高一数学集合的含义与表示
人教版,数学,高一,必修一,集合的含义与表示

练 习
1. 下面的各组对象能否构成集合? (1)小于2004的数; (2)和2004非常接近的数.
2.再看下列对象: (1) 2,4,6,8,10,12; (2)我校的篮球队员; (3)满足x-3>2 的实数; (4)我国四大名著; (5)抛物线y=x2上的点.
2、元素与集合的关系
通常用大写的拉丁字母 A,B,C,…表示集合, 小写的拉丁字母 a,b,c,…表示集合中的元素. 如果 a 是集合 A 的元素,就说 a 属于集合 A, 记作 a∈A;如果 a 不是集合 A 的元素,就说 a 不属于集合 A,记作 a A.
作业
活页:提能演练一
第2课时 集合的表示
回顾复习
1.集合与元素的定义; 2.集合元素的特征性质: 确定性,互异性,无序性; 3.元素与集合的关系
4. 数集及有关符号;
集合的表示
“我国的直辖市”组成的集合表示为 {北京,天津,上海,重庆} 把集合中的元素一一列举出来,并用花括号“{ }” 括起来表示集合的方法叫做列举法.
1.1.1 集合的含义与表示
“集合”是日常生活中的一个常用词,现代汉语解释为:
许多的人或物聚在一起。
康托尔(G.Cantor,1845~1918).德 国数学家,集合论创始人,他于1895
年谈到“集合”一词.
在现代数学中,集合是一种简洁、高雅的数学语言, 我们怎样理解数学中的“集合”?
通知 8月27日上午8时,高一年级的学生 在体育馆集合进行军训动员. 校长室
例1:已知A由: 2,(a 1) a
2
, a 3a 3
2
三元素构成且 1 A ,求实数a的值
变.已知集合A含有三个元素1、0、x, 若 x 2 A ,求实数x的值。
高一 集合的含义与表示

高一集合的含义与表示1.集合的概念(1)含义:一般地,我们把_______统称为元素,把一些元素组成的_____叫做集合(简称为集).(2)集合相等:只要构成两个集合的______是一样的,即这两个集合中的元素完全相同,就称这两个集合相等.3.集合的表示法(1)自然语言表示法:用文字语言形式来表示集合的方法.例如:小于3的实数组成的集合.(2)字母表示法:用一个大写__________表示集合,如A,B,C等,用小写拉丁(3)列举法:把集合的____一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.(4)描述法:在花括号内先写上表示这个集合元素的________及_________________,再画一条竖线,在竖线后写出这个集合中元素所具有的________.这种用集合所含元素的共同特征表示集合的方法叫做描述法.预习自测1.下列给出的对象中,能组成集合的是()A.著名的数学家B.很大的数C.较胖的人D.小于3的整数2.下列关系:①0.21∈Q;②105∉N*;③-4∈N*;④4∈N.其中正确的个数是()A.0 B.1 C.2 D.33.集合{x ∈N *|x -2<3}的另一种表示形式是 ( )A .{0,1,2,3,4}B .{1,2,3,4}C .{0,1,2,3,4,5}D .{1,2,3,4,5}4.下列集合:①{1,2,2};②R ={全体实数};③{3,5};④不等式x -5>0的解集为{x -5>0}. 其中,集合表示方法正确的是________5.(1)用列举法表示集合{x ∈N |x <5}为________.(2)方程x 2-6x +9=0的解集用列举法可表示为________.(3)用描述法表示大于3且不大于8的实数的集合为________.例1、下列各组对象:①某个班级中年龄较小的男同学;②联合国安理会常任理事国;③2016年里约热内卢奥运会的所有比赛项目;④2的所有近似值;⑤1,2,3,1.能够组成集合的是________.1、下列每组对象能否构成一个集合:(1)我国的小城市;(2)某校2016年在校的所有高个子同学;(3)不超过20的非负数; (4)方程x 2-9=0在实数范围内的解;(5)直角坐标平面内第一象限的一些点.例2、给出下列命题:①N 中最小的元素是1; ②若a ∈N ,则-a ∉N ;③若a ∈N ,b ∈N ,则a +b 的最小值是2.其中所有正确命题的个数是( )A .0B .1C .2D .32、(1)给出下列几个关系式:2∈R ;0.3∈Q ;0∈N ;0∈{0};0∈N +;12∈N +;-π∈Z ;-5∈Z .其中正确的关系式的个数是( )A .4B .5C .6D .7(2)已知集合M ={大于-2且小于1的实数},则下列关系式正确的是( ) A.5∈M B .0∉M C .1∈M D .-π2∈M例3、集合A={0,1,x},又知x2∈A,求实数x的值.3、已知集合A含有三个元素a-3,2a-1,a2-4,且-3∈A,求实数a的值.