高一数学集合的含义及其表示一
高一数学重点考点总结
1.1集合知识点一:集合的含义与表示1、集合的定义1>元素:一般地,我们把研究对象统称为元素.2>集合:把一些元素组成的总体叫做集合(简称为集).集合概念的三个性质(1)描述性:集合是一个原始的不加定义的概念,像点、直线一样,只能描述性地说明. (2)广泛性:凡是看得见、摸得着、想得到的任何事物都可以作为组成集合的对象.(3)整体性:集合是一个整体,已暗含“所有”、“全部”、“全体”的含义,因此一些对象一旦组成了集合,那么这个集合就是这些对象的全体,而非个别对象.2、集合中元素的特性(集合的三要素)1>确定性:集合中的元素是确定的,即给定一个集合,任何元素在不在这个集合里是确定的.它是判断一组对象是否构成集合的标准.2>互异性:给定一个集合,其中任何两个元素都是不同的,也就是说,在同一个集合中,同一个元素不能重复出现. 3>无序性:集合中的元素无先后顺序之分.例1、给出以下四个对象,其中能构成集合的有( ) ①某中学的年轻教师;②你所在班中身高超过1.80米的同学; ③2011年深圳世界大运会的比赛项目; ④1,3,5.A .1个B .2个C .3个D .4个例2、已知集合S 中的三个元素a ,b ,c 是△ABC 的三边长,那么△ABC 一定不是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形3、元素与集合的表示元素:通常用小写拉丁字母a 、b 、c ,……表示 集合:通常用大写拉丁字母A 、B 、C ,……表示例3、设含有三个实数的集合可表示为{a, a+d, a+2d},也可表示为{a, aq, aq 2},其中a 、d 、q ∈R ,求常数q.4、元素与集合的关系对象a 与集合M 的关系是:a M ∈(a 在M 中),或者a M ∉(a 不在M 中),两者必居其一.5、常用数集及其方法N 表示自然数集,N*或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.例4、下列关系中正确的有____________.①0∈N *;②-32∈Q ;③π∉Q ;④0∉N ;⑤2∈R ;⑥-3∈Z ;⑦0∈Z ;⑧0.9∈R.6、集合的表示法1> 列举法:把集合中的元素一一列举出来,写在大括号内表示集合.2> 描述法:{x |x 具有的性质},其中x 为集合的代表元素,称其为数集;{(x ,y )|y 关于x 的函数表达式}其中(x ,y )为集合的代表元素,所以称为点集3> 图示法:用数轴或韦恩图来表示集合.注:用描述法表示集合时,一定要体现描述法的形式,不要漏写集合的代表元素及元素所具有的性质,且用“|”隔开.集合表示中的符号“{ }”已包含“所有”、“全体”等含义,例5、用列举法表示集合∈-xx 26|{Z ,∈x Z} 例6、6|),{(2+-=x y y x ,∈x N ,∈y N}例7、列举法:由所有小于10的既是奇数又是素数的自然数组成的集合. 例8、描述法: 表示正偶数集.7、集合的分类1> 含有有限个元素的集合叫做有限集 2> 含有无限个元素的集合叫做无限集 3> 不含有任何元素的集合叫做空集(∅).知识点二:集合间的基本关系名称记号意义性质示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A(2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C ⊆ (4)若B A ⊆且B A ⊆,则A B =A(B)或B A真子集A ≠⊂B(或B ≠⊃A )B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集)(2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂BA集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B (2)B ⊆AA(B)集合中元素个数和集合子集个数的关系:已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.例8:已知集合M 满足M ≠⊂ {1,2,3},且集合M 中至少含有一个奇数,试写出所有的集合M.例9、求{1, 2}⊆⊆A {1, 2, 3, 4, 5}的所有集合A . 例10、知识点三:集合的基本运算名称记号意义性质示意图交集A B{|,x x A ∈且}x B ∈(1)A A A = (2)A ∅=∅ (3)AB A ⊆ A B B ⊆ BA并集A B{|,x x A ∈或}x B ∈(1)A A A = (2)A A ∅= (3)A B A ⊇ A B B ⊇BA补集C U A{|,}x x U x A ∈∉且;.U U A C A A C A U φ==()U U U C A C B C A B =()U U U C A C B C A B =例11、已知A ={x|x ≤-2或x>5},B ={x|1<x ≤7},求A ∪B ,A ∩B.例12、已知集合A ={x |(x -1)(x +2)=0},B ={x |(x +2)(x -3)=0},则集合A ∪B 是( ) A .{-1,2,3} B .{-1,-2,3} C .{1,-2,3} D .{1,-2,-3}例13、已知U ={1,2,3,4,5,6,7,8},A ={1,3,5,7},B ={2,4,5},则∁U (A ∪B )=( ) A .{6,8} B .{5,7} C .{4,6,7} D .{1,3,5,6,8}例14、设集合1|),{(2+==x y y x A ,∈x R ,∈y R},集合25|),{(x y y x B -==,∈x R ,∈y R},求B A . 例15、设集合1|{2+==x y y C ,∈x R ,∈y R},集合25|{x y y D -==,∈x R ,∈y R},求D C . 例16、已知{}{}|10,2,1,0,1A x x B =+>=--,则()R C A B ⋂=( )A .{}2,1--B .{}2-C .{}1,0,1-D .{}0,1例17、已知A ={x |-2≤x ≤5},B ={x |k -1≤x ≤2k +1},求使A ∩B =∅的实数k 的取值范围. 例18、。
高一数学集合知识点总结
高一数学集合知识点总结高一数学集合知识点1集合及其表示1、集合的含义:“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。
数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。
所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。
比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。
2、集合的表示通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。
a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作d?A。
有一些特殊的集合需要记忆:非负整数集(即自然数集)N正整数集N-或N+整数集Z有理数集Q实数集R集合的表示方法:列举法与描述法。
①列举法:{a,b,c……}②描述法:将集合中的元素的公共属性描述出来。
如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}③语言描述法:例:{不是直角三角形的三角形}例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}强调:描述法表示集合应注意集合的代表元素A={(x,y)|y=x2+3x+2}与B={y|y=x2+3x+2}不同。
集合A中是数组元素(x,y),集合B中只有元素y。
3、集合的三个特性(1)无序性指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。
例题:集合A={1,2},B={a,b},若A=B,求a、b的值。
解:,A=B注意:该题有两组解。
(2)互异性指集合中的元素不能重复,A={2,2}只能表示为{2}(3)确定性集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。
高一数学集合知识点2集合间的基本关系1.子集,A包含于B,有两种可能(1)A是B的一部分,(2)A与B是同一集合,A=B,A、B两集合中元素都相同。
人教版,数学,高一,必修一,集合的含义与表示
练 习
1. 下面的各组对象能否构成集合? (1)小于2004的数; (2)和2004非常接近的数.
