(完整版)全等三角形基础练习证明题

合集下载

全等三角形证明经典40题(含答案)

全等三角形证明经典40题(含答案)

1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 的长.解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=22. 已知:BC=ED ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边)∴ BF=EF,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF∴ ∠EBF=∠BEF 。

∵ ∠ABC=∠AED 。

∴ ∠ABE=∠AEB 。

∴ AB=AE 。

在三角形ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 和三角形AEF 全等。

∴ ∠BAF=∠EAF (∠1=∠2)。

AD B C已知:∠1=∠2,CD=DE,EF如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。

求证:BC=AB+DC。

在BC上截取BF=AB,连接EF∵BE平分∠ABC∴∠ABE=∠FBE又∵BE=BE∴⊿ABE≌⊿FBE(SAS)∴∠A=∠BFE∵AB知:AB=CD,∠A=∠D,求证:∠B=∠C证明:设线段AB,CD所在的直线交于E,则:△AED是等腰三角形。

∴AE=DE而AB=CD∴BE=CE∴△BEC是等腰三角形∴∠B=∠C.是∠BAC平分线AD上一点,AC>AB,求证:PC-PB<AC-AB在AC上取点E,使AE=AB。

∵AE=ABBACDF21EAAP=AP∠EAP=∠BAE,∴△EAP≌△BAP∴PE=PB。

PC<EC+PE∴PC<(AC-AE)+PB∴PC-PB<AC-AB。

完整版)全等三角形基础练习证明题

完整版)全等三角形基础练习证明题

完整版)全等三角形基础练习证明题1.已知三角形ABC中,AD为中线,BE⊥AD,CF⊥AD,证明BE=CF。

2.已知四边形ACBD中,AC=BD,AE=CF,BE=DF,证明AE∥CF。

3.已知四边形ABCD中,AB=CD,BE=DF,AE=CF,证明AB∥CD。

4.已知四边形ABCD中,AB=CD,AD=CB,证明AB∥CD。

5.已知两个三角形中,∠BAC=∠DAE,∠1=∠2,BD=CE,证明三角形ABD≌三角形ACE。

6.已知四边形ABED中,CD∥AB,DF∥EB,DF=EB,证明AF=CE。

7.已知四边形BEFC中,BE=CF,AB=CD,∠B=∠C,证明AF=DE。

8.已知四边形ABED中,AD=CB,∠A=∠C,AE=CF,证明EB∥DF。

9.已知三角形ABC中,M为AB的中点,∠1=∠2,MC=MD,证明∠C=∠D。

10.已知四边形ABFE和CDFE中,AE=DF,BF=CE,AE∥DF,证明AB=CD。

11.已知四边形ABCD中,∠1=∠2,∠3=∠4,证明AC=AD。

12.已知四边形ABCD中,∠E=∠F,∠1=∠2,AB=CD,证明AE=DF。

13.已知四边形ABCDEF中,ED⊥AB,EF⊥BC,BD=EF,证明BM=ME。

14.已知三角形ABC中,高AD与BE相交于点H,且AD=BD,证明三角形BHD≌三角形ACD。

15.已知四边形ABCDE中,∠A=∠D,AC∥FD,AC=FD,证明AB∥DE。

16.已知三角形ABC和三角形ADE中,AC=AB,AE=AD,∠1=∠2,证明∠3=∠4.17.已知三角形ABC和三角形DEF中,EF∥BC,AF=CD,AB⊥BC,DE⊥EF,证明三角形ABC≌三角形DEF。

