南京玄武区外国语学校数学圆 几何综合易错题(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南京玄武区外国语学校数学圆 几何综合易错题(Word 版 含答案)

一、初三数学 圆易错题压轴题(难)

1.如图,以A (0,3)为圆心的圆与x 轴相切于坐标原点O ,与y 轴相交于点B ,弦BD

的延长线交x 轴的负半轴于点E ,且∠BEO =60°,AD 的延长线交x 轴于点C .

(1)分别求点E 、C 的坐标;

(2)求经过A 、C 两点,且以过E 而平行于y 轴的直线为对称轴的抛物线的函数解析式; (3)设抛物线的对称轴与AC 的交点为M ,试判断以M 点为圆心,ME 为半径的圆与⊙A 的位置关系,并说明理由.

【答案】(1)点C 的坐标为(-3,0)(2)2343333

y x x =++3)⊙M 与⊙A 外切 【解析】

试题分析:(1)已知了A 点的坐标,即可得出圆的半径和直径,可在直角三角形BOE 中,根据∠BEO 和OB 的长求出OE 的长进而可求出E 点的坐标,同理可在直角三角形OAC 中求出C 点的坐标;

(2)已知了对称轴的解析式,可据此求出C 点关于对称轴对称的点的坐标,然后根据此点坐标以及C ,A 的坐标用待定系数法即可求出抛物线的解析式;

(3)两圆应该外切,由于直线DE ∥OB ,因此∠MED=∠ABD ,由于AB=AD ,那么

∠ADB=∠ABD ,将相等的角进行置换后可得出∠MED=∠MDE ,即ME=MD ,因此两圆的圆心距AM=ME+AD ,即两圆的半径和,因此两圆外切.

试题解析:(1)在Rt△EOB 中,3

cot60232EO OB =⋅︒==, ∴点E 的坐标为(-2,0).

在Rt△COA 中,tan tan60333OC OA CAO OA =⋅∠=⋅︒==, ∴点C 的坐标为(-3,0).

(2)∵点C 关于对称轴2x =-对称的点的坐标为F (-1,0), 点C 与点F (-1,0)都在抛物线上. 设()()13y a x x =++,用(03A ,代入得

()()30103a =++,

3

3

a =. ∴()()3

13y x x =

++,即 2343333

y x x =

++. (3)⊙M 与⊙A 外切,证明如下: ∵ME ∥y 轴,

∴MED B ∠=∠.

∵B BDA MDE ∠=∠=∠, ∴MED MDE ∠=∠. ∴ME MD =.

∵MA MD AD ME AD =+=+, ∴⊙M 与⊙A 外切.

2.如图,矩形ABCD 中,BC =8,点F 是AB 边上一点(不与点B 重合)△BCF 的外接圆交对角线BD 于点E ,连结CF 交BD 于点G . (1)求证:∠ECG =∠BDC .

(2)当AB =6时,在点F 的整个运动过程中. ①若BF =22时,求CE 的长.

②当△CEG 为等腰三角形时,求所有满足条件的BE 的长.

(3)过点E 作△BCF 外接圆的切线交AD 于点P .若PE ∥CF 且CF =6PE ,记△DEP 的面积为S 1,△CDE 的面积为S 2,请直接写出

1

2

S S 的值.

【答案】(1)详见解析;(2182

当BE 为10,395或445时,△CEG 为等腰三

角形;(3)7

24

. 【解析】 【分析】

(1)根据平行线的性质得出∠ABD =∠BDC ,根据圆周角定理得出∠ABD =∠ECG ,即可证得结论;

(2)根据勾股定理求得BD =10,

①连接EF ,根据圆周角定理得出∠CEF =∠BCD =90°,∠EFC =∠CBD .即可得出sin ∠EFC

=sin ∠CBD ,得出

35

CE CD CF BD ==,根据勾股定理得到CF =CE ; ②分三种情况讨论求得:

当EG =CG 时,根据等腰三角形的性质和圆周角定理即可得到∠GEC =∠GCE =∠ABD =∠BDC ,从而证得E 、D 重合,即可得到BE =BD =10;

当GE =CE 时,过点C 作CH ⊥BD 于点H ,即可得到∠EGC =∠ECG =∠ABD =∠GDC ,得到CG =CD =6.根据三角形面积公式求得CH =24

5

,即可根据勾股定理求得GH ,进而求得HE ,即可求得BE =BH +HE =

395

; 当CG =CE 时,过点E 作EM ⊥CG 于点M ,由tan ∠ECM =4

3

EM CM =.设EM =4k ,则CM =3k ,CG =CE =5k .得出GM =2k ,tan ∠GEM =

21

42

GM k EM k ==,即可得到tan ∠GCH =GH CH =12

.求得HE =GH =125,即可得到BE =BH +HE =44

5;

(3)连接OE 、EF 、AE 、EF ,先根据切线的性质和垂直平分线的性质得出EF =CE ,进而证得四边形ABCD 是正方形,进一步证得△ADE ≌△CDE ,通过证得△EHP ∽△FBC ,得出EH =

16BF ,即可求得BF =6,根据勾股定理求得CF =10,得出PE =10

6

,根据勾股定理求得PH ,进而求得PD ,然后根据三角形面积公式即可求得结果. 【详解】 (1)∵AB ∥CD . ∴∠ABD =∠BDC , ∵∠ABD =∠ECG , ∴∠ECG =∠BDC .

(2)解:①∵AB =CD =6,AD =BC =8,

∴BD =10,

如图1,连结EF ,则∠CEF =∠BCD =90°, ∵∠EFC =∠CBD . ∴sin ∠EFC =sin ∠CBD , ∴

3

5

CE CD CF BD ==

∴CF

∴CE ②Ⅰ、当EG =CG 时,∠GEC =∠GCE =∠ABD =∠BDC .

相关文档
最新文档