2.再看下列对象: (1) 2,4,6,8,10,12; (2)我校的篮球队员; (3)满足x-3>2 的实数; (4)我国四大名著; (5)抛物线y=x2上的点.
2、元素与集合的关系
通常用大写的拉丁字母 A,B,C,…表示集合, 小写的拉丁字母 a,b,c,…表示集合中的元素. 如果 a 是集合 A 的元素,就说 a 属于集合 A, 记作 a∈A;如果 a 不是集合 A 的元素,就说 a 不属于集合 A,记作 a A.
作业
活页:提能演练一
第2课时 集合的表示
回顾复习
1.集合与元素的定义; 2.集合元素的特征性质: 确定性,互异性,无序性; 3.元素与集合的关系
4. 数集及有关符号;
集合的表示
“我国的直辖市”组成的集合表示为 {北京,天津,上海,重庆} 把集合中的元素一一列举出来,并用花括号“{ }” 括起来表示集合的方法叫做列举法.
1.1.1 集合的含义与表示
“集合”是日常生活中的一个常用词,现代汉语解释为:
许多的人或物聚在一起。
康托尔(G.Cantor,1845~1918).德 国数学家,集合论创始人,他于1895
年谈到“集合”一词.
在现代数学中,集合是一种简洁、高雅的数学语言, 我们怎样理解数学中的“集合”?
通知 8月27日上午8时,高一年级的学生 在体育馆集合进行军训动员. 校长室
例1:已知A由: 2,(a 1) a
2
, a 3a 3
2
三元素构成且 1 A ,求实数a的值
变.已知集合A含有三个元素1、0、x, 若 x 2 A ,求实数x的值。
高中数学 第一章 集合(含解析)苏教版必修1
第1课时集合的含义及其表示(1)教学过程一、问题情境(1) 小于10的所有偶数;(2) 中国的直辖市;(3) 单词book中的字母;(4) 到一个角的两边距离相等的所有的点;(5) 方程x2-5x+6=0的所有实数根;(6) 不等式x-3>0的所有解;(7) 某高中全体高一学生.二、数学建构问题1以上实例有什么共同特征?(引导学生说出:一定范围内,确定的,不同对象.然后通过学生回答,总结出集合的含义)一定范围内某些确定的、不同的对象的全体构成一个集合.集合常用大写的拉丁字母来表示,如集合A、集合B.集合中的每一个对象称为该集合的元素,简称元.集合的元素常用小写的拉丁字母来表示,如元素a、元素b.问题2回答下列问题:(1) 已知A={1, 3},问:3, 5哪个是A的元素?(2) “所有素质好的人”能否构成一个集合A?(3) A={2, 2, 4}表示是否准确?(4) A={太平洋,大西洋},B={大西洋,太平洋}是否表示同一个集合?由上述问题可以归纳出集合中元素的特征:①确定性:设A是一个给定的集合,x是某一个具体对象,则“x是A的元素”或者“x不是A的元素”这两种情况必有一种且只有一种成立.②互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不能重复出现同一元素.③无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照由小到大的数轴顺序书写.问题3元素与集合之间有怎样的关系?解如果a是集合A中的元素,就记作a∈A,读作“a属于A”;如果a不是集合A中的元素,就记作a∉A或a⋷A,读作“a不属于A”.问题4常用的数集有哪些?它们分别用什么数学符号表示?解自然数集(非负整数集):N,正整数集:N*或N+,整数集:Z,有理数集:Q,实数集:R.问题5集合的表示方法有哪些?(1) 列举法:将集合的元素一一列举出来,并置于“{}”中,元素之间用逗号分隔.列举时与元素次序无关,如{北京,上海,天津,重庆}.集合的相等关系:如果两个集合所含的元素完全相同,那么称这两个集合相等,如{北京,上海,天津,重庆}={天津,重庆,北京,上海}.思考“问题情境”中的集合都能用列举法表示吗?如果能,请表示出来.(2) 描述法:将集合中所有元素都具有的性质(满足的条件)表示出来,写成{x|p(x)}的形式.{x|p(x)}中x为集合的代表元素,p(x)指元素x具有的性质,如{x|x为中国的直辖市},{x|x-3>0, x∈R}. (3) Venn图:有时用Venn图示意集合(如图1),更显直观.(图1)问题6按照元素的个数,集合该怎样分类?(1) 有限集:含有有限个元素的集合称为有限集.(2) 无限集:含有无限个元素的集合称为无限集.(3) 空集:不含任何元素的集合称为空集,记作⌀,如{x|x2+x+1=0, x∈R}=⌀.三、数学运用【例1】下列各组对象能否构成集合:(1) 所有的好人;(2) 小于2012的数;(3) 和2012非常接近的数;(4) 小于5的自然数;(5) 不等式2x+1>7的整数解;(6) 方程x2+1=0的实数解. (见学生用书课堂本P1~2)[处理建议]引导学生根据定义判断.[规范板书]解(1)(3)不符合集合中元素的确定性,因此,只有(2)(4)(5)(6)能够构成集合.[题后反思]解决这类题目要抓住集合中元素的两个特征:确定性,互异性.【例2】用符号“∈”或“∉”填空:-错误!未找到引用源。
高一数学必修一之集合
高中数学必修1知识点第一章集合与函数概念【1.1.1】集合的含义与表示一、集合与元素的概念1.集合:(1)概念:一般地,某些确定的对象集在一起就成为一个集合,简称集;通常用大写字母A、B、C...表示。
其中的对象可以是一些数、一些点、一些图形、一些整式、一些物体、一些人等等万事万物,每一组的对象或某些指定的对象集在一起就成为一个集合。
(2)集合的两个特性:整体性和确定性在指定一个集合时,必须有明确的标准,这就构成了集合的确定性;所有符合标准的元素的全体构成集合的整体性。
