人教版八年级数学下册 数据的分析 知识讲解

合集下载

2019人教版数学八年级下册第二十章 数据的分析《数据的分析》知识点归纳与经典例题

2019人教版数学八年级下册第二十章 数据的分析《数据的分析》知识点归纳与经典例题

八年级数学《数据的分析》知识点归纳与经典例题1.理解统计学的几个基本概念总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考查的对象是解决有关总体、个体、样本、样本容量问题的关键。

2.平均数当给出的一组数据,都在某一常数a 上下波动时,一般选用简化平均数公式'x x a =+,其中a 是取接近于这组数据平均数中比较“整”的数;•当所给一组数据中有重复多次出现的数据,常选用加权平均数公式。

3.众数与中位数平均数、众数、中位数都是用来描述数据集中趋势的量。

平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适。

中位数与数据排列有关,个别数据的波动对中位数没影响;当一组数据中不少数据多次重复出现时,可用众数来描述。

4.极差用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值。

5.方差与标准差用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2];方差和标准差都是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。

【能力训练】一、填空题:1.甲、乙、丙三台包装机同时分装质量为400克的茶叶.从它们各自分装的茶叶中分别随机抽取了10盒,测得它们的实际质量的方差如下表所示:2.甲、乙、丙三台机床生产直径为60mm 的螺丝,为了检验产品质量,从三台机床生产的螺丝中各抽查了20个测量其直径,进行数据处理后,发现这三组数据的平均数都是60mm,它们的方差依次为S 2甲=0.162,S 2乙=0.058,S 2丙=0.149.根据以上提供的信息,你认为生产螺丝质量最好的是__ __机床。

人教版八年级下册第二十章数据的分析(教案)

人教版八年级下册第二十章数据的分析(教案)
7.解决实际问题,运用数据分析方法。
二、核心素养目标
1.培养学生运用数学语言表达现实问题的能力,增强数据意识,提高数据分析素养;
2.培养学生掌握数据处理的基本方法,提高解决问题的能力,增强数学应用意识;
3.培养学生通过合作探究,发展逻辑思维和批判性思维,提高数学推理和论证能力;
4.培养学生运用数学知识和方法解决实际问题,增强数学建模和数据分析能力;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平均数、中位数、众数的基本概念。平均数是所有数值加总后除以数值的个数,它能够反映数据的集中趋势;中位数是将一组数据从小到大排列后位于中间的数,它对极端值的影响较小;众数是一组数据中出现次数最多的数,它适用于描述分类数据。这些统计量在描述数据时各有优势,是数据分析的重要工具。
-统计图、表的绘制和应用:通过直观的图形和表格展示数据,提高学生的数据分析能力。
举例:在讲解平均数时,强调其受极端值影响较大的特点;在介绍中位数和众数时,通过实例说明它们在描述数据集中趋势时的优势。
2.教学难点
-平均数、中位数、众数在实际问题中的应用:学生需要学会根据数据特点选择合适的描述指标;
-极差、方差的计算及其在数据分析中的应用:理解这些统计量的含义,并能正确应用于实际问题;
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何通过计算平均数、中位数和众数来分析一组考试成绩,以及这些统计量如何帮助我们更全面地理解数据。
3.重点难点解析:在讲授过程中,我会特别强调平均数受极端值影响较大,而中位数和众数则相对稳健这一特点。对于极差和方差的计算及应用,我会通过具体数据和图表来帮助大家理解它们在描述数据离散程度方面的作用。
人教版八年级下册第二十章数据的分析(教案)

人教版八年级下册数学第二十章 数据的分析 知识点归纳

人教版八年级下册数学第二十章 数据的分析 知识点归纳

第二十章数据的分析知识点:数据的代表:平均数、众数、中位数、极差、方差知识点详解:1.解统计学的几个基本概念总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考查的对象是解决有关总体、个体、样本、样本容量问题的关键。

2.平均数当给出的一组数据,都在某一常数a上下波动时,一般选用简化平均数公式,其中a是取接近于这组数据平均数中比较“整”的数;•当所给一组数据中有重复多次出现的数据,常选用加权平均数公式。

3.众数与中位数平均数、众数、中位数都是用来描述数据集中趋势的量。

平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适。

中位数与数据排列有关,个别数据的波动对中位数没影响;当一组数据中不少数据多次重复出现时,可用众数来描述。

4.极差用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值。

5.方差与标准差用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是s2=[(x1-)2+(x2-)2+…+(x n-)2];方差是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。

一、选择题1.一组数据3,5,7,m,n的平均数是6,则m,n的平均数是()A.6B.7C. 7.5D. 152.小华的数学平时成绩为92分,期中成绩为90分,期末成绩为96分,若按3:3:4的比例计算总评成绩,则小华的数学总评成绩应为()A.92 B.93 C.96 D.92.73.关于一组数据的平均数、中位数、众数,下列说法中正确的是()A.平均数一定是这组数中的某个数B. 中位数一定是这组数中的某个数C.众数一定是这组数中的某个数D.以上说法都不对4.某小组在一次测试中的成绩为:86,92,84,92,85,85,86,94,92,83,则这个小组本次测试成绩的中位数是()A.85 B.86 C.92 D.87.95.某人上山的平均速度为3km/h,沿原路下山的平均速度为5km/h,上山用1h,则此人上下山的平均速度为()A.4 km/hB. 3.75 km/hC. 3.5 km/hD.4.5 km/h6.在校冬季运动会上,有15名选手参加了200米预赛,取前八名进入决赛.已知参赛选手成绩各不相同,某选手要想知道自己是否进入决赛,只需要了解自己的成绩以及全部成绩的()A.平均数B.中位数C.众数D.以上都可以二、填空题:(每小题6分,共42分)7.将9个数据从小到大排列后,第个数是这组数据的中位数8.如果一组数据4,6,x,7的平均数是5,则x = .9.已知一组数据:5,3,6,5,8,6,4,11,则它的众数是,中位数是 . 10.一组数据12,16,11,17,13,x的中位数是14,则x = .11.某射击选手在10次射击时的成绩如下表:则这组数据的平均数是,中位数是,众数是 .12.某小组10个人在一次数学小测试中,有3个人的平均成绩为96,其余7个人的平均成绩为86,则这个小组的本次测试的平均成绩为 .13.为了了解某立交桥段在四月份过往车辆承载情况,连续记录了6天的车流量(单位:千辆/日):3.2,3.4,3,2.8,3.4,7,则这个月该桥过往车辆的总数大约为辆.第二十章数据的分析知识点:选用恰当的数据分析数据知识点详解:一:5个基本统计量(平均数、众数、中位数、极差、方差)的数学内涵:平均数:把一组数据的总和除以这组数据的个数所得的商。

八年级数学下《数据的分析》知识点复习.docx

八年级数学下《数据的分析》知识点复习.docx

松阳中学八年级数学复习数据的分析知识点1.加平均数:若在一数字中,出次,出次,⋯ ,出次,那么叫做、、⋯、的加平均数。

其中,、、⋯ 、分是、、⋯、它的的理解 :反映了某个数据在整个数据中的重要程度。

的表示方法:比、百分比、数(人数、个数、次数等)。

2.中位数:将一数据按照由小到大(或由大到小)的序排列,如果数据的个数是奇数,于中位置的数就是数据的中位数;如果数据的个数是偶数,中两个数据的平均数就是数据的中位数。

3.众数:一数据中出次数最多的数据就是数据的众数。

4.平均数中位数众数的区与系相同点平均数、中位数和众数三个量的相同之主要表在:都是来描述数据集中的量;都可用来反映数据的一般水平;都可用来作一数据的代表。

不同点它之的区,主要表在以下方面。

1)、定不同平均数:一数据的和除以数据个数所得到的商叫数据的平均数。

中位数:将一数据按大小序排列,在最中位置的一个数叫做数据的中位数。

众数:在一数据中出次数最多的数叫做数据的众数。

2)、求法不同平均数:用所有数据相加的和除以数据的个数,需要算才得求出。

中位数:将数据按照从小到大或从大到小的序排列,如果数据个数是奇数,于最中位置的数就是数据的中位数;如果数据的个数是偶数,中两个数据的平均数是数据的中位数。

它的求出不需或只需的算。

众数:一数据中出次数最多的那个数,不必算就可求出。

3)、个数不同在一数据中,平均数和中位数都具有惟一性,但众数有不具有惟一性。

在一数据中,可能不止一个众数,也可能没有众数。

4)、代表不同平均数:反映了一数据的平均大小,常用来一代表数据的体“平均水平”。

中位数:像一条分界,将数据分成前半部分和后半部分,因此用来代表一数据的“中等水平”。

众数:反映了出次数最多的数据,用来代表一数据的“多数水平”。

三个量反映有所不同,但都可表示数据的集中,都可作数据一般水平的代表。

5)、特点不同平均数:与每一个数据都有关,其中任何数据的都会相引起平均数的。

八年级数学下册第二十章数据的分析重点知识归纳(带答案)

八年级数学下册第二十章数据的分析重点知识归纳(带答案)

