数理统计内容总结(全面)

合集下载

概率论与数理统计知识点总结!-知识归纳整理

概率论与数理统计知识点总结!-知识归纳整理

《概率论与数理统计》 第一章随机事件及其概率§1.1 随机事件一、给出事件描述,要求用运算关系符表示事件: 二、给出事件运算关系符,要求判断其正确性: §1.2 概率古典概型公式:P (A )=所含样本点数所含样本点数ΩA 实用中经常采用“罗列组合”的想法计算补例1:将n 个球随机地放到n 个盒中去,问每个盒子恰有1个球的概率是多少?解:设A :“每个盒子恰有1个球”。

求:P(A)=?Ω所含样本点数:n n n n n =⋅⋅⋅...Α所含样本点数:!1...)2()1(n n n n =⋅⋅-⋅-⋅n n n A P !)(=∴补例2:将3封信随机地放入4个信箱中,问信箱中信的封数的最大数分别为1、2、3的概率各是多少?解:设A i :“信箱中信的最大封数为i”。

(i =1,2,3)求:P(A i )=?Ω所含样本点数:6444443==⋅⋅A 1所含样本点数:24234=⋅⋅836424)(1==∴A PA 2所含样本点数:363423=⋅⋅C1696436)(2==∴A PA 3所含样本点数:4433=⋅C161644)(3==∴A P注:由概率定义得出的几个性质:知识归纳整理1、0<P (A )<12、P(Ω)=1,P(φ) =0 §1.3 概率的加法法则定理:设A 、B 是互不相容事件(AB=φ),则: P (A ∪B )=P (A )+P (B )推论1:设A 1、 A 2、…、 A n 互不相容,则 P(A 1+A 2+...+ A n )= P(A 1) + P(A 2) +…+ P(A n )推论2:设A 1、 A 2、…、 A n 构成完备事件组,则 P(A 1+A 2+...+ A n )=1推论3: P (A )=1-P (A )推论4:若B ⊃A ,则P(B -A)= P(B)-P(A) 推论5(广义加法公式):对任意两个事件A 与B ,有P(A ∪B)=P(A)+P(B)-P(A B) 补充——对偶律:nnAA A A A A ⋂⋂⋂=⋃⋃⋃ (2)121nnAA A A A A ⋃⋃⋃=⋂⋂⋂ (2)121§1.4 条件概率与乘法法则条件概率公式:P(A/B)=)()(B P AB P (P(B)≠0)P(B/A)= )()(A P AB P (P(A)≠0)∴P (AB )=P (A /B )P (B )= P (B / A )P (A )有时须与P (A+B )=P (A )+P (B )-P (AB )中的P (AB )联系解题。

根据数理统计知识点归纳总结(精华版)

根据数理统计知识点归纳总结(精华版)

根据数理统计知识点归纳总结(精华版)
1. 引言
本文旨在对数理统计的基本知识点进行归纳总结,帮助读者快速了解数理统计的核心概念和方法。

2. 概率论基础
- 概率的基本定义和性质
- 随机事件的运算规则
- 条件概率和独立性
- 贝叶斯定理
3. 随机变量和分布
- 随机变量的定义和分类
- 离散型随机变量和连续型随机变量
- 常见离散型分布(如伯努利分布、二项分布、泊松分布)
- 常见连续型分布(如均匀分布、正态分布、指数分布)
4. 数理统计的基本概念
- 总体和样本的概念
- 估计与抽样分布
- 统计量和抽样分布
5. 参数估计
- 点估计的定义和性质
- 常见的点估计方法(如最大似然估计、矩估计)
- 区间估计的基本原理和方法
6. 假设检验
- 假设检验的基本思想和步骤
- 单侧检验和双侧检验
- 假设检验中的错误类型和显著性水平
- 常见的假设检验方法(如正态总体均值的检验、两样本均值的检验)
7. 相关分析
- 相关系数的定义和计算方法
- 相关分析的假设检验
- 线性回归分析的基本原理和方法
8. 统计软件的应用
- 常见的统计软件介绍(如SPSS、R、Python)
- 统计软件的基本操作(如数据导入、数据处理、统计分析)
9. 结语
本文对数理统计的核心知识点进行了简要的概括,供读者参考和研究。

通过研究数理统计,读者可以更好地理解和应用统计学在实际问题中的作用,提高数据分析和决策能力。

以上是根据数理统计知识点的归纳总结,希望有助于您对数理统计的理解和学习。

如需深入了解各个知识点的具体内容,请参考相关教材或课程。

概率论与数理统计公式定理全总结

概率论与数理统计公式定理全总结

概率论与数理统计公式定理全总结一、概率论公式:1.基本概率公式:对于随机试验E,事件A的概率可以表示为P(A)=事件A的样本点数/所有样本点数。

2.条件概率公式:对于事件A和事件B,若P(B)>,则事件A在事件B发生的条件下的概率可以表示为P(A,B)=P(A∩B)/P(B)。

3.全概率公式:对于互不相容事件A1,A2,...,An,它们的和事件为全样本空间S,且概率P(Ai)>,则对于任意事件B有P(B)=Σ(P(Ai)×P(B,Ai))。