[例题] 下列各项中,不可以组成集合的是( C )A.所有的正数 B.等于2的数 C.接近于0的数 D.不等于0的偶数2.元素:(1)概念:集合中的每一个对象叫做集合中的一个元素,通常用小写字母a,b,c...表示。
对于尚未确定的集合而言,元素具有任意性。
(2)元素的三个特性(属性)对于一个给定的集合它的元素具有三个特性:确定性、互异性和无序性:①元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于(∈)或不属于(∉)。
②元素的互异性:一个给定集合中的元素是唯一的,不可重复的。
③元素的无序性: 集合中元素的位置是可以改变的,并且改变位置不影响集合(排名不分先后)。
至此,我们也就可以把集合定义为:由一些确定的、互异的对象构成的一个全体就叫集合(简称集)[例题] 若集合M = {a,b,c}中的元素是△ABC的三边长,则△ABC一定不是( D )A.锐角三角形B.直角三角形 C.钝角三角形D.等腰三角形二、集合的分类(一)按集合中元素的多少来分:①有限集——元素个数是有限个(其中包括空集、单元素集)②无限集——元素个数是无限个③空集——不含有任何元素(即元素个数为0属于有限集):空集记作∅或{ }注意{∅}表示含有空集的单元素集合,并非空集,空集为集合中的元素。
(二)按元素的属性来分:①数集——元素全部由数组成;②点集——元素全部由点组成,如角平分线;③解集——由方程或方程组、不等式或不等式组的解构成的集合;(其中一部分属于数集如自变量或应变量的值,一部分属于点集或序数对)。
集合的含义与表示
(x-2a)<0
当B A时,画数轴知2a≥1或a+1≤-1, 1 即a≥ 或 a≤-2. 2 而a<1,∴满足条件的a的取值范围是 1 (-∞,-2]∪[ ,1). 2
所有奇数组成的集合可以表示为:
B={x| x=2k+1,k∈Z}.
说明:
(1)列举法和描述法是集合的常用表示方法,两种方 法各有优点,用什么方法表示集合,要具体问题具 体分析.
要注意,一般集合中元素较多或有无限个元素时, 不宜采用列举法
强调:描述法表示集合应注意集合的代表元素 {(x,y)|y= x2 +3x+2}与 {y|y= x2+3x+2}不同,只要 不引起误解,集合的代表元素也可省略,
集合的含义与表示
一、集合的含义:
(1)1~20以内的所有质数; (2)我国从1991~2005年的15年内所发射的所有人造卫星;
(3)金星汽车厂2003年生产的所有汽车;
(4)2004年1月1日之前与我国建立立外交关系的所有国家 ;
(5)所有的正方形;
归纳总结这些 例子 (6)到直线l的距离等于定长3cm的所有点 ; ,你能说出 它们的特征吗? (7)方程x2+3x+2=0的所有实数解;
n ② {x|x= n 2
, n ∈ N*且n≤5}
2.用列举法表示下列集合:
6 (1)A=﹛x∈N︱1 x∈Z﹜
6 B=﹛1 x∈N
(2)
︱ x∈ Z ﹜
3. 求集合{3 ,x , x2-2x}中,元素x应满足的条件。
4. 若-3 ∈ {a-3, 2a+1, a2+1},求实数a的值.
●
集合理论是由德国数学家康托尔发现的,他 创造的集合论是近代许多数学分支的基础.
集合的概念及其表示(第1课时)教案1
集合的含义及其表示(一)教学目标:使学生初步理解集合的基本概念,了解“属于”关系的意义、常用数集的记法和集合中元素的特性.教学重点:集合概念、性质;教学难点:集合概念的理解;课型:新授课教学手段:多媒体教学过程:一、创设情境训前学校通知:8月15日8点,高一年段在体育馆集合进行训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
二、活动尝试“物以类聚,人以群分”数学中也有类似的分类。
如:用到过的“正数的集合”、“负数的集合”、“质数”、“合数”如:2x-1>3,即x>2所有大于2的实数组成的集合称为这个不等式的解集。
如:几何中,圆是到定点的距离等于定长的点的集合。
如:自然数的集合0,1,2,3,……结论:一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
三、师生探究思考1:列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。
例1:判断下列一组对象是否属于一个集合呢?(1)所有3的倍数(2)很大的数的全体(3)中国的直辖市(4)young中的字母(5)book中的字母(6)所有的偶数(7)所有直角三角形(8)满足3x-2>x+3的全体实数(9)方程210x x++=的实数解(10)评注:判断集合要注意有三点:范围是否确定;元素是否明确;能不能指出它的属性。
四、数学理论△集合理论是由德国数学家康托尔发现的,他创造的集合论是近代许多数学分支的基础。
△集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
1.1.1集合的概念及其表示(一)
用列举法表示下列集合: 例1 用列举法表示下列集合: (1) 小于 的所有自然数组成的集合; 小于10的所有自然数组成的集合 的所有自然数组成的集合;
(2) 方程x 2 = x的所有实数根组成的集合;
(3) 由1~20以内的所有质数组成的集合. 以内的所有质数组成的集合. ~ 以内的所有质数组成的集合
• 全体非负整数组成的集合称为自然数集,记为 N 全体非负整数组成的集合称为自然数集, • 所有正整数组成的集合称为正整数集,记为 N *或N + 所有正整数组成的集合称为正整数集, • 全体整数组成的集合称为整数集,记为 Z 全体整数组成的集合称为整数集, • 全体有理数组成的集合称为有理数集,记为 Q 全体有理数组成的集合称为有理数集, • 全体实数组成的集合称为实数集,记为 R 全体实数组成的集合称为实数集,