例4、用列举法表示下列集合:(1)36与60的公约数组成的集合;(2)方程(x-4)2(x-2)=0的根组成的集合;(3)一次函数y=x-1与y=-23x+43的图象的交点组成的集4、用列举法表示下列集合:(1)不大于10的非负偶数组成的集合;(2)方程x2=x的所有实数解组成的集合;(3)直线y=2x+1与y轴的交点所组成的集合.例5、用描述法表示下列集合:(1)满足不等式3x+2>2x+1的实数x组成的集合;(2)平面直角坐标系中,第一象限内的点的集合;(3)所有正奇数组成的集合.5、把(1),(2),(3)分别更换条件如下,试分别求相应问题.(1)满足不等式3x+2>2x+1的有理数组成的集合;(2)在平面直角坐标系中,坐标轴上的点的集合;(3)所有偶数组成的集合.例6、设集合A ={x 2,x ,xy }、B ={1,x ,y },若集合A 、B 所含元素相同,求实数x 、y 的值.6、若将上式中的集合A 改为{a ,b a ,1},B 改为{a 2,a +b,0},其他条件不改变,怎样求a 2 015+b 2 015的值.检测题1.下列各组对象,能构成集合的有 ( )①对环境污染不太大的塑料; ②中国古典文学中的四大名著;③所有的正方形; ④方程x (x 2-2x -3)=0的所有实数根.A .①B .①②C .②③④D .①②③④2.已知集合A ={x ∈N |-3≤x ≤3},则必有 ( )A .-1∈AB .0∈A C.3∈A D .2∈A3.下列各组集合中,表示同一集合的是 ( )A .M ={(3,2)},N ={(2,3)}B .M ={3,2},N ={2,3}C .M ={(x ,y )|x +y =1},N ={y |x +y =1}D .M ={3,2},N ={(3,2)}4.由实数x ,-x ,|x |,x 2,-3x 3,所组成的集合最多含有元素的个数为 () A .2 B .3C .4D .55.用适当的方法表示下列集合.(1)由大于-3且小于11的偶数组成的集合可表示为________;(2)不等式3x -6≤0的解集可表示为________;(3)方程x (x 2+2x -3)=0的解集可表示为________;(4)函数y =x 2-x -1图象上的点组成的集合可表示为________.。
高一数学必修一之集合

高中数学必修1知识点第一章集合与函数概念【1.1.1】集合的含义与表示一、集合与元素的概念1.集合:(1)概念:一般地,某些确定的对象集在一起就成为一个集合,简称集;通常用大写字母A、B、C...表示。
其中的对象可以是一些数、一些点、一些图形、一些整式、一些物体、一些人等等万事万物,每一组的对象或某些指定的对象集在一起就成为一个集合。
(2)集合的两个特性:整体性和确定性在指定一个集合时,必须有明确的标准,这就构成了集合的确定性;所有符合标准的元素的全体构成集合的整体性。
[例题] 下列各项中,不可以组成集合的是( C )A.所有的正数 B.等于2的数 C.接近于0的数 D.不等于0的偶数2.元素:(1)概念:集合中的每一个对象叫做集合中的一个元素,通常用小写字母a,b,c...表示。
对于尚未确定的集合而言,元素具有任意性。
(2)元素的三个特性(属性)对于一个给定的集合它的元素具有三个特性:确定性、互异性和无序性:①元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于(∈)或不属于(∉)。
②元素的互异性:一个给定集合中的元素是唯一的,不可重复的。
③元素的无序性: 集合中元素的位置是可以改变的,并且改变位置不影响集合(排名不分先后)。
至此,我们也就可以把集合定义为:由一些确定的、互异的对象构成的一个全体就叫集合(简称集)[例题] 若集合M = {a,b,c}中的元素是△ABC的三边长,则△ABC一定不是( D )A.锐角三角形B.直角三角形 C.钝角三角形D.等腰三角形二、集合的分类(一)按集合中元素的多少来分:①有限集——元素个数是有限个(其中包括空集、单元素集)②无限集——元素个数是无限个③空集——不含有任何元素(即元素个数为0属于有限集):空集记作∅或{ }注意{∅}表示含有空集的单元素集合,并非空集,空集为集合中的元素。
(二)按元素的属性来分:①数集——元素全部由数组成;②点集——元素全部由点组成,如角平分线;③解集——由方程或方程组、不等式或不等式组的解构成的集合;(其中一部分属于数集如自变量或应变量的值,一部分属于点集或序数对)。
集合的含义与表示

(x-2a)<0
当B A时,画数轴知2a≥1或a+1≤-1, 1 即a≥ 或 a≤-2. 2 而a<1,∴满足条件的a的取值范围是 1 (-∞,-2]∪[ ,1). 2
所有奇数组成的集合可以表示为:
B={x| x=2k+1,k∈Z}.
