝⎛⋅--213121494891100.输入 100^(1/4)*(1/9)^(-1/2)+8^(-1/3)*(4/9)^(1/2)*Pi则输出 3103π+这是准确值. 如果要求近似值,再输入N[%]则输出 10.543这里%表示上一次输出的结果,命令N[%]表示对上一次的结果取近似值. 还用 %% 表示上上次输出的结果,用 %6表示Out[6]的输出结果.注:关于乘号*,Mathematica 常用空格来代替. 例如,x y z 则表示x*y*z,而xyz 表示字符串,Mathematica 将它理解为一个变量名. 常数与字符之间的乘号或空格可以省略.4. 代数运算例3 分解因式 232++x x输入 Factor[x^2+3x+2]输出 )x 2)(x 1(++例4 展开因式 )2)(1(x x ++输入 Expand[(1+x)(2+x)]输出 2x x 32++例5 通分 3122+++x x输入 Together[1/(x+3)+2/(x+2)]输出 )x 3)(x 2(x 38+++ 例6 将表达式)3)(2(38x x x +++ 展开成部分分式 输入 Apart[(8+3x)/((2+x)(3+x))]输出 3x 12x 2+++ 例7 化简表达式 )3)(1()2)(1(x x x x +++++输入 Simplify[(1+x)(2+x)+(1+x)(3+x)] 输出 2x 2x 75++三、部分函数1. 内部函数Mathematica 系统内部定义了许多函数,并且常用英文全名作为函数名,所有函数名的第一个字母都必须大写,后面的字母必须小写. 当函数名是由两个单词组成时,每个单词的第一个字母都 必须大写,其余的字母必须小写. Mathematica 函数(命令)的基本格式为函数名[表达式,选项]下面列举了一些常用函数: 算术平方根x Sqrt[x]指数函数x eExp[x] 对数函数x a logLog[a,x] 对数函数x lnLog[x] 三角函数Sin[x], Cos[x], Tan[x], Cot[x], Sec[x], Csc[x] 反三角函数 ArcSin[x], ArcCos[x], ArcTan[x],ArcCot[x], AsrcSec[x], ArcCsc[x]双曲函数 Sinh[x], Cosh[x], Tanh[x],反双曲函数 ArcSinh[x], ArcCosh[x], ArcTanh[x]四舍五入函数 Round[x] (*取最接近x 的整数*)取整函数 Floor[x] (*取不超过x 的最大整数*)取模 Mod[m,n] (*求m/n 的模*)取绝对值函数 Abs[x]n 的阶乘 n!符号函数 Sign[x]取近似值 N[x,n] (*取x 的有n 位有效数字的近似值,当n 缺省时,n 的默认值为6*)例8 求π的有6位和20位有效数字的近似值.输入 N[Pi] 输出 3.14159输入 N[Pi, 20] 输出 3.1415926535897932285注:第一个输入语句也常用另一种形式:输入 Pi//N 输出 3.14159例9 计算函数值(1) 输入 Sin[Pi/3] 输出23(2) 输入 ArcSin[.45] 输出 0.466765(3) 输入 Round[-1.52] 输出 -2例10 计算表达式 )6.0arctan(226sin 2ln 1132+-+-e π 的值输入 1/(1+Log[2])*Sin[Pi/6]-Exp[-2]/(2+2^(2/3))*ArcTan[.6]输出 0.2749212. 自定义函数在Mathematica 系统内,由字母开头的字母数字串都可用作变量名,但要注意其中不能包含空格或标点符号.变量的赋值有两种方式. 立即赋值运算符是“=”,延迟赋值运算符是“: =”. 定义函数使用的符号是延迟赋值运算符“: =”.例11 定义函数 12)(23++=x x x f ,并计算)2(f ,)4(f ,)6(f .输入Clear[f,x]; (*清除对变量f 原先的赋值*)f[x_]:=x^3+2*x^2+1; (*定义函数的表达式*)f[2] (*求)2(f 的值*)f[x]/.{x->4} (*求)4(f 的值,另一种方法*)x=6; (*给变量x 立即赋值6*)f[x] (*求)6(f 的值,又一种方法*)输出1797289注:本例1、2、5行的结尾有“;”,它表示这些语句的输出结果不在屏幕上显示.四、解方程在Mathematica 系统内,方程中的等号用符号“==”表示. 最基本的求解方程的命令为Solve[eqns, vars]它表示对系数按常规约定求出方程(组)的全部解,其中eqns 表示方程(组),vars 表示所求未知变量.例12 解方程0232=++x x输入 Solve[x^2+3x+2==0, x]输出 }}1x {},2x {{-→-→例13 解方程组 ⎩⎨⎧=+=+10dy cx by ax 输入 Solve[{a x + b y == 0,c x + d y ==1}, {x,y}]输出 ⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧+-→-→ad bc a y ,ad bc b x 例14 解无理方程a x x =++-11输入 Solve[Sqrt[x-1]+ Sqrt[x+1] == a, x]输出 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+→24a 4a 4x很多方程是根本不能求出准确解的,此时应转而求其近似解. 求方程的近似解的方法有两种,一种是在方程组的系数中使用小数,这样所求的解即为方程的近似解;另一种是利用下列专门用于求方程(组)数值解的命令:NSolve[eqns, vars] (*求代数方程(组)的全部数值解*)FindRoot[eqns, {x, x0}, {y, y0}Λ,]后一个命令表示从点),,(00Λy x 出发找方程(组)的一个近似解,这时常常需要利用图像法先大致确定所求根的范围,是大致在什么点的附近.例15 求方程013=-x 的近似解输入 NSolve[x^3-1== 0, x]输出 {{→x -0.5-0.866025ii},{→x -0.5+0.866025ii},{→x 1.}}输入 FindRoot[x^3-1==0,{x, .5}]输出 {→x 1.