一般形式: 一般形式:{ x ∈ A x满足的条件}
说明: 1、不能出现未被说明的字母; 说明: 、不能出现未被说明的字母; 2、多层描述时,准确使用“且”、“或”; 、多层描述时,准确使用“ 3、描述语言力求简明、准确; 、描述语言力求简明、准确; 4、多用于元素无限多个时。 、多用于元素无限多个时。
的所有自然数组成的集合为A, 解:⑴设小于10的所有自然数组成的集合为A,那么 设小于 的所有自然数组成的集合为A,那么 A={0,1,2,3,4,5,6,7,8,9}. } A={
由于元素完全相同的两个集合相等,而与列举的顺序无关, 由于元素完全相同的两个集合相等,而与列举的顺序无关,因此 集合A可以有不同的列举方法. 集合A可以有不同的列举方法.例如 A={9 A={9,8,7,6,5,4,3,2,1,0}. }
具体方法:在花括号内先写上表示这个集合元素的一般符 具体方法 在花括号内先写上表示这个集合元素的一般符 号及以取值(或变化 范围,再画一条竖线 或变化)范围 再画一条竖线,在竖线后写出这个 号及以取值 或变化 范围 再画一条竖线 在竖线后写出这个 集合中元素所具有的共同特征. 集合中元素所具有的共同特征
高一必修一1.1.1集合的含义与表示
注意
(1)大括号不能缺失. (2)有些集合元素个数较多,元素又呈 现出一定的规律,在不至于发生误解的情 况下,亦可如下表示:从1到100的所有整 数组成的集合:{1,2,3,…,100} 自然数集N:{1,2,3,4,…,n,…} (3)区分a与{a}:{a}表示一个集合,该 集合只有一个元素.a表示这个集合的一个 元素.
两种描方法: (1)文字描述法——用文字把元素所具有 的属性描述出来,如﹛自然数﹜. (2)符号描述法——用符号把元素所具有的属 性描述出来,即 {x| P ( x ) } 或 {x∈A| P ( x ) } 等. 含义:在集合A中满足条件P(x)的x的集合.
例7:使用描述法表示下列集合:
(1) 不等式2x-1>3的解集;
有限集与无限集 1、 有限集:含有有限个元素的集合. 2、 无限集:含有无限个元素的集合. 3、 空集:不含任何元素的集合,记作Φ. 如: {x R | x
2
+1 = 0}.
做一做
集合 {(x, y) | y = x +1} 与集合
2
{y | y = x +1}是同一集合吗?
答:不是.集合 {(x, y) | y = x2 +1} 2 是点集,集合{y | y = x +1} = {y | y 1} 是数集.
1.地球上的七大洲这一集合可以表示成什么呢? 2. 12的所有约数可以表示成什么呢? 3.方程x-1=0的解的集合可以表示成什么呢?
1.地球上的七大洲可表示为{亚洲,非 洲,南极洲,北美洲,南美洲,欧 洲,大洋洲}. 2.12的所有约数可表示为{1,2,3, 4,6,12}. 3.方程x-1=0的解集可以表示为{1}.
(2)设不超过30的非负偶数为x,且满足
人教版-高一-数学-1.集合的含义与表示
集合的含义与表示一、知识概括1、集合的概念一般地,我们把研究对象统称为元素(element ),通常用小写拉丁字母a,b,c ,…表示。
把一些元素组成的总体叫集合(set ),也简称集,通常用大写拉丁字母A,B,C ,…表示。
集合如同平面几何中点、线、平面等概念一样,是集合论中的原始概念,只进行描述说明,无法定义概念。
某些教材中对集合的描述是:指定的某些对象的全体称为集合。
其中,注意理解(1)指定即说明某些对象具有共同的特征或共同的属性,说明已具备判定对象是否成为该集合的元素的判定标准,而不是随意组合。
(2)对象在不同的集合中,应有不同的内涵。
在不同的集合中,元素还可能是人、物、质点或抽象事物等。
(3)全体说明集合是一个整体概念,针对全部对象而言,并且在这个整体中各元素间无先后排列要求,没有一定的顺序关系。
【注】(1)只要构成两个集合的元素是一样的,我们就称这两个集合是相等的。
(2)构成集合的元素除了常见的数、式、点等数学对象外,还可以是其他任何确定的对象。
2、集合元素的特性集合元素具有确定性、互异性、无序性三大特性。
(1)确定性集合中的元素必须是确定的,也就是说,给定一个集合,按照该集合的构成标准能够明确判定一个对象是否属于这个集合。
如“个子高的同学”这一组对象就不能构成一个集合,因为“个子高”这个标准不够明确,而“身高超过170cm 的同学”这一组对象可以构成一个集合。
(2)互异性集合中的元素一定是不同的(或说是互异的)也就是说,相同的元素在一个集合中只能出现一次。
如方程0122=+-x x 的解构成的集合是{1},而不能写成{1,1}(3)无序性集合中元素的排列次序无先后之分,如集合{1,2}和{2,1}是同一个集合。
3、集合与元素的关系元素与集合有属于(∈)和不属于(∉)两种关系。
如果a 是集合A 的元素,就说a 属于集合A ,记作a ∈A ;如果a 不是集合A 的元素,就说a 不属于集合A ,记作a ∉A 。
【暑假预习】2023年新高一数学 第01讲 集合及其表示法(9种题型)(学生版)