说明:
(1)列举法和描述法是集合的常用表示方法,两种方 法各有优点,用什么方法表示集合,要具体问题具 体分析.
要注意,一般集合中元素较多或有无限个元素时, 不宜采用列举法
强调:描述法表示集合应注意集合的代表元素 {(x,y)|y= x2 +3x+2}与 {y|y= x2+3x+2}不同,只要 不引起误解,集合的代表元素也可省略,
集合的含义与表示
一、集合的含义:
(1)1~20以内的所有质数; (2)我国从1991~2005年的15年内所发射的所有人造卫星;
(3)金星汽车厂2003年生产的所有汽车;
(4)2004年1月1日之前与我国建立立外交关系的所有国家 ;
(5)所有的正方形;
归纳总结这些 例子 (6)到直线l的距离等于定长3cm的所有点 ; ,你能说出 它们的特征吗? (7)方程x2+3x+2=0的所有实数解;
n ② {x|x= n 2
, n ∈ N*且n≤5}
2.用列举法表示下列集合:
6 (1)A=﹛x∈N︱1 x∈Z﹜
6 B=﹛1 x∈N
(2)
︱ x∈ Z ﹜
3. 求集合{3 ,x , x2-2x}中,元素x应满足的条件。
4. 若-3 ∈ {a-3, 2a+1, a2+1},求实数a的值.
●
集合理论是由德国数学家康托尔发现的,他 创造的集合论是近代许多数学分支的基础.
高一数学必修1第一章课件:1.1.1集合的含义与表示 课件(36张)

(2)列举法和描述法
列举法
描述法
把集合的元一素一列举
用集合所含元素的
_____________出来,并用
共同特征
概念
_______________表示集合的
花括号“{ }”括起来表示集
方法
合的方法
一般
形式 {a1,a2,a3,…,an}
{x∈I|p(x)}
1.判断:(正确的打“√”,错误的打“×”) (1)你班所有的姓氏能组成集合.( √ ) (2)高一·二班“数学成绩好的同学”能组成集合.( × ) (3)一个集合中可以找到两个相同的元素.( × ) (4)集合{x|x>3}与集合{t|t>3}表示的是同一集合.(√ )
2.元素与集合的关系
关系
语言描述
记法
读法
属于 a是集合A中的元素 a∈A a属于集合A
不属于 a不是集合A中的元素 a∉A a不属于集合A
3.常用的数集及其记法
常用的 自然数 数集 集 记法 N
正整数集 N*或N+
有理数
整数集
实数集
集
Z
QR
4.集合的表示法 (1)自然语言法 用文字叙述的形式描述集合的方法.使用此方法要注意叙述 清楚,如由所有正方形构成的集合,就是自然语言表示的, 不能叙述成“正方形”.
4.当{a,0,-1}={4,b,0}时,a=___4_____,b= __-__1____.
集合的概念 判断下列各组对象能否组成一个集合: (1)新华中学高一年级全体学生; (2)我国的大河流; (3)不大于 3 的所有自然数;
(4)平面直角坐标系中,和原点距离等于 1 的点.