18.已知四边形ABED中,AD=AE,∠B=∠C,证明AC=AB。

19.已知三角形ABC中,AD⊥BC,BD=CD,证明AB=AC。

20.已知三角形ABC和三角形BAD中,∠1=∠2,BC=AD,证明三角形ABC≌三角形BAD。

(完整版)全等三角形基础练习及答案

(完整版)全等三角形基础练习及答案

全等三角形判断一一、选择题1.△ABC和△中,若AB=,BC=,AC=. 则()A. △ABC≌△B. △ABC≌△C. △ABC≌△D. △ABC≌△2.如图,已知 AB= CD, AD= BC,则以下结论中错误的选项是()∥DC B. ∠B=∠ D C.∠A=∠ C= BC3.以下判断正确的选项是()A.两个等边三角形全等B.三个对应角相等的两个三角形全等C.腰长对应相等的两个等腰三角形全等D.直角三角形与锐角三角形不全等4.如图,AB、CD、EF订交于O,且被O点均分,DF=CE,BF=AE,则图中全等三角形的对数共有()A. 1 对B. 2 对C. 3 对D. 4 对5.如图,将两根钢条,的中点O连在一起,使,能够绕着点O自由转动,就做成了一个测量工件,则的长等于内槽宽AB,那么判断△ OAB≌△的原由是( )A. 边角边B. 角边角C. 边边边D. 角角边6.如图,已知AB⊥BD 于 B,ED⊥BD 于 D, AB=CD, BC= ED,以下结论不正确的选项是()⊥AC= AC+AB=DB D.DC = CB二、填空题7.如图,AB=CD,AC=DB,∠ ABD=25°,∠ AOB=82°,则∠ DCB=_________.8.如图,在四边形 ABCD中,对角线 AC、BD互相均分,则图中全等三角形共有_____对 .9.如图,在△ ABC和△ EFD中,AD=FC,AB=FE,当增加条件_______时,即可得△ ABC≌△ EFD(SSS)10.如图,AC=AD,CB=DB,∠ 2=30°,∠ 3=26°,则∠ CBE=_______.11.如图,点 D在 AB上,点 E 在 AC上, CD与 BE 订交于点 O,且 AD=AE, AB=AC,若∠ B =20°,则∠C =______.12.已知,如图,AB=CD, AC=BD,则△ ABC≌______,△ ADC≌ ______.三、解答题13.已知:如图,四边形 ABCD中,对角线 AC、 BD订交于 O,∠ ADC=∠ BCD, AD=BC,求证: CO= DO.14.已知:如图, AB∥CD, AB=CD.求证: AD∥BC.解析:要证AD∥BC,只要证∠ ______=∠ ______,又需证 ______≌______.证明:∵ AB∥CD (),∴ ∠______=∠ ______ (),在△ ______和△ ______中,∴______≌Δ ______ ().∴∠______=∠ ______ ().∴______ ∥______().15.如图,已知AB=DC, AC= DB, BE= CE求证: AE= DE.答案与解析一. 选择题1.【答案】 B;【解析】注意对应极点写在相应的地址.2.【答案】 D;【解析】连接 AC或 BD证全等 .3.【答案】 D;4.【答案】 C;【解析】△ DOF≌△ COE,△ BOF≌△ AOE,△ DOB≌△ COA.5.【答案】 A;【解析】将两根钢条,的中点O连在一起,说明OA=,OB=,再由对顶角相等可证.6.【答案】 D;【解析】△ ABC≌△ EDC,∠ ECD+∠ ACB=∠ CAB+∠ ACB=90°,所以EC⊥AC, ED + AB = BC+CD = DB.二. 填空题7.【答案】 66°;【解析】可由SSS证明△ ABC≌△ DCB,∠ OBC=∠ OCB=,所以∠ DCB=∠ABC=25°+ 41°= 66°.8.【答案】 4;【解析】△ AOD≌△ COB,△ AOB≌△ COD,△ ABD≌△ CDB,△ ABC≌△ CDA.9.【答案】 BC= ED;10.【答案】 56°;【解析】∠ CBE=26°+ 30°= 56°.11.【答案】 20°;【解析】△ ABE≌△ ACD( SAS)12.【答案】△ DCB,△ DAB;【解析】注意对应极点写在相应的地址上.三. 解答题13. 【解析】证明:在△ ADC 与△ BCD中,14.【解析】3 , 4;ABD,CDB;已知;1, 2;两直线平行,内错角相等;ABD, CDB;AB, CD,已知;∠1=∠ 2,已证;BD= DB,公共边;ABD, CDB, SAS;3, 4,全等三角形对应角相等;AD, BC,内错角相等,两直线平行.15.【解析】证明:在△ ABC 和△ DCB中∴△ ABC≌△ DCB( SSS)∴∠ ABC=∠ DCB,在△ ABE和△ DCE中∴△ ABE≌△ DCE( SAS)∴AE= DE.全等三角形判断二一、选择题1.能确定△ ABC≌△ DEF的条件是()A. AB= DE, BC= EF,∠ A=∠EB. AB= DE, BC= EF,∠ C=∠EC.∠ A=∠ E, AB= EF,∠ B=∠DD.∠ A=∠ D, AB= DE,∠ B=∠E2.如图,已知△ ABC 的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是()图4- 3A.甲和乙 B .乙和丙 C .只有乙 D .只有丙3. AD是△ ABC的角均分线,作A. DE= DF B . AE= AF DE⊥AB 于 E,DF⊥AC于 C .BD= CDF,以下结论错误的选项是(D.∠ ADE=∠ ADF)4.如图,已知MB=ND,∠ MBA=∠ NDC,以下条件不能够判断△ ABM≌△ CDN的是()A.∠ M=∠N B . AB= CD C .AM= CN D .AM∥CN5.某同学把一块三角形的玻璃打碎成了3块 , 现在要到玻璃店去配一块完满相同的玻璃, 那么最省事的方法是()A. 带①去B. 带②去C. 带③去D.①②③都带去6.如图,∠ 1=∠ 2,∠ 3=∠ 4,下面结论中错误的选项是()A.△ ADC≌△ BCD B .△ ABD≌△ BACC.△ ABO≌△ CDO D .△ AOD≌△ BOC二、填空题7.如图 , ∠1=∠ 2,要使△ ABE≌△ ACE,还需增加一个条件是 _________.( 填上你认为合适的一个条件即可).8.在△ ABC和△中,∠ A=44°,∠ B=67°,∠=69°,∠=44°,且AC=,则这两个三角形 _________全等 . (填“必然”或“不用然”)9.已知,如图,AB∥CD,AF∥DE,AF= DE,且 BE= 2, BC= 10,则 EF= ________.10.如图, AB∥CD,AD∥BC, OE= OF,图中全等三角形共有 ______ 对.11.如图, 已知:∠ 1 =∠ 2 , ∠3 =∠ 4 , 要证BD =CD , 需先证△ AEB ≌△ AEC , 依照是_________ ,再证△ BDE ≌△ ______ ___,依照是_________.12.已知 : 如图,∠ B=∠ DEF, AB= DE,要说明△ ABC≌△ DEF,(1)若以“ ASA”为依照,还缺条件_________(2)若以“ AAS”为依照,还缺条件_________(3)若以“ SAS”为依照,还缺条件_________三、解答题13.阅读下题及一位同学的解答过程:如图,AB和CD订交于点O,且 OA= OB,∠A=∠ C.那么△ AOD与△COB全等吗?若全等,试写出证明过程;若不全等,请说明原由.答:△ AOD≌△ COB.证明:在△ AOD和△ COB中,∴△AOD≌△ COB( ASA).问:这位同学的回答及证明过程正确吗?为什么?14.已知如图, E、 F 在 BD上,且 AB= CD, BF= DE, AE= CF,求证: AC与 BD互相均分 .15.已知:如图, AB∥CD,OA=OD, BC 过 O点 ,点E、F在直线AOD上,且AE=DF.求证: EB∥CF.答案与解析【答案与解析】一.选择题1.【答案】 D;【解析】 A、 B 选项是 SSA,没有这种判断, C 选项字母不对应 .2.【答案】 B;【解析】乙可由 SAS证明,丙可由 ASA证明 .3.【答案】 C;【解析】可由AAS证全等,获取A、 B、 D 三个选项是正确的.4.【答案】 C;【解析】没有 SSA定理判断全等 .5.【答案】 C;【解析】由 ASA定理,能够确定△ ABC.6.【答案】 C;【解析】△ ABO 与△ CDO中,只能找出三对角相等,不能够判断全等.二、填空题7.【答案】∠ B=∠ C;【解析】可由 AAS来证明三角形全等 .8.【答案】必然;【解析】由题意,△ ABC≌△,注意对应角和对应边.9.【答案】 6;【解析】△ ABF≌△ CDE, BE=CF= 2,EF= 10-2- 2= 6.10.【答案】 5;【解析】△ ABO≌△ CDO,△ AFO≌△ CEO,△ DFO≌△ BEO,△ AOD≌△ COB,△ ABD≌△ CDB.11.【答案】 ASA, CDE, SAS;【解析】△ AEB ≌△ AEC 后可得 BE= CE.12.【答案】(1)∠ A=∠D;( 2)∠ ACB=∠F; (3) BC = EF.三、解答题13.【解析】解:这位同学的回答及证明过程不正确.因为∠D 所对的是AO,∠C所对的是OB,证明中用到了OA= OB,这不是一组对应边,所以不能够由ASA去证明全等 .14.【解析】证明:∵ BF= DE,∴B F- EF= DE-EF,即 BE= DF在△ ABE和△ CDF中,∴△ ABE≌△ CDF( SSS)∴∠ B=∠ D,在△ ABO和△ CDO中∴△ ABO≌△ CDO( AAS)∴AO= OC, BO=DO, AC与 BD互相均分 .15.【解析】证明:∵ AB∥CD,∴∠ CDO=∠ BAO在△ OAB和△ ODC中,∴△ OAB≌△ ODC( ASA)∴OC= OB又∵ AE = DF ,∴AE+ OA= DF+ OD,即 OE= OF 在△ OCF和△ OBE中∴△ OCF≌△ OBE( SAS)∴∠ F=∠ E,∴CF∥EB.。

全等三角形证明题及答案(15道)

全等三角形证明题及答案(15道)
证明:∵AB∥CD, ∴∠BAC=∠ECD, 在△BAC和△ECD中 AB=EC ∠BAC=∠ECD AC=CD , ∴△BAC≌△ECD〔SAS〕, ∴CB=ED.
全等三角形的判定与性质.
7.如图,D、E分别是AB、AC上的点,且 AB=AC,AD=AE.求证:∠B=∠C.
在△ABE和△ACD中, ∵ AB=AC ∠A=∠A AE=AD , ∴△ABE≌△ACD〔SAS〕, ∴∠B=∠C.
证明:∵AB∥DE, ∴∠B=∠DEF. ∵BE=CF, ∴BC=EF. ∵∠ACB=∠F, ∴ ∠B=∠DEF BC=EF∠ACB=∠F , ∴△ABC≌△DEF.
全等三角形的判定;平行线的性质.
10.:如图,E、F在AC上,AD∥CB且AD=CB,∠D=∠B. 求证:AE=CF.
证明:∵AD∥CB, ∴∠A=∠C, 在△ADF和△CBE中, ∠A=∠C AD=CB ∠D=∠B , ∴△ADF≌△CBE〔ASA〕, ∴AF=CE, ∴AF+EF=CE+EF,即AE=CF.
∴△BCF≌△CBD〔ASA〕. 全等三角形的判定.
如图,在△ABC中,D是BC的中点,DE⊥AB, DF⊥AC,垂足分别是E,F,BE=CF. 求证:AD是△ABC的角平分线.
证明:∵DE⊥AB,DF⊥AC, ∴Rt△BDE=Rt△DCF=90°. BD=DC BE=CF , ∴Rt△BDE≌Rt△DCF〔HL〕, ∴DE=DF, 又∵DE⊥AB,DF⊥AC, ∴AD是角平分线.
系和位置关系?并加以证明.
• 证明:∵AB∥CD, • ∴∠A=∠D, • ∵在△ABF和△DCE中 • AB=CD ∠A=∠D
AF=DE , • ∴△ABF≌△DCE, • ∴CE=BF,

全等三角形练习(基础证明题)

全等三角形练习(基础证明题)