4.贝叶斯公式:对于互不相容事件A1,A2,...,An,它们的和事件为全样本空间S,且概率P(Ai)>,则对于任意事件B,有P(Ai,B)=(P(B,Ai)×P(Ai))/Σ(P(B,Ai)×P(Ai))。

二、数理统计公式:1.期望:随机变量X的期望E(X)=Σ(Xi×P(Xi)),其中Xi为随机变量X的取值,P(Xi)为随机变量X取值为Xi的概率。

2. 方差:随机变量X的方差Var(X) = Σ((Xi - E(X))^2 ×P(Xi)),其中Xi为随机变量X的取值,E(X)为随机变量X的期望,P(Xi)为随机变量X取值为Xi的概率。

3. 协方差:随机变量X和Y的协方差Cov(X,Y) = E((X - E(X))(Y - E(Y))),其中E(X)和E(Y)分别为随机变量X和Y的期望。

4. 相关系数:随机变量X和Y的相关系数ρ(X,Y) = Cov(X,Y) / √(Var(X) × Var(Y)),其中Cov(X,Y)为随机变量X和Y的协方差,Var(X)和Var(Y)分别为随机变量X和Y的方差。

三、概率论与数理统计定理:1.大数定律:对于独立同分布的随机变量X1,X2,...,Xn,它们的均值X̄=(X1+X2+...+Xn)/n,当n趋向于无穷大时,X̄趋向于X的期望E(X)。

概率论与数理统计知识点总结(免费超详细版)80669

概率论与数理统计知识点总结(免费超详细版)80669

《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21Λ是两两互不相容的事件,有∑===nk kn k kA P A P 11)()(Y (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21Λ是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()(Y (n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A Y ΛY Y =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21ΛΛ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。

概率论与数理统计知识点总结(免费超详细版)

概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 A B 则称事件 B 包含事件 A ,指事件 A 发生必然导致事件 B 发生A B {x x A或x B} 称为事件 A 与事件 B 的和事件,指当且仅当 A ,B 中至少有一个发生时,事件 A B 发生A B {x x A且x B} 称为事件 A 与事件 B 的积事件,指当A,B 同时发生时,事件A B 发生A—B {x x A且x B} 称为事件A 与事件 B 的差事件,指当且仅当 A 发生、B 不发生时,事件 A — B 发生A B ,则称事件 A 与B 是互不相容的,或互斥的,指事件 A 与事件 B 不能同时发生,基本事件是两两互不相容的A B S A B ,则称事件 A 与事件 B 互为逆事件,又称事件 A 与事件 B 互为且对立事件2.运算规则交换律 A B B A A B B A结合律(A B) C A (B C) ( A B)C A(B C)分配律 A (B C)(A B) ( A C)A (B C)(A B)( A C)—徳摩根律 A B A B A B A B§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件 A 发生的次数n称为事件AA 发生的频数,比值n nA 称为事件 A 发生的频率概率:设E是随机试验,S 是它的样本空间,对于E 的每一事件A赋予一个实数,记为P(A),称为事件的概率1.概率P( A)满足下列条件:(1)非负性:对于每一个事件 A 0 P( A) 1(2)规范性:对于必然事件S P (S) 11(3)可列可加性:设A1, A2 , ,A是两两互不相容的事件,有nn nP A k ) P( A) ( (n可kk 1 k 1以取)2.概率的一些重要性质:(i )P( ) 0(ii )若A1, A2 , ,A是两两互不相容的事件,则有n Pn n( (n可以取)A k ) P( A )kk 1 k 1(iii )设A,B 是两个事件若 A B ,则P(B A) P( B) P( A) ,P( B) P(A) (iv)对于任意事件A,P(A) 1(v)P( A) 1 P(A) (逆事件的概率)(vi)对于任意事件A,B 有P(A B) P( A) P( B) P( A B)§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件 A 包含k 个基本事件,即{e i } {e } {e }A ,里1 i i k] 2,k是,中某个不同的数,则有i1 i 2, ,i k 1,2 nP( A)j k1P { eij}knA包含的基本事件数S中基本事件的总数§5.条件概率(1)定义:设A,B 是两个事件,且P( A) 0 ,称P( A B)P(B | A) 为事件 A 发生的条P(A)件下事件 B 发生的条件概率(2)条件概率符合概率定义中的三个条件。