(链接教材P3思考) [解] (1)能,(1)中的对象是确定的;(2)不能,“大”无明确标 准;(3)能,不大于 3 的所有自然数有 0、1、2、3,其对象是 确定的;(4)能,在平面直角坐标系中任给一点,可明确地判 断是不是“和原点的距离等于 1”,故能组成一个集合.
1.1集合的概念及表示

1.1集合的概念及表示【知识储备】1.集合的概念(1)含义:一般地,我们把所研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集).(2)集合相等:只要构成两个集合的元素是一样的,即这两个集合中的元素完全相同,就称这两个集合相等.[知识点拨]集合中的元素必须满足如下性质:(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于或不属于这个集合是确定的,要么是该集合中的元素,要么不是,二者必居其一.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合中的元素是没有顺序的,比如集合{1,2,3}与{2,3,1}表示同一集合.2.元素与集合的关系关系概念记法读法属于如果a是集合A中的元素,就说a属于集合Aa∈A a属于集合A不属于如果a不是集合A中的元素,就说a不属于集合Aa∉A a不属于集合A[知识点拨]符号“∈”和“∉”只能用于元素与集合之间,并且这两个符号的左边是元素,右边是集合,具有方向性,左右两边不能互换.3.集合的表示法(1)自然语言表示法:用文字语言形式来表示集合的方法.例如:小于3的实数组成的集合.(2)字母表示法:用一个大写拉丁字母表示集合,如A,B,C等,用小写拉丁字母表示元素,如a,b,c等.常用数集的表示:名称非负整数集(自然数集)正整数集整数集有理数集实数集符号N N*或N+Z Q R(3)列举法:把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.(4)描述法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.这种用集合所含元素的共同特征表示集合的方法叫做描述法.【题型精讲】【题型一集合概念的理解】必备技巧判断一组对象是否能构成集合的三个依据判断一组对象能否组成集合,关键看该组对象是否满足确定性,如果此组对象满足确定性,就可以组成集合;否则,不能组成集合.同时还要注意集合中元素的互异性、无序性.例1下列对象中不能构成一个集合的是()A.某校比较出名的教师B.方程−2=0的根C.不小于3的自然数D.所有锐角三角形例2(多选)下列各组对象能构成集合的是()A.拥有手机的人B.2024年高考数学难题C.所有有理数D.小于π的正整数【题型精练】1.给出下列说法:①在一个集合中可以找到两个相同的元素;②好听的歌能组成一个集合;③高一(1)班所有姓氏能构成集合;④把1,2,3三个数排列,共有6种情况,因此由这三个数组成的集合有6个.其中正确的个数为()A.0B.1C.2D.32.下列各组对象中能构成集合的是()A.充分接近的实数的全体B.数学成绩比较好的同学C.小于20的所有自然数D.未来世界的高科技产品【题型二用列举法表示集合】例3用列举法表示下列集合(1)11以内非负偶数的集合;(2)方程(+1)(2−4)=0的所有实数根组成的集合;(3)一次函数=2与=+1的图象的交点组成的集合.【题型精练】1.用列举法表示下列给定的集合:(1)大于1且小于6的整数组成的集合A;(2)方程2−9=0的实数根组成的集合B;(3)一次函数=+2与=−2+5的图象的交点组成的集合C.2.用列举法表示下列集合.(1)不大于10的非负偶数组成的集合A;(2)小于8的质数组成的集合B;(3)方程22−−3=0的实数根组成的集合C;(4)一次函数=+3与=−2+6的图象的交点组成的集合D.【题型三用描述法表示集合】必备技巧利用描述法表示集合的关注点(1)写清楚该集合代表元素的符号.(2)所有描述的内容都要写在花括号内.(3)在通常情况下,集合中竖线左侧元素的所属范围为实数集时可以省略不写.例4用适当的方法表示下列集合:(1)方程组2314,328x y x y -=⎧⎨+=⎩的解集;(2)方程2210x x -+=的实数根组成的集合;(3)平面直角坐标系内所有第二象限的点组成的集合;(4)二次函数2210y x x =+-的图象上所有的点组成的集合;(5)二次函数2210y x x =+-的图象上所有点的纵坐标组成的集合.【题型精练】1.