01集合及其表示法(9种题型)【课程细目表】一、知识梳理二、考点剖析1.集合的含义2.元素与集合关系的判断3.集合的确定性、互异性、无序性4.集合相等5.有限集与无限集.6.集合的表示法--描述法7.集合的表示法--列举法8.集合的表示法--区间法9.集合的表示法--综合应用三、过关检测【知识梳理】一、集合的意义1.集合的概念我们把能够确切指定的一些对象组成的整体叫做集合,简称集.集合中的各个对象叫做这个集合的元素.对于一个给定的集合,集合中的元素具有确定性、互异性、无序性.确定性是指一个对象要么是给定集合的元素,要么不是这个集合的元素,二者必居其一.比如“著名的数学家”、“较大的数”、“高一一班成绩好的同学”等都不能构成集合,因为组成集合的元素不确定.互异性是指对于一个给定的集合,集合中的元素是各不相同的,也就是说,一个给定的集合中的任何两个元素都是不同的对象,集合中的元素不重复出现.例如由元素1,2,1组成的集合中含有两个元素:1,2.无序性是指组成集合的元素没有次序,只要构成两个集合的元素是一样的,我们就称这两个集合是相等的.2.集合与元素的字母表示、元素与集合的关系集合常用大写字母A、B、C⋯来表示,集合中的元素用a、b、c⋯表示,如果a是集合A的元素,就记作a∈A,读作“a属于A”;如果a不是集合A的元素,就记作a∉A,读作“a不属于A”3.常用的数集及记法数的集合简称数集,我们把常用的数集用特定的字母表示:全体自然数组成的集合,即自然数集,记作N,不包含零的自然数组成的集合,记作N*全体整数组成的集合,即整数集,记作Z全体有理数组成的集合,即有理数集,记作Q全体实数组成的集合,即实数集,记作R常用的集合的特殊表示法:实数集R(正实数集R+)、有理数集Q(负有理数集Q-)、整数集Z(正整数集Z+)、自然数集N(包含零)、不包含零的自然数集N*;4.集合相等如果两个集合A与B的组成元素完全相同,就称这两个集合相等,记作A=B.5.集合的分类我们把含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集我们引进一个特殊的集合--空集,规定空集不含元素,记作∅,例如,方程x2+1=0的实数解所组成的集合是空集,又如,两个外离的圆,它们的公共点所组成的集合也是空集.6.空集我们把不含任何元素的集合,记作φ。
高一数学集合知识点
1.1集合1.1.1集合的含义与表示一、集合的含义集合是一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元,是具有某种特定性质的事物的总体.关键词:确定的、总体【特征】确定性、无序性、互异性、【表示方法】列举法、描述法、图示法.二、元素与集合关系得判断【知识点的认识】一般地,我们把研究对象称为元素,把一些元素组成的总体称为集合,简称集.元素一般用小写字母a,b,c表示,集合一般用大写字母 A,B,C表示,两者之间的关系是属于与不属于关系,符号表示如:a∈A或a∉A.【命题方向】元素与集合之间的关系命题方向有二,一是验证元素是否是集合的元素;二是知元素是集合的元素,根据集合的属性求出相关的参数.【解题方法点拨】如题型一:已知A是偶数集,试判断a=2b2+4b,b∈N是否是集合的元素?方法点拨:因为偶数都可以写成整数2倍的形式,故解决本题的方法就是看元素a能否变成数的2倍的形式.三、集合的确定性、互异性、无序性【知识点的认识】集合中元素具有确定性、互异性、无序性三大特征.(1)确定性:集合中的元素是确定的,即任何一个对象都说明它是或者不是某个集合的元素,两种情况必居其一且仅居其一,不会模棱两可,例如“著名科学家”,“与2接近的数”等都不能组成一个集合.(2)互异性:一个给定的集合中,元素互不相同,就是在同一集合中不能出现相同的元素.例如不能写成{1,1,2},应写成{1,2}.(3)无序性:集合中的元素,不分先后,没有如何顺序.例如{1,2,3}与{3,2,1}是相同的集合,也是相等的两个集合.【解题方法点拨】解答判断型题目,注意元素必须满足三个特性;一般利用分类讨论逐一研究,转化为函数与方程的思想,解答问题,结果需要回代验证,元素不许重复.【命题方向】本部分内容属于了解性内容,但是近几年高考中基本考查选择题或填空题,试题多以集合相等,含参数的集合的讨论为主.四、集合的分类【知识点的认识】集合的分类主要依集合中元素个数的多少来划分,有限集和无限集两种.有限集元素个数是确定的,元素个数有限个,可以利用列举法或描述法表示;无限集元素个数是无限的,只能利用描述法表示.【解题方法点拨】从集合的元素个数直接判断.【命题方向】这一考点,是了解内容,会考多以选择题判断为主,高考多与集合之间的关系联合命题.五、集合的表示法【知识点的认识】1.列举法:常用于表示有限集合,把集合中的所有元素一一列举出来,写在大括号内,这种表示集合的方法叫做列举法.{1,2,3,…},注意元素之间用逗号分开.2.描述法:常用于表示无限集合,把集合中元素的公共属性用文字,符号或式子等描述出来,写在大括号内,这种表示集合的方法叫做描述法.即:{x|P}(x 为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0<x<π}3.图示法(Venn图):为了形象表示集合,我们常常画一条封闭的曲线(或者说圆圈),用它的内部表示一个集合.4.自然语言(不常用).【解题方法点拨】在掌握基本知识的基础上,(例如方程的解,不等式的解法等等),初步利用数形结合思想解答问题,例如数轴的应用,Venn图的应用,通过转化思想解答.注意解题过程中注意元素的属性的不同,例如:{x|2x-1>0}表示实数x的范围;{(x,y)|y-2x=0}表示方程的解或点的坐标.【命题方向】本考点是考试命题常考内容,多在选择题,填空题值出现,可以与集合的基本关系,不等式,简易逻辑,立体几何,线性规划,概率等知识相结合.1.1.2集合间的基本关系一、子集与真子集【知识点的认识】子集定义:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集(subset).记作:A⊆B(或B⊇A).而真子集是对于子集来说的.