八年级数学下册第二十章数据的分析重点知识归纳单选题1、数据10,3,a,7,5的平均数是6,则a等于().A.3B.4C.5D.6答案:C分析:利用平均数的计算公式进行计算即可.=6,解得:a=5;解:由题意得:10+3+a+7+55故选C.小提示:本题考查平均数.熟练掌握平均数的计算方法:数据总和÷数据个数是解题的关键.2、某篮球队10名队员的年龄结构如表,已知该队队员年龄的中位数为21.5,则众数与方差分别为()答案:D分析:先根据数据的总个数及中位数得出x=3、y=2,再利用众数和方差的定义求解可得.∵共有10个数据,∴x+y=5,又该队队员年龄的中位数为21.5,即2.15=21+22,2∴x=3、y=2,=22,则这组数据的众数为21,平均数为19+20+21×3+22×2+24×2+2610×[(19﹣22)2+(20﹣22)2+3×(21﹣22)2+2×(22﹣22)2+2×(24﹣22)2+(26﹣22)2]=4,所以方差为110故选D.小提示:本题主要考查中位数、众数、方差,熟练掌握方差的计算公式、根据中位数的定义得出x、y的值是解题的关键.3、一组数据40,37,x,64的平均数是53,则x的值是()A.67B.69C.71D.72答案:C分析:根据求平均数公式即得出关于x的等式,解出x即可.根据题意可知40+37+x+644=53,解得:x=71.故选C.小提示:本题考查已知一组数据的平均数,求未知数据的值.掌握求平均数的公式是解题关键.4、甲、乙两名运动员的10次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为x甲,x乙,射击成绩的方差依次记为s甲2,s乙2,则下列关系中完全正确的是()A.x甲=x乙,s甲2>s乙2B.x甲=x乙,s甲2<s乙2C.x甲>x乙,s甲2>s乙2D.x甲<x乙,s甲2<s乙2答案:A分析:分别计算平均数和方差后比较即可得到答案.解:(1)x甲=110(8×4+9×2+10×4)=9;x 乙=110(8×3+9×4+10×3)=9;s甲2=110[4×(8﹣9)2+2×(9﹣9)2+4×(10﹣9)2]=0.8;s乙2=110[3×(8﹣9)2+4×(9﹣9)2+3×(10﹣9)2]=0.7;∴x甲=x乙,s甲2>s乙2,故选:A.小提示:本题考查了方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5、五名同学捐款数分别是5,3,6,5,10(单位:元),捐10元的同学后来又追加了10元.追加后的5个数据与之前的5个数据相比,集中趋势相同的是()A.只有平均数B.只有中位数C.只有众数D.中位数和众数答案:D分析:分别计算前后数据的平均数、中位数、众数,比较即可得出答案.(5+3+6+5+10)=5.8;解:追加前的平均数为:15从小到大排列为3,5,5,6,10,则中位数为5;5出现次数最多,众数为5;追加后的平均数为:1(5+3+6+5+20)=7.8;5从小到大排列为3,5,5,6,20,则中位数为5;5出现次数最多,众数为5;综上,中位数和众数都没有改变,故选:D.小提示:本题为统计题,考查了平均数、众数与中位数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是一组数据中出现次数最多的数据,注意众数可以不只一个.6、小红在班上做节水意识调查,收集了班上7位同学家里上个月的用水量(单位:吨)如下:5,5,6,7,8,9,10.她发现,若去掉其中两个数据后,这组数据的中位数、众数保持不变,则去掉的两个数可能是()A.5,10B.5,9C.6,8D.7,8答案:C分析:先求出已知数组的中位数和众数,再根据中位数和众数的定义逐项判断即可.数列5,5,6,7,8,9,10的众数是5,中位数是7,去掉两个数后中位数和众数保持不变,据此逐项判断:A项,去掉5之后,数列的众数不再是5,故A项错误;B项,去掉5之后,数列的众数不再是5,故B项错误;C项,去掉6和8之后,新数列的中位数和众数依旧保持不变,故C项正确;D项,去掉7和8之后,新数列的中位数为6,发生变化,故D项错误,故选:C.小提示:本题考查了中位数和众数的知识,掌握中位数和众数的定义是解答本题的关键.7、某市在一次空气污染指数抽查中,收集到10天的数据如下:61,75,70,56,81,91,92,91,75,81,该组数据的中位数是()A.78B.81C.91D.77.3答案:A分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.解:将这组数据重新排列为:56、61、70、75、75、81、81、91、91、92,=78,则其中位数为75+812故选:A.小提示:本题考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.8、在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.y>z>x B.x>z>y C.y>x>z D.z>y>x答案:A分析:根据题意,可以判断x、y、z的大小关系,从而可以解答本题.由题意可得,去掉一个最低分,平均分为y最大,去掉一个最高分,平均分为x最小,其次就是同时去掉一个最高分和一个最低分,平均分为z即y>z>x,故选:A.小提示:此题主要考查了平均数的大小判断,分别确定各种情况的平均值是解答此题的关键.9、在音乐比赛中,常采用“打分类制”,经常采用这样的办法来得到一名选手的最后成绩:将所有评委的打分组成一组数据,去掉一个最高分和一个最低分,得到一组新的数据,再计算平均分.假设评委不少于10人,则比较两组数据,一定不会发生变化的是()A.平均数B.中位数C.众数D.方差答案:B分析:去掉一个最高分和最低分后不会对数据的中间的数产生影响,即中位数.统计每位选手得分时,会去掉一个最高分和一个最低分,这样做不会对数据中间的数产生影响,即中位数故选B.小提示:本题考查了统计量的选择,解题的关键在于理解这些统计量的意义.10、某班级共有41人,在一次体质测试中,有1人未参加集体测试,老师对集体测试的成绩按40人进行了统计,得到测试成绩分数的平均数是88,中位数是85.缺席集体测试的同学后面进行了补测,成绩为88分,关于该班级41人的体质测试成绩,下列说法正确的是()A.平均数不变,中位数变大B.平均数不变,中位数无法确定C.平均数变大,中位数变大D.平均数不变,中位数变小答案:B分析:平均数是指在一组数据中所有数据之和再除以数据的个数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,依此计算即可求解.解:∵缺席集体测试的同学的成绩和其他40人的平均数相同,都是88分,∴该班41人的测试成绩的平均分为88分不变,中位数是从小到大第21个人的成绩,原来是第20个和第21个人成绩的平均数,中位数可能不变,可能变大,故中位数无法确定.故选:B.小提示:本题考查中位数,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.填空题11、如图为某校男子足球队的年龄分布条形图,这些队员年龄的平均数为____,中位数为____.答案:15.5 15分析:根据条形分布图的数据求得平均数,将数据从小到大排列,按照中位数的定义即可找到中位数.解:这些队员年龄的平均数=13×2+14×6+15×8+16×3+17×2+18×1=15.52+6+8+3++1这些队员年龄的中位数:共20人,第10和11两位数的平均数是中位数,∴中位数为15小提示:本题考查了条形统计图,平均数,中位数,读懂统计图是解题的关键.12、东门某商场试销一种新款衬衫,一周内销售情况如下表所示:________.(填“平均数”或“中位数”或“众数”)答案:众数分析:根据众数的概念进行求解即可;解:对商场经理来说,知道哪一种型号的销售量最多,是最有意义的;∴对商场经理来说最有意义的是众数;所以答案是:众数.小提示:本题主要考查众数的概念,掌握众数的概念是解题的关键.13、如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF的中点,连接DG ,则DG 的长为__________.答案:√192分析:连接DE ,根据题意可得ΔDEG 是直角三角形,然后根据勾股定理即可求解DG 的长.解:连接DE ,∵D 、E 分别是AB 、BC 的中点,∴DE ∥AC ,DE=12AC .∵ΔABC 是等边三角形,且BC=4,∴∠DEB=60°,DE=2.∵EF ⊥AC ,∠C=60°,EC=2,∴∠FEC=30°,EF=√3.∴∠DEG=180°-60°-30°=90°.∵G 是EF 的中点,∴EG=√32.在RtΔDEG 中,DG=√DE 2+EG 2=√22+(√32)2=√192. 故答案为√192. 小提示:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.14、如图是根据甲、乙两人5次射击的成绩(环数)制作的折线统计图.你认为谁的成绩较为稳?________(填“甲”或“乙”)答案:甲分析:先分别求出甲乙的平均数,再求出甲乙的方差,由方差越小成绩越稳定做出判断即可.=(7+6+9+6+7)÷5=7(环),解:x̅甲x̅=(5+9+6+7+8)÷5=7(环),乙=[(7﹣7)2+(6﹣7)2+(9﹣7)2+(6﹣7)2+(7﹣7)2]÷5=1.2,s2甲s2=[(5﹣7)2+(9﹣7)2+(6﹣7)2+(7﹣7)2+(8﹣7)2]÷5=2,乙∵1.2<2,∴甲的成绩较为稳定,所以答案是:甲.小提示:本题考查平均数、方差、折线统计图,会求一组数据的平均数、方差,会根据方差判断一组数据的稳定性是解答的关键.15、在一组数据1, 0, 4, 5, 8中插入一个数据x,使该组数据中位数为3,则插入数据x的值为________.答案:2分析:根据中位数的定义得到数据-1,0,4,5,8中插入一个数据x,共有6个数,最中间的数只能为x和4,然后根据计算它们的中位数为3求出x.解:∵数据-1,0,4,5,8中插入一个数据x,∴数据共有6个数,而4为中间的一个数,∵该组数据的中位数是3,∴x+4=3,2解得x=2.所以答案是:2.小提示:本题考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.解答题16、绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为x(单位:万元).销售部规定:当x<16时,为“不称职”,当16≤x<20时为“基本称职”,当20≤x<25时为“称职”,当x≥25时为“优秀”.根据以上信息,解答下列问题:(1)补全折线统计图和扇形统计图;(2)求所有“称职”和“优秀”的销售员销售额的中位数和众数;(3)为了调动销售员的积极性,销售部决定制定一个月销售额奖励标准,凡月销售额达到或超过这个标准的销售员将获得奖励.如果要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为多少万元(结果去整数)?并简述其理由.答案:(1)补全统计图如图见解析;(2)“称职”的销售员月销售额的中位数为:22万,众数:21万;“优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;(3)月销售额奖励标准应定为22万元.分析:(1)根据称职的人数及其所占百分比求得总人数,据此求得不称职、基本称职和优秀的百分比,再求出优秀的总人数,从而得出销售 26 万元的人数,据此即可补全图形.(2)根据中位数和众数的定义求解可得;(3)根据中位数的意义求得称职和优秀的中位数即可得出符合要求的数据.(1)依题可得:“不称职”人数为:2+2=4(人),“基本称职”人数为:2+3+3+2=10(人),“称职”人数为:4+5+4+3+4=20(人),∴总人数为:20÷50%=40(人),∴不称职”百分比:a=4÷40=10%,“基本称职”百分比:b=10÷40=25%,“优秀”百分比:d=1-10%-25%-50%=15%,∴“优秀”人数为:40×15%=6(人),∴得26分的人数为:6-2-1-1=2(人),补全统计图如图所示:(2)由折线统计图可知:“称职”20万4人,21万5人,22万4人,23万3人,24万4人,“优秀”25万2人,26万2人,27万1人,28万1人;“称职”的销售员月销售额的中位数为:22万,众数:21万;“优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;(3)由(2)知月销售额奖励标准应定为22万.∵“称职”和“优秀”的销售员月销售额的中位数为:22万,∴要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为22万元.小提示:考查频数分布直方图、扇形统计图、中位数、众数等知识,解题的关键是灵活运用所学知识解决问题.17、甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如图所示的尚不完整的统计图表(其中图①中“10分”所在扇形圆心角为90°).甲校成绩统计表人数11 0 8(1)在图1中,求“7分”所在扇形的圆心角度数:并将2的统计图补充完整;(2)经计算,乙校的平均分是8.3分,中位数是8分,请求出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好;(3)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?答案:(1)144°,图见解析(2)甲的平均数为8.3分,中位数为7分;乙的平均数为8.3分,中位数为8分;乙校成绩较好;(3)甲校分析:(1)求出“7分”占的百分比,乘以360即可得到结果,根据“7分”的人数除以占的百分比求出总人数,确定出“8分”的人数,补全条形统计图即可;(2)分别求出甲乙两校的平均分、中位数,比较即可得到结果;(3)利用两校满分人数,比较即可得到结果.(1)解:根据题意得:“7分”所在扇形的圆心角等于360°×(1−25%−20%−15%)=144°;8÷40%=20(人),则得“8分”的人数为20×15%=3(人),补全条形统计图,如图所示:(2)×(7×11+8×0+9×1+10×8)=8.3(分),中位数为7分;解:甲校:平均分为120乙校:平均分为:1×(7×8+8×3+9×4+10×5)=8.3(分),中位数为8分,20平均数相同,乙校中位数较大,故乙校成绩较好;(3)解:因为甲校有8人满分,而乙校有5人满分,应该选择甲校.小提示:本题考查了条形统计图,扇形统计图,以及中位数,平均数,弄清题意是解本题的关键.18、2021年,全世界自然灾害形势严峻,洪水、地震等不仅给人们的财产带来巨大损失,更是威胁着人们的生命安全.保护生态环境即是保护民生,功在当代,利在千秋;做好综合环境治理,协调人与自然的关系,以求人和自然和谐相处迫在眉急.近日,某校组织了一场关于防自然灾害的知识讲座,并在讲座后进行了满分为100分的“防自然灾害知识测评”,为了了解学生的测评情况,该校在七、八年级中分别抽取了50名学生的分数进行整理分析,已知分数x均为整数,且分为A,B,C,D,E五个等级,分别是A:90≤x≤100;B:80≤x<90;C:70≤x<80;D:60≤x<70;E:0≤x<60.并给出了部分信息:【一】八年级D等级的学生人数占八年级抽取人数的20% ;七年级C等级中最低的10个分数分别为:70,70,72,73,73,73,74,74,75,75;【二】两个年级学生防自然灾害知识测评分数统计图:【三】两个年级学生防自然灾害知识测评分数样本数据的平均数、中位数、众数如下:= =(2)根据以上数据,你认为在此次测评中,哪一个年级的学生对防自然灾害知识掌握较好?请说明理由(说明一条即可).(3)若分数不低于90分表示该生对防自然灾害知识测评等级为优秀,且该校七年级有1000人,八年级有1200人,请估计该校七、八年级所有学生中,对防自然灾害知识测评等级为优秀的学生共有多少人?答案:(1)74,32,补全条形统计图见解析(2)八年级的学生对防自然灾害知识掌握较好,理由见解析(3)估计该校七、八年级所有学生中,对防自然灾害知识测评等级为优秀的学生共有400人分析:(1)根据题意和统计图中的数据、表格中的数据可以分别得到a、m的值,根据八年级D等级的学生人数占七年级抽取人数的20%求出八年级D等级的学生人数,再求出E等级的学生人数,即可补全条形统计图;(2)根据表格中的数据,由中位数和众数的大小判断即可;(3)分别求出该校七、八年级不低于90分的人数,再相加即可求解.(1)解:根据题意,由七年级学生防自然灾害知识测评分统计图可知,(1−16%−16%−4%)÷2=32%,∴m=32,七年级学生中,测评成绩A级有50×16%=8人,B级有50×16%=8人,C级有50×32%=16人,D级有50×32%=16人,E级有50×4%=2人,测评成绩按从小到大排列,其中第25、26位为C级中74、74两个成绩,可知七年级测评成绩中位数为a=74+74=74,2所以答案是:74,32;八年级D等级的学生人数为:50×20%=10人,E等级的学生人数为:50﹣10﹣12﹣16﹣10=2人,故补全条形统计图如图:(2)解:八年级的学生对防自然灾害知识掌握较好.理由如下:虽然七、八年级测评成绩的平均数相同,但是八年级测评成绩的中位数和众数较高,因此八年级的测评成绩较好;=400(人)(3)解:1000×16%+1200×1050答:估计该校七、八年级所有学生中,对防自然灾害知识测评等级为优秀的学生共有400人.小提示:本题考查用样本估计总体、统计图、中位数、众数等知识,解答本题的关键是明确题意,灵活运用所学知识解答问题.。