}下面再介绍一个很有用的命令:Eliminate[eqns, elims] (*从一组等式中消去变量(组)elims*)例16从方程组 ⎪⎩⎪⎨⎧=+=-+-+=++11)1()1(1222222y x z y x z y x 消去未知数y 、z .输入Eliminate[{x^2+y^2+z^2 ==1,x^2+(y-1)^2 + (z-1)^2 ==1, x + y== 1},{y, z}]输出 0x 3x 22==+-注:上面这个输入语句为多行语句,它可以像上面例子中那样在行尾处有逗号的地方将行与行隔开, 来迫使Mathematica 从前一行继续到下一行在执行该语句. 有时候多行语句的意义不太明 确,通常发生在其中有一行本身就是可执行的语句的情形,此时可在该行尾放一个继续的记号“\”, 来迫使Mathematica 继续到下一行再执行该语句.五、保存与退出Mathematica 很容易保存Notebook 中显示的内容,打开位于窗口第一行的File 菜单,点击Save后得到保存文件时的对话框,按要求操作后即可把所要的内容存为 *.nb 文件. 如果只想保存全部 输入的命令,而不想保存全部输出结果,则可以打开下拉式菜单Kernel,选中Delete All Output,然后 再执行保存命令. 而退出Mathematica 与退出Word 的操作是一样的.六、查询与帮助查询某个函数(命令)的基本功能,键入“?函数名”,想要了解更多一些,键入“??函数名”,例如,输入?Plot则输出Plot[f,{x,xmin,xmax}] generates a plot of f as a functionof x from xmin to xmax. Plot[{f1,f2,…},{x,xmin,xmax}] plots several functions fi它告诉了我们关于绘图命令“Plot ”的基本使用方法.例17 在区间]1,1[-上作出抛物线2x y =的图形.输入 Plot[x^2,{x,-1,1}]则输出-1-0.50.510.20.40.60.81例18 π.输入 Plot[{Sin[x],Cos[x]},{x,0,2Pi}]则输出123456-1-0.50.51??Plot则Mathematica 会输出关于这个命令的选项的详细说明,请读者试之.此外,Mathematica 的Help 菜单中提供了大量的帮助信息,其中Help 菜单中的第一项HelpBrowser(帮助游览器)是常用的查询工具,读者若想了解更多的使用信息,则应自己通过Help 菜单去学习.编辑本段Mathematica 基本运算a+mathematica 数学实验(第2版)b+c 加a-b 减a b c 或a*b*c 乘a/b 除-a 负号a^b 次方Mathematica 数字的形式256 整数2.56 实数11/35 分数2+6I 复数常用的数学常数Pi 圆周率,π=3.141592654…E 尤拉常数,e=2.71828182…Degree 角度转换弧度的常数,Pi/180I 虚数,其值为√-1Infinity 无限大指定之前计算结果的方法% 前一个运算结果%% 前二个运算结果%%…%(n个%) 前n个运算结果%n 或Out[n] 前n个运算结果复数的运算指令a+bI 复数Conjugate[a+bI] 共轭复数Re[z], Im[z] 复数z的实数/虚数部分Abs[z] 复数z的大小或模数(Modulus)Arg[z] 复数z的幅角(Argument)Mathematica 输出的控制指令expr1; expr2; expr3 做数个运算,但只印出最後一个运算的结果expr1; expr2; expr3; 做数个运算,但都不印出结果expr; 做运算,但不印出结果编辑本段常用数学函数Sin[x],Cos[x],Tan[x],Cot[x],Sec[x],Csc[x] 三角函数,其引数的单位为弪度Sinh[x],Cosh[x],Tanh[x],… 双曲函数ArcSin[x],ArcCos[x],ArcTan[x] 反三角函数ArcCot[x],ArcSec[x],ArcCsc[x]Arc Sinh[x],ArcCosh[x],ArcTanh[x],… 反双曲函数Sqrt[x] 根号Exp[x] 指数Log[x] 自然对数Log[a,x] 以a为底的对数Abs[x] 绝对值Round[x] 最接近x的整数Floor[x] 小於或等於x的最大整数Ceiling[x] 大於或等於x的最小整数Mod[a,b] a/b所得的馀数n! 阶乘Random[] 0至1之间的随机数(最新版本已经不用这个函数,改为使用RandomReal[])Max[a,b,c,...],Min[a,b,c,…] a,b,c,…的极大/极小值编辑本段数之设定x=a 将变数x的值设为ax=y=b 将变数x和y的值均设为bx=. 或Clear[x] 除去变数x所存的值变数使用的一些法则xy 中间没有空格,视为变数xyx y x乘上y3x 3乘上xx3 变数x3x^2y 为x^2 y次方运算子比乘法的运算子有较高的处理顺序编辑本段四个常用处理代数的指令Expand[expr] 将expr展开Factor[expr] 将expr因式分解Simplify[expr] 将expr化简成精简的式子FullSimplify[expr] Mathematica 会尝试更多的化简公式,将expr化成更精简的式子编辑本段多项式/分式转换的函数ExpandAll[expr] 把算是全部展开Together[expr] 将expr各项通分在并成一项Apart[expr] 把分式拆开成数项分式的和Apart[expr,var] 视var以外的变数为常数,将expr拆成数项的和Cancel[expr] 把分子和分母共同的因子消去编辑本段分母/分子的运算Denominator[expr] 取出expr的分母Numerator[expr] 取出expr的分子ExpandDenominator[expr] 展开expr的分母ExpandNumerator[expr] 展开expr的分子编辑本段多项式的另二种转换函数Collect[expr,x] 将expr表示成x的多项式,如Collect[expr,{x,y,…}] 将expr分别表示成x,y,…的多项式FactorTerms[expr] 将expr的数值因子提出,如4x+2=2(2x+1)FactorTerms[expr,x] 将expr中把所有不包含x项的因子提出FactorTerms[expr,{x,y,…}] 将expr中把所有不包含{x,y,...