真子集定义:如果集合A⊆B,但存在元素x∈B,且元素x不属于集合A,我们称集合A是集合B的真子集.也就是说如果集合A的所有元素同时都是集合 B 的元素,则称 A 是 B 的子集,若 B 中有一个元素,而A 中没有,且A 是 B 的子集,则称 A 是 B 的真子集,注①空集是所有集合的子集②所有集合都是其本身的子集③空集是任何非空集合的真子集例如:所有亚洲国家的集合是地球上所有国家的集合的真子集.所有的自然数的集合是所有整数的集合的真子集.{1,3}⊂{1,2,3,4}{1,2,3,4}⊆{1,2,3,4}真子集和子集的区别子集就是一个集合中的全部元素是另一个集合中的元素,有可能与另一个集合相等;真子集就是一个集合中的元素全部是另一个集合中的元素,但不存在相等;注意集合的元素是要用大括号括起来的“{}”,如{1,2},{a,b,g};另外,{1,2}的子集有:空集,{1},{2},{1,2}.真子集有:空集,{1},{2}.一般来说,真子集是在所有子集中去掉空集和它本身,所以对于含有n个(n不等于0)元素的集合而言,它的子集就有2n个;真子集就有2n-2.但空集属特殊情况,它只有一个子集,没有真子集.【解题方法点拨】注意真子集和子集的区别,不可混为一谈,A⊆B,并且A⊆B 时,有A=B,但是A⊂B,并且B⊂A,是不能同时成立的;子集个数的求法,空集与自身是不可忽视的.【命题方向】本考点要求理解,高考会考中多以选择题、填空题为主,曾经考查子集个数问题,常常与集合的运算,概率,函数的基本性质结合命题.二、集合的包含关系及其应用【知识点的认识】如果集合A中的任意一个元素都是集合B的元素,那么集合A 叫做集合B的子集;A⊆B;如果集合A是集合B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集,即A⊂B;如果集合A的每一个元素都是集合B的元素,反过来,集合B的每一个元素也都是集合A的元素,那么我们就说集合A等于集合B,即A=B.【解题方法点拨】1.按照子集包含元素个数从少到多排列.2.注意观察两个集合的公共元素,以及各自的特殊元素.3.可以利用集合的特征性质来判断两个集合之间的关系.4.有时借助数轴,平面直角坐标系,韦恩图等数形结合等方法.【命题方向】通常命题的方式是小题,直接求解或判断两个或两个以上的集合的关系,可以与函数的定义域,三角函数的解集,子集的个数,简易逻辑等知识相结合命题.三、集合的相等【知识点的认识】(1)若集合A与集合B的元素相同,则称集合A等于集合B.(2)对集合A和集合B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A等于集合B,记作A=B.就是如果A⊆B,同时B⊆A,那么就说这两个集合相等,记作 A=B.(3)对于两个有限数集A=B,则这两个有限数集 A、B中的元素全部相同,由此可推出如下性质:①两个集合的元素个数相等;②两个集合的元素之和相等;③两个集合的元素之积相等.由此知,以上叙述实质是一致的,只是表达方式不同而已.上述概念是判断或证明两个集合相等的依据.【解题方法点拨】集合A 与集合B相等,是指A 的每一个元素都在B 中,而且B中的每一个元素都在A中.解题时往往只解答一个问题,忽视另一个问题;解题后注意集合满足元素的互异性.【命题方向】通常是判断两个集合是不是同一个集合;利用相等集合求出变量的值;与集合的运算相联系,也可能与函数的定义域、值域联系命题,多以小题选择题与填空题的形式出现,有时出现在大题的一小问.四、集合中元素个数的最值【知识点的认识】【命题方向】【解题方法点拨】求集合中元素个数的最大(小)值问题的方法通常有:类分法、构造法、反证法、一般问题特殊化、特殊问题一般化等.需要注意的是,有时一道题需要综合运用几种方法才能解决.五、空集的定义、性质及运算【知识点的认识】空集的定义:不含任何元素的集合称为空集.记作∅.空集的性质:空集是一切集合的子集.空集不是没有;它是内部没有元素的集合,而集合是存在的.这通常是初学者的一个难理解点.将集合想象成一个装有其元素的袋子的想法或许会有帮助;袋子可能是空的,但袋子本身确实是存在的.例如:{x|x2+1=0,x∈R}=∅.虽然有x的表达式,但方程中根本就没有这样的实数x使得方程成立,所以方程的解集是空集.空集是任何集合的子集,是任何非空集合的真子集.【解题方法点拨】解答与空集有关的问题,例如集合A∩B=B⇔B⊆A,实际上包含3种情况:①B=∅;②B⊂A且B≠∅;③B=A;往往遗漏B是∅的情形,所以老师们在讲解这一部分内容或题目时,总是说“空集优先的原则”,就是首先考虑空集.【命题方向】一般情况下,多与集合的基本运算联合命题,是学生容易疏忽、出错的地方,考查分析问题解决问题的细心程度,难度不大,可以在选择题、填空题、简答题中出现.1.1.3集合的基本运算一、并集及其运算【知识点的认识】由所有属于集合A或属于集合B的元素的组成的集合叫做A与B的并集,记作A ∪B.符号语言:A∪B={x|x∈A或x∈B}.图形语言:.A∪B实际理解为:①x仅是A中元素;②x仅是B中的元素;③x是A且是B中的元素.运算形状:①A∪B=B∪A.②A∪∅=A.③A∪A=A.④A∪B⊇A,A∪B⊇B.⑤A∪B=B⇔A⊆B.⑥A∪B=∅,两个集合都是空集.⑦A∪(CUA)=U.⑧CU(A∪B)=(CUA)∩(CUB).【解题方法点拨】解答并集问题,需要注意并集中:“或”与“所有”的理解.不能把“或”与“且”混用;注意并集中元素的互异性.不能重复.【命题方向】掌握并集的表示法,会求两个集合的并集,命题通常以选择题、填空题为主,也可以与函数的定义域,值域联合命题.二、交集及其运算【知识点的认识】由所有属于集合A且属于集合B的元素的所有元素组成的集合叫做A与B的交集,记作A∩B.