用描述法表示下列集合:(1)不等式3+2>5的解集;(2)平面直角坐标系中第二象限的点组成的集合;(3)二次函数=2−2+3图象上的点组成的集合.(4)平面直角坐标系中第四象限内的点组成的集合;(5)集合1,12,13,14(6)所有被3整除的整数组成的集合;(7)方程2++1=0的所有实数解组成的集合.2.试说明下列集合各表示什么?1|A y yx ⎧⎫==⎨⎬⎩⎭;{|B x y ==;()1,|C x y y x ⎧⎫==⎨⎬⎩⎭(),|13y D x y x ⎧⎫==⎨⎬-⎩⎭;{}0,1E x y ===;{}1,1F x y x y =+=-=-.【题型四元素与集合的关系】必备技巧判断元素和集合关系的两种方法(1)直接法:集合中的元素是直接给出的.(2)推理法:对于某些不便直接表示的集合,只要判断该元素是否满足集合中元素所具有的特征即可.例5用符号“∈”或“∉”填空:(1)0______∅;(2)2-_______2{|5}x x <;(3)(2,3)_______{(,)|23}x y x y +=;(4)2017_______{|41,}x x n n =-∈Z .例6(吉林长春市期中)已知集合M=6*,5a N a ⎧∈⎨-⎩且}a Z ∈,则M 等于()A .{2,3}B .{1,2,3,4}C .{1,2,3,6}D .{1-,2,3,4}【题型精练】1.(多选)(浙江高一期末)若集合{}22|,,A x x m n m n ==+∈Z ,则()A .1A∈B .2A∈C .3A∈D .4A∈2.已知集合{},M m m a a b Q ==+∈,则下列四个元素中属于M 的元素的个数是()①1+;;A .4B .3C .2D .1【题型五确定集合中的元素】必备技巧确定集合中的元素(1)充分理解集合的描述法,(2)注意检验元素互异性.例7(1)(山东济南高一期末)已知集合(){},2,,A x y x y x y N =+≤∈,则A 中元素的个数为()A .1B .5C .6D .无数个(2)集合*12|x N Z x ⎧⎫∈∈⎨⎬⎩⎭中含有的元素个数为()A .4B .6C .8D .12例8(1)(江苏苏州市期中)设集合{123}{45}}A C x B y x A y B ===+∈∈,,,,,,,则C 中元素的个数为()A .3B .4C .5D .6(2)(江苏南通市月考)已知集合(){},2,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为()A .9B .10C .12D .13(3)(黑龙江大庆市期中)由实数2,,|,x x x -所组成的集合,最多可含有()个元素A .2B .3C .4D .51.若集合()(){}326A x N x x =∈--<,则A 中的元素个数为()A .3B .4C .5D .62.若集合{}0123A =,,,,()}{,,B x y x A y A x y A =∈∈-∈,,则B 中所含元素的个数为()A .4B .6C .7D .103.(青海高一月考)已知集合{1,2,3,4,5}A ={},(,),,B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为()A .3B .6C .8D .10【题型六元素特性中的求参问题】必备技巧利用集合中元素的确定性、互异性求参数的策略及注意点(1)策略:根据集合中元素的确定性,可以解出参数的所有可能值,再根据集合中元素的互异性对求得的参数值进行检验.(2)注意点:利用集合中元素的互异性解题时,要注意分类讨论思想的应用.例9(上海市进才中学高一期末)已知集合22{2,(1),33}Aa a a =+++,且1A∈,则实数a 的值为________.例10(山东济南月考)已知集合{}2210,A x ax x a R =++=∈.(1)若A 中只有一个元素,求a 的值;(2)若A 中至少有一个元素,求a 的取值范围;(3)若A 中至多有一个元素,求a 的取值范围.1.(吴起高级中学高一月考)若{}22111a a ∈++,,,则a =()A .2B .1或-1C .1D .-12.已知{}222,(1),33A a a a a =++++,若1A∈,则实数a 构成的集合B 的元素个数是()A .0B .1C .2D .33.(云南丽江市期末)若集合2{|210}A x kx x =++=中有且仅有一个元素,则k 的值为___________.。
高一数学集合的含义与表示

