六年级数学上册 一 圆《圆周率的历史》教学精选优质PPT课件 北师大版
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
祖冲之 Al-Kashi
小数点后位数 1 1 1 3 5 7 14
一个穷困潦倒的青年,流浪到巴黎,期望父亲的朋友能帮助自己找到一份谋生的差事。 "数学精通吗"父亲的朋友问他。青年摇摇头。"历史,地理怎样?"青年还是摇摇头。"那法律呢?"青年窘迫地垂下头。父亲的朋友接连发问,青年只能摇头告诉对方------自己连丝毫的优点也找不出来。"那你先把住址写下来吧。"青年写下了自己的住址,转身要走,却被父亲的朋友一把拉住了:"你的名字写的很漂亮嘛,这就是你的优点啊,你不该只满足找一份糊口的工作。"数年后,青年果然写出享誉世界的经典作品。他就是家喻户晓的法国18世纪著名作家大仲马。 世间许多平凡之辈,都要一些小优点,但由于自卑常被忽略了。其实,每个平淡的生命中,都蕴涵着一座丰富金矿,只要肯挖掘,就会挖出令自己都惊讶不已的宝藏……爱因思念而美丽 我曾以为,爱一个人 可以是在心里暗暗的 并不需要对方清楚 我发誓,要把这份美好的感情 珍藏在记忆中,只是记忆 若不是,想到可能永远失去你 永远失去,这份自已如此看重的感情 若不是,又一次在梦中呼喊你的名字 并且从梦中惊醒,或许 这份感情会永远是一个秘密 在默默地想念和为你祝福之中 我从来都是幸福的 等待,我不清楚这样的结果是什么 或许,根本就没有去考虑什么结果 我一直希望 能以一种默默等待的姿势告诉你 我对你的感情是认真的 可以经受时间和距离的考验 那些过往的曾经共同拥有的细节 一一变得无比清晰 仿佛触手可摸,却明明相隔万里 是不是藏得越久 感情就会更加浓呢? 你不在的日子里 思念象野草一般疯狂生长 也许是因为终于不甘这样失去可能的机会 终于不甘刻骨铭心的思念和等待 会随岁月的流逝而染上灰尘 我鼓励自已说,释放自已 我不相信 从物理的距离到心灵的距离只是一瞬间的事情 我不相信 经过岁月沉淀以后的爱依旧不堪一击 我不相信
小组使用最先进的超级计算机,将 圆周率计算到了小数点后12411亿位。
现在计算π的值已经被人们用来测试或检 验超级计算机的各项性能,特别是用来测试运 算速度与计算过程的稳定性。
… … …
时间 前2000 前1200 前500 前250 前263 480 1429
纪录创造者 古埃及 中国 圣经
Archimedes 刘徽
北师大版六年级上册
圆周率的历史ຫໍສະໝຸດ 轮子是古代的重 要发明。由于轮子 的普遍应用,人们 很容易想到这样一 个问题:一个轮子 滚一圈可以滚多远? 那么滚的距离与轮 子的直径之间有什 么关系呢?
最早的解决方案是测量。当许多人多次 测量之后,人们发现了圆的周长总是其直 径的3倍多。在我国,现存有关圆周率的 最早记载是2000多年前的《周髀算经》。
用正方形逼近圆,计算量很大,再向 前推进,必须在方法上有所突破。随着数 学的不断发展,人类开始摆脱求正多边形 周长的繁难计算,求圆周率的方法也日新 月异。近代以来,很多数学家都进行了深 入的研究,并取得了不同程度的成果。
电子计算机的出现带来了计算
方面的革命,π的小数点后面的精
确数字越来越多。2000年,某研究
默默的等待是一场默默的徒劳 若付出必有回报,投入必有结果 那是不是,我还没有投入 是不是付出太少,我默默等待 默默考量自已的信心和爱的程度的做法 是否令我错过适当的机会? 愿你今夜能有一个好梦 如果你在梦中也露出甜美的笑容 那是我托明月清风祝福你 爱上你,毕竟也是淡淡的哀愁
国南北朝时期著名的数学家祖冲
之算出π的值在3.1415926和
3.1415927之间,并且得到了π
的两个分数形式的近似值:约率
为 22,密率为355。
7
113
祖冲之
这一成就在世界上领先了约1000年。祖
冲之取得的这一非凡成果,正是基于刘徽
割圆术的继承与发展。他自己是否还使用
了其他的巧妙办法呢?这已经不得而知。
用测量的方法计算圆周率,圆周率 的精确程度取决于测量的精确度,而有 许多实际困难限制了测量的精度。
在我国,首先是由魏晋时期杰 出的数学家刘徽得出了较精确的 圆周率的值。他采用“割圆术” 一直算到圆内接正92边形, 得到 圆周率的近似值是3.14。刘徽的 方法是用圆内接正多边形从一个 方向逐步逼近圆。
祖冲之的这一研究成果享有世界声誉。巴
黎“发现宫”科学博物馆的墙壁上介绍了
祖冲之求得的圆周率,莫斯科大学礼堂的
走廊上镶嵌有祖冲之的大理石像,月球上
有以祖冲之命名的环形山……
祖冲之
利用“投针试验”求圆周率
历史上,法国数学家布丰最早设计了投针试验, 并于1777年给出了针于平行线相交的概率的计算 公式P=2l/πa,由于它与π有关,于是人们想到 利用投针试验来估计π的值。
刘徽
公元前3世纪,古希腊数学家阿基米 德发现:当正多边形的边数增加时,它 的形状就越来越接近圆。这一发现提供 了计算圆周率的新途径,阿基米德用圆 内接正多边形和圆外切正多边形从两个 方向上同时逐步逼近圆,获得了圆周率 的值介于223和22之间。