符号语言:A∩B={x|x∈A,且x∈B}.图形语言:.A∩B实际理解为:x是A且是B中的相同的所有元素.当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集.运算形状:①A∩B=B∩A.②A∩∅=∅.③A∩A=A.④A∩B⊆A,A∩B⊆B.⑤A∩B=A⇔A⊆B.⑥A∩B=∅,两个集合没有相同元素.⑦A∩(CUA)=∅.⑧CU(A∩B)=(CUA)∪(CUB).【解题方法点拨】解答交集问题,需要注意交集中:“且”与“所有”的理解.不能把“或”与“且”混用;求交集的方法是:①有限集找相同;②无限集用数轴、韦恩图.【命题方向】掌握交集的表示法,会求两个集合的交集.命题通常以选择题、填空题为主,也可以与函数的定义域,值域,函数的单调性、复合函数的单调性等联合命题.三、补集及其运算【知识点的认识】一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集,通常记作U.(通常把给定的集合作为全集).对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作CUA,即CUA={x|x∈U,且x∉A}.其图形表示如图所示的Venn图..【解题方法点拨】常用数轴以及韦恩图帮助分析解答,补集常用于对立事件,否命题,反证法.【命题方向】通常情况下以小题出现,高考中直接求解补集的选择题,有时出现在简易逻辑中,也可以与函数的定义域、值域,不等式的解集相结合命题,也可以在恒成立中出现.四、全集及其运算【知识点的认识】一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集,通常记作U.(通常把给定的集合作为全集).全集是相对概念,元素个数可以是有限的,也可以是无限的.例如{1,2};R;Q 等等.【解题方法点拨】注意审题,可以借助数轴韦恩图解答.【命题方向】本考点属于理解,常出现的类型有直接求出全集,利用全集求解子集的个数,集合在参数的范围等问题,难度属于容易题.五、交、并、补集的混合运算【知识点的认识】集合交换律A∩B=B∩A,A∪B=B∪A.集合结合律(A∩B)∩C=A∩(B∩C),(A∪B)∪C=A∪(B∪C).集合分配律A∩(B∪C)=(A∩B)∪(A∩C),A∪(B∩C)=(A∪B)∩(A ∪C).集合的摩根律 Cu(A∩B)=CuA∪CuB,Cu(A∪B)=CuA∩CuB.集合吸收律A∪(A∩B)=A,A∩(A∪B)=A.集合求补律A∪CuA=U,A∩CuA=Φ.【解题方法点拨】直接利用交集、并集、全集、补集的定义或运算性质,借助数轴或韦恩图直接解答.【命题方向】理解交集、并集、补集的混合运算,每年高考一般都是单独命题,一道选择题或填空题,属于基础题.六、Venn图表达集合的关系及运算【知识点的认识】用平面上一条封闭曲线的内部来代表集合,这个图形就叫做Venn图(韦恩图).集合中图形语言具有直观形象的特点,将集合问题图形化,利用Venn图的直观性,可以深刻理解集合的有关概念、运算公式,而且有助于显示集合间的关系.运算公式:card(A∪B)=card(A)+card(B)-card(A∩B)的推广形式:card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(A∩C)+card(A∩B∩C),或利用Venn图解决.公式不易记住,用Venn图来解决比较简洁、直观、明了.【解题方法点拨】在解题时,弄清元素与集合的隶属关系以及集合之间的包含关系,结合题目应很好地使用Venn图表达集合的关系及运算,利用直观图示帮助我们理解抽象概念.Venn图解题,就必须能正确理解题目中的集合之间的运算及关系并用图形准确表示出来.【命题方向】一般情况涉及Venn图的交集、并集、补集的简单运算,也可以与信息迁移,应用性开放问题.也可以联系实际命题.。
高中数学 第一章 第一节 集合的含义及其表示(第1课时)
解 (1)“高个子”没有明确的标准,因此不能构成集合.(2)
任给一个实数x,可以明确地判断是不是“不超过20的非负
数”,即“0≤x≤20”与“x>20或x<0”,两者必居其一,且
仅居其一,故“不超过20的非负数”能构成集合;(3)“一些
点”无明确的标准,对于某个点是否在“一些点”中无法确
定,因此“直角坐标平面内第一象限的一些点”不能构成集
(2)
不能
所以所给对象不确定,故不能构成集合
“比较接近 1”的标准不明确,所以所给
(3)
不能
对象不确定,故不能构成集合
(4)
能
其中的元素是“16岁以下的学生”
要点二 元素与集合的关系 例 2 所给下列关系正确的序号是________.
①-12∈R;② 2∉Q;③0∈N*;④|-3|∉N*. 答案 ①② 解析 -12是实数, 2是无理数,∴①②正确.N*表示正整 数集,∴③和④不正确.
求实数a的值. 解 ∵-3∈B,∴-3=a-3或-3=2a-1. 若-3=a-3,则a=0. 此时集合B含有两个元素-3,-1,符合题意; 若-3=2a-1,则a=-1. 此时集合B含有两个元素-4,-3,符合题意. 综上所述,满足题意的实数a的值为0或-1.
规律方法 1.由于集合B含有两个元素,-3∈B,本题以-3 是否等于a-3为标准,进行分类,再根据集合中元素的互异 性对元素进行检验.
确定的 不同的
(2)记法示大符写号拉丁字母
定义 自然数集 正整数集 整数集 有理数集 实数集
记法 N
N*或 N+ Z
Q
R
2.元素
(元1).定义:集合中的每一个对象
称为该集合的元素,简称
(2)记法,常用 小写拉丁字母 表示.