高一数学集合的含义与表示(1)集合的有关概念1.一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
2.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)无序性:给定一个集合与集合里面元素的顺序无关。
(4)集合相等:构成两个集合的元素完全一样。
3.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作:a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作:a∉A 6.集合与元素的字母表示:集合通常用大写的拉丁字母A,B,C…表示,集合的元素用小写的拉丁字母a,b,c,…表示。
7.常用的数集及记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R;课题:集合的含义与表示(2)集合的表示方法(1)列举法:把集合中的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫列举法。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;说明:1.集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。
2.各个元素之间用逗号隔开3.元素不能重复;4.集合中的元素可以数,点,代数式等;5.对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方能用省略号(2)描述法:把集合中的元素的公共属性描述出来,写在花括号{ }内。
具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
一般格式:{}()x A p x ∈如:{x|x-3>2},{(x,y)|y=x 2+1},{x ︳直角三角形},…;。
高一数学集合的含义及表示

(4)“中国的直辖市”构成一个集合,写出该集合的元素。 (5)“young中的字母”构成一个集合,写出该集合的元素。 (6)“book中的字母”构成一个集合,写出该集合的元素。
2、集合中元素的特性 (1)确定性:
按照明确的判断标准给定
(三) 有限集与无限集
高
1、有限集(finite set):含有有限个元素的 集合。
一 数
2、无限集(infinite set ):含有无限个元素 学
的集合。
3、空集(empty set):不含任何元素的集合。 记作Φ
例2 用符号“∈”或“∈”填空:
(1)3.14_Q; (2) π_Q ;
(3)0 _ N+
(4)0 _ N
(5)(-2)0 _ N+ (6)2 5 _ Z
(7) 2 5 _ Q (8)2 5 _ Q
三、小 结:本节课学习了以下内容: 1.集合的含义; 2.集合中元素的特性:
确定性,互异性,无序性
3.数集及有关符号.
集合的含义是什么? 集合之间有什么关系? 怎样进行集合的运算?
练习: (1)《课课练》P1 Ex2 (2)在作业本上写出你这节 课不懂的地方。 (3)思考题:已知2是集合{0,a,a2 -3a+2} 中的元素,则实数a为( )
(一)集合的有关概念:
1、集合的含义
(1)集合:一定范围内某些确定的、不同 的对象的全体构成一个集合(set)。
(2)元素:集合中的每一个对象叫做该集 合的元素(element)或简称元。
探讨以下问题: (1){1,2,2,3}是含1个1,2个2,
1个3的四个元素的集合吗?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合叫做空集,记作.
练习2:⑴ 0 ⑵{0}
(填 ∈ 或 ) (填=或≠)
6.集合的分类:
有限集、无限集 问题2:我们看这样一个集合: { x |x2+x+1=0},它有什么特征?
显然这个集合没有元素.我们把这样的
集合叫做空集,记作.
(填 ∈ 或 ) 练习2:⑴ 0 ⑵ { 0 } ≠ (填=或≠)
5.集合的表示方法:
5.集合的表示方法: 描述法、列举法、图表法
5.集合的表示方法: 描述法、列举法、图表法
问题1:用集合表示 ①x2-3=0的解集; ②所有大于0小于10的奇数; ③不等式2x-1>3的解.
6.集合的分类:
6.集合的分类:
有限集、无限集
6.集合的分类:
有限集、无限集 问题2:我们看这样一个集合: { x |x2+x+1=0},它有什么特征?