人教版初中数学八年级下册《数据的分析》说课稿

人教版初中数学八年级下册《数据的分析》说课稿

人教版初中数学八年级下册《数据的分析》说课稿一. 教材分析人教版初中数学八年级下册《数据的分析》这一章节,是在学生已经掌握了统计学的基本知识,如平均数、中位数、众数等概念的基础上进行的一章。

这一章节的主要内容有:数据的收集、整理、描述和分析。

其中,数据的收集和整理是数据分析的基础,描述是数据分析的手段,分析是数据分析的目的。

本章节的教材内容丰富,既有理论的介绍,又有大量的实践操作,能够让学生在理论学习与实践操作中掌握数据分析的方法和技巧。

二. 学情分析八年级的学生已经具备了一定的数学基础,对统计学的基本概念有一定的了解。

但是,他们对数据分析的方法和技巧的掌握还不够熟练,需要通过大量的实践操作来提高。

此外,学生对数据的收集和整理的能力也参差不齐,需要教师进行针对性的指导。

三. 说教学目标1.知识与技能:使学生掌握数据的收集、整理、描述和分析的方法和技巧。

2.过程与方法:培养学生的数据收集、整理和分析的能力,提高他们的实践操作能力。

3.情感态度与价值观:培养学生对数据的敏感性,使他们能够从数据中发现问题,解决问题。

四. 说教学重难点1.教学重点:数据的收集、整理、描述和分析的方法和技巧。

2.教学难点:数据分析的方法和技巧的运用。

五. 说教学方法与手段1.教学方法:采用讲授法、实践法、讨论法等教学方法,让学生在理论学习与实践操作中掌握数据分析的方法和技巧。

2.教学手段:利用多媒体教学,如PPT、网络资源等,丰富教学内容,提高学生的学习兴趣。

六. 说教学过程1.导入:通过一个实际的问题,引发学生对数据的关注,激发他们的学习兴趣。

2.理论讲解:讲解数据的收集、整理、描述和分析的方法和技巧。

3.实践操作:让学生进行实践操作,运用所学的知识和技巧进行数据的收集、整理、描述和分析。

4.讨论交流:让学生分享自己的操作过程和心得,进行讨论交流,互相学习和提高。

5.总结提升:对所学的内容进行总结,强化学生的记忆,提升他们的数据分析能力。

八年级数学下册第二十章数据的分析知识汇总笔记(带答案)

八年级数学下册第二十章数据的分析知识汇总笔记(带答案)