}项的因子提出编辑本段三角函数、双曲函数和指数的运算TrigExpand[expr] 将三角函数展开TrigFactor[expr] 将三角函数所组成的数学式因式分解TrigReduce[expr] 将相乘或次方的三角函数化成一次方的基本三角函数之组合ExpToTrig[expr] 将指数函数化成三角函数或双曲函数TrigToExp[expr] 将三角函数或双曲函数化成指数函数复数、次方乘积之展开ComplexExpand[expr] 假设所有的变数都是实数来对expr展开ComplexExpand[expr,{x,y,…}] 假设x,y,..等变数均为复数来对expr展开PowerExpand[expr] 将多项式项次、系数与最高次方之取得Coefficient[expr,form] 於expr中form的系数Exponent[expr,form] 於expr中form的最高次方Part[expr,n] 或expr[[n]] 在expr项中第n个项代换运算子expr/.x->value 将expr里所有的x均代换成valueexpr/.{x->value1,y->value2,…} 执行数个不同变数的代换expr/.{{x->value1},{x->value2},…} 将expr代入不同的x值expr//.{x->value1,y->value2,…} 重复代换到expr不再改变为止求解方程式的根Solve[lhs==rhs,x] 解方程式lhs==rhs,求xNsolve[lhs==rhs,x] 解方程式lhs==rhs的数值解Solve[{lhs1==rhs1,lhs2==rhs2,…},{x,y,…}] 解联立方程式,求x,y,…NSolve[{lhs1==rhs1,lhs2==rhs2,…},{x,y,…}] 解联立方程式的数值解FindRoot[lhs==rhs,{x,x0}] 由初始点x0求lhs==rhs的根Mathematica 的四种括号(term) 圆括号,括号内的term先计算f[x] 方括号,内放函数的引数{x,y,z} 大括号或串列括号,内放串列的元素p[[i ]] 或Part[p,i] 双方括号,p的第i项元素p[[i,j]] 或Part[p,i,j] p的第i项第j个元素缩短Mathematica输出的指令expr//Short 显示一行的计算结果Short[expr,n] 显示n行的计算结果Command; 执行command,但不列出结果查询Mathematica的物件?Command 查询Command的语法及说明??Command 查询Command的语法和属性及选择项?Aaaa* 查询所有开头为Aaaa的物件函数的定义、查询与清除f[x_]= expr 立即定义函数f[x]f[x_]:= expr 延迟定义函数f[x]f[x_,y_,…] 函数f有两个以上的引数?f 查询函数f的定义Clear[f] 或f=. 清除f的定义Remove[f] 将f自系统中清除掉含有预设值的Patterna_+b_. b的预设值为0,即若b从缺,则b以0代替x_ y_ y的预设值为1x_^y_ y的预设值为1条件式的自订函数lhs:=rhs/;condition 当condition成立时,lhs才会定义成rhsIf指令If[test,then,else] 若test为真,则回应then,否则回应elseIf[test,then,else,unknow] 同上,若test无法判定真或假时,则回应unknow 极限Limit[expr,x->c] 当x趋近c时,求expr的极限Limit[expr,x->c,Direction->1]Limit[expr,x->c,Direction->-1]微分D[f,x] 函数f对x作微分D[f,x1,x2,…] 函数f对x1,x2,…作微分D[f,{x,n}] 函数f对x微分n次D[f,x,NonConstants->{y,z,…}] 函数f对x作微分,将y,z,…视为x的函数全微分Dt[f] 全微分dfDt[f,x] 全微分Dt[f,x1,x2,…] 全微分Dt[f,x,Constants->{c1,c2,…}] 全微分,视c1,c2,…为常数不定积分Integrate[f,x] 不定积分∫f dx定积分Integrate[f,{x,xmin,xmax}] 定积分Integrate[f,{x,xmin,xmax},{y,ymin,ymax}] 定积分数列之和与积Sum[f,{i,imin,imax}] 求和Sum[f,{i,imin,imax,di}] 求数列和,引数i以di递增Sum[f,{i,imin,imax},{j,jmin,jmax}]Product[f,{i,imin,imax}] 求积Product[f,{i,imin,imax,di}] 求数列之积,引数i以di递增Product[f,{i,imin,imax},{j,jmin,jmax}]函数之泰勒展开式Series[expr,{x,x0,n}] 对expr於x0点作泰勒级数展开至(x-x0)n项Series[expr,{x,x0,m},{y,y0,n}] 对x0和y0展开关系运算子a==b 等於a>b 大於a>=b 大於等於a<b 小於a<=b 小於等於a!=b 不等於逻辑运算子!p notp||q||… orp&&q&&… andXor[p,q,…] exclusive orLogicalExpand[expr] 将逻辑表示式展开基本二维绘图指令Plot[f,{x,xmin,xmax}]画出f在xmin到xmax之间的图形Plot[{f1,f2,…},{x,xmin,xmax}]同时画出数个函数图形Plot[f,{x,xmin,xmax},option->value]指定特殊的绘图选项,画出函数f的图形Plot[]几种常用选项的指令选项预设值说明AspectRatio 1/GoldenRatio 图形高和宽之比例,高/宽Axes True 是否把坐标轴画出AxesLabel Automatic 为坐标轴贴上标记,若设定为AxesLabel->{?ylabel?},则为y轴之标记。