全等三角形的判定训练1.已知AD是⊿ABC的中线,BE⊥AD,CF⊥AD,问BE=CF吗?说明理由。

2.已知AC=BD,AE=CF,BE=DF,问AE∥CF吗?3.已知AB=CD,BE=DF,AE=CF,问AB∥CD吗?4.已知在四边形ABCD中,AB=CD,AD=CB,问AB∥CD吗?说明理由。

5.已知∠BAC=∠DAE,∠1=∠2,BD=CE,问ABD≌⊿ACE.吗?为什么?6.已知CD∥AB,DF∥EB,DF=EB,问AF=CE吗?说明理由。

AB CDFEA C DE FDCFEA BAB CADEB C1 2AD CEFB7.已知BE=CF,AB=CD,∠B=∠C.问AF=DE吗?8.已知AD=CB,∠A=∠C,AE=CF,问EB∥DF吗?说明理由。

9.已知,M是AB的中点,∠1=∠2,MC=MD,问∠C=∠D吗?说明理由。

10.已知,AE=DF,BF=CE,AE∥DF,问AB=CD吗?说明理由。

11.已知∠1=∠2,∠3=∠4,问AC=AD吗?说明理由。

12.已知∠E=∠F,∠1=∠2,AB=CD,问AE=DF吗?说明理由。

13.已知ED⊥AB,EF⊥BC,BD=EF,问BM=ME吗?说明理由。

ACDB1234A B C DE F1 2ACDB E FBA DFECMA BC D1 2DCFEA B14.在⊿ABC 中,高AD 与BE 相交于点H ,且AD =BD ,问⊿BHD ≌⊿ACD ,为什么?15.已知∠A =∠D ,AC ∥FD ,AC =FD ,问AB ∥DE 吗?说明理由。

16.已知AC =AB ,AE =AD , ∠1=∠2,问∠3=∠4吗?17.已知EF ∥BC ,AF =CD ,AB ⊥BC ,DE ⊥EF ,问⊿ABC ≌⊿DEF 吗?说明理由。

18.已知AD =AE ,∠B =∠C ,问AC =AB 吗?说明理由。

A B C EH DACME F B D A B C E FD AB C ED F ADE AD E B C 1 23 419.已知AD⊥BC,BD=CD,问AB=AC吗?20.已知∠1=∠2,BC=AD,问⊿ABC≌⊿BAD吗?21.已知AB=AC,∠1=∠2,AD=AE,问⊿ABD≌⊿ACE.说明理由。

全等三角形证明经典50题(含答案)

全等三角形证明经典50题(含答案)

全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD延长AD 到E,使DE=AD,则三角形ADC 全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD 是整数,则AD=52. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。

因为 BC=ED,CF=DF,∠BCF=∠EDF 。

所以 三角形BCF 全等于三角形EDF(边角边)。

所以 BF=EF,∠CBF=∠DEF 。

连接BE 。

在三角形BEF 中,BF=EF 。

所以 ∠EBF=∠BEF 。

BC ADBC又因为 ∠ABC=∠AED 。

所以 ∠ABE=∠AEB 。

所以 AB=AE 。

在三角形ABF 和三角形AEF 中, AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF 。

所以 三角形ABF 和三角形AEF 全等。

所以 ∠BAF=∠EAF (∠1=∠2)。

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2 又∵CD=DE∴⊿ADC ≌⊿GDE (AAS ) ∴EG=AC ∵EF//AB ∴∠DFE=∠1 ∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB ,AD=AD∴⊿AED ≌⊿ABD (SAS ) ∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE∴∠C=∠EDC∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠CCDB BA CDF2 1 EA6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 证明:在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB所以∠CEB =∠CEF =90° 因为EB =EF ,CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC所以△ADC ≌△AFC (SAS ) 所以AD =AF所以AE =AF +FE =AD +BE12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

(完整版)全等三角形证明经典50题(含答案)

(完整版)全等三角形证明经典50题(含答案)

全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠24. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠CDAB B A CDF2 1 EAC D E F 21 A D BC A6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

求证:BC=AB+DC 。

13.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C14. P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-AB15. 已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BED C B A FE PD A CB16. 已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC18.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .19.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA20.(5分)如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .21.如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B22.(6分)如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M .(1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.F AEDCB P E D CB A DC B A23.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC . (2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):24.(7分)如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .证明:25、如图:DF=CE ,AD=BC ,∠D=∠C 。

全等三角形证明100题(经典).docx

全等三角形证明100题(经典).docx

1 :已知:AB=4 , AC=2 , D是BC中点,AD是整数,求AD长。

A2:已知:D 是AB 中点,∠ ACB=90 °,求证:CD=I AB2:3 :已知:BC=DE , ∠ B= ∠ E,∠ C= ∠ D , F 是CD 中点,求证:∠ 1 = ∠ 2:4 :已知:∠ 1 = ∠ 2, CD=DE , EF//AB ,求证:EF=ACB5:已知:AC 平分∠ BAD , CE 丄AB , ∠ B+ ∠ D=180 °,求证:AE=AD+BE6:.:如图,四边形ABCD中,AB // DC , BE、CE分别平分∠ ABC、/ BCD ,且点E在AD 上。

求证:BC=AB+DC。

7:P 是∠ BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-AB8 :已知∠ ABC=3 ∠ C ,∠ 1= ∠ 2,B E 丄AE ,求证:AC-AB=2BEC9:已知,E 是AB 中点,AF=BD , BD=5 , AC=7 ,求DC10:如图,在△ ABC 中,BD=DC , ∠ 1 = ∠ 2,求证:AD丄BC .11:如图,OM平分∠ PoQ , MA丄OP,MB丄OQ , A、B为垂足,AB交OM于点N. 求证:∠ OAB= ∠ OBAO12:如图①,E、F分别为线段AC上的两个动点,且DE丄AC于E,BF丄AC于F,若AB=CD ,AF=CE, BD 交AC 于点M .(1)求证:MB = MD , ME=MF(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.13:已知:如图,DC // AB,且DC =AE, E为AB的中点,(1) 求证:△ AED ◎△ EBC .(2) 观看图前,在不添辅助线的情况下,除△EBC夕卜,请再写出两个与△ AED的面积相等的三角形.(直接写出结果,不要求证明):14:如图:DF=CE AD=BC ∠ D=∠ CO 求证:△ AED^△ BFGR15:如图:AE、BC交于点M, F 点在AMk, BE// CF, BE=CF求证:AM>△ ABC的中线。

(完整版)全等三角形证明经典50题(含答案)

(完整版)全等三角形证明经典50题(含答案)

证明:连接 BF 和 EF T BC=ED,CF=DF, / BCF= / EDF 三角形BCF 全等于三角形 EDF (边角边)1.已知:AB=4 , AC=2 , D 是BC 中点,AD 是整数,求 ADD • BF=EF, / CBF= / DEF 连接 BE 在三角形 BEF 中,BF=EF • / EBF= / BEF 。

: / ABC= / AED 。

二 / ABE= / AEB 。

• AB=AE 。

在三角形 ABF 和三角形 AEF 中AB=AE,BF=EF, / ABF= / ABE+ / EBF= / AEB+ / BEF= / AEF • 三角形 ABF 和三角形 AEF 全等。

•/ BAF= / EAF ( /仁/ 2)4.已知:/ 1 = / 2, CD=DE , EF//AB ,求证:EF=AC解:延长 AD 到E,使AD=DE •/ D 是BC 中点二BD=DC 在厶 ACD 和^ BDE 中 AD=DE / BDE= / ADCBD=DC /•△ ACD ◎△ BDE ••• AC=BE=2 •••在△ ABE 中 AB-BE V AE V AB+BE •/ AB=4 即 4-2 V 2AD V 4+21 V AD V 3 • AD=21 2.已知:D 是 AB 中点,/ ACB=90 °,求证:CD —AB 2A CG// EF ,可得,/• △ EFD ^A CGD•,/ EFD =Z 1过C 作CG // EF 交AD 的延长线于点GEFD = CGDDE = DC / FDE =Z GDC (对顶角) EF = CG / CGD =Z EFD 又,EF // AB / 1= / 2 •/ CGD =Z 2 • △ AGC 为等腰三角形, AC = CG 又 EF = CG 「. EF = AC 延长CD 与P ,使D 为CP 中点。