八年级数学下册第二十章数据的分析知识汇总笔记单选题1、生活垃圾分类回收是实现垃圾减量化和资源化的重要途径和手段.为了解2019年某市第二季度日均可回收物回收量情况,随机抽取该市2019年第二季度的m天数据,整理后绘制成统计表进行分析.表中3≤x<4组的频率a满足0.20≤a≤0.30.下面有四个推断:①表中m的值为20;②表中b的值可以为7;③这m天的日均可回收物回收量的中位数在4≤x<5组;④这m天的日均可回收物回收量的平均数不低于3.所有合理推断的序号是()A.①②B.①③C.②③④D.①③④答案:D分析:①根据数据总和=频数÷频率,列式计算即可得出m的值;②根据3≤x<4的频率a满足0.20≤a≤0.30,可求出该范围的频数,进一步得出b的值的范围,从而求解;③根据中位数的定义即可求解;④根据加权平均数的计算公式即可求解.解:①日均可回收物回收量(千吨)为1≤x<2时,频数为1,频率为0.05,所以总数m=1÷0.05=20,推断合理;②20×0.2=4,20×0.3=6,1+2+6+3=12,故表中b的值可以为7,是不合理的推断;③1+2+6=9,故这m天的日均可回收物回收量的中位数在4≤x<5组,是合理推断;④(1+5)÷2=3,0.05+0.10=0.15,这m天的日均可回收物回收量的平均数不低于3,是合理推断.故选:D小提示:本题考查频数(率)分布表,从表中获取数量及数量之间的关系是解题问题的关键.2、如图,在ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连接EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有()A.1个B.2个C.3个D.4个答案:D分析:如图延长E F交BC的延长线于G,取AB的中点H连接FH.证明△DFE≌△FCG得EF=FG,BE⊥BG,四边形BCFH是菱形即可解决问题.解:如图延长E F交BC的延长线于点G,取AB的中点H,连接FH.∵CD=2AD,DF=FC,∴CF=CB,∴∠CFB=∠CBF,∵CD∥AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故①正确,∵DE∥CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△FCG,∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故②正确,∵S△DFE=S△CFG,∴S=S△EBG=2S△BEF,故③正确,四边形DEBC∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四边形BCFH是平行四边形,∵CF=BC,∴四边形BCFH是菱形,∴∠BFC=∠BFH,∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正确,故选:D.小提示:本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.3、自去年9月《北京市打赢蓝天保卫战三年行动计划》发布以来,北京市空气质量呈现“优增劣减”特征,“蓝天”含金量进一步提高,下图是今年5月17日至31日的空气质量指数趋势图.(说明:空气质量指数为0﹣50、51﹣100、101﹣150分别表示空气质量为优、良、轻度污染)有如下结论:①在此次统计中,空气质量为优良的天数占45;②在此次统计中,空气质量为优的天数多于轻度污染的天数;③20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差.所有正确结论的序号是( )A .①B .①②C .②③D .①②③ 答案:D分析:根据折线统计图的数据,逐一进行分析即可.解:①在此次统计中,空气质量为优良的天数占1215=45,此项正确;②在此次统计中,空气质量为优的天数5天,多于轻度污染的天数3天,此项正确;③20,21,22三日的空气质量指数波动范围小于26,27,28三日的空气质量指数波动范围,故20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差,此项正确. 故选:D .小提示:本题是折线统计图,要通过坐标轴以及图例等读懂本图,根据图中所示的数量解决问题. 4、10名学生的平均成绩是x ,如果另外5名学生每人得84分,那么整个组的平均成绩是( ) A .x+842B .10x+42015C .10x+8415D .10+42015答案:B分析:先求出15人的总成绩,再用15个人的总成绩除以15即可得整个组的平均成绩. 15个人的总成绩10x+5×84=10x+420,所以整个组的平均成绩为:再除以15可求得平均值为10x+420,15故选B.小提示:本题考查了加权平均数的知识,解题的关键是求的15名学生的总成绩.5、在风凰山教育共同体数学学科节中,为展现数学的魅力,M老师组织了一个数学沉浸式互动游戏:随机请A,B,C,D,E五位同学依次围成一个圆圈,每个人心里先想好一个实数,并把这个数悄悄的告诉相邻的两个人,然后每个人把与自己相邻的两个人告诉自己的数的平均数报出来.若A,B,C,D,E五位同学报出来的数恰好分别是1,2,3,4,5,则D同学心里想的那个数是()A.−3B.−4C.5D.9答案:D分析:设报D的人心里想的数是x,则再分别表示报A,C,E,B的人心里想的数,最后通过平均数列出方程,解方程即可.解:设D同学心里想的那个数是x,报A的人心里想的数是10-x,报C的人心里想的数是x-6,报E的人心里想的数是14-x,报B的人心里想的数是x-12,所以有x-12+x=2×3,解得:x=9.故选:D.小提示:本题考查的知识点有平均数的相关计算及方程思想的运用,把题中的等量关系全部展示出来,再结合题意进行整合,问题即可解决.6、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为()A .12B .1C .32D .√3 答案:B分析:根据题意求出AB 的值,由D 是AB 中点求出CD 的值,再由题意可得出EF 是△ACD 的中位线即可求出. ∵∠ACB =90°,∠A =30°, ∴BC =12AB . ∵BC =2,∴AB =2BC =2×2=4, ∵D 是AB 的中点, ∴CD =12AB=12 ×4=2.∵E ,F 分别为AC ,AD 的中点, ∴EF 是△ACD 的中位线. ∴EF =12CD =12 ×2=1.故答案选B.小提示:本题考查了直角三角形的性质,三角形中位线定理,解题的关键是熟练的掌握三角形中位线定理. 7、在一次中学生趣味数学竞赛中,参加比赛的10名学生的成绩如下表所示:.92 答案:B分析:先求出比赛的10个学生的成绩总和,再除以10得出平均分. 解:80+85×4+90×3+95×2=880,880÷10=88;故选:B.小提示:本题主要考查加权平均数,解题的关键是明确加权平均数的计算方法.8、为落实“双减”政策,学校随机调查了部分学生一周平均每天的睡眠时间,统计结果如表,则这些被调查学生睡眠时间的众数和中位数分别是()答案:A分析:根据中位数、众数的意义求解即可.解:抽查学生的人数为:7+9+11+3=30(人),这30名学生的睡眠时间出现次数最多的是9小时,共出现11次,因此众数是9小时,将这30名学生的睡眠时间从小到大排列,处在中间位置的两个数的平均数为8+8=8,因此中位数是8小时.2故选:A.小提示:本题考查中位数、众数,理解中位数、众数的意义,掌握中位数、众数的计算方法是解决问题的关键.9、为了增强学生预防新冠肺炎的安全意识,某校开展疫情防控知识竞赛.来自不同年级的30名参赛同学的得分情况如下表所示,这些成绩的中位数和众数分别是().96分,100分答案:B分析:根据中位数的定义和众数的定义分别求解即可.解:由统计表得共有30个数据,第15、16个数据分别是92,96,∴中位数是92+96=94;2由统计表得数据96出现的次数最多,∴众数为96.小提示:本题考查了求一组数据的中位数和众数.中位数是将一组数据由小到大(由大到小)排序后,位于中间位置的数据,当有偶数个数据时,取中间两数的平均数;众数是一组数据出现次数最多的数.10、一组数据:3,2,1,5,2的中位数和众数分别是()A.1和2B.1和5C.2和2D.2和1答案:C分析:根据众数是出现次数最多的数据可求得众数,将所给数据从小到大排列,中位数是最中间位置的数据即可求得中位数.解:该组数据中2出现次数最多,所以众数为2,将所给数据从小到大排列为1,2,2,3,5,最中间位置的数为2,所以中位数为2,故选:C.小提示:本题考查中位数、众数,熟练掌握中位数和众数的求法是解答的关键.填空题11、某校九年级有560名学生参加了市教育局举行的读书活动,现随机调查了70名学生读书的数量,根据所得数据绘制了如图的条形统计图,请估计该校九年级学生在此次读书活动中共读书________本.答案:2040试题解析:由题意得出:70名同学一共借书:2×5+30×3+20×4+5×15=255(本),×255=2040(本).故该校九年级学生在此次读书活动中共读书:56070故答案为2040.12、某校招聘教师,规定综合成绩由笔试成绩和面试成绩构成,其中笔试占60%,面试占40%,有一名应聘者的综合成绩为84分,笔试成绩是80分,则面试成绩为______分.分析:根据综合成绩笔试占60%,面试占40%,即综合成绩等于笔试成绩乘以60%,加上面试成绩乘以40%,即可求解;解:设面试成绩为x分,根据题意知,该名老师的综合成绩为80×60%+40%⋅x=84(分)解得x=90所以答案是:90.小提示:本题考查一元一次方程实际问题和加权平均数及其计算,是中考的常考知识点,熟练掌握其计算方法是解题的关键.[(x1−20)2+(x2−20)2+⋅⋅⋅+(x12−20)2],已知9是这组数据中的一个数据,13、如果一组数据的方差S=112现把9去掉,所得新的一组数据的平均数是______.答案:21分析:由方差可知,这组数据共有12个,平均数为20,进而可知去掉一个数据后共有11个数据,数据总和为12×20−9=231,然后根据平均数的计算公式求解即可.解:由方差可知,这组数据共有12个,平均数为20,∴去掉9后,所得新的一组有11个数据的数据总和为12×20−9=231,∴新的一组数据的平均数为231=21,11所以答案是:21.小提示:本题考查了方差,平均数.解题的关键在于根据方差确定原数据共有12个,平均数为20.14、7名同学1分钟踢毽子比赛成绩如下(单位:个)89,87,36,95,89,80,69,这组数的中位数是______.答案:87分析:先把这组数据从小到大的顺序排列起来,在这组数据中最居中的那个数就是中位数(或最中间两个数据的平均数),解答即可.解:7个数据按从小到大排列:36 、69、80、87、89、89、95,∵第4个数是87,∴这组数的中位数是87.所以答案是:87.小提示:本题考查了学生对中位数的意义的掌握与理解,考查了学生分析观察解决问题的能力.15、睡眠是评价人类健康水平的一项重要指标,充足的睡眠是青少年健康成长的必要条件之一,小强同学通过问卷调查的方式了解到本班三位同学某天的睡眠时间分别为7.8小时,8.6小时,8.8小时,则这三位同学该天的平均睡眠时间是_______.答案:8.4小时分析:求出已知三个数据的平均数即可.根据题意得:(7.8+8.6+8.8)÷3=8.4小时,则这三位同学该天的平均睡眠时间是8.4小时,故答案为8.4小时小提示:此题考查了算术平均数,熟练掌握算术平均数的定义是解本题的关键.解答题16、杨梅销售公司在向果农收购相同品种“东魁”杨梅时,按照杨梅单果质量(单位:g)的整体分布情况,确定整批杨梅的等级,并按照不同的等级确定不同的收购价.果农老张和老王各送来一批杨梅,收购员小李在他们送来的杨梅中分别随机抽检了100颗,秤出质量(单位:g),并把收集到的数据整理成下表:(2)从杨梅单果质量的平均数看,你认为老张家杨梅的收购价与老王家杨梅的收购价应该相同吗?请说明理由.(3)结果,收购员小李给老张家杨梅定的收购价比老王家的杨梅收购价低一个等级,你能用统计知识解释小李这样做的合理性吗?答案:(1)86.4(2)应该相同,理由见解析(3)见解析,理由见解析分析:(1)用360°乘以老王家特优杨梅的频率即可;(2)分别求出两家的平均数,即可比较出来;(3)根据所求数据进行分析即可.(1)解:360°×24=86.4°,100所以答案是:86.4;(2)=25(克)解:老张家杨梅的等级的平均数为x1=20×17.5+32×22.5+26×27.5+22×32.5100老王家:x2=14×17.5+26×22.5+36×27.5+24×32.5=26(克)100从平均数看,根据样本估计总体,老张家与老王家的杨梅单颗质量平均数落在同一级别中,所以两家收购价应该相同;(3)解:从中位数角度来看,根据样本估计总体,老张家的杨梅单颗质量中位数落在20≤x<25组,属于一等品;而老王家的杨梅单颗质量中位数落在25≤x<30组,属于优等品,因此收购员小李给老张家杨梅定的收购价比老王家的杨梅收购价低一个等级也是合理的.小提示:本题考查扇形统计图,平均数及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.17、小吴家准备购买一台电视机,小吴将收集到的某地区A、B、C三种品牌电视机销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)2014~2019年三种品牌电视机销售总量最多的是品牌,月平均销售量最稳定的是品牌.(2)2019年其他品牌的电视机年销售总量是多少万台?(3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由.答案:(1)B,C;(2)2019年其他品牌的电视机年销售总量是115.2万台;(3)建议购买C品牌(建议购买B品牌),理由见解析分析:(1)从条形统计图、折线统计图可以得出答案;(2)求出总销售量,“其它”的所占的百分比;(3)从市场占有率、平均销售量等方面提出建议.解:(1)由条形统计图可得,2014~2019年三种品牌电视机销售总量最多的是B品牌,是1746万台;由条形统计图可得,2014~2019年三种品牌电视机月平均销售量最稳定的是C品牌,比较稳定,极差最小;所以答案是:B,C;(2)∵20×12÷25%=960(万台),1﹣25%﹣29%﹣34%=12%,∴960×12%=115.2(万台);答:2019年其他品牌的电视机年销售总量是115.2万台;(3)建议购买C品牌,因为C品牌2019年的市场占有率最高,且5年的月销售量最稳定;建议购买B品牌,因为B品牌的销售总量最多,受到广大顾客的青睐.小提示:本题考查了条形统计图,折线统计图,扇形统计图,认真审题,搞清三个统计图分别反映不同意义是解题关键.18、为进一步宣传防震减灾科普知识,增强学生应急避险和自救互救能力,某校组织七、八年级各200名学生进行“防震减灾知识测试”(满分100分).现分别在七、八年级中各随机抽取10名学生的测试成绩x(单位:分)进行统计、整理如下:七年级:86,90,79,84,74,93,76,81,90,87八年级:85,76,90,81,84,92,81,84,83,84七八年级测试成绩频数统计表(1)a=,b=,c=.(2)规定分数不低于85分记为“优秀”,估计这两个年级测试成绩达到“优秀”的学生人数.(3)你认为哪个年级的学生掌握防震减灾科普知识的总体水平较好?请说明理由.答案:(1)2,85,84(2)七、八年级测试成绩达到优秀的学生人数分别为100人和60人(3)八年级的学生掌握防震减灾科普知识的总体水平较好,见解析分析:(1)从题目中给出的七,八年级中各随机抽取10名学生的测试成绩中可直接求出a,c的值,根据中位数定义可求出b;(2)分别求出七、八年级优秀的比例,再乘以总人数即可;(3)两组数据的平均数相同,通过方差的大小直接比较即可.(1)解:∵八年级的10名学生中有8名学生成绩低于90分,∴a=10﹣7﹣1=2,由数据可知:84出现次数最多,根据众数的定义可知:c=84,把七年级10名学生的测试成绩排好顺序为:74,76,79,81,84,86,87,90,90,93,根据中位数的定义可知,该组数据的中位数为b=84+862=85,所以答案是:2,85,84;(2)七年级10名学生的成绩中不低于85分的所占比例为510=12,八年级10名学生的成绩中不低于85分的所占比例为310,∴七年级测试成绩达到“优秀“的学生人数为:200×12=100(人),八年级测试成绩达到“优秀“的学生人数为:200×310=60(人),∴七、八年级测试成绩达到“优秀“的学生人数分别为100人和60人;(3)∵七、八年级测试成绩的平均数相等,八年级测试成绩的方差小于七年级测试成绩的方差,则说明八年级的测试成绩更稳定,∴八年级的学生掌握防震减灾科普知识的总体水平较好.小提示:本题考查了频数分布表,平均数、方差的意义,中位数和众数的定义,样本估计总体等知识,掌握各知识点定义、意义及计算方法是解题的关键.。