高中数学必修一集合知识点总结大全
高中数学 必修1知识点集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。
、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。
、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。
真子集:若且(即至少存在但),则是的真子集。
集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念把某些特定的对象集在一起就叫做集合. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集名称记号意义性质示意图交集A BI{|,x x A∈且}x B∈(1)A A A=I(2)A∅=∅I(3)A B A⊆IA B B⊆IBA并集A BU{|,x x A∈或}x B∈(1)A A A=U(2)A A∅=U(3)A B A⊇UA B B⊇UBA补集{|,}x x U x A∈∉且⑴(⑵⑶⑷⑸交换律:.;ABBAABBA YYII==结合律:)()();()(CBACBACBACBA YYYYIIII==分配律:)()()();()()(CABACBACABACBA YIYIYIYIYI==0-1律:,,,A A A U A A U A UΦ=ΦΦ===I U I U等幂律:.,AAAAAA==YI求补律:A∩A∪=U反演律:(A∩B)=(A)∪(B) (A∪B)=(A)∩(B)一、选择题:本大题共12小题,每小题5分,共60分。
高中数学必修一最全知识点汇总
高中数学必修一最全知识点汇总高中数学必修1知识点第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示集合是由元素组成的整体,其中的元素具有确定性、互异性和无序性。
常用的数集有自然数集N、正整数集N*或N+、整数集Z、有理数集Q、实数集R。
集合与元素之间的关系可以表示为a∈M或a∉M。
集合的表示法有自然语言法、列举法、描述法和图示法。
集合可以分为有限集、无限集和空集(∅)。
1.1.2 集合间的基本关系集合间的基本关系包括子集、真子集和集合相等。
子集表示为A⊆B,真子集表示为A⊂B,集合相等表示为A=B。
已知集合A有n(n≥1)个元素,则它有2个子集,2^(n-1)个真子集,2^(n-1)个非空子集和2^n-2个非空真子集。
1.1.3 集合的基本运算集合的基本运算包括交集、并集和补集。
交集表示为A∩B,并集表示为A∪B,补集表示为A的补集。
补集的性质为A∪A的补集=全集,A∩A的补集=空集。
2.补充知识:含绝对值的不等式与一元二次不等式的解法含绝对值的不等式|x|0)的解集为{-aa(a>0)的解集为{xa}。
一元二次不等式的解法与一元二次方程类似,可以通过移项、配方法和求根公式等方式求解。
1.解一元二次不等式将$ax+b$看作一个整体,化成$|x|c(c>0)$,$|x|>a(a>0)$型不等式来求解。
2.解一元二次不等式的方法通过判别式$\Delta=b^2-4ac$,确定二次函数$y=ax^2+bx+c(a>0)$的图像,分类讨论$\Delta>\Delta'$,$\Delta=\Delta'$和$\Delta0)$的根$x_1,x_2$(其中$x_10$和$y<0$的解集。
3.函数及其表示3.1 函数的概念设$A$、$B$是两个非空的数集,如果按照某种对应法则$f$,对于集合$A$中任何一个数$x$,在集合$B$中都有唯一确定的数$f(x)$和它对应,那么这样的对应(包括集合$A$、$B$以及$A$到$B$的对应法则$f$)叫做集合$A$到$B$的一个函数,记作$f:A\to B$。
高一数学集合知识点总结
一、集合有关概念
1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:
1.元素的确定性;2.元素的互异性;3.元素的无序性
说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
三、集合的运算
1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.
记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.
2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.
3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,
A∪φ个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
记作: =A
(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。
2.集合的表示方法:列举法与描述法。
注意啊:常用数集及其记法:
非负整数集(即自然数集)记作:N
正整数集N*或N+整数集Z有理数集Q实数集R
关于“属于”的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作aÏA
新高一数学集合的含义及其表示
新高一数学 第8课时集合的含义及其表示一、概念理解:1、由引例归纳集合的概念2、由我们常用的数. 总结常用数集的表示法3、元素与集合的关系,集合相等的概念4、集合中元素三个特性5、集合的三种表示法6、有限集、无限集、空集的概念.(请学生各举一例有限集、无限集、空集)二、例题分析例1、(1)求方程0322=--x x 的解集; (2)求不等式23>-x 的解集(3)所有绝对值小于3的整数的集合. (4)抛物线x 2=y 上的点.(5)抛物线x 2=y 上点的横坐标. (6)抛物线x 2=y 上点的纵坐标.例2、求方程210x x ++=所有实数解所构成的集合例3、已知集合A={}a a a ++22,2,若3A ∈,求a 的值.三、随堂练习1、用列举法表示下列集合:(1){|x x 是15的正约数};(2)(){}{}{},1,2,1,2;x y x y ∈∈(3)(){},2,24;x y x y x y +=-=(4)(){}1,;n x x n N =-∈(5)(){},3216,,.x y x y x N y N +=∈∈2、用描述法表示下列集合:(1){}1,4,7,10,13;(2){}2,4,6,8,10.-----课后作业一、基础题1、用“∈”或“∉”填空(1)1________N -3________N 0 ________N2________N 1________Z -3________Q 0________Z2_______R(2)2{|0}A x x x =-=,则1________A ,-1________A(3){|15,}B x x x N =≤≤∈,则1_________B ,1.5________B(4){|13,}C x x x Z =-<<∈,则0.2________C ,3_________C2、用列举法表示下列集合(1){|15,}a a a N ≤<∈(2){(,)|02,02,,}x y x y x y Z ≤≤≤≤∈(3)“mathematics ”中字母构成的集合(4){|x x +1=0}(5){|x x 为不大于10的正偶数}3、用描述法表示下列集合(1)奇数的集合(2)正偶数的集合(3)不等式210x +≤的解集二、提高题4、用适当的方法表示下列集合(1)能被3整除的整数(2)方程2280x x --=的解(3)大于或等于2且小于或等于10的偶数5、求数集2{,}a a a -中实数a 的取值范围三、能力题6、若21{|0}x x ax b ∈++=,22{|0}x x ax b ∈++=,求,a b 的值。
高一数学知识点总结归纳
高一数学知识点总结归纳高一数学知识点1一:集合的含义与表示1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。
把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。
2、集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。
(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。
(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合3、集合的表示:{…}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
a、列举法:将集合中的元素一一列举出来{a,b,c……}b、描述法:①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。
{x?R|x-3>2},{x|x-3>2}②语言描述法:例:{不是直角三角形的三角形}③Venn图:画出一条封闭的曲线,曲线里面表示集合。
4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合5、元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a?A(2)元素不在集合里,则元素不属于集合,即:a¢A注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N-或N+整数集Z有理数集Q实数集R6、集合间的基本关系(1).“包含”关系(1)—子集定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。
7、集合的运算高一数学知识点2函数的概念函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A---B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.(1)其中,x叫做自变量,x的取值范围A叫做函数的定义域;(2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.函数的三要素:定义域、值域、对应法则函数的表示方法:(1)解析法:明确函数的定义域(2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。