Mathematica使用说明资料

Mathematica使用说明资料

输入 Plot[{Sin[x],Cos[x]},{x,0,2Pi}] 则输出
1
0.5
1
2
3
4
5
6
-0.5
-1
如果输入
??Plot 则 Mathematica 会输出关于这个命令的选项的详细说明
,请读者试之 .
此外 ,Mathematica 的 Help 菜单中提供了大量的帮助信息 ,其中 Help 菜单中的第一项
Mathematica 是一个敏感的软件 . 所有的 Mathematica 函数都以大写字母开头 ; 圆括号 ( ),花括号 { }, 方括号 [ ] 都有特殊用途 , 应特别注意 ; 句号“ .”, 分号“ ; ” ,逗号“ ,”感叹号“! ”等都有特殊用途 , 应特别注意 ; 用主键盘区的组合键 Shfit+Enter 或数字键盘中的 Enter 键执行命令 .
3
它表示对系数按常规约定求出方程 ( 组)的全部解 ,其中 eqns 表示方程 (组 ),vars 表示所求未知变量 .
例 12 解方程 x2 3x 2 0
输入 Solve[x^2+3x+2==0, x]
输出 {{ x
2}, { x
1}}
例 13 解方程组
ax by 0 cx dy 1
输入 Solve[{a x + b y == 0,c x + d y ==1}, {x,y}]
ArcCot[x], AsrcSec[x], ArcCsc[x]
Sinh[x],
Cosh[x],
Tanh[x],
ArcSinh[x],
ArcCosh[x], ArcTanh[x]
Round[x] (* 取最接近 x 的整数 *)

Mathematica学习笔记(自己总结)

Mathematica学习笔记(自己总结)

Mathematica 学习笔记一、Mathematica介绍Mathematica在Notebook界面下,可以通过交互方式完成各种运算,如函数作图,求极限,解方程等,也可以编写结构化程序。

在Mathematical系统中定义了许多功能强大的内建函数(built-in function),这些函数分为两类:一类是数学意义上的函数:二类是命令意义上的函数:注意:Mathematica严格区分大小写,一般地,内建函数的首写字母必须大写,有时一个函数名由几个单词构成,则每个单词的首字母也必须大写,例如求局部极小值函数FindMinimum [f[x], {x, x0}]二、表达式的输入1、 Mathematica中提供了两种格式的数学表达式,形如 x/(2+3x)+y*(x-w) 的称为一维格式,形如x2+3x +yx−w称为二维格式。

可以使用快捷方式输入二维格式,也可以使用基本工具栏输入二维格式。

2、特殊符号的输入三、数据类型和常数1、数值类型在Mathematica中,基本的数值类型有四种:整数、有理数、实数和复数。

如果计算机的内存足够大,Mathematica可以表示任意长度的精确实数,而不受所用的计算机字长的影响。

整数与整数的计算结果仍是精确地整数或是有理数。

在Mathematica中允许使用分数,用有理数表示化简过的分数。

当两个整数相除而不能整除时,系统就用有理数来表示,即有理数是由两个整数的比来组成。

实数有两种方法表示:一种是小数点,另一种是指数方法表示的。

实数也可以与整数,有理数进行混合运算,结果还是一个实数。

复数是由实部和虚部组成,实部和虚部可以用整数,实数,有理数表示,在Mathematica中,用i表示虚数单位,如:3+0.7i2、不同类型数的转换在Mathematica的不同应用中,通常对数字的类型要求是不同的。

例如在公式推导中的数字常用整数或有理数表示,而在数值计算中数字常用实数表示。

Mathematica的常用函数

Mathematica的常用函数

Mathematica的内部常数Pi , 或π(从基本输入工具栏输入, 或“Esc”+“p”+“Esc”)圆周率πE (从基本输入工具栏输入, 或“Esc”+“ee”+“Esc”)自然对数的底数eI (从基本输入工具栏输入, 或“Esc”+“ii”+“Esc”)虚数单位iInfinity, 或∞(从基本输入工具栏输入, 或“Esc”+“inf”+“Esc”)无穷大∞Degree 或°(从基本输入工具栏输入,或“Esc”+“deg”+“Esc”)度Mathematica的常用内部数学函数指数函数Exp[x]以e为底数对数函数Log[x]自然对数,即以e为底数的对数Log[a,x]以a为底数的x的对数开方函数Sqrt[x]表示x的算术平方根绝对值函数Abs[x]表示x的绝对值三角函数(自变量的单位为弧度)Sin[x]正弦函数Cos[x]余弦函数Tan[x]正切函数Cot[x]余切函数Sec[x]正割函数Csc[x]余割函数反三角函数ArcSin[x]反正弦函数ArcCos[x]反余弦函数ArcTan[x]反正切函数ArcCot[x]反余切函数ArcSec[x]反正割函数ArcCsc[x]反余割函数双曲函数Sinh[x]双曲正弦函数Cosh[x]双曲余弦函数Tanh[x]双曲正切函数Coth[x]双曲余切函数Sech[x]双曲正割函数Csch[x]双曲余割函数反双曲函数ArcSinh[x]反双曲正弦函数ArcCosh[x]反双曲余弦函数ArcTanh[x]反双曲正切函数ArcCoth[x]反双曲余切函数ArcSech[x]反双曲正割函数ArcCsch[x]反双曲余割函数求角度函数ArcTan[x,y]以坐标原点为顶点,x轴正半轴为始边,从原点到点(x,y)的射线为终边的角,其单位为弧度数论函数GCD[a,b,c,...]最大公约数函数LCM[a,b,c,...]最小公倍数函数Mod[m,n]求余函数(表示m除以n的余数)Quotient[m,n]求商函数(表示m除以n的商)Divisors[n]求所有可以整除n的整数FactorInteger[n]因数分解,即把整数分解成质数的乘积Prime[n]求第n个质数PrimeQ[n]判断整数n是否为质数,若是,则结果为True,否则结果为FalseRandom[Integer,{m,n}]随机产生m到n之间的整数排列组合函数Factorial[n]或n!阶乘函数,表示n的阶乘复数函数Re[z]实部函数Im[z]虚部函数Arg(z)辐角函数Abs[z]求复数的模Conjugate[z]求复数的共轭复数Exp[z]复数指数函数求整函数与截尾函数Ceiling[x]表示大于或等于实数x的最小整数Floor[x]表示小于或等于实数x的最大整数Round[x]表示最接近x的整数IntegerPart[x]表示实数x的整数部分FractionalPart[x]表示实数x的小数部分分数与浮点数运算函数N[num]或num//N把精确数num化成浮点数(默认16位有效数字)N[num,n]把精确数num化成具有n个有效数字的浮点数NumberForm[num,n]以n个有效数字表示numRationalize[float]将浮点数float转换成与其相等的分数Rationalize[float,dx]将浮点数float转换成与其近似相等的分数,误差小于dx最大、最小函数Max[a,b,c,...]求最大数Min[a,b,c,...]求最小数符号函数Sign[x]Mathematica中的数学运算符a+b 加法a-b减法a*b (可用空格键代替*)乘法a/b (输入方法为:“ Ctrl ” + “ / ” ) 除法a^b (输入方法为:“ Ctrl ” + “ ^ ” )乘方-a 负号Mathematica的关系运算符==等于<小于>大于<=小于或等于>=大于或等于!=不等于注:上面的关系运算符也可从基本输入工具栏输入。