连接 AP,BP •/ DP=DC,DA=DB • ACBP 为平行四边形又/ ACB=90 •平行四边形 ACBP 为矩形 • AB=CP=1/2AB 3.已知:BC=DE ,/ B= / E ,Z C=Z D , F 是 CD 中点,求证:/ 1 = / 2 5.已知:AD 平分/ BAC , AC=AB+BD ,求证:/ B=2 / C证明:延长 AB 取点E ,使AE = AC ,连接DE •/ AD 平分/ BAC• / EAD =Z CAD•/ AE = AC , AD = AD • △ AED 也厶 ACD ( SAS )•••/ E = Z C•/ AC = AB+BD •AE = AB+BD•/ AE = AB+BE •BD = BE •••/ BDE =Z E •••/ ABC =Z E+ / BDE •••/ ABC = 2 / E •••/ ABC = 2 / C ••• AE = AF + FE = AD + BE12.如图,四边形ABCD中,AB 在AD上。

全等三角形证明50题(含答案)

全等三角形证明50题(含答案)

全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=2ADBC2. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB延长CD 与P ,使D 为CP 中点。

连接AP ,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形 又∠ACB=90∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边) ∴ BF=EF,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF ∴ ∠EBF=∠BEF 。

∵ ∠ABC=∠AED 。

∴ ∠ABE=∠AEB 。

∴ AB=AE 。

在三角形ABF 和三角形AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴ 三角形ABF 和三角形AEF 全等。

∴ ∠BAF=∠EAF (∠1=∠2)。

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点G CG ∥EF ,可得,∠EFD =CGD DE =DC∠FDE =∠GDC (对顶角)BA CDF2 1 EEF=CG∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又EF=CG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE 上取F ,使EF =EB ,连接CF ∵CE ⊥AB∴∠CEB =∠CEF =90° ∵EB =EF ,CE =CE , ∴△CEB ≌△CEF ∴∠B =∠CFE∵∠B +∠D =180°,∠CFE +∠CFA =180° ∴∠D =∠CFA ∵AC 平分∠BAD ∴∠DAC =∠FAC ∵AC =AC∴△ADC ≌△AFC (SAS ) ∴AD =AF∴AE =AF +FE =AD +BE7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DEADB C∵D 是BC 中点 ∴BD=DC在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=28. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB解:延长AD到E,使AD=DE∵D是BC中点∴BD=DC在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4即4-2<2AD<4+21<AD<3∴AD=29.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证明:连接BF和EF。

三角形全等证明题60题(有答案)

三角形全等证明题60题(有答案)

全等三角形证明题专项练习60题(有答案)1.已知如图,△ABC≌△ADE,∠B=30°,∠E=20°,∠BAE=105°,求∠BAC的度数.∠BAC=_________.2.已知:如图,四边形ABCD中,AB∥CD,AD∥BC.求证:△ABD≌△CDB.3.如图,点E在△ABC外部,点D在边BC上,DE交AC于F.若∠1=∠2=∠3,AC=AE,请说明△ABC≌△ADE 的道理.4.如图,△ABC的两条高AD,BE相交于H,且AD=BD.试说明下列结论成立的理由.(1)∠DBH=∠DAC;(2)△BDH≌△ADC.5.如图,在△ABC中,D是BC边的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,且DE=DF,则AB=AC,并说明理由.6.如图,AE是∠BAC的平分线,AB=AC,D是AE反向延长线的一点,则△ABD与△ACD全等吗?为什么?7.如图所示,A、D、F、B在同一直线上,AF=BD,AE=BC,且AE∥BC.求证:△AEF≌△BCD.8.如图,已知AB=AC,AD=AE,BE与CD相交于O,△ABE与△ACD全等吗?说明你的理由.9.如图,在△ABC中,AB=AC,D是BC的中点,点E在AD上,找出图中全等的三角形,并说明它们为什么是全等的.10.如图所示,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.11.已知AC=FE,BC=DE,点A、D、B、F在一条直线上,要使△ABC≌△FDE,应增加什么条件?并根据你所增加的条件证明:△ABC≌△FDE.12.如图,已知AB=AC,BD=CE,请说明△ABE≌△ACD.13.如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C逆时针旋转角α(0°<α<90°)得到△A1B1C,连接BB1.设CB1交AB于D,A1B1分别交AB,AC于E,F,在图中不再添加其他任何线段的情况下,请你找出一对全等的三角形,并加以证明.(△ABC与△A1B1C1全等除外)14.如图,AB∥DE,AC∥DF,BE=CF.求证:△ABC≌△DEF.15.如图,AB=AC,AD=AE,AB,DC相交于点M,AC,BE相交于点N,∠DAB=∠EAC.求证:△ADM≌△AEN.16.将两个大小不同的含45°角的直角三角板如图1所示放置在同一平面内.从图1中抽象出一个几何图形(如图2),B、C、E三点在同一条直线上,连接DC.求证:△ABE≌△ACD.17.如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.请在图中找出所有全等的三角形,用符号“≌"表示,并选择一对加以证明.18.如图,已知∠1=∠2,∠3=∠4,EC=AD.(1)求证:△ABD≌△EBC.(2)你可以从中得出哪些结论?请写出两个.19.等边△ABC边长为8,D为AB边上一动点,过点D作DE⊥BC于点E,过点E作EF⊥AC于点F.(1)若AD=2,求AF的长;(2)求当AD取何值时,DE=EF.20.巳知:如图,AB=AC,D、E分别是AB、AC上的点,AD=AE,BE与CD相交于G.(Ⅰ)问图中有多少对全等三角形?并将它们写出来.(Ⅱ)请你选出一对三角形,说明它们全等的理由(根椐所选三角形说理难易不同给分,即难的说对给分高,易的说对给分低)21.已知:如图,AB=DC,AC=BD,AC、BD相交于点E,过E点作EF∥BC,交CD于F,(1)根据给出的条件,可以直接证明哪两个三角形全等?并加以证明.(2)EF平分∠DEC吗?为什么?22.如图,己知∠1=∠2,∠ABC=∠DCB,那么△ABC与△DCB全等吗?为什么?23.如图,B,F,E,D在一条直线上,AB=CD,∠B=∠D,BF=DE.试证明:(1)△DFC≌△BEA;(2)△AFE≌△CEF.24.如图,AC=AE,∠BAF=∠BGD=∠EAC,图中是否存在与△ABE全等的三角形?并证明.25.如图,D是△ABC的边BC的中点,CE∥AB,E在AD的延长线上.试证明:△ABD≌△ECD.26.如图,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC;(2)求∠AEO的度数.27.如图,已知AB∥DE,AB=DE,AF=DC.(1)求证:△ABF≌△DEC;(2)请你找出图中还有的其他几对全等三角形.(只要直接写出结果,不要证明)28.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:△ABD≌△GCA;(2)请你确定△ADG的形状,并证明你的结论.29.如图,点D、F、E分别在△ABC的三边上,∠1=∠2=∠3,DE=DF,请你说明△ADE≌△CFD的理由.30.如图,在△ABC中,∠ABC=90°,BE⊥AC于点E,点F在线段BE上,∠1=∠2,点D在线段EC上,给出两个条件:①DF∥BC;②BF=DF.请你从中选择一个作为条件,证明:△AFD≌△AFB.31.如图,在△ABC中,点D在AB上,点E在BC上,AB=BC,BD=BE,EA=DC,求证:△BEA≌△BDC.32.阅读并填空:如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.请说明△ADC≌△CEB的理由.解:∵BE⊥CE于点E(已知),∴∠E=90°_________,同理∠ADC=90°,∴∠E=∠ADC(等量代换).在△ADC中,∵∠1+∠2+∠ADC=180°_________,∴∠1+∠2=90°_________.∵∠ACB=90°(已知),∴∠3+∠2=90°,∴_________.在△ADC和△CEB中,.∴△ADC≌△CEB (A.A.S)33.已知:如图所示,AB∥DE,AB=DE,AF=DC.(1)写出图中你认为全等的三角形(不再添加辅助线);(2)选择你在(1)中写出的全等三角形中的任意一对进行证明.34.如图,点E在△ABC外部,点D在BC边上,DE交AC于点F,若∠1=∠2=∠3,AC=AE.试说明下列结论正确的理由:(1)∠C=∠E;(2)△ABC≌△ADE.35.如图,在Rt△ABC中,∠ACB=90°,AC=BC,D是斜边AB上的一点,AE⊥CD于E,BF⊥CD交CD的延长线于F.求证:△ACE≌△CBF.36.如图,在△ABC中,D是BC的中点,DE∥CA交AB于E,点P是线段AC上的一动点,连接PE.探究:当动点P运动到AC边上什么位置时,△APE≌△EDB?请你画出图形并证明△APE≌△EDB.37.已知:如图,AD∥BC,AD=BC,E为BC上一点,且AE=AB.求证:(1)∠DAE=∠B;(2)△ABC≌△EAD.38.如图,D为AB边上一点,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,CA=CB,CD=CE,图中有全等三角形吗?指出来并说明理由.39.如图,AB=AC,AD=AE,∠BAC=∠DAE.求证:△ABD≌△ACE.40.如图,已知D是△ABC的边BC的中点,过D作两条互相垂直的射线,分别交AB于E,交AC于F,求证:BE+CF>EF.41.如图所示,在△MNP中,H是高MQ与NE的交点,且QN=QM,猜想PM与HN有什么关系?试说明理由.42.如图,在△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥GF,交AB于点E,连接EG.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并证明你的结论.43.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2。