考研数学数理统计基础知识点总结

考研数学数理统计基础知识点总结

考研数学数理统计基础知识点总结在准备考研数学的过程中,掌握数理统计基础知识是非常重要的。

本文将为您总结一些常见的数理统计基础知识点,帮助您更好地备考。

一、概率论基础知识1. 事件与样本空间:事件是指样本空间中的某个子集,样本空间则是指随机试验的所有可能结果的集合。

2. 概率的定义:概率是指事件发生的可能性大小,其取值范围在0到1之间。

3. 概率的运算:包括加法公式和乘法公式。

加法公式适用于互斥事件的概率计算,乘法公式则适用于独立事件的概率计算。

4. 条件概率:指在已知某一事件发生的条件下,另一事件发生的概率。

5. 贝叶斯定理:用于计算事件的后验概率,在已经得到一些信息的情况下,通过先验概率和条件概率计算出事件的后验概率。

二、随机变量与概率分布1. 随机变量的概念:随机变量是指随机试验结果的某个函数,可以是离散的或连续的。

2. 概率质量函数与概率密度函数:对于离散型随机变量,其概率可以通过概率质量函数来描述;对于连续型随机变量,则需要使用概率密度函数。

3. 常见的离散型随机变量:包括伯努利分布、二项分布、泊松分布等。

4. 常见的连续型随机变量:包括均匀分布、正态分布、指数分布等。

三、统计推断1. 抽样与抽样分布:抽样是指从总体中选取一部分个体进行研究,抽样分布则是指统计量在大量抽样下的分布情况。

2. 参数估计:根据样本数据对总体的某个参数进行估计,可以使用点估计和区间估计两种方法。

3. 假设检验:对总体参数的某个假设进行检验,包括设置原假设和备择假设,以及计算检验统计量和判断拒绝域。

4. 方差分析:一种用于比较两个或多个总体均值是否有显著差异的统计方法,适用于独立样本、配对样本和重复测量样本。

四、相关与回归分析1. 相关分析:用于判断两个变量之间的相关性强弱,包括计算相关系数和进行假设检验。

2. 简单线性回归分析:用于建立一个自变量与因变量之间的线性关系模型,通过最小二乘法来估计回归系数。

3. 多元线性回归分析:在简单线性回归的基础上,将多个自变量引入回归模型中进行分析,以探究多个变量对因变量的影响。

概率论与数理统计知识点总结

概率论与数理统计知识点总结
某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n种方法来完成,则这件事可由m×n种方法来完成。
(3)一些常见排列
重复排列和非重复排列(有序)
对立事件(至少有一个)
顺序问题
(4)随机试验和随机事件
如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
乘法公式:
更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有
… …… … 。
(14)独立性
①两个事件的独立性
设事件 、 满足 ,则称事件 、 是相互独立的。
若事件 、 相互独立,且 ,则有
若事件 、 相互独立,则可得到 与 、 与 、 与 也都相互独立。
必然事件 和不可能事件?与任何事件都相互独立。
设离散型随机变量 的可能取值为Xk(k=1,2,…)且取各个值的概率,即事件(X=Xk)的概率为
P(X=xk)=pk,k=1,2,…,
则称上式为离散型随机变量 的概率分布或分布律。有时也用分布列的形式给出:

显然分布律应满足下列条件:
(1) , , (2) 。
(2)连续型随机变量的分布密度
设 是随机变量 的分布函数,若存在非负函数 ,对任意实数 ,有
, ,
其中 、 为常数,则称随机变量 服从参数为 、 的正态分布或高斯(Gauss)分布,记为 。
具有如下性质:
1° 的图形是关于 对称的;
2°当 时, 为最大值;
若 ,则 的分布函数为
参数 、 时的正态分布称为标准正态分布,记为 ,其密度函数记为
, ,
分布函数为

(完整版)概率论与数理统计知识点总结(免费超详细版)

(完整版)概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。

概率论与数理统计复习资料知识点总结

概率论与数理统计复习资料知识点总结

《概率论与数理统计》第一章 随机事件与概率1.事件的关系 φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则 (1)BA AB A B B A =⋃=⋃(2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃ (4)B A AB B A B A ⋃==⋃3.概率)(A P 满足的三条公理及性质: (1)1)(0≤≤A P (2)1)(=ΩP(3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()((n 可以取∞)(4) 0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤ (7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃ 4.古典概型:基本事件有限且等可能5.几何概率 6.条件概率(1) 定义:若0)(>B P ,则)()()|(B P AB P B A P =(2) 乘法公式:)|()()(B A P B P AB P = 若n B B B ,,21为完备事件组,0)(>i B P ,则有 (3) 全概率公式: ∑==ni iiB A P B P A P 1)|()()((4) Bayes 公式: ∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性: B A ,独立)()()(B P A P AB P =⇔ (注意独立性的应用)第二章 随机变量与概率分布1. 离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2. 连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P4. 分布函数 )()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续; (4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>; (5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5. 正态分布的概率计算 以)(x Φ记标准正态分布)1,0(N 的分布函数,则有 (1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则)()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==> 6. 随机变量的函数 )(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。