人教版八年级数学下册第二十章数据的分析 小结与复习课件(共53张ppt)

人教版八年级数学下册第二十章数据的分析 小结与复习课件(共53张ppt)
第二十章 数据的分析
小结与复习
知识点总览
一、数据的集中趋势
定义 一组数据的平均值称为这组数据的平均数

算术平 均数
一么x般_=_地_n1(_x,_1+_如_x2_+果__…有_+__nxn_个)_数__x_1_,__x叫2,做…这,n个xn,数那的 平均数.
均 数
加权平 均数
一般地,若n个数x1,x2,…,xn的权分别
算术平均数:
如果有n个数据,x1,x2,…,xn,
那么
x
1 n
(x1+x2+…+xn)叫做这n个数的算
术平均数,用“ 拔”.
x
”表示,读作“x
加权平均数:
若n个数 x1 ,x2 ,… ,xn 的权分别是
1 ,2 ,…, n,

x11 x22 xnn 1 2 n
叫做这n个数的加权平均数.
小组生产的零件的次品数的( D )
A、平均数是2
B、众数是3
C、中位数是1.5 D、方差是1.25
4、某次体育活动中,统计甲、乙两班学生每分钟跳绳 的次数(成绩)情况如下表,则下面的三个命题中,
(1)甲班学生的平均成绩高于乙班学生 的平均成绩; (2)甲班学生成绩的波动比乙班学生成绩的波动大; (3)甲班学生成绩优秀的人数不会多于乙班学生成绩
方差越大, 数据的波 动越_大__, 反之也成 立
叫做这组数据的方差,记作s2
三、用样本估计总体
1.统计的基本思想:用样本的特征(平均数和方 差)估计总体的特征.
2.统计的决策依据:利用数据做决策时,要全面、 多角度地去分析已有数据,从数据的变化中发现它 们的规律和变化趋势,减少人为因素的影响.
知识点逐个突破

人教版八年级下册第二十章数据的分析第26讲_中位数和众数 讲义

人教版八年级下册第二十章数据的分析第26讲_中位数和众数 讲义

初中八年级数学下册第26讲:中位数和众数一:知识点讲解知识点一:中位数➢定义:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数➢意义:中位数是刻画一组数据“中等水平”的一个代表,反映了一组数据的集中趋势,一组数据的中位数是唯一的➢求法:1.把数据由小到大(或由大到小)排列2.确定这组数据的个数3.当数据是奇数个时,取最中间的一个数作为中位数;当数据是偶数个时,取最中间两个数的平均数作为中位数例1:求数据2、3、14、16、7、8、10、11、13的中位数例2:10名工人某天生产同一种零件的个数是15、17、14、10、15、19、17、16、14、12。