[工学]Mathematica的内部常数

[工学]Mathematica的内部常数

Mathematica的内部常数Mathematica的常用内部数学函数Mathematica中的数学运算符Mathematica的关系运算符注:上面的关系运算符也可从基本输入工具栏输入。

如何用mathematica求多项式的最大公因式和最小公倍式如何用mathematica求整数的最大公约数和最小公倍数如何用mathematica进行整数的质因数分解如何用mathematica求整数的正约数如何用mathematica判断一个整数是否为质数如何用mathematica求第n个质数如何用mathematica求阶乘如何用mathematica配方Mathematica没有提供专门的配方命令,但是我们可以非常轻松地自定义一个函数进行配方。

如何用mathematica进行多项式运算如何用mathematica进行分式运算如何用Mathematica进行因式分解如何用Mathematica展开如何用Mathematica进行化简如何用Mathematica合并同类项如何用Mathematica进行数学式的转换如何用Mathematica进行变量替换如何用mathematica进行复数运算如何在mathematica中表示集合与数学中表示集合的方法相同,格式如下:下列命令可以生成特殊的集合:如何用Mathematica求集合的交集、并集、差集和补集如何mathematica用排序如何在Mathematica中解方程注:方程的等号必须用: = =如何在Mathematica中解方程组Solve[{方程组},{变元组}]注:方程的等号必须用: = =如何在Mathematica中解不等式先加载:Algebra`InequalitySolve` ,加载方法为:<<Algebra`InequalitySolve` 然后执行解不等式的命令InequalitySolve,此命令的使用格式如下:<--mstheme-->如何在Mathematica中解不等式组先加载:Algebra`InequalitySolve` ,加载方法为:<<Algebra`InequalitySolve` 然后执行解不等式组的命令InequalitySolve,此命令的使用格式如下:<--mstheme-->如何在Mathematica中解不等式组先加载:Algebra`InequalitySolve` ,加载方法为:<<Algebra`InequalitySolve` 然后执行解不等式组的命令InequalitySolve,此命令的使用格式如下:<--mstheme-->如何用mathematica表示分段函数如何用mathematica求反函数对系统内部的函数生效,但对自定义的函数不起任何作用,也许是方法不对。

数学软件Mathematica简介

数学软件Mathematica简介

• Mathematica除了提供数值处理与绘图的 功能之外,还具有符号计算的能力,使你 能够处理多项式的各种运算、函数的微分、 积分、解微分方程、统计,甚至可以制作 电脑动画及音效等等。 • Mathematica的最新版本是5.0。
Mathematica的安装和运行
• • • 安装Mathematica 运行Mathematica 假设在Windows环境下已安装好 Mathematica,启动Windows后,在“开 始”菜单的“程序”中选择Mathematica 程序,就启动了 Mathematica 。
• 图形函数中最有代表性的函数为Plot,格式为
• Plot[表达式,{变量,下限,上限},可选项]
• (其中表达式还可以是一个"表达式表",这样可 以在一个图里画多个函数);变量为自变量;上 限和下限确定了作图的范围;可选项可要可不 要,不写系统会按默认值作图,它表示对作图 的具体要求。
• 例如 • Plot[Sin[x],{x,0,2*Pi},AspectRatio->Automatic] • 表示在0≤x≤2Pi的范围内作函数y=sinx的图象, AspectRatio为可选项,表示图的x向y向比例, AspectRatio->Automatic表示纵横比例为1:1,如 果不写这一项,系统默认比例为1:GodenRatio, 即黄金分割的比例(注意,可选项的写法为可选 项名->可选项值),Plot还有很多可选项,如 PlotRange表示作图的值域,PlotPoint表画图中 取样点的个数,越大则图越精细,PlotStyle来确 定所画图形的线宽、线型、颜色等特性, AxesLabel表式在坐标轴上作标记等等。
符号运算
• 数值运算只是Mathematica运算功能的一 小部分, Mathematica的真正用武之地表 现在它的符号计算能力上。在此只作初步 介绍,以后再陆续引入。 • 示例

整理mathematica数学常用命令大全之欧阳语创编

整理mathematica数学常用命令大全之欧阳语创编

Mathematica的内部常数Mathematica的常用内部数学函数Mathematica中的数学运算符Mathematica的关系运算符注:上面的关系运算符也可从基本输入工具栏输入。

如何用mathematica求多项式的最大公因式和最小公倍式如何用mathematica求整数的最大公约数和最小公倍数如何用mathematica进行整数的质因数分解如何用mathematica求整数的正约数如何用mathematica判断一个整数是否为质数如何用mathematica求第n个质数如何用mathematica求阶乘如何用mathematica配方Mathematica没有提供专门的配方命令,但是我们可以非常轻松地自定义一个函数进行配方。