数理统计知识点梳理总结

数理统计知识点梳理总结

数理统计知识点梳理总结一、统计学简介统计学是一门研究数据收集、处理、分析和解释的学科。

在现代社会中,数据在各个领域都扮演着重要的角色,因此统计学成为了一门不可或缺的科学。

统计学的主要目的是通过对数据的分析和解释,从而得出对整体或者局部的结论。

统计学广泛应用于政治、经济、社会学、医学、环境科学、工程学等各个领域。

二、数据类型在统计学中,数据通常可以分为两种类型:定量数据和定性数据。

1. 定量数据:定量数据是可进行数值量度的数据,通常具有数值意义,可以进行数学运算。

例如,身高、体重、温度、成绩等都属于定量数据。

2. 定性数据:定性数据是指不能进行数值量度的数据,通常表示品质等性质。

例如,性别、颜色、职业等都属于定性数据。

三、描述统计描述统计是统计学中的一项重要内容,它包括了数据的整体描述和规律性分析。

描述统计的主要方法包括:中心趋势度量、离散程度度量和分布形态度量。

1. 中心趋势度量:中心趋势度量是用来描述数据集中趋势的度量。

主要包括均值、中位数和众数。

- 均值:均值是指将所有数据相加后除以数据的个数得到的平均值。

- 中位数:中位数是将数据按大小顺序排列后,处于中间位置的数值。

- 众数:众数是指数据集中出现次数最多的数值。

2. 离散程度度量:离散程度度量是用来描述数据分布的离散程度的度量。

主要包括极差、方差和标准差。

- 极差:极差是指数据的最大值和最小值之间的差距。

- 方差:方差是描述数据分布离散程度的一种度量,它是各个数据与均值之间差的平方和的平均值。

- 标准差:标准差是方差的平方根,它是用来度量数据的分布离散程度的指标。

3. 分布形态度量:分布形态度量是用来描述数据分布形态的度量。

主要包括偏态系数和峰态系数。

- 偏态系数:偏态系数是用来描述数据分布偏斜程度的指标。

- 峰态系数:峰态系数是用来描述数据分布峰态程度的指标。

四、概率概率是统计学中的一个重要概念,它用来描述事件发生的可能性。

概率可以分为主观概率和客观概率。

数理统计知识点总结(总22页)

数理统计知识点总结(总22页)

数理统计知识点总结(总22页)一、基本概念1、统计学:统计学是一门研究人群或事物特性及变化规律的学科,是应用数理统计方法研究某种规律的学科,是整理、综合和分析统计资料的学科。

2、统计资料:统计资料是从实际中收集的有关统计对象的数据,也可以称为实验资料。

3、变量:历史的发展过程中,统计中的变量可分为定量变量和定性变量。

前者是指可以用数字表示的变量,又被称为被观察变量或解释变量;后者多由文字描述,不能量化,又被称为因变量或行为变量。

4、分类变量:又称为分类统计数据,是指按照一定的范围将变量等分,主要用于描述变量的构成状况。

5、样本:样本是用于做统计分析的一部分数据,它按照一定的要求从某种群体中抽取出来,它是统计资料的简写总结。

样本本身并非具有代表性,但在发现规律方面与总体相比,它有许多独特的优势。

二、数理统计方法1、数据描述:数据描述是指用定量和定性的方式把统计对象描述出来,也就是用汇总统计和分类统计的方法研究统计资料的特征。

2、分布类型:经过研究的统计资料各变量的分布可分为三种基本形式:正态分布、对数分布和正玄分布。

3、抽样技术:抽样是指在随机或不完全随机的情况下,从一个总体中抽出一定数量的抽样单位,用它们反映整体的一般特性的科学方法。

4、统计推断:统计推断是指借助于统计技术去评价样本资料与总体资料之间的联系,并借以判断在一定概率水平上总体参数的取值情况,并对总体参数做出推断。

5、回归分析:回归分析是利用统计方法,探索两个或多个变量之间存在的关系,及掌握这种关系的参数。

三、统计推断1、假设检验:假设检验是统计推断的基本方法,是统计方法求出的取值所处位置在参数特定范围内的概率,通常用统计量在假设下把允许的概率建模出来。

2、置信区间:置信区间是统计学中定量评价事物变化范围的一种分析方法,其作用是加以比较研究结果,以及让相应的概率参数可以被确定的概率范围的压缩,使数据更有说服力。

3、方差分析:方差分析是检验研究变量之间是否存在显著的差异性的统计分析方法,其研究的是变量的变异程度。

1概率论与数理统计知识点总结(超详细)

1概率论与数理统计知识点总结(超详细)