求这一天10名工人生产零件的中位数。

知识点二:众数➢定义:一组数据中出现次数最多的数据称为这组数据的众数➢意义:众数是刻画一组数据“大多数水平”的重要代表,在我们日常生活中,经常用众数来解决一些实际问题➢求法:众数是出现次数最多的数据,而不是出现次数,若一组数据中有两个或两个以上数据出现的次数并列最多,则这些数据都是众数,故众数可能不止一个。

例3:一组数据2、3、x、5、7的平均数是4,则这组数据的众数是。

知识点三:平均数、中位数和众数的综合➢平均数✧优点:平均数能充分利用各数据提供的信息,在实际生活中常用样本的平均数估计总体的平均数。

✧缺点:在计算平均数时,所有的数据都参与运算,所以它易受极端值的影响。

➢中位数✧优点:中位数不受个别偏大或偏小数据的影响,当一组数据中的个别数据变动较大时,一般用中位数来描述数据的集中趋势。

✧缺点:不能充分地利用各数据的信息。

➢众数✧优点:众数考察的是各数据所出现的频数,其大小只与部分数据相关,当一组数据中某些数据多次重复出现时,众数往往更能反映问题。

✧缺点:当各数据重复出现的次数大致相等时,它往往就没有什么特别意义。

人教版八年级下册第二十章数据的分析解题方法知识点总结

人教版八年级下册第二十章数据的分析解题方法知识点总结

2019年最新研究数据分析的解题策略一、平均数:1、加权平均数:若n 个数n x x x x ...,,,321的权分别是n a a a a ,...,,,321,则有na x a x a x a x x n n ++++=...222211叫这n 个数的加权平均数。

2、当权为1时,就是我们小学学的算术平均数:若n 个数n x x x x ...,,,321的权1...321=====n a a a a ,则有nx x x x x n ++++=...221叫这n 个数的算术平均数。

注:实际上小学学的就是加权平均数,只不过权都是1.3、权的表现形式:百分数、频数、频率、个数、人数、比例等都代表权。

4、一个小组的组中值=2最小值最大值+(两端点数的平均数);小组中的极差=最大值-最小值。

5、若数据n x x x x 、、、、...321的平均数是x ,则新数据b ax b ax b ax b ax ++++4321...、、、、的平均数是b x a +。

6、权可反映数据的相对“重要程度”,要突出某个数据,只需赋予较大的权,权的差异对结果产生直接影响。

7、比赛打分情况:求平均数,需要去掉最高分和最低分,再求平均数,才是平均分。

8、常用样本平均数估计总体平均数。

主要是:利用已知的数据求出平均数,再根据题要求,按月、总数等类似于权一样的数据,就可以得出整体平均数,即可继续依题意解题。

9、平均数和加权平均数:①都反映一组数据的集中趋势的“特征数”②因权不同,加权平均数更能反映数据真实性。

10、平均数描述的是一组数据平均水平,受极端值影响很大,数据中任何一个数据变动都会影响平均数的变动。

二、中位数:1、求法:①将n 个数由小到大(由大到小)排序,相同数排在一起,不可算作一个数据。

②当n 为奇数时,第21+n个为中位数,当n 为偶数时,第2n 个和第⎪⎭⎫ ⎝⎛+12n 个数的平均数为中位数。

2、中位数描述数据集中趋势,代表数据值大小的“中点”,不易受极端值影响,但不可利用所有数据信息。

人教版八年级数学下册第二十章数据的分析PPT教学课件

人教版八年级数学下册第二十章数据的分析PPT教学课件
听、说、读、写的成绩按照2:1:3:4的比确定.
重要程度 不一样!
应试者 听 说 读 写 甲 85 78 85 73 乙 73 80 82 83
解:
x甲 =
85

22+78 11+85 2+1+3+4
33+73 ,
44
=79.5
x乙 =
73

2+80 1+82 2+1+3+4
3+83
解:这个跳水队运动员的平均年龄为:
x=
13 8 14 16 15 24 16 2
8 16 24 2
≈__1_4___(岁).
答:这个跳水队运动员的平均年龄约为_1_4_岁__.
练习
下表是校女子排球队队员的年龄分布,
年龄∕岁
13
14
15
16
频数
1
4
演讲能力
(50%) (40%)
演讲效果
(10%)
A
85
95
95
B
95
85
95
解:选手A的最后得分是
85×50%+95×40%+95×10% 50%+40%+10%
选手B的最后得分是
95×50%+85×40%+95×10% 50%+40%+10%
=42.5+38+9.5
=47.5+34+9.5
=90.
=91.
由上可知选手B获得第一名,选手A获得第二名.
选手 演讲内容
演讲能力
演讲效果
A
85
95
95
B
95
85
95

人教版八年级数学下册数据的分析 复习与小结优质课件.ppt

人教版八年级数学下册数据的分析  复习与小结优质课件.ppt

80)2
(85
80)2
(90
80)2
5 70
乙的方差:
(70
80)2
(90
80)2
(85
80)2
(75
80)2
(80
80)2
5 50
(2)因为 S甲 2 S乙 2 ,所以乙的成绩较稳
定,应该派乙去。
2.如图是某中学男田径队队员年龄结构条 形统计图,根据图中信息解答下列问题
(1)田径队共有多少人? (2)该队队员年龄的众数和中位数分别是多少? (3)该队队员的平均年龄是多少?
数.
一、基础知识
2、众数:(反映数据集中趋势的特征数 )在一组数据中,出现次数 最多 的数 据叫做这组数据的众数(一组数据的众 数一定在这组数据中,可能有多个).
一、基础知识
3、中位数:(反映数据集中趋势的特征数)将 一组数据按从 小 到 大(或从大到小) 的 顺序排列后,如果数据的个数是 奇 数 个时 ,则处在最 中间 的那个数据叫做这组数据 的中位数;如果数据的个数是 偶数 个时, 则处在最中间的两个数据的 平均数 叫做这 组数据的中位数
3.在我市开展的“好书伴我成长”读书活动 中,某中学为了了解八年级300名学生读书 情况,随机调查了八年级50名学生读书的册 数.统计数据如下表所示:
册数 0 1 2 3 4
人数 3 13 16 17 1
(1) 求这50个样本数据的平均救,众数和中 位数; (2) 根据样本数据,估计该校八年级300名学 生在本次活动中读书多于2册的人数.
s 2.样本甲的方差是
2 甲
0.005
,样本乙的
数据为2.20,2.30,2.20,2.10,2.20,
则样本甲和样本乙波动大小为( C )

人教版八年级数学下册第20章数据的分析(教案)

人教版八年级数学下册第20章数据的分析(教案)
2.培养学生通过实际数据计算、分析、解决问题的能力,提高数学应用意识;
3.培养学生合作交流、探索发现的能力,提升逻辑思维和批判性思维;
4.引导学生运用数据分析方法对社会现象进行合理判断,培养数据素养和科学态度;
5.培养学生掌握频数分布表、箱线图等数据分析工具,何在课堂上更好地关注到每个学生的学习情况。因为在教学过程中,我发现有些学生可能因为害羞或者不自信而不愿意提问,这就需要我主动去发现问题,及时给予他们帮助。或许可以尝试在课后设立一个“疑问箱”,让学生们可以匿名提出自己的疑问,我会定期解答。
-标准差:强调标准差是方差的平方根,用于度量数据离散程度。
(3)频数分布表与箱线图的应用;
-频数分布表:掌握如何制作频数分布表,理解其反映数据分布的作用;
-箱线图:理解箱线图表示数据分布、异常值等信息的意义。
2.教学难点
(1)数据的集中趋势在实际问题中的应用;
-难点解释:学生在应用平均数、中位数、众数解决实际问题时,可能难以确定使用哪个指标更能反映问题的本质。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《数据的分析》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要了解一组数据集中趋势和离散程度的情况?”比如,我们想知道班级同学的身高分布情况。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索数据分析的奥秘。
1.教学重点
(1)数据的集中趋势:平均数、中位数、众数的概念及其计算方法;
-平均数:强调平均数受极端值影响较大,要理解其敏感性的特点;
-中位数:理解中位数作为数据中间位置的表示,不受极端值影响;
-众数:掌握众数在数据集中出现次数最多的特点。

人教版八年级数学下册第20章 数据的分析(1)

人教版八年级数学下册第20章  数据的分析(1)

第20章 数据的分析(1)一.平均数、加权平均数及用样本去估计总体平均数【知识要点】1.掌握平均数的计算方法,理解数据的权和加权平均数的概念2.理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均 水平的特征数。

“地大物博”与“资源贫乏”的中国.在20世纪70年代及以前,对中国国情的分析认为:幅员辽阔,地大物博。

80年代后期,人们开始认识到,虽然幅员辽阔,但资源贫乏.为什么会有不同的认识呢?请看下表中的数据,对森林资源可见一斑.国家 森林面积 覆盖率 中国 238万平方公里 16.55% 澳大利亚 106万平方公里 24% 日本40万平方公里68%从图表中不难发现,虽然中国的森林面积不算少,但覆盖率是澳大利亚的32,是日本的41,因此,中国的森林资源相对贫乏.由此可见,平均数是反映数据集中趋势的重要数据.【概念理解】加权平均数:在求n 个数的算术平均数时,如果x 1出现f 1次,x 2出现f 2次,...,x k 出现f k 次(这里f 1+f 2..+f k =n ),那么这n 个数的算术平均数-x =nf x f x f x kk +++...2211,也叫做x 1,x 2,...x k 这k 个数的加权平均数。