如何用mathematica进行多项式运算如何用mathematica进行分式运算如何用Mathematica进行因式分解如何用Mathematica展开如何用Mathematica进行化简如何用Mathematica合并同类项如何用Mathematica进行数学式的转换如何用Mathematica进行变量替换如何用mathematica进行复数运算如何在mathematica中表示集合与数学中表示集合的方法相同,格式如下:下列命令可以生成特殊的集合:如何用Mathematica求集合的交集、并集、差集和补集如何mathematica用排序如何在Mathematica中解方程注:方程的等号必须用: = =如何在Mathematica中解方程组Solve[{方程组},{变元组}]注:方程的等号必须用: = =如何在Mathematica中解不等式先加载:Algebra`InequalitySolve` ,加载方法为:<<Alg ebra`InequalitySolve`然后执行解不等式的命令InequalitySolve,此命令的使用格式如下:<--mstheme-->如何在Mathematica中解不等式组先加载:Algebra`InequalitySolve` ,加载方法为:<<Alg ebra`InequalitySolve`然后执行解不等式组的命令InequalitySolve,此命令的使用格式如下:<--mstheme-->如何在Mathematica中解不等式组先加载:Algebra`InequalitySolve` ,加载方法为:<<Algebra`InequalitySolve`然后执行解不等式组的命令InequalitySolve,此命令的使用格式如下:<--mstheme-->如何用mathematica表示分段函数如何用mathematica求反函数对系统内部的函数生效,但对自定义的函数不起任何作用,也许是方法不对。

哈工程-Mathematica表达式及其运算规则(2020)

哈工程-Mathematica表达式及其运算规则(2020)

•Det[M] 求方阵M的行列式 •MatrixForm[A] 以矩阵的形式显示A •MatrixPower[M,n] 矩阵M的n次幂 •Transpose[A] 矩阵A的转置矩阵 •Eigenvalues[M] 求矩阵M的特征值 •Eigenvectors[M] 求矩阵M的特征向量 •Eigensystem[M] 求矩阵M的特征值与特征向量 •IdentityMatrix[n] 建立一个n×n的单位阵 •DiagonalMatrix[list] 建立一个对角阵,其对角线 元素为表list,list形式为{a11,a22,…,ann}
另外,在刚开始使用Mathematica时,一般对 有关数学运算命令及数学公式的输入都不是太熟悉, 这时可以通过菜单File→Palettes的各个下级子菜单 输入相关命令及公式,不过这种输入方法效率不高, 建议还是少用为好。
2、 表达式与表结构
Mathematica能够处理多种类型的数据形式:数 学公式、集合、图形等等,Mathematica将它们都称 为表达式。使用函数及运算符(+, -, *, /,^等)可组成各 种表达式。
作为集合,有下面的各种集合运算。 •Append[list,element]在集合list的末尾加入元素 element
•Apply[Plus,list]将集合list中的所有元素加在一起
•Apply[Times,list]将集合list中的所有元素乘在一起
•Complement[list1,list2]求在list1中而不在list2中元素 的集合
其中Inverse[]是求逆矩阵命令。在Mathematica中, 一行中可以输入多个命令,各命令间用分号分隔。另 外,分号还有一个作用是通知Mathematica,只在内 存中计算以分号结尾的命令,但不输出此命令的计 算结果。

第11讲数学软件Mathematica内置函数的使用规则

第11讲数学软件Mathematica内置函数的使用规则

第11讲数学软件Mathematica内置函数的使用规则
本讲主要内容:
相关推荐
第1讲:什么是数学实验?
第2讲:数学实验过程实例演示
第3讲:常用数学软件及其特点
第4讲:Mathematica软件及其相关资源
第5讲:数学软件的优势和局限性
第6讲:数学软件Mathematica操作界面与基本操作
第7讲:数学软件Mathematica中的数与数集
第8讲:数学软件Mathematica中数的转换与进制
第9讲:数学软件Mathematica中四则运算与表达式输入形式
第10讲:数学软件Mathematica中结果引用与变量
用数学方程式给Ta们生成逼真的头像线条画
好玩的数学:你的身体,你了解吗?
好玩的数学:快速批量人脸识别、提取和人脸区域的模糊化处理
好玩的数学:干点地理老师做的事,让地球仪转起来
一键生成文件夹中所有文件列表到Excel电子表格
长长的专业长图是这样一键炼成的!
Gif动画图像的提取与Gif动画的制作
颠覆传统认识:苹果、橘子那些你不知道的奥秘?吃个橘子会让你更健康哦!Mathematica应用之日月食的交互式演示
你想知道你的极限计算正确吗?想快速计算得到极限结果吗?
原来苹果是这样“长”出来的,馋了没?
Mathematica应用之相片色彩平衡处理
Mathematica应用之绘制数据计量仪表图。

Mathmatica中函数

Mathmatica中函数

Mathmatica中

常用函数
Mathmatica提供的数学常数:Pi 圆周率
E 自然对数的底e
I 虚数单位
Infinity 无限大∞
-Infinity 负无限大 -∞ComplexInfinity 复平面上的无穷远点Binomia[n, m] 二项式系数等等
表1 Mathematica 中的常用函数
表2 关于集合元素的常用函数
表3 Mathematica 常用的多项式运算
*上面最后三个运算方括号中的x代表把多项式的变元定义为x,以区别于多项式中可能包含的其它变量。

表4 Mathematica常用有理分式运算
表5 常用的几种求解方程的输入方式
表6 Mathematica 常用微积分运算
表7 矩阵的输入和裁剪方法
有时需要从一个矩阵中抽出一些行和列,甚至子矩阵,我们称这种运算为矩陈的
裁剪。