全等三角形证明经典10题((含答案)

全等三角形证明经典10题((含答案)

全等三角形证明经典10题(含答案)1 如图,已知: AD 是BC 上的中线 ,且DF=DE .求证:BE ∥CF .2.如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC ,连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。

3.已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC在△ACD 和△BDE 中 AD=DE∠BDE=∠ADC BD=DC∴△ACD ≌△BDE∴AC=BE=2 ∵在△ABE 中AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=24.已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2ADBCA BCDE1.证明:连接BF和EF∵BC=ED,CF=DF,∠BCF=∠EDF∴三角形BCF全等于三角形EDF(边角边) ∴BF=EF,∠CBF=∠DEF连接BE在三角形BEF中,BF=EF∴∠EBF=∠BEF。

∵∠ABC=∠AED。

∴∠ABE=∠AEB。

∴AB=AE。

在三角形ABF和三角形AEF中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴三角形ABF和三角形AEF全等。

∴∠BAF=∠EAF (∠1=∠2)。

5.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC证明:过C作CG∥EF交AD的延长线于点GCG∥EF,可得,∠EFD=CGDDE=DC∠FDE=∠GDC(对顶角)∴△EFD≌△CGDEF=CG ∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CGBACDF21EEDC B A F又 EF =CG ∴EF =AC6.已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C证明:延长AB 取点E ,使AE =AC ,连接DE∵AD 平分∠BAC ∴∠EAD =∠CAD ∵AE =AC ,AD =AD∴△AED ≌△ACD (SAS ) ∴∠E =∠C ∵AC =AB+BD∴AE =AB+BD ∵AE =AB+BE ∴BD =BE ∴∠BDE =∠E∵∠ABC =∠E+∠BDE ∴∠ABC =2∠E ∴∠ABC =2∠C7.如图所示,△ABC 中,∠ACB=90°,AC=BC,AE 是BC 边上的中线,过C 作CF ⊥AE, 垂足为F,过B 作BD ⊥BC 交CF 的延长线于D.求证:(1)AE=CD;(2)若AC=12cm,求BD 的长.8.如图(1), 已知△ABC 中, ∠BAC=900, AB=AC, AE 是过A 的一条直线, 且B 、C 在A 、E 的异侧, BD ⊥AE 于D, CE ⊥AE 于E 试说明: BD=DE+CE9已知∠ABC=3∠C,∠1=∠2,BE⊥AE,求证:AC-AB=2BE证明:在AC上取一点D,使得角DBC=角C∵∠ABC=3∠C∴∠ABD=∠ABC-∠DBC=3∠C-∠C=2∠C;∵∠ADB=∠C+∠DBC=2∠C;∴AB=AD∴AC – AB =AC-AD=CD=BD在等腰三角形ABD中,AE是角BAD的角平分线,∴AE垂直BD∵BE⊥AE∴点E一定在直线BD上,在等腰三角形ABD中,AB=AD,AE垂直BD∴点E也是BD的中点∴BD=2BE∵BD=CD=AC-AB∴AC-AB=2BE22.(6分)如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.(1)连接BE,DF.∵DE⊥AC于E,BF⊥AC于F,∴∠DEC=∠BFA=90°,DE∥BF,在Rt△DEC和Rt△BFA中,∵AF=CE,AB=CD,∴Rt△DEC≌Rt△BFA(HL),∴DE=BF.∴四边形BEDF是平行四边形.∴MB=MD,ME=MF;(2)连接BE,DF.∵DE⊥AC于E,BF⊥AC于F,∴∠DEC=∠BFA=90°,DE∥BF,在Rt△DEC和Rt△BFA中,∵AF=CE,AB=CD,∴Rt△DEC≌Rt△BFA(HL),∴DE=BF.∴四边形BEDF是平行四边形.∴MB=MD,ME=MF.。

(完整版)全等三角形证明经典30题

(完整版)全等三角形证明经典30题

全等三角形经典题目精选1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠24. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠CAD BCB ACDF21 ECD B A6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE7. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

求证:BC=AB+DC 。

8.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C9.已知:AB=CD ,∠A=∠D ,求证:∠B=∠C10.P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-AB11.已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE12.已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DCDC B A F E A B C DPD A CB13.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .14.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA15.如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .PED CB A16.如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠BD C B A17.如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,F A E DCBAF =CE ,BD 交AC 于点M .(1)求证:MB =MD ,ME =MF (2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.18.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点,(1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):O E DC B A19.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .FEDC B A20、如图:DF=CE ,AD=BC ,∠D=∠C 。

全等三角形证明题(完整版)

全等三角形证明题(完整版)

全等三角形证明题全等三角形证明题第一篇:全等三角形证明题全等三角形证明题1在直角坐标系中,有两个点a△ab≌△aed;ob=oe .e8.如图,在△ab和△db中,ab = d,a = db,a与db交于点m.(1)求证:△ab≌△db ;(2)过点作n∥bd,过点b作bn∥a,n与bn交于点n,试判断线段bn与n的数量关系,并证明你的结论.bn9.在⊿ab中,∠b=60。

,∠ba和∠ba的平分线ad和f交于i 点。

试猜想:af、d、a三条线段之间有着怎样的数量关系,并加以证明。

10. 在?ab中,ab=a,de∥b.(1)试问?ade是否是等腰三角形,说明理由.(2)若m为de上的点,且bm平分?ab,m平分?ab,若?ade的周长20,b=8.求?ab的周长.amdeb11. 如图, 已知: 等腰rt△oab中,∠aob=900, 等腰rt△eof 中,∠eof=900, 连结ae、bf. 求证:ae=bf;ae⊥bf.1如图,△ab中,d是b的中点,过d点的直线gf交a于点f,交a的平行线bg于点g,de⊥gf交ab于点e,连接eg。

(1)求证:bg=f;(2)请你判断be+f与ef的大小关系,并证明。

13.如图:△ab和△ade是等边三角形.证明:bd=e.bg dabde14. 如图,一艘轮船从点a向正北方向航行,每小时航行15海里,小岛p在轮船的北偏西15°,3小时后轮船航行到点b,小岛p此时在轮船的北偏西30°方向,在小岛p的周围20海里范围内有暗礁,如果轮船不改变方向继续向前航行,是否会有触礁危险?请说明理由。