课堂小结
1.集合的定义 2.集合元素的性质 3.集合与元素的关系 4.集合的表示 5.集合的分类
课后作业
教科书12面习题1.1第3、4题
欧博娱乐 欧博娱乐
望着眼前这各因为羞涩、胆怯而极为局促不安,脸庞圆圆、眼睛眯眯の倚红,水清没来由地壹阵心酸:唉,在年府里无忧无虑好生生地当差,却因为她这各侧福晋而要来王府里受 罪,吟雪已经被害成咯那副惨状,自己这是在造啥啊孽啊!半天没有听到水清の吩咐,倚红心中立刻就慌咯神儿,以为这是新主子要给她来壹各下马威,坚持咯没多久,扑通壹下 子就跪到在地上,却是将水清吓咯壹跳,赶快冲月影说道:“你去扶扶她,看她怎么咯,是不是病咯?”“回侧福晋,没有,奴婢没有病。”“没有病就好,那你起来站着回话。 我问你,你老家是哪儿の人?”“回侧福晋,奴婢の老家是山东人。”“噢?山东可是好地方呢。怎么到の年府上当差?”“回侧福晋,前年黄河大决口,奴婢家里给淹咯,家里 人也走散咯,幸亏遇到咯从前の壹各邻居,陈大哥,他在年大人府上当差,就介绍奴婢去年府当差。”水清当然晓得,倚红口中の这各年大人,不是她の爹爹,而是她の大哥-- 年希尧,当时在山东任职,看来是大哥给娘亲寻の大丫头,既然经过咯大哥和娘亲,当然还有爹爹の考验,应该是各不错の奴才。只是,这么好の壹各奴才,年夫人竟然又让给咯 水清,这让她再次被母亲大人の浓浓爱意而感动得眼睛发热。“你,倚红是你の本名吗?”“回侧福晋,是の。”还没有见到这各丫环之前,水清壹听新来の丫头名字叫倚红,当 即就感觉壹口闷气堵在咯胸口中。这各名字实在是壹各带有浓郁风尘感の名字,而她又是如此清高之人,“倚红”这两各字让她感觉极不舒服。现在壹听这是丫头の本名,不是大 哥,也不是娘亲,更不是爹爹起の名字,心中顿时松咯壹口气。她这院子里除咯吟雪和月影是从年府带过来の陪嫁丫头,其余都是王府配制の奴才。反正都是二等、三等の粗使丫 环,不能贴身伺候,反正也是王府の丫环,与她无关,不管是叫啥啊彩蝶彩霞,还是叫啥啊小青小红,就是叫阿猫阿狗,她也全都无所谓。可是这各倚红就不壹样咯!既要作为她 の壹等贴身大丫环,又是作为年府の陪嫁丫环,她可实在是不能忍受这么壹各有着俗不可耐名字の丫环陪她五年、十年,因此改名字成为咯当务之急。其实吟雪和月影这两人の名 字,甚至整各年府里丫环の名字,全部出自水清之手。那时候她还在娘家,对于每壹各新来丫环の名字她几乎就没有壹各满意の,于是为这些丫环改名字成咯她乐此不疲の壹件事 情。她当然清楚地记得,吟雪の本名叫大妞,月影の本名叫来喜。只有翠珠の名字不是水清重新起の,因为她来到京城の时候,翠珠已经给婉然当咯两年の丫环咯,众人已经都叫 顺咯嘴,水清就是再不喜欢,也不好再改。现在看来,自从她出嫁以后,丫环们の名字都没有人上心咯。当时壹听到倚红这各名字,她就极不喜欢,早早就动咯改名字の心思,因 此她早早就想好咯壹各她最心仪の名字,今天只不过是要先证实壹下倚红是否是本名问题。既然现在壹切障碍都不存在咯,于是水清高高兴兴地对她说道:“倚红,你以后就不要 叫这各名字咯,我给你起咯壹各新の名字,就叫竹墨吧。”第壹卷 第507章 替班日子如流水般地过去,转眼悠思小格格已经三各月咯。自从那天他告诉水清,小格格の闺名叫悠 思之后,王爷再也没有去过怡然居壹次。其实在这期间,他偶尔也有冲动想去看壹看,看看那各小小の、丑丑の小格格,现在长得啥啊样子咯?是不是也像她の额娘那么美貌动 人?可是每壹次他又都强迫自己忍住咯。他还有啥啊理由去怡然居?水清已经大病初愈,月子已经坐完,连满月酒都摆完咯。就算是他想看望小格格,完全可以让吴嬷嬷将格格抱 到朗吟阁来。即使没有任何拿得上台面の理由,可是,他仍然时不时地有壹股想要去怡然居の冲动。对于自己の这各变化,他有些暗暗吃惊,既想不明白这是为啥啊,又不想承认 和面对这各变化,于是就壹直这么耗咯下来。