NO.1 概率论基本概念一、随机试验1.确定性现象:必然发生或必然不发生的现象。

2.随机现象:在一定条件下我们事先无法准确预知其结果的现象,称为随机现象.3.随机现象的特点:人们通过长期实践并深入研究之后,发现这类现象在大量重复试验或观察下,它的结果却呈现出某种统计规律性.概率论与数理统计是研究随机现象统计规律性的一门学科.4.随机试验:为了对随机现象的统计规律性进行研究,就需要对随机现象进行重复观察, 我们把对随机现象的观察称为随机试验, 并简称为试验,记为E .随机试验具有下列特点:(1)可重复性: 试验可以在相同的条件下重复进行;(2)可观察性: 试验结果可观察,所有可能的结果是明确的;(3)随机性(不确定性): 每次试验出现的结果事先不能准确预知. ,但可以肯定会出现所有可能结果中的一个.二、样本空间、随机事件1.样本点:随机试验中的每一个可能出现的试验结果称为这个试验的一个样本点,记作ω.2.样本空间:全体样本点组成的集合称为这个随机试验的样本空间,记为∧.(或S ).即∧={ω1 ,ω2 ,!,ωn ,!}3.随机事件:我们称试验E 的样本空间∧的子集为E 的随机事件,简称事件,在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性.一般用A, B, C,,…等大写字母表示事件.设A 为一个事件,当且仅当试验中出现的样本点ω∈A 时,称事件 A 在该次试验中发生.注: 要判断一个事件是否在一次试验中发生,只有当该次试验有了结果以后才能知道.(1)基本事件:仅含一个样本点的随机事件称为基本事件.(2)必然事件:样本空间∧本身也是∧的子集,它包含∧的所有样本点,在每次试验中∧必然发生,称为必然事件.即必然发生的事件.(3)不可能事件:.空集Φ也是∧的子集,它不包含任何样本点,在每次试验中都不可能发生,称为不可能事件.不可能发生的事件是不包含任何样本点的.三、事件间的关系与运算记号概率论集合论∧ 样本空间,必然事件全集∅ 不可能事件空集ω 基本事件元素A 事件子集A A的对立事件A的余集A ⊂B 事件A发生导致B发生A是B的子集A =B 事件A与事件B相等A与B的相等A ! B事件A与事件B至少有一个发生A与B的并集AB 事件A与事件B同时发生A与B的交集A -B 事件A发生而事件B不发生A与B的差集AB =∅ 事件A和事件B互不相容A与B没有相同的元素1.子事件、包含关系A ⊂B事件A是事件B的子事件含义:事件A发生必然导致事件B发生, ∅⊂A ⊂∧2.相等事件A =B :若事件A发生必然导致事件B 发生,且若事件B 发生必然导致事件A 发生,即B ⊃A且A ⊃B ⇔A=B注:事件 A 与事件 B 含有相同的样本点3.和事件或并事件A !B = { x x ∈A或x∈B },事件A ! B是事件A和事件B的和事件事件A ! B 发生⇔ 事件A 发生或事件B 发生⇔ 事件A 与B 至少有一个发生n称" A k 为n 个事件A 1,A 2,!,A n 的和事件k =1∞称" A k 为可列个事件A 1 , A 2 ,!, A n ,!的和事件k =14. 积事件或交事件A !B = {x x ∈ A 且x ∈ B }, 事件A ! B 是事件A 与事件B 的积事件事件A ! B 发生⇔ 事件A 与事件B 同时发生积事件A ! B 可简记为ABn称" A k 为n 个事件A 1,A 2,!,A n 的积事件k =1∞称" A k 为可列个事件A 1 , A 2 ,!, A n ,!的积事件.k =15. 事件的差A -B = {x x ∈ A 且x ∉ B }, 事件A - B 称为事件A 与事件B 的差事件事件A - B 发生⇔ 事件A 发生而事件B 不发生.注: A - B = A - AB6. 互斥或互不相容A !B = Φ 则称事件A 与事件B 是互不相容的,或互斥的.A !B = Φ ⇔事件 A 和随机 B 不能同时发生.注: 任一个随机试验E 的基本事件都是两两互不相容的.推广:设事件 A 1,A 2,!,A n 满足 A i A jA 1,A 2,!,A n 是两两互不相容的. 7. 对立事件或互逆事件= Φ (i , j = 1, 2,!, n , i ≠ j ) 称事件若事件 A 和事件 B 中有且仅有一个发生,即 A ! B = ∧, AB = Φ则事件 A 和事件 B 为互逆事件或对立事件。

概率论与数理统计知识点总结

概率论与数理统计知识点总结

概率论与数理统计知识点总结一、概率的基本概念1.概率的定义:概率是描述事件发生可能性的数字,表示为一个介于0和1之间的数。

2.事件与样本空间:事件是可能发生的结果的集合,样本空间是所有可能结果的集合。

3.事件的运算:事件的运算包括并、交、差等,分别表示两个事件同时发生、至少一个事件发生、一个事件发生而另一个事件不发生等。

4.概率的性质:概率具有非负性、规范性、可列可加性等性质。

二、随机变量与概率分布1.随机变量的定义:随机变量是一个变量,它的值由随机事件决定。

2.离散随机变量:离散随机变量只能取有限或可数个值,其概率表示为离散概率分布函数。

3.连续随机变量:连续随机变量可以取任意实数值,其概率表示为概率密度函数。

4.分布函数:分布函数描述随机变量的概率分布情况,包括累积分布函数和概率质量函数。

三、常见概率分布1.离散分布:包括伯努利分布、二项分布、泊松分布等。

2.连续分布:包括均匀分布、正态分布、指数分布、伽玛分布等。

正态分布在自然界和社会现象中广泛存在。

3.其他分布:包括卡方分布、指数分布、F分布、t分布等。

四、抽样与统计推断1.抽样:抽样是从总体中选择一部分个体进行实验或调查的方法,常用的抽样方法包括随机抽样、分层抽样、整群抽样等。

2.统计推断:通过从样本中获得的数据,对总体做出有关参数的推断。

包括点估计和区间估计两种方法。

3.假设检验:通过对样本数据的统计量进行计算,判断总体参数是否满足其中一种假设。

包括单样本假设检验、两样本假设检验、方差分析等。

五、回归分析与相关分析1.回归分析:研究两个或多个变量之间关系的统计方法,包括一元线性回归分析、多元线性回归分析等。

2.相关分析:研究两个变量之间相关性的统计方法,常用的相关系数包括皮尔逊相关系数和斯皮尔曼相关系数。

六、贝叶斯统计学1.贝叶斯定理:根据先验概率和条件概率,计算后验概率的统计方法。

2.贝叶斯推断:根据贝叶斯定理以及样本数据,推断参数的后验分布。

(完整版)概率论与数理统计知识点总结

(完整版)概率论与数理统计知识点总结

第1章随机事件及其概率在第二步某事件发生条件下第一步某事件的概率,就用贝叶斯公式我们作了 n 次试验,且满足每次试验只有两种可能结果, A 发生或A 不发生;n次试验是重复进行的,即 A 发生的概率每次均一样;每次试验是独立的,即每次试验 A 发生与否与其他次试验 A 发 生与否是互不影响的。