其中f 1,f 2,...,f k 分别叫做x 1,x 2,...x k 的权.用样本平均数估计总体平均数:我们知道,当所要考察的对象很多,或考察本身带有破坏性时,统计中常常通过用样本估计总体的方来获得对总体的认识。

例如,实际生活中经常用样本的平均数来估计总体的平均数. 某灯泡厂为测量一批灯泡的使用寿命,从中抽查了100只灯泡,它们的使用寿命如下表所示:使用寿命x (时) 600≤x <10001000≤x <14001400≤x <18001800≤x <22002200≤x <2600灯泡数(个)1019253412这批灯泡的平均寿命是多少?【例题讲解】例1. 某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如下表所示:候选人 面试成绩 笔试成绩 甲 86 90 乙9283(1)如果公司认为面试和笔试成绩同等重要,从他们的成绩看,谁将被录取?(2)如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权,计算甲、乙两人各自的平均成绩,看看谁将被录取?例2. 陈光中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次是95分、90分、85分,小桐这学期的体育成绩是多少?【当堂检测】1. 在一个样本中,2出现了x 1次,3出现了x 2次,4出现了x 3次,5出现了x 4次,则这个样本的平均数为 .2. 某人打靶,有a 次打中x 环,b 次打中y 环,则这个人平均每次中靶 环.3. 在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。

八年级下册数学数据的分析知识点总结

八年级下册数学数据的分析知识点总结

八年级下册数学数据的分析知识点总结八年级下册数学数据的分析知识点总结1、平均数(1)一般地,对于n个数x1x2...xn,我们把(x1+x2+...+xn)叫做这n个数的算数平均数,简称平均数记为。

(2)在实际问题中,一组数据里的各个数据的“重要程度〞未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数。

2、中位数与众数(1)中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

(2)一组数据中出现次数最多的那个数据叫做这组数据的众数。

(3)平均数、中位数和众数都是描述数据集中趋势的统计量。

(4)计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。

(5)中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息。

(6)各个数据重复次数大致相等时,众数往往没有特别意义。

3、从统计图分析数据的集中趋势。

4、数据的离散程度(1)实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。

一组数据中数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量。

(2)数学上,数据的离散程度还可以用方差或标准差刻画。

(3)方差是各个数据与平均数差的平方的平均数。

(4)其中是x1,x2.....xn平均数,s2是方差,而标准差就是方差的算术平方根。

(5)一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。

学好数学的八种思维转化思维转化思维,既是一种方法,也是一种思维。

转化思维,是指在解决问题的过程中遇到障碍时,通过改变问题的方向,从不同的角度,把问题由一种形式转换成另一种形式,寻求最正确方法,使问题变得更简单、清晰。

逻辑思维逻辑是一切思考的基础。

逻辑思维是人们在认识过程中借助于概念、判断、推理等思维形式对事物进行观察、比较、分析、综合、抽象、概括、判断、推理的思维过程。

新人教版八年级数学下册——数据的分析

新人教版八年级数学下册——数据的分析

七年级数学下册——数据的分析知识点一:加权平均数一、平均数和加权平均数1、权的概念(1). 一组数据88,72,86,90,75的平均数是 ;(2)一组数据12,12,12,12, 4,4,4,4,4,13,的平均数是 ;(3)一组数据有5个20,4个30,3个40,8个50,则这20个数的平均数为 ;归纳总结:其中50有 个,其中个数8就叫做数据50的权。

如数据20的权是 ,数据的权表示数据的相对“重要程度”;平均数用符号“x ”读作:“x 拔”总结:n 个数的加权平均数:一般说来,如果在n 个数中, 出现 ,出现 次,…, 出现 次, 则 kkk f f f f x f x f x x ..................212211+++++= 其中、 … …、 叫做权。

2、加权平均数的求法:例1:某市三个郊县的人数及人均耕地面积如下表:郊县 人数(万) 人均耕地面积(公顷) A 15 0.15 B 7 0.21 C100.18求这个市郊县的人均耕地面积是多少?(精确到0.01公顷) (分析:人均耕地面积=总耕地面积总人口)解:∵总耕地面积=总人口=∴人均耕地面积=1x1f 2x 2f k x k f1f 2f k f例题2:一家公司打算招聘一名英文翻译,对甲乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试者听说读写甲85 83 78 75乙73 80 85 82(1)如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照3∶3∶2∶2的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?(分析:将所占比例看作它们各自的权,即听占有3份,说占份,读占份,写占份,合计份。