北b15.如图若直线ae绕a点旋转到图若直线ae绕a点旋转到图.a. 全等三角形周长相等b. 全等三角形能够完全重合. 形状相同的图形就是全等图形d.全等图形的形状和大小都相同9.如图,已知△ab ≌△def,且ab=4,b=5,a=6,则de的长为.a.4b.5c.6d.不能确定10.如图,若△oad≌△ob,且∠0=65°,∠=20°,则∠oad等于().a. 85°b. 95°c. 65°d.105°11. 如图,已知∠1=∠2,要使△ab≌△ade,还需条件().a. ab=ad,b=deb. b=de,a=ae. ∠b=∠d,∠=∠ed.a=ae,ab=adaeebdbfbd1如图,△ab≌△aef,ab=ae,∠b=∠e,则对于结论①a=af;②∠fab=∠eab;③ef=b;④∠eab=∠fa,其中正确结论的个数是().a. 1个b. 2个. 3个d. 4个13.如图,已知△ab中,ab=a,它的周长为24,又ad⊥b于d,△abd的周长为20,则ad的长为().a. 6b.8. 10d. 12三、证明题1.已知:如图点是ab的中点,d∥be,且d=be.求证:∠d=∠e.adbe、f是ab上的两点,ae=bf,又a∥db,且a=db.求证:f=de。

全等三角形证明经典题(含答案)

全等三角形证明经典题(含答案)

全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=22. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB延长CD 与P ,使D 为CP 中点。

连接AP,BP∵DP=DC,DA=DB∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形AD BC∴AB=CP=1/2AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边)∴ BF=EF,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF∴ ∠EBF=∠BEF 。

∵ ∠ABC=∠AED 。

∴ ∠ABE=∠AEB 。

∴ AB=AE 。

在三角形ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 和三角形AEF 全等。

∴ ∠BAF=∠EAF (∠1=∠2)。

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGDDE =DC∠FDE =∠GDC (对顶角)B ACDF21 E∴△EFD≌△CGDEF=CG∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又EF=CG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE证明:在AE 上取F ,使EF =EB ,连接CF∵CE ⊥AB∴∠CEB =∠CEF =90°∵EB =EF ,CE =CE ,∴△CEB ≌△CEF∴∠B =∠CFE∵∠B +∠D =180°,∠CFE +∠CFA =180°∴∠D =∠CFA∵AC 平分∠BAD∴∠DAC =∠FAC∵AC =AC∴△ADC ≌△AFC (SAS )∴AD =AF∴AE =AF +FE =AD +BE7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD BCAD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE ∵AB=4即4-2<2AD<4+21<AD<3∴AD=28.已知:D是AB中点,∠ACB=90°,求证:12 CD AB9. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。

全等三角形证明经典40题(含答案)

全等三角形证明经典40题(含答案)

1.已知:AB=4,AC=2,D是BC中点,AD是整数,求AD的长.解:延长AD到E,使AD=DE∵D是BC中点∴BD=DC在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4即4-2<2AD<4+21<AD<3∴AD=22.已知:BC=ED,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证明:连接BF和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴三角形BCF全等于三角形EDF(边角边)∴ BF=EF,∠CBF=∠DEF连接BE在三角形BEF中,BF=EF∴∠EBF=∠BEF。

∵∠ABC=∠AED。

∴∠ABE=∠AEB。

∴ AB=AE。

在三角形ABF和三角形AEF中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴三角形ABF和三角形AEF全等。

∴∠BAF=∠EAF (∠1=∠2)。

ADB C3. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG∥EF 交AD 的延长线于点GCG∥EF,可得,∠EFD=CGDDE =DC∠FDE=∠GDC(对顶角)∴△EFD ≌△CGDEF =CG∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC 为等腰三角形,AC =CG又 EF =CG∴EF =AC4. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C证明:延长AB 取点E ,使AE =AC ,连接DE∵AD 平分∠BAC∴∠EAD =∠CAD∵AE =AC ,AD =AD∴△AED ≌△ACD (SAS )∴∠E =∠C∵AC =AB+BD∴AE =AB+BD∵AE =AB+BE∴BD =BE∴∠BDE =∠E∵∠ABC =∠E+∠BDEBACDF21 EA∴∠ABC=2∠E∴∠ABC=2∠C5.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF(SAS)∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE6. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。

(完整版)全等三角形证明经典50题(含答案)

(完整版)全等三角形证明经典50题(含答案)

1.已知: AB=4 , AC=2 , D 是 BC 中点, AD 是整数,求 AD AB CD解:延伸 AD 到 E,使 AD=DE ∵ D 是 BC 中点∴ BD=DC在△ ACD 和△ BDE 中 AD=DE ∠ BDE= ∠ ADCBD=DC ∴△ ACD ≌△ BDE∴AC=BE=2 ∵在△ ABE 中 AB-BE < AE <AB+BE ∵ AB=4即4-2< 2AD < 4+21< AD < 3∴AD=22. 已知: D 是 AB 中点,∠ ACB=90 °,求证:CD 1 AB2ADC B延伸 CD 与 P,使 D 为 CP 中点。

连结AP,BP∵DP=DC,DA=DB ∴ ACBP 为平行四边形又∠ ACB=90 ∴平行四边形 ACBP 为矩形∴AB=CP=1/2AB3.已知: BC=DE ,∠ B=∠ E,∠ C=∠ D ,F 是 CD 中点,求证:∠ 1=∠ 2A12B EC F D证明:连结 BF 和 EF∵ BC=ED,CF=DF, ∠ BCF= ∠ EDF∴三角形 BCF 全等于三角形 EDF( 边角边 )∴BF=EF, ∠CBF= ∠ DEF 连结 BE 在三角形 BEF 中 ,BF=EF∴∠EBF= ∠ BEF 。

∵ ∠ ABC= ∠ AED 。

∴ ∠ABE= ∠ AEB 。

∴AB=AE 。

在三角形 ABF 和三角形 AEF 中 AB=AE,BF=EF,∠ABF= ∠ ABE+ ∠ EBF= ∠ AEB+ ∠ BEF= ∠AEF∴三角形 ABF 和三角形 AEF 全等。

∴∠ BAF=∠ EAF (∠ 1=∠ 2) 4.已知:∠ 1=∠2, CD=DE , EF//AB ,求证: EF=ACA12FCDEB过 C 作 CG∥ EF 交 AD 的延伸线于点G CG∥ EF,可得,∠ EFD= CGDDE= DC ∠ FDE=∠ GDC(对顶角)∴ △ EFD≌ △ CGD EF= CG ∠ CGD=∠ EFD 又, EF∥AB ∴,∠ EFD=∠ 1 ∠ 1= ∠2 ∴∠ CGD=∠ 2∴ △AGC 为等腰三角形,AC= CG 又 EF= CG∴ EF=AC5.已知: AD 均分∠ BAC ,AC=AB+BD ,求证:∠ B=2 ∠ C A证明:延伸AB 取点 E,使 AE = AC ,连结 DE∵AD 均分∠ BAC∴∠ EAD =∠ CAD∵AE =AC , AD = AD∴△ AED ≌△ ACD(SAS)∴∠ E=∠ C∵AC =AB+BD∴AE = AB+BD∵AE = AB+BE∴ BD =BE∴∠ BDE =∠ E∵∠ ABC =∠ E+ ∠ BDE∴∠ ABC = 2∠E∴∠ ABC = 2∠C6.已知: AC 均分∠ BAD ,CE⊥AB ,∠ B+ ∠ D=180 °,求证: AE=AD+BE证明:在AE 上取 F,使 EF=EB ,连结 CF∵ CE⊥ AB∴∠ CEB =∠ CEF= 90°∵ EB= EF, CE= CE,∴△ CEB ≌△ CEF∴∠ B =∠ CFE∵∠ B +∠ D= 180°,∠ CFE+∠ CFA = 180°∴∠ D =∠ CFA∵AC 均分∠ BAD∴∠ DAC =∠ FAC∵AC =AC∴△ ADC ≌△ AFC ( SAS)∴AD =AF ∴AE =AF + FE=AD + BE12.如图,四边形 ABCD 中, AB ∥ DC ,BE、CE 分别均分∠ ABC 、∠ BCD ,且点 E在AD 上。