这种试验称为伯努利概型,或称为 n 重伯努利试验。

用P 表示每次试验A 发生的概率,则A 发生的概率为1 p q ,用Pn (k ) 表示n 重伯努利试验中A 出现k (0 k n)次的概率,P n (k) C :P k q nkk 0,1,2, ,n5第二章随机变量及其分布(1)设离散型随机变量X 的可能取值为X k (k=1,2,…)且取各个值的概率, 即事件(X=X k )的概率为P(X=x k )=p k , k=1,2,…, 则称上式为离散型随机变量 X 的概率分布或分布律。

有时也用分 布列的形式给出: X | x 1,x 2, , x k ,P(X x k ) p 1, p 2,, p k ,。

显然分布律应满足下列条件:p k 1(1 )宀 0 , k1,2,, ( 2 ) k1(14)伯努利 概型散 随变 的 布(2 ) 设F (x )是随机变量X 的分布函数,若存在非负函数f(x ),对任意实数X ,有XF(x) f (x)dx则称X 为连续型随机变量。

f (X )称为X 的概率密度函数或密度函数, 简称概率密度。

密度函数具有下面4个性质:分布仁 f(x) 03、P(X i X X 2) F(X 2)F(X J f (x)dxX i4、P(x=a)=O,a为常数,连续型随机变量取个别值的概率为 0连 型 机 量 续 随变 的 密度2、f(x)dx 1。

第三章二维随机变量及其分布如果二维随机向量 (X , Y )的所有可能取值为至多可 列个有序对(x,y ),则称 为离散型随机量。

设=(X ,Y )的所有可能取值为(人『)(门1,2,),且事 件{= (X i ,y j )}的概率为 p ij,,称P {(X,Y ) (X i ,y j )} P j (i,j 1,2,)为=(X ,Y )的分布律或称为 X 和Y 的联合分布律。

考研数学《概率论与数理统计》知识点总结

考研数学《概率论与数理统计》知识点总结

考研数学《概率论与数理统计》知识点总结引言《概率论与数理统计》是考研数学中的一个重要分支,它不仅要求学生掌握理论知识,还要求能够运用这些知识解决实际问题。

本文档旨在对《概率论与数理统计》的核心知识点进行总结,帮助考生系统复习。

第一部分:概率论基础1. 随机事件与样本空间随机事件:在一定条件下可能发生也可能不发生的事件。

样本空间:所有可能结果的集合。

2. 概率的定义古典定义:适用于有限样本空间,每个样本点等可能发生。

频率定义:长期频率的极限。

主观定义:基于个人信念或偏好。

3. 概率的性质非负性:概率值非负。

归一性:所有事件的概率之和为1。

加法定理:互斥事件概率的和。

4. 条件概率与独立性条件概率:已知一个事件发生的情况下,另一个事件发生的概率。

独立性:两个事件同时发生的概率等于各自概率的乘积。

5. 随机变量及其分布离散型随机变量:可能取有限个或可数无限个值。

连续型随机变量:可能取无限连续区间内的任何值。

分布函数:随机变量取值小于或等于某个值的概率。

第二部分:随机变量及其分布1. 离散型随机变量的分布概率质量函数:描述离散型随机变量取特定值的概率。

常见分布:二项分布、泊松分布、几何分布等。

2. 连续型随机变量的分布概率密度函数:描述连续型随机变量在某区间的概率密度。

常见分布:均匀分布、正态分布、指数分布等。

3. 多维随机变量及其分布联合分布:描述多个随机变量联合取值的概率。

边缘分布:从联合分布中得到的单一随机变量的分布。

条件分布:给定一个随机变量的条件下,另一个随机变量的分布。

第三部分:数理统计基础1. 数理统计的基本概念总体与样本:总体是研究对象的全体,样本是总体中所抽取的一部分。

统计量:根据样本数据计算得到的量。

2. 参数估计点估计:用样本统计量估计总体参数的单个值。

区间估计:在一定概率下,总体参数落在某个区间的估计。

3. 假设检验原假设与备择假设:研究问题中的两个对立假设。

检验统计量:用于决定是否拒绝原假设的量。

概率论与数理统计知识点总结(免费超详细版)

概率论与数理统计知识点总结(免费超详细版)

概率论与数理统计知识点总结(免费超详细版) 题目:概率论与数理统计知识点总结摘要本文总结了概率论和数理统计方面的基础知识,涉及概率分布、参数估计、假设检验、卡方检验、多元分析等。

对这些知识点的理解和了解可以帮助人们更好地分析和利用数据,促进数据分析的发展。

关键词:概率论,数理统计,概率分布,参数估计,假设检验,卡方检验,多元分析正文1.概率论概率论是数理统计中一门重要科学,它是一门数学研究现实世界事件发生的规律性、可预测性及不确定性的学科。