77
恐怕大家更熟悉的是祖冲之
所做的贡献吧!1500多年前,我
小数点后位数 1 1 1 3 5 7 14
一个穷困潦倒的青年,流浪到巴黎,期望父亲的朋友能帮助自己找到一份谋生的差事。 "数学精通吗"父亲的朋友问他。青年摇摇头。"历史,地理怎样?"青年还是摇摇头。"那法律呢?"青年窘迫地垂下头。父亲的朋友接连发问,青年只能摇头告诉对方------自己连丝毫的优点也找不出来。"那你先把住址写下来吧。"青年写下了自己的住址,转身要走,却被父亲的朋友一把拉住了:"你的名字写的很漂亮嘛,这就是你的优点啊,你不该只满足找一份糊口的工作。"数年后,青年果然写出享誉世界的经典作品。他就是家喻户晓的法国18世纪著名作家大仲马。 世间许多平凡之辈,都要一些小优点,但由于自卑常被忽略了。其实,每个平淡的生命中,都蕴涵着一座丰富金矿,只要肯挖掘,就会挖出令自己都惊讶不已的宝藏……爱因思念而美丽 我曾以为,爱一个人 可以是在心里暗暗的 并不需要对方清楚 我发誓,要把这份美好的感情 珍藏在记忆中,只是记忆 若不是,想到可能永远失去你 永远失去,这份自已如此看重的感情 若不是,又一次在梦中呼喊你的名字 并且从梦中惊醒,或许 这份感情会永远是一个秘密 在默默地想念和为你祝福之中 我从来都是幸福的 等待,我不清楚这样的结果是什么 或许,根本就没有去考虑什么结果 我一直希望 能以一种默默等待的姿势告诉你 我对你的感情是认真的 可以经受时间和距离的考验 那些过往的曾经共同拥有的细节 一一变得无比清晰 仿佛触手可摸,却明明相隔万里 是不是藏得越久 感情就会更加浓呢? 你不在的日子里 思念象野草一般疯狂生长 也许是因为终于不甘这样失去可能的机会 终于不甘刻骨铭心的思念和等待 会随岁月的流逝而染上灰尘 我鼓励自已说,释放自已 我不相信 从物理的距离到心灵的距离只是一瞬间的事情 我不相信 经过岁月沉淀以后的爱依旧不堪一击 我不相信
小组使用最先进的超级计算机,将 圆周率计算到了小数点后12411亿位。
现在计算π的值已经被人们用来测试或检 验超级计算机的各项性能,特别是用来测试运 算速度与计算过程的稳定性。
… … …
时间 前2000 前1200 前500 前250 前263 480 1429
纪录创造者 古埃及 中国 圣经
Archimedes 刘徽
北师大版六年级上册
圆周率的历史ຫໍສະໝຸດ 轮子是古代的重 要发明。由于轮子 的普遍应用,人们 很容易想到这样一 个问题:一个轮子 滚一圈可以滚多远? 那么滚的距离与轮 子的直径之间有什 么关系呢?
最早的解决方案是测量。当许多人多次 测量之后,人们发现了圆的周长总是其直 径的3倍多。在我国,现存有关圆周率的 最早记载是2000多年前的《周髀算经》。
用正方形逼近圆,计算量很大,再向 前推进,必须在方法上有所突破。随着数 学的不断发展,人类开始摆脱求正多边形 周长的繁难计算,求圆周率的方法也日新 月异。近代以来,很多数学家都进行了深 入的研究,并取得了不同程度的成果。
电子计算机的出现带来了计算
方面的革命,π的小数点后面的精
确数字越来越多。2000年,某研究
默默的等待是一场默默的徒劳 若付出必有回报,投入必有结果 那是不是,我还没有投入 是不是付出太少,我默默等待 默默考量自已的信心和爱的程度的做法 是否令我错过适当的机会? 愿你今夜能有一个好梦 如果你在梦中也露出甜美的笑容 那是我托明月清风祝福你 爱上你,毕竟也是淡淡的哀愁
国南北朝时期著名的数学家祖冲
之算出π的值在3.1415926和
3.1415927之间,并且得到了π
的两个分数形式的近似值:约率
为 22,密率为355。
7
113
祖冲之
这一成就在世界上领先了约1000年。祖
冲之取得的这一非凡成果,正是基于刘徽
割圆术的继承与发展。他自己是否还使用
了其他的巧妙办法呢?这已经不得而知。
用测量的方法计算圆周率,圆周率 的精确程度取决于测量的精确度,而有 许多实际困难限制了测量的精度。
在我国,首先是由魏晋时期杰 出的数学家刘徽得出了较精确的 圆周率的值。他采用“割圆术” 一直算到圆内接正92边形, 得到 圆周率的近似值是3.14。刘徽的 方法是用圆内接正多边形从一个 方向逐步逼近圆。
祖冲之的这一研究成果享有世界声誉。巴
黎“发现宫”科学博物馆的墙壁上介绍了
祖冲之求得的圆周率,莫斯科大学礼堂的
走廊上镶嵌有祖冲之的大理石像,月球上
有以祖冲之命名的环形山……
祖冲之
利用“投针试验”求圆周率
历史上,法国数学家布丰最早设计了投针试验, 并于1777年给出了针于平行线相交的概率的计算 公式P=2l/πa,由于它与π有关,于是人们想到 利用投针试验来估计π的值。
刘徽
公元前3世纪,古希腊数学家阿基米 德发现:当正多边形的边数增加时,它 的形状就越来越接近圆。这一发现提供 了计算圆周率的新途径,阿基米德用圆 内接正多边形和圆外切正多边形从两个 方向上同时逐步逼近圆,获得了圆周率 的值介于223和22之间。
77
恐怕大家更熟悉的是祖冲之
所做的贡献吧!1500多年前,我