有时需要从一个矩阵中抽出一些行和列,甚至子矩阵,我们称这种运算为矩陈的裁剪。

表8 Mathematica提供的矩阵剪裁运算
表9 Mathematica 中常用矩阵运算
表10 Mathematica 中解线性方程组
的函数
表11 Mathematica 中常用数值算法
表12 画图中的特别说明部分摘要
表13 绘制函数图形常用的输入形式
表14 Mathematica 三维绘图的特别说
明项
表15 绘制三维图形Mathematica 的输入方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Mathematica的内部常数Pi , 或π(从基本输入工具栏输入, 或“Esc”+“p”+“Esc”)圆周率πE (从基本输入工具栏输入, 或“Esc”+“ee”+“Esc”)自然对数的底数eI (从基本输入工具栏输入, 或“Esc”+“ii”+“Esc”)虚数单位iInfinity, 或∞(从基本输入工具栏输入, 或“Esc”+“inf”+“Esc”)无穷大∞Degree 或°(从基本输入工具栏输入,或“Esc”+“deg”+“Esc”)度M athematica的常用内部数学函数指数函数Exp[x] 以e为底数Log[x] 自然对数,即以e为底数的对数对数函数Log[a,x] 以a为底数的x的对数开方函数Sqrt[x] 表示x的算术平方根绝对值函数Abs[x] 表示x的绝对值三角函数(自变量的单位为弧度)Sin[x] 正弦函数Cos[x] 余弦函数Tan[x] 正切函数Cot[x] 余切函数Sec[x] 正割函数Csc[x] 余割函数反三角函数ArcSin[x] 反正弦函数ArcCos[x] 反余弦函数ArcTan[x] 反正切函数ArcCot[x] 反余切函数ArcSec[x] 反正割函数ArcCsc[x] 反余割函数双曲函数Sinh[x] 双曲正弦函数Cosh[x] 双曲余弦函数Tanh[x] 双曲正切函数Coth[x] 双曲余切函数Sech[x] 双曲正割函数Csch[x] 双曲余割函数反双曲函数ArcSinh[x] 反双曲正弦函数ArcCosh[x] 反双曲余弦函数ArcTanh[x] 反双曲正切函数ArcCoth[x] 反双曲余切函数ArcSech[x] 反双曲正割函数ArcCsch[x] 反双曲余割函数求角度函数ArcTan[x,y] 以坐标原点为顶点,x轴正半轴为始边,从原点到点(x,y)的射线为终边的角,其单位为弧度数论函数GCD[a,b,c,...] 最大公约数函数LCM[a,b,c,...] 最小公倍数函数Mod[m,n] 求余函数(表示m除以n的余数)Quotient[m,n] 求商函数(表示m除以n的商)Divisors[n] 求所有可以整除n的整数FactorInteger[n] 因数分解,即把整数分解成质数的乘积Prime[n] 求第n个质数PrimeQ[n] 判断整数n是否为质数,若是,则结果为True,否则结果为Fal se Random[Integer,{m,n}] 随机产生m到n之间的整数排列组合函数Factorial[n]或n!阶乘函数,表示n的阶乘复数函数Re[z] 实部函数Im[z] 虚部函数Arg(z) 辐角函数Abs[z] 求复数的模Conjugate[z] 求复数的共轭复数Exp[z] 复数指数函数求整函数与截尾函数Ceiling[x] 表示大于或等于实数x的最小整数Floor[x] 表示小于或等于实数x的最大整数Round[x] 表示最接近x的整数IntegerPart[x] 表示实数x的整数部分FractionalPart[x] 表示实数x的小数部分分数与浮点数运算函数N[num]或num//N 把精确数num化成浮点数(默认16位有效数字)N[num,n] 把精确数num化成具有n个有效数字的浮点数NumberForm[num,n] 以n个有效数字表示numRationalize[float] 将浮点数float转换成与其相等的分数Rationalize[float,dx] 将浮点数float转换成与其近似相等的分数,误差小于dx 最大、最小函数Max[a,b,c,...] 求最大数Min[a,b,c,...] 求最小数符号函数Sign[x]Mathematica中的数学运算符a+b 加法a-b 减法a*b (可用空格键代替*) 乘法a/b (输入方法为:“Ctrl ”+ “/ ”) 除法a^b (输入方法为:“Ctrl ”+ “^ ”) 乘方-a 负号Mathematica的关系运算符== 等于< 小于> 大于<= 小于或等于>= 大于或等于!= 不等于注:上面的关系运算符也可从基本输入工具栏输入。

如何用mathematica求多项式的最大公因式和最小公倍式PolynomialGCD[p1,p2,...] 求多项式p1,p2,...的最大公因式PolynomialLCM[p1,p2,...] 求多项式p1,p2,...的最小公倍式如何用mathematica求整数的最大公约数和最小公倍数GCD[p1,p2,...] 求整数p1,p2,...的最大公约数LCM[p1,p2,...] 求整数p1,p2,...的最小公倍数如何用mathematica进行整数的质因数分解FactorInteger[n] 把整数n分解成质数的乘积如何用mathematica求整数的正约数Divisors[n] 求整数n的所有正约数如何用mathematica判断一个整数是否为质数PrimeQ[n] 判断整数n是否为质数,若是,则运算结果为True,否则结果为False如何用mathematica求第n个质数Prime[n]求第n个质数如何用mathematica求阶乘Factorial[n]或n!求n的阶乘如何用mathematica配方Mathematica没有提供专门的配方命令,但是我们可以非常轻松地自定义一个函数进行配方。

如何用mathematica进行多项式运算Collect[expr,x] 将expr表示成x的多项式Collect[expr,x,func] 将expr表示成x的多项式之后,再根据func处理各项系数Collect[expr,{x,y}] 将expr表示成x的多项式,再把多项式的每一项系数表示成y的多项式FactorTerms[expr] 提出expr中的数值因子FactorTerms[expr,x] 提出expr中所有不包含x的因子FactorTerms[expr,{x,y,...}] 提出expr中所有不包含x,y,...的因子PolynomialGCD[p1,p2,...] 求多项式p1,p2,...的最大公因式PolynomialLCM[p1,p2,...] 求多项式p1,p2,...的最小公倍式PolynomialQuotient[p 1,p2,x] 变量为x,求p 1/p2的商PolynomialRemainder[p 1,p 2,x] 变量为x,求p1 /p2的余式PowerExpand[expr] 将(xy) n分解成x n y n的形式Denominator[f] 提取分式f的分母Numerator[f] 提取分式f的分子ExpandDenominator[f] 展开分式f的分母ExpandNumerator[f] 展开分式f的分子Expand[f] 把分式f的分子展开,分母不变且被看成单项。