在概率论中,我们引入了诸如概率、期望和方差等概念,用来描述和推断某种随机现象的发生。

2.概率分布概率分布是在给定的实际情况下随机变量取值的概率分布。

典型的概率分布包括正态分布、泊松分布和二项分布。

此外,也有一些联合分布,例如协方差、共轭先验、贝叶斯估计等。

3.参数估计参数估计是根据样本数据估计总体参数的统计方法。

它涉及到将总体参数估计为样本参数的过程,通常使用最大似然估计、贝叶斯估计和假定测试等方法。

4.假设检验假设检验是基于统计学原理,用来评估某一假设是否真实存在的方法。

其中包括t检验、F检验、Z检验等,它们之间的区别在于所使用的抽样分布不同。

5.卡方检验卡方检验是一种统计检验,用于直接检验某个抽样值是否遵循某种理论分布。

卡方检验可以根据观察到的抽样数据和理论分布之间的差异来衡量分布概率值的有效性。

6.多元分析多元分析是一种分析不同变量之间交互影响的统计方法。

它包括多元回归分析、多元判别分析、因子分析等,能够帮助我们了解多个变量之间的关系。

结论本文总结了概率论和数理统计方面的基础知识,包括概率分布、参数估计、假设检验、卡方检验和多元分析等。

了解这些知识点可以帮助人们更好地分析和利用数据,促进数据分析的发展。

概率论和数理统计方面的知识点在实际应用中有着重要作用。

概率论可以帮助研究人员对随机现象进行建模、分析和推断,其中包括使用概率分布建立统计模型和估计参数,并使用假设检验和卡方检验来检验假设,以及用多元分析来推断不同变量之间的关系。

(完整版)概率论与数理统计知识点总结(最新整理)

(完整版)概率论与数理统计知识点总结(最新整理)
当 AB 不相容 P(AB)=0 时,P(A+B)=P(A)+P(B) 法公式
当 AB 独立,P(AB)=P(A)P(B), P(A+B)=P(A)+P(B)-P(A)P(B)
P(A-B)=P(A)-P(AB) (8)减
当 B A 时,P(A-B)=P(A)-P(B) 法公式
当 A=Ω时,P( B )=1- P(B)
独立性 必然事件 和不可能事件 Ø 与任何事件都相互独立。
Ø 与任何事件都互斥。
②多个事件的独立性
设 ABC 是三个事件,如果满足两两独立的条件,
P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)
1
并且同时满足 P(ABC)=P(A)P(B)P(C)
那么 A、B、C 相互独立。
数 F(x) 表示随机变量落入区间(– ∞,x]内的概率。
分布函数具有如下性质:
1° 0 F (x) 1, x ;
2° F (x) 是单调不减的函数,即 x1 x2 时,有 F (x1) F (x2) ;
3° F () lim F (x) 0 , F () lim F (x) 1;
X ~ B(n, p) 。
当 n 1时, P(X k) pk q1k , k 0.1,这就是(0-1)分布,所
以(0-1)分布是二项分布的特例。
1
泊松分 设随机变量 X 的分布律为

P( X k) k e , 0 , k 0,1,2,
k!
则称随机变量 X 服从参数为 的泊松分布,记为 X ~ () 或者
①每进行一次试验,必须发生且只能发生这一组中的一个事件; (2)基 ②任何事件,都是由这一组中的部分事件组成的。 本 事 这样一组事件中的每一个事件称为基本事件,用 来表示。 件 、 样 基本事件的全体,称为试验的样本空间,用 表示。 本 空 间 一个事件就是由 中的部分点(基本事件 )组成的集合。通常用大 和事件 写字母 A,B,C,…表示事件,它们是 的子集。

概率论与数理统计知识点总结28-知识归纳整理

概率论与数理统计知识点总结28-知识归纳整理

第1章 随机事件及其概率(1)罗列组合公式)!(!nmmP nm-= 从m个人中挑出n个人举行罗列的可能数)!(!!nmnmC nm-= 从m个人中挑出n个人举行组合的可能数(2)加法和乘法原理加法原理(两种想法均能完成此事):m+n某件事由两种想法来完成,第一种想法可由m种想法完成,第二种想法可由n种想法来完成,则这件事可由m+n 种想法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一具步骤可由m种想法完成,第二个步骤可由n 种想法来完成,则这件事可由m×n 种想法来完成。

(3)一些常见罗列重复罗列和非重复罗列(有序)对立事件(至少有一具)顺序问题(4)随机试验和随机事件如果一具试验在相同条件下可以重复举行,而每次试验的可能结果不止一具,但在举行一次试验之前却不能断言它闪现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件在一具试验下,无论事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每举行一次试验,必须发生且只能发生这一组中的一具事件;②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一具事件称为基本事件,用ω来表示。

基本事件的全体,称为试验的样本空间,用Ω表示。

一具事件算是由Ω中的部分点(基本事件ω)组成的集合。

通常用大写字母A,B,C,…表示事件,它们是Ω的子集。

知识归纳整理Ω何必然事件,Ø为不可能事件。

不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果并且有BA⊂,AB⊃,则称事件A与事件B等价,或称A 等于B:A=B。