)解:x甲 = = ,x= = ,乙∴应该录取(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶2∶3∶3的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?例题3:一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各个成绩均按百分制,然后再按演讲内容占50%、演讲能力占40%、演讲效果占10%的比例,计算选手的综合成绩(百分制),进入决赛的前两名选手的单项成绩如下表所示:选手演讲内容演讲能力演讲效果A 85 95 95B 95 85 95请决出两人的名次。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据的分析【学习目标】1. 了解加权平均数的意义和求法,会求实际问题中一组数据的平均数,体会用样本平均数估计总体平均数的思想.2. 了解中位数和众数的意义,掌握它们的求法.进一步理解平均数、中位数和众数所代表的不同的数据特征.3. 了解极差和方差的意义和求法,体会它们刻画数据波动的不同特征.体会用样本方差估计总体方差的思想,掌握分析数据的思想和方法.4. 从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度. 【要点梳理】【高清课堂 数据的分析 知识要点】 要点一、算术平均数和加权平均数一般地,对于n 个数123n x x x x 、、、…,我们把()1231n x x x x n⋅⋅⋅++++叫做这n 个数的算术平均数,简称平均数,记作x .计算公式为()1231n x x x x x n=⋅⋅⋅++++. 要点诠释:平均数表示一组数据的“平均水平”,反映了一组数据的集中趋势.(1)当一组数据较大时,并且这些数据都在某一常数a 附近上、下波动时,一般选用简化计算公式x x a '=+.其中x '为新数据的平均数,a 为取定的接近这组数据的平均数的较“整”的数. (2)平均数的大小与一组数据里的每个数据均有关系,其中任一数据的变动都会相应引起平均数的变动.所以平均数容易受到个别特殊值的影响. 若n 个数12n x x x 、、…的权分别是12n w w w 、、…、,则112212......n nnx w x w x w w w w ++++++叫做这n 个数的加权平均数.要点诠释:(1)相同数据i x 的个数i w 叫做权,i w 越大,表示i x 的个数越多,“权”就越重. 数据的权能够反映数据的相对“重要程度”.(2)加权平均数实际上是算术平均数的另一种表现形式,是平均数的简便运算.要点二、中位数和众数1.中位数的概念:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数称为这组数据的中位数.要点诠释:(1)一组数据的中位数是唯一的;一组数据的中位数不一定出现在这组数据中.(2)由一组数据的中位数可以知道中位数以上和以下数据各占一半.2.众数的概念:一组数据中出现次数最多的数据称为这组数据的众数. 要点诠释:(1)一组数据的众数一定出现在这组数据中;一组数据的众数可能不止一个;如果所有数据出现的次数都一样,那么这组数据就没有众数. (2)众数是一组数据中出现次数最多的数据而不是数据出现的次数.要点三、平均数、中位数与众数的联系与区别联系:平均数、众数、中位数都是用来描述数据集中趋势的量,其中以平均数最为重要. 区别:平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个别数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适.中位数与数据排列位置有关,个别数据的波动对中位数没影响;众数主要研究各数据出现的频数,当一组数据中不少数据多次重复出现时,可用众数来描述. 要点四、极差、方差和标准差用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值.要点诠释:极差是最简单的一种度量数据波动情况的量,它受极端值的影响较大.一组数据极差越小,这组数据就越稳定.方差是反映一组数据的整体波动大小的特征的量.方差2s 的计算公式是:()[]222212)(...)(1x x x x x x nS n -++-+-=要点诠释:(1)方差反映的是一组数据偏离平均值的情况.方差越大,数据的波动越大;方差越小,数据的波动越小.(2)一组数据的每一个数都加上(或减去)同一个常数,所得的一组新数据的方差不变.(3)一组数据的每一个数据都变为原来的k 倍,则所得的一组新数据的方差变为原来的2k 倍.方差的算术平方根叫做这组数据的标准差,用符号s 表示,即:;标准差的数量单位与原数据一致.要点五、极差、方差和标准差的联系与区别联系:极差与方差、标准差都是表示一组数据离散程度的特征数.区别:极差表示一组数据波动范围的大小,它受极端数据的影响较大;方差反映了一组数据与其平均值的离散程度的大小.方差越大,稳定性也越小;反之,则稳定性越好.所以一般情况下只求一组数据的波动范围时用极差,在考虑到这组数据的稳定性时用方差. 要点六、用样本估计总体在考察总体的平均水平或方差时,往往都是通过抽取样本,用样本的平均水平或方差近似估计得到总体的平均水平或方差.要点诠释:(1)如果总体数量太多,或者从总体中抽取个体的试验带有破坏性,都应该抽取样本.取样必须具有尽可能大的代表性.(2)用样本估计总体时,样本容量越大,样本对总体的估计也越精确.样本容量的确定既要考虑问题本身的需要,又要考虑实现的可能性所付出的代价.【典型例题】类型一、利用概念求平均数、中位数、众数1、(2015春•东莞期末)一家鞋店在一段时间内销售了某种女鞋20双,各种尺码鞋的销售量如表:鞋号 23.5 24 24.5 25 25.5 26 人数 3 4 4 7 1 1 (1)求出这些尺码鞋的平均数,中位数,众数.(2)如果你是老板,去鞋厂进货时哪个尺码的鞋子可以多进一些.为什么? 【思路点拨】(1)直接利用平均数公式求出即可,再利用中位数以及众数的定义得出答案; (2)利用众数的意义得出答案. 【答案与解析】 解:(1)这组数据的平均数是:=(23.5×3+24×4+24.5×4+25×7+25.5+26)=24.55,中位数是:24.5,众数是25;(2)去鞋厂进货时25尺码型号的鞋子可以多进一些,原因是这组数据中的众数是25,故销售的女鞋中25尺码型号的鞋卖的最好.【总结升华】此题主要考查了众数、中位数的定义以及平均数求法,正确掌握中位数的定义是解题关键.举一反三:【高清课堂 数据的分析 例8】【变式】若数据3.2,3.4,3.2,x ,3.9,3.7的中位数是3.5,则其众数是________,平均数是________.【答案】3.2;3.5; 解:由题意3.43.5, 3.62x x +==,所以众数是3.2,平均数是3.5.类型二、利用三数——平均数、众数、中位数解决问题2、某校欲招聘一名数学教师,学校对甲、乙、丙三位候选人进行了三项能力测试,各项测试成绩满分均为100分,根据结果择优录用.三位候选人的各项测试成绩如下表所示:测试项目 测试成绩甲 乙 丙 教学能力 85 73 73 科研能力 70 71 65 组织能力647284(2)根据实际需要,学校将教学、科研和组织三项能力测试得分按5:3:2的比例确定每人的成绩,谁将被录用,说明理由. 【思路点拨】(1)运用求平均数公式()1231n x x x x n⋅⋅⋅++++即可求出三人的平均成绩,比较得出结果;(2)将三人的成绩按比例求出测试成绩,比较得出结果. 【答案与解析】解:(1)甲的平均成绩为:(85+70+64)÷3=73,乙的平均成绩为:(73+71+72)÷3=72, 丙的平均成绩为:(73+65+84)÷3=74, ∴ 候选人丙将被录用.(2)甲的测试成绩为:(85×5+70×3+64×2)÷(5+3+2)=76.3,乙的测试成绩为:(73×5+71×3+72×2)÷(5+3+2)=72.2, 丙的测试成绩为:(73×5+65×3+84×2)÷(5+3+2)=72.8,∴ 候选人甲将被录用.【总结升华】5、3、2即各个数据的“权”,反映了各个数据在这组数据中的重要程度,按加权平均数来录用. 举一反三:【高清课堂 数据的分析 例10】【变式】小王在八年级第一学期的数学成绩分别为:测验一得89分,测验二得78分,测验三得85分,期中考试得90分,期末考试得87分,如果按照平时、期中、期末的10%、30%、60%量分,那么小王该学期的总评成绩应该为多少?【答案】解:小王平时测试的平均成绩897885843x ++==(分). 所以8410%9030%8760%87.610%30%60%⨯+⨯+⨯=++(分). 答:小王该学期的总评成绩应该为87.6分. 【高清课堂 数据的分析 例11】3、下表是七年级(2)班30名学生期中考试数学成绩表(已破损).已知该班学生期中考试数学成绩平均分是76分. (1)求该班80分和90分的人数分别是多少?(2)设此班30名学生成绩的众数为a ,中位数为b ,求a b +的值. 【答案与解析】解:(1)设该班得80分的有x 人,得90分的有y 人.根据题意和平均数的定义,得257330,763050260570780901003,x y x y +++++=⎧⎨⨯=⨯+⨯+⨯+++⨯⎩ 整理得13,89109,x y x y +=⎧⎨+=⎩ 解得8,5.x y =⎧⎨=⎩即该班得80分的有8人,得90分的有5人.(2)因为80分出现8次且出现次数最多.所以a =80,第15、16两个数均为80分,所以b =80,则a b +=80+80=160.【总结升华】本题为统计题,考查平均数、众数与中位数的意义.解题的关键是准确理解题意,建立等量关系. 举一反三:【变式】某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行了调查统计,并绘制了统计图表如图所示的统计图.零花钱数额(元)5101520学生个数(个)a15 20 5 请根据图表中的信息,回答以下问题.(1)求a的值;(2)求这50名学生每人一周内的零花钱额的众数和平均数.【答案】解:(1) a=50-15-20-5=10.(2)众数是15.平均数为150(5×10+10×15+15×20+20×5)=12.类型三、极差、方差与标准差4、某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).甲、乙两人射箭成绩统计表第1次第2次第3次第4次第5次甲成绩9 4 7 4 6乙成绩7 5 7 a7(1)a=_____;=_______;(2)请完成图中表示乙成绩变化情况的折线;(3)①观察图,可看出______的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.②请你从平均数和方差的角度分析,谁将被选中.【思路点拨】(1)根据他们的总成绩相同,得出a =30-7-7-5-7=4,进而得出=30÷5=6;(2)根据(1)中所求得出a 的值进而得出折线图即可;(3)①观察图,即可得出乙的成绩比较稳定;②因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中. 【答案与解析】解:(1)由题意得:甲的总成绩是:9+4+7+4+6=30,则a =30-7-7-5-7=4, =30÷5=6,故答案为:4,6; (2)如图所示:;(3)①观察图,可看出乙的成绩比较稳定, 故答案为:乙;2222221=7676676=1.65s ⎡⎤-++-+-+-⎣⎦乙()(5-6)()(4)() 由于2s乙<2s 甲,所以上述判断正确.②因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中. 【总结升华】此题主要考查了方差的定义以及折线图和平均数的意义,根据已知得出a 的值进而利用方差的意义比较稳定性即可. 举一反三:【高清课堂 数据的分析 例12】【变式】某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次甲 95 82 88 81 93 79 84 78 乙8375808090859295(1)请你计算这两组数据的平均数、中位数;(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由. 【答案】解:1(9582888193798478)858x =+++++++=甲(分), 1(8375808090859295)858x =+++++++=乙(分).甲、乙两组数据的中位数分别为83分、84分. (2)由(1)知85x x ==甲乙分,所以22221[(9585)(8285)(7885)]35.58s =-+-++-=甲, 22221[(8385)(7585)(9585)]418s =-+-++-=乙.①从平均数看,甲、乙均为85分,平均水平相同; ②从中位数看,乙的中位数大于甲,乙的成绩好于甲;③从方差来看,因为x x =甲乙,22s s <乙甲,所以甲的成绩较稳定;④从数据特点看,获得85分以上(含85分)的次数,甲有3次,而乙有4次,故乙的成绩好些;⑤从数据的变化趋势看,乙后几次的成绩均高于甲,且呈上升趋势,因此乙更具潜力. 综上分析可知,甲的成绩虽然比乙稳定,但从中位数、获得好成绩的次数及发展势头等方面分析,乙具有明显优势,所以应派乙参赛更有望取得成绩.类型四、统计思想5、(2016•广陵区二模)中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽测了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:请你根据图中的信息,解答下列问题:(1)写出扇形图中a= %,并补全条形图;(2)在这次抽测中,测试成绩的众数和中位数分别是 个、 个.(3)该区体育中考选报引体向上的男生共有1800人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名? 【思路点拨】(1)用1减去其他天数所占的百分比即可得到a 的值,用360°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;(2)根据众数与中位数的定义求解即可;(3)先求出样本中得满分的学生所占的百分比,再乘以1800即可.【答案与解析】解:(1)扇形统计图中a=1﹣30%﹣15%﹣10%﹣20%=25%,设引体向上6个的学生有x人,由题意得=,解得x=50.条形统计图补充如下:(2)由条形图可知,引体向上5个的学生有60人,人数最多,所以众数是5;共200名同学,排序后第100名与第101名同学的成绩都是5个,故中位数为(5+5)÷2=5故答案为:5,5.(3)×1800=810(名).答:估计该区体育中考选报引体向上的男生能获得满分的同学有810名.【总结升华】本题为统计题,考查众数与中位数的意义.一组数据中出现次数最多的数据叫做众数;将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数.也考查了条形统计图、扇形统计图与用样本估计总体.举一反三:【变式】4月23日是“世界读书日”,向阳中学对在校学生课外阅读情况进行了随机问卷调查,共发放100份调查问卷,并全部收回.根据调查问卷,将课外阅读情况整理后,制成表格如下:月阅读册数(本) 1 2 3 4 5被调查的学生数(人)20 50 15 10 5请你根据以上信息,解答下列问题:(1)被调查的学生月平均阅读册数为本;(2)被调查的学生月阅读册数的中位数是;(3)在平均数、中位数这两个统计量中,更能反映被调查学生月阅读的一般水平;(4)若向阳中学共有学生1600人,求四月份该校学生共阅读课外书籍多少本?【答案】解:(1)平均阅读册数为:=2.3(本);(2)∵共有100名学生,∴第50和51为同学的阅读量的平均数为中位数:=2;(3)在平均数、中位数这两个统计量中,中位数更能反映被调查学生月阅读的一般水平;(4)2.3×1600=3680(本).。

相关文档
最新文档