ExpandAll[f] 把分式f的分母和分子全部展开ExpandAll[f, x] 只展开分式f中与x匹配的项Together[f] 把分式f的各项通分后再合并成一项Apart[f] 把分式f拆分成多个分式的和的形式Apart[f, x] 对指定的变量x(x以外的变量作为常数),把分式f拆分成多个分式的和的形式Cancel[f] 把分式f的分子和分母约分Factor[f] 把分式f的分母和分子因式分解如何用Mathematica进行因式分解Factor[表达式]如何用Mathematica展开Expand[表达式]如何用Mathematica进行化简Simplify[表达式]Simplify[表达式,假设条件]FullSimplify[表达式]FullSimplify[表达式,假设条件]如何用Mathematica合并同类项Collect[表达式,指定的变量]如何用Mathematica进行数学式的转换TrigExpand[表达式] 将三角函数展开TrigFactor[表达式] 将三角函数组成的表达式因式分解TrigReduce[表达式] 将相乘或乘方的三角函数化成一次方的基本组合ExpToTrig[表达式] 将指数函数化成三角函数或双曲函数TrigToExp[表达式] 将三角函数或双曲函数化成指数函数ComplexExpand[表达式] 将表达式展开,假设所有的变量都是实数ComplexExpand[表达式,{x,y,…}] 将表达式展开,假设x,y,…等变量都是复数如何用Mathematica进行变量替换表达式/.x->a表达式/.{x->a, y->b,…}如何用mathematica进行复数运算a+b*I 表示复数a+bIConjugate[z] 求复数z的共轭复数Exp[z] 复数的指数函数,表示e^zRe[z] 求复数z的实部Im[z] 求复数z的虚部Abs[z] 求复数z的模Arg[z] 求复数z的辐角,与数学中表示集合的方法相同,格式如下:{a, b, c,…} 表示由a, b, c,…组成的集合(注意:必须用大括号)下列命令可以生成特殊的集合:Table[f,{n}] 生成包含n个元素f的集合Table[f[n],{n,nm ax}] n从1到n max,间隔为1,生成集合{f[1], f[2], f[3],…, f[n max]}Table[f[n],{n,n min, nm ax}] n从n min到n max,间隔为1,生成集合{f[n min], f[n min+1], f[n min+2],…, f[n max]}Table[f[n],{n,n min, n max, dn}]n从n min到n max,间隔为dn,生成集合{f[n min], f[n min+dn], f[n min+2*dn],…, f[n max]}Range[n] 生成集合{1, 2, 3 ,…, n}Range[i min, i max] 生成集合{i min,i min+1,i min+2,…,i max}Range[i min, i max, di] 生成集合{i min,i min+di,i min+2*di,…} (最大不超过i max)如何用Mathematica求集合的交集、并集、差集和补集Union[A,B,C,…] 求集合A,B,C,…的并集A~Union~B~Union~C~Union~…求集合A,B,C,…的并集A∪B∪C∪…求集合A,B,C,…的并集Intersection[A,B,C,…] 求集合A,B,C,…的交集A~ Intersection ~B~ Intersection ~C~ Intersection ~…求集合A,B,C,…的交集A∩B∩C∩…求集合A,B,C,…的交集Complement [A,B,C,…] 求差集A~ Complement ~B~ Complement ~C~ Complement ~…求差集Complement [全集I,A] 求集合A关于全集I的补集全集I ~ Complement ~A 求集合A关于全集I的补集如何mathematica用排序Sort[v] 将数组或向量v的元素从小到大排列(升序排列)Reverse[v] 将数组或向量v的元素按照与原来相反的顺序重新排列(续排列)RotateLeft[v] 将数组或向量v中的每一个元素向左移一个位置RotateRight[v] 将数组或向量v中的每一个元素向右移一个位置RotateLeft[v,n] 将数组或向量v中的每一个元素向左移n个位置RotateRight[v,n] 将数组或向量v中的每一个元素向右移n个位置如何在Mathematica中解方程Solve[方程,变元]注:方程的等号必须用:= =如何在Mathematica中解方程组Solve[{方程组},{变元组}]注:方程的等号必须用:= =如何在Mathematica中解不等式先加载:Algebra`InequalitySolve` ,加载方法为:<<Algebra`InequalitySolve`然后执行解不等式的命令InequalitySolve,此命令的使用格式如下:<--mstheme--><--mstheme-->InequalitySolve[不等式,变元]<--mstheme-->如何在Mathematica中解不等式组先加载:Algebra`InequalitySolve` ,加载方法为:<<Algebra`InequalitySolve`然后执行解不等式组的命令InequalitySolve,此命令的使用格式如下:<--mstheme--><--mstheme-->InequalitySolve[{不等式组},{变元组}] (我的研究成果)InequalitySolve[And[不等式组],{变元组}]InequalitySolve[不等式1&&不等式2&&…&&不等式n,{变元组}]<--mstheme-->如何用mathematica表示分段函数lhs:=rhs/;condition 当condition成立时,lhs才会被定义成rhsIf[test,then,else] 如果test为True,则执行then,否则执行else ,如果test为True,则执行then,为False时,则执行else,无法判断test是True或False时则执行If[test,then,else,unknown] unknownWhich[test1,value1,test2,value]如果test1为True,则执行value1,test2为True,则执行value2,依次类推。

相关文档
最新文档