A、B中至少有一具发生的事件:A B,或者A+B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

������分布������(������; ������, ������) = { ������~������(������, ������), ������(������) =
������ ������+������
������(������,������)
, 1 > ������ > 0
0, 其他 , ������(������) = (������+������)2
������1 +������2 −2
2) 2 ) (������ 若������������ ~������(������1 , ������1 ������������ ~������(������2 , ������2 ������ , ������ ������ ������. ������. ������)
̅ −������ ̅ )−(������1 −������2 ) (������ ������������ √
1 1 + ������1 ������2
~������(������1 + ������2 − 2) ������������ = √
∗2 +(������ −1)������ ∗2 (������1 −1)������1 2 2
̅ 与������ ∗2 相互独立 (3)������ (4)������ = √
̅ −������) ������(������ ������ ∗
~������(������ − 1)
若������������ ~������(������1 , ������ 2 ) ������������ ~������(������2 , ������ 2 ) (������������ , ������������ ������. ������. ������) ������ =
t 分布������(������; ������) =
������+1 ) 2 ������ √2������Γ( 2 )
Γ(
(1 +
������ 2 ������
)

������+1 2
������~������(������)自由度为 n 的 t 分布 ������ → ∞ ������~������(0,1), ������(������) = 0, ������(������) = ������~������(0,1), ������~������ 2 (������) (������, ������ ������. ������. ������) ������ =
������ 2 ������������ ~������ 2 (������������ ), ∑������ ������=1 ������������ ~������ (∑������=1 ������������ ) (������������ ������. ������. ������)
̅ = ∑������ 样本均值������ ������=1 ������������
������ ������ 2 ̅2 ̅ 2 样本方差������ 2 = ∑������ ������=1(������������ − ������ ) = ∑������=1 ������������ −������ ������ ������ 1 1
������ → ∞
������−������ √2������
~������(0,1)
2 2 ������������ ~������(0,1), (������������ ������. ������. ������) → ∑������ ������=1 ������������ ~������ (������)
������ =
2 ������ ∗2 ������2 1 2 ������ ∗2 ������1 2
=
∗2 /������ 2 ������1 1 ∗2 /������ 2 ������2 2
=
������ √������
∗2 /������ ∗2 ������1 2 2 /������ 2 ������1 2
有效性 ̂ 的 均 方 误 差 为 ������������������(������ ̂, ������) = ̂ − ������)2 = ������(������ ̂) + (������������ ̂ − ������)2 。 若 存 在 ������ ̂∗ ������ ̂ ������(������ ̂ ∗ , ������) ≤ ������������������(������ ̂, ������),则������ ̂ ∗ 为一致最小均方误差估计量 使得所有的������都有������������������(������ ̂) = ������,则一致均方误差最小准则等价为方差最小准则,即������������������(������ ̂ , ������) = ������(������ ̂)。若无偏估 若������(������ ̂1 ,������ ̂2 ,������(������ ̂1 ) < ������(������ ̂2 ),称������ ̂1 比������ ̂2 有效 计������ ̂: ������������ (������ ̂) = ������, ������������ (������ ̂) < ∞, ∀������ ∈ Θ} ������ = {������ ̂: ������������ (������ ̂0 ) = 0, ������������ (������ ̂0 ) < ∞, ∀������ ∈ Θ} ������0 = {������ ̂ ∗ 为一致最小方差无偏估计的充要条件:对每一个������ ̂0 ∈ ������0 都有������������ (������ ̂ ∗ ������) = 0, ������ ∈ Θ ������ R-C 下界:(T 为������(������)的无偏估计) ������(������) = ������( ������(������) ≥
(������−1)������ ∗2 ������ 2
2
������/������1 ������/������2
~������(������1 , ������2 )
=
������������ 2 ������ 2
=
1 ��������=1(������������ − ������ ) ~������ (������ − 1)
������ ������
������~Γ(������, ������), ������(������) = , ������(������) =
������ ∑������ ������=1 ������������ ~������(∑������=1 ������������ , ������) (������������ ������. ������. ������) −������������ ������ = 1, ������~������������������(������)(指数分布) ������(������; ������) = {������������ , ������ > 0 0, ������ ≤ 0 ������ ������−1 (1−������)������−1
Γ分布������(������; ������, ������) = {Γ(������) Γ函数Γ(������) = ∫ 0
+∞
������ ������−1 ������ −������������ , ������ > 0 0, ������ ≤ 0
������ ������2
������ ������−1 ������ −������ ������������
������
1
������~������ 2 (������1 ), ������~������ 2 (������2 ) (������, ������ ������. ������. ������) ������ = 若������������ ~������(������, ������ 2 ) ̅ ~������ (������, ������ ) (1)������ ������ (2)
������������������������ ������������������
= 0,若无解,则用其他方法(实际情况)确定 L 最大时
̂) = ������则为无偏估计,若 lim ������(������ ̂) = ������,则为渐进无偏估计 ������(������
������→∞
������ √������/������
������ ������−2
(������ > 2)
~������(������)
������~������(������, ������) → ~������(������, ������), ������ → ������(������) → ������ 2 ~������(1, ������)
������ 2
~������(������, ������)
������ 2 分布������ 2 (������; ������) = {
������ ������ −1 − ������ 2 ������ ������ 2 2 Γ( ) 2
, ������ > 0
0, ������ ≤ 0
记������~������ 2 (������)自由度为 n 的������ 2 分布,������(������) = ������, ������(������) = 2������
相关文档
最新文档