全等三角形基础证明题练习题不含辅助线

全等三角形基础证明题练习题不含辅助线

全等三角形基础证明题练习题不含辅助线【类型一】平移模型1如图,点C是AE的中点,∠A=∠ECD,AB=CD,求证:△ABC≌△CDE.2如图,已知点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AB∥DE.求证:(1)△ABC≌△DEF;(2)AC∥DF.3如图,在△ABC和△DEF中,AB∥DE,AC∥DF,BC∥EF,BC=EF.(1)求证:△ABC≌△DEF;(2)分别连接AD,BE,CF,探索线段AD,CF,BF之间的位置关系和数量关系,并证明结论.4已知:如图,BC∥EF,AB=DE,BC=EF.证明:△ABC≌△DEF.【类型二】轴对称模型5如图,AE=AF,AC=AD, 求证:∠C=∠D.6如图,在Rt△ABC和Rt△DEF中,∠B=∠E=90°,AC=DF,BF=EC,求证:AB=DE.7如图,AB=AD,CB⊥AB于点B,CD⊥AD于点D.求证:∠1=∠2.8如图,AC=AE,∠C=∠E,∠1=∠2.(1)求证:AB=AD(2)求证:EM=CN【类型三】旋转模型9如图,点E在AB上,CD=CA,DE=AB,∠DCA=∠DEA.求证:CE平分∠BED.10如图,△ABC和△DAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE.(1)求证:∠ABC=∠AED;(2)求证:BD=CE.11如图,点B在CD上,OB=OD,AB=CD,∠OBA=∠D;(1)求证:△ABO≌△CDO;(2)当AO∥CD,∠BOD=30°,求∠A的度数.12如图,点E在△ABC边AC上,AE=BC,BC∥AD,∠D=∠BAC.求证:AB=DE.【类型四】角平分线模型13在△ABC中,∠C=90°,AC=4cm,AB=7cm,AD平分∠BAC,DE⊥AB于E.(1)求证:△ACD≌△AED;(2)求EB的长.14如图,已知DE⊥AB垂足为E,DF⊥AC垂足为F,BD=CD,BE=CF.(1)求证:AD平分∠BAC;(2)丁丁同学观察图形后得出结论:AB+AC=2AE,请你帮他写出证明过程.15如图,在△ABC中,AD是它的角平分线,DE⊥AB于点E,DF⊥AC于点F,且BE=CF.线段BD与CD相等吗?说明理由.16已知AD、CD分别是△ABC内角和外角平分线,它们的交点为D,过点D作DF⊥BC,垂足为F 点,作DE⊥AB,垂足为E点,连接BD.求证:BF=BE.【类型五】三垂线模型17如图,在△ABC中,∠ACB=90°,AC=BC,AE为BC边上的中线,过点C作CF⊥AE,垂足为点F,在直线CF上截取CD=AE.求证:BD⊥BC.18如图1,点A是线段DE上一点,∠BAC=90°,AB=AC,BD⊥DE,CE⊥DE,(1)求证:DE=BD+CE.(2)如图2,点A是线段DE上一点,∠BAC=90°,AB=AC,BD⊥DE,CE⊥DE,BD、CE、DE有什么数量关系?并证明.19如图,∠ACB=90°,AC=BC,AD⊥MN,BE⊥MN,垂足分别是D,E.(1)求证:△ADC≌△CEB;(2)猜想线段AD,BE,DE之间具有怎样的数量关系,并说明理由.20如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图1所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图2所示),且AD=CE,其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.【类型六】“8”字型21如图,在△ABC中,BD,CE分别是AC,AB边上的高,在BD上载取BF=AC,延长CE至点G 使CG=AB,连接AF,AG.(1)求证:AG=AF;(2)求∠GAF的度数;22如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一条直线上,连接BD.(1)△BAD与△CAE全等吗?为什么?(2)请判断BD、CE有何大小、位置关系,并说明理由.23如图,AC⊥BC,CE⊥DC,CA=CB,CE=CD,AE与BD交于点F,AE与BC交于点G,BD 与CE交于点H.(1)求证:AE=BD;(2)求证:AE⊥BD.24如图,△ACD和△BCE都是等腰三角形,∠ACD=∠BCE=90°,AC=DC,BC=EC,AE交CD 于点F,BD分别交CE,AE于点G,H.试猜想线段AE和BD的数量和位置关系,再说明理由.【类型七】手拉手模型25如图, AB=CB, BD=BE, ∠ABC=∠DBE=a.(1)当a=60°, 如图①则,∠DPE的度数(2)若△BDE绕点B旋转一定角度,如图②所示,求∠DPE(用a表示)26已知:如图1,在ΔABC和ΔADE中,∠C=∠E,∠CAE=∠DAB,BC=DE.(1)请说明ΔABC≌ΔADE.(2)如图2,连接CE和BD,DE,AD与BC分别交于点M和N,∠DMB=56°,求∠ACE的度数.(3)在(2)的条件下,若CN=EM,请直接写出∠CBA的度数.27如图,△ABC和△DCE是等腰直角三角形,∠ACB=∠DCE=90°,且∠EBD=52°,求∠AEB的度数.28如图,△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=α,AC、BD交于M.(1)如图1,当α=90°时,∠AMD的度数为;(2)如图2,当α≠90°使,求证:△BOD≌△AOC;(3)如图3,当△OCD绕O点任意旋转时,∠AMD与α是否存在着确定的数量关系?如果存在,请直接写出数量关系;若不确定,说明理由.【类型八】一线三等角29已知CD是经过∠BCA顶点C的一条直线,CA=CB.E、F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E、F在射线CD上,请解决下面问题:①如图1,若∠BCA=90°,∠α=90°,求证:BE=CF;②如图2,若∠α+∠BCA=180°,探索三条线段EF,BE,AF的数量关系,并证明你的结论;(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,题(1)②中的结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确的结论再给予证明.30(1)如图1,点B,C在∠MAN的边AM、AN上,点E,F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF;(2)如图2,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为18,求:△ABE与△CDF的面积之和.31“一线三等角”模型是平面几何图形中的重要模型之一,“一线三等角”指的是图形中出现同一条直线上有3个相等的情况,在学习过程中,我们发现“一线三等角”模型的出现,还经常会伴随着出现全等三角形.根据对材料的理解解决以下问题:(1)如图1,∠ADC=∠CEB=∠ACB=90°,AC=BC.猜想DE,AD,BE之间的关系:;(2)如图2,将(1)中条件改为∠ADC=∠CEB=∠ACB=α90°<α<180°,AC=BC,请问(1)中的结论是否成立?若成立,请给出证明;若不成立,请说明理由;(3)如图3,在△ABC中,点D为AB上一点,DE=DF,∠A=∠EDF=∠B,AE=3,BF=5,请直接写出AB的长.32【感知模型】“一线三等角”模型是平面几何图形中的重要模型之一,请根据以下问题,把你的感知填写出来:①如图1,△ABC是等腰直角三角形,∠C=90°,AE=BD,则△AED≌;②如图2,△ABC为正三角形,BD=CF,∠EDF=60°,则△BDE≌;③如图3,正方形ABCD的顶点B在直线l上,分别过点A、C作AE⊥l于E,CF⊥l于F.若AE=1,CF=2,则EF的长为.【模型应用】(2)如图4,将正方形OABC放在平面直角坐标系中,点O为原点,点A的坐标为1,3,则点C的坐标为.【模型变式】(3)如图5所示,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,DE=4cm,AD=6cm,求BE的长.【类型九】动点问题33如图,在△ABC中,D为AB的中点,AB=AC=10cm,BC=8cm,动点P从点B出发,沿BC方向以每秒3cm的速度向点C运动;同时动点Q从点C出发,沿CA方向以每秒3cm的速度向点A运动,运动时间是t秒.(1)在运动过程中,当点C位于线段PQ的垂直平分线上时,求出t的值;(2)在运动过程中,是否存在某一时刻t,使△BPD和△CQP全等,若存在,求出t的值.若不存在,请说明理由.34如图1,在△ABC中,AB=AC=BC,∠ABC=∠ACB=∠CAB=60°,点P、Q分别是△ABC边AB、BC上的动点(端点除外),点P从点A、点Q从点B同时出发,且它们的运动速度相同,连接AQ、CP 交于点M.(1)求证:△ABQ≌△CAP;(2)点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,请求出它的度数.(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,直接写出11∠QMC 的度数.35如图,在△ABC 中,∠BAD =∠DAC ,DF ⊥AB ,DM ⊥AC ,AF =10cm ,AC =14cm ,动点E 以2cm/s 的速度从A 点向F 点运动,动点G 以1cm/s 的速度从C 点向A 点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t.(1)求证:AF =AM ;(2)当t 取何值时,△DFE 与△DMG 全等.36如图(1),AB =8cm ,AD ⊥AB ,BC ⊥AB ,垂足为A 、B ,AD =BC =6cm ,点P 在线段AB 上以每秒2cm 的速度由点A 向点B 运动,同时,点Q 在线段BC 上由点B 向点C 运动.连接PD ,PQ ,设它们运动的时间为t s.(1)PA =cm ,PB =cm ;(用含t 的代数式表示)(2)若点Q 的运动速度与点P 的运动速度相等,当t =1时,判断线段PD 和线段PQ 的数量关系和位置关系,并请说明理由;(3)如图(2),将图(1)中的“AD ⊥AB ,BC ⊥AB ”,改为“∠DAB =∠CBA =α”,其他条件不变.设点Q 的运动速度为xcm /s ,当x 为何值时,△ADP 与△BPQ 全等,请求出x 的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形的判定 班级: 姓名:
1.已知AD 是⊿ABC 的中线,BE ⊥AD ,CF ⊥AD ,求证BE =CF 。

2.已知AC =BD ,AE =CF ,BE =DF ,求证AE ∥CF
3.已知AB =CD ,BE =DF ,AE =CF ,求证AB ∥CD
4.已知在四边形ABCD 中,AB =CD ,AD =CB ,求证AB ∥CD
5.已知∠BAC =∠DAE ,∠1=∠2,BD =CE ,求证⊿ABD ≌⊿ACE .
6.已知CD ∥AB ,DF ∥EB ,DF =EB ,求证AF =CE
7.已知BE =CF ,AB =CD , ∠B =∠C ,求证AF =DE 8.已知AD =CB , ∠A =∠C ,AE =CF ,求证EB ∥DF
9.已知M 是AB 的中点,∠1=∠2,MC =MD ,求证∠C =∠D 。

10.已知,AE =DF ,BF =CE ,AE ∥DF ,求证AB =CD 。

11.已知∠1=∠2,∠3=∠4,求证AC =AD
12.已知∠E =∠F ,∠1=∠2,AB =CD ,求证AE =DF
13.已知ED ⊥AB ,EF ⊥BC ,BD =EF ,求证BM =ME 。

14.在⊿ABC 中,高AD 与BE 相交于点H ,且AD =BD ,求证⊿BHD ≌⊿ACD 。

A
C
D
B 1
2 3 4
A B C
D
E
F
1 2
A
B
C
E H
A
C M E F B
D
A B
C
D
F
E A C
B
D
E
F D
C
F E A
B A
D
E
B C
1 2
A
D
C E
F B
A D
B
A
D
F
E
C
M
A
B
C D 1 2
D
C
F E A B
15.已知∠A =∠D ,AC ∥FD ,AC =FD ,求证AB ∥DE 。

16.已知AC =AB ,AE =AD , ∠1=∠2,求证∠3=∠4。

17.已知EF ∥BC ,AF =CD ,AB ⊥BC ,DE ⊥EF ,求证⊿ABC ≌⊿DEF 。

18.已知AD =AE ,∠B =∠C ,求证AC =AB 。

19.已知AD ⊥BC ,BD =CD ,求证AB =AC
20.已知∠1=∠2,BC =AD ,求证⊿ABC ≌⊿BAD 。

21.已知AB =AC , ∠1=∠2,AD =AE ,求证⊿ABD ≌⊿ACE .
22.已知BE ∥DF ,AD ∥BC ,AE =CF ,求证⊿AFD ≌⊿CEB
23.已知AD =AE ,BD =CE ,∠1=∠2,求证⊿ABD ≌⊿ACE
24.已知AB =AC ,AD =AE ,∠1=∠2,求证CE =BD 。

25.已知CE ⊥AB ,DF ⊥AB ,AC ∥DB ,AC =BD ,求证CE =DF
26.如图,AD =BC ,AE =BE ,求证∠C =∠D 。

A B
C
E
F
D
C
A
E
B
F
D
A B
C
E D
F A D E B
C
A
B
C
D
A B
A D
F
E C
A
B C
D E
1 2 A C
D
B
E F
G 1 2 A
D E B
C
1 2
3
4
A
C D
E
B
A D
B
E
C
1
2
27.已知∠1=∠2,AC =BD ,E ,F ,A ,B 在同一直线上,求证∠3=∠4
28.已知D O ⊥BC ,O C =O A ,O B =O D ,求证CD =AB
29.已知CE=DF ,AE =BF ,AE ⊥AD ,FD ⊥AD ,求证⊿EAB ≌⊿FDC
30.已知AB 与CD 相交于点E ,EA =EC ,ED =EB ,求证⊿AED ≌⊿CEB
31.已知AB =AC ,D ,E 分别是AB ,AC 的中点。

求证BE =CD 。

32.已知DE =FE ,FC ∥AB ,求证AE =CE 。

33.已知CE ⊥AB ,DF ⊥AB ,CE =DF ,AE =BF ,求证⊿CEB ≌⊿DF A 。

34.如图,D ,E ,F ,B 在一条直线上,AB =CD ,∠B =∠D ,BF =DE ,求证(1)AE =CF (2)AE ∥CF 。

35.已知,点C 是AB 的中点,CD ∥BE ,且CD =BE ,求证∠D =∠E 。

36.已知,E 、F 是AB 上的两点,AE =BF ,又AC ∥DB ,AC =DB ,求证CF =DE 。

A E D C
B
O
C D
A
E F
B 2
1 3
4 B
A
C D E
F
C
D
E
F A B
D
A E C
B 1 2
B
A
D
F
E
C A
C
B
D
E
C
A
E
B
F
D
A D B
E F C
A C
B
E D
37.已知,AC⊥CE,AC=CE,∠ABC=∠DEC=900,求证BD=AB+ED。

38.⊿ABC≌⊿A′B′C′,AD与A′D′分别是中线,求证AD=A′D′。

39.已知:如图, E, B, F, C四点在同一直线上, ∠A=∠D=90° , BE=FC, AB=DF.求证:∠E=∠C
40.已知:如图, DN=EM , 且DN AB于D , EM AC于E , BM=CN.求证:∠B=∠C.
41.已知:如图, AE , FC都垂直于BD , 垂足为E、F , AD=BC , BE=DF.求证:OA=OC. 42.已知:如图, AB=CD , D、B到AC的距离DE=BF.求证:AB∥CD.
43.已知:如图, OC=OD , AD OB于D , BC OA于C,求证:EA=EB.
44.如图, 已知:∠ACB和∠ADB都是直角, BC=BD , E
是AB上任一点,求证:CE=DE.
45.已知:如图,∠A=∠D=90°,AC,BD交于O,AC=BD,求证:OB=OC.
A
B C D
E
A
B C
D
A′B′C′
D′。

相关文档
最新文档