这壹天他从皇上那里领到壹各新差事,视察京畿水路。壹领到这各差事,王爷心中有些为难起来。排字琦已经病咯好些日子咯,太医 换咯壹拨又壹拨,也没有给出壹各确切の说法,整日里缠绵病榻,脸色腊黄。巧得不能再巧の是,淑清の血崩之症又复发咯,此番病情来势凶凶,用咯猛药才算是暂时控制住进壹 步恶化の趋势,现在正在悉心调理阶段。她们两各人全都是在园子里の时候开始病の。当初之所以去园子,是因为天气炎热,恰好又忙完咯水清生产の事情,众人就迁去园子里避 暑。而水清因为生完小格格要坐月子,这壹次又是她壹各人留在咯王府里。但是当众人住咯两各多月,准备要回府里の时候,排字琦和淑清前后脚地病咯起来。往来奔波影响身体 康复,于是她们就壹同留在咯园子里静养,只有惜月她们四各人回到咯府中。之所以把两各病中の诸人留在园子里,其它人迁回府里,完全是因为皇上最近从畅春园搬回咯紫禁城, 王爷整天要跟着皇上转,皇上回咯紫禁城,他也要赶快跟着回到王府来。才搬回王府不久,王爷被皇上派出京城壹段时间,真是屋漏偏逢阴雨天,现在谁来当王府这各家呢?这可 实在是壹各棘手の问题,因此壹从皇宫出来,他连府里都没有回,直接去咯园子。“你今天好些没有?”“回爷,还是那各样子,天天里头昏得厉害,连身子都起不来,刚刚壹动 身子,就是眼冒金星。”“你好好踏实养着吧,别操心费神。”“回爷,妾身会尽快养好。”“爷跟你说
4.集合元素的性质: ⑴确定性: 集合中的元素必须是确定的. 如: x∈A与xA必居其一. ⑵互异性: 集合的元素必须是互异不相同 的. 如:方程 x2-x+=0的解集为{1} 而非{1,1}.
4.集合元素的性质: ⑴确定性: 集合中的元素必须是确定的. 如: x∈A与xA必居其一. ⑵互异性: 集合的元素必须是互异不相同 的. 如:方程 x2-x+=0的解集为{1} 而非{1,1}. ⑶无序性: 集合中的元素是无先后顺序的. 如:{1,2},{2,1}为同一集合.
7.重要的数集:
N:自然数集(含0)
N+:正整数集(不含0)
Z:整数集
Q:有理数集
R:实数集
例题
例1若x∈R,则数集{1,x,x2}中元素x
应满足什么条件.
例题
例1若x∈R,则x2≠1且x2≠x,
例题
例1若x∈R,则数集{1,x,x2}中元素x
练习1.下列指定的对象,能构成一个集合 ( B ) 的是 ①很小的数 ②不超过 30的非负实数 ③直角坐标平面的横坐标与纵坐标相等的点 ④的近似值 ⑤高一年级优秀的学生 ⑥所有无理数 ⑦大于2的整数 ⑧正三角形全体 A. ②③④⑥⑦⑧ C. ②③⑥⑦ B. ②③⑥⑦⑧ D. ②③⑤⑥⑦⑧
2.集合的表示:
2.集合的表示: 集合常用大写字母表示,元素常用小 写字母表示.
2.集合的表示: 集合常用大写字母表示,元素常用小 写字母表示. 3.集合与元素的关系:
2.集合的表示: 集合常用大写字母表示,元素常用小 写字母表示. 3.集合与元素的关系: 如果a是集合A的元素,就说a属于集 合A,记作a∈A. 如果a不是集合A的元素,就说a不属 于集合A,记作aA.
应满足什么条件. 解:∵x≠1且x2≠1且x2≠x,
∴ x≠1且x≠-1且x≠0.
例2设x∈R,y∈R,观察下面四个集合 A={ y=x2-1 } B={ x | y=x2-1 } C={ y | y=x2-1 } D={ (x, y) | y=x2-1 } 它们表示含义相同吗?
例3若方程x2-5x+6=0
4.集合元素的性质: ⑴确定性: 集合中的元素必须是确定的. 如: x∈A与xA必居其一. ⑵互异性: 集合的元素必须是互异不相同 的. 如:方程 x2-x+=0的解集为{1} 而非{1,1}. ⑶无序性: 集合中的元素是无先后顺序的. 如:{1,2},{2,1}为同一集合.
那么{(1,2)},{(2,1)}是否为同一集合?
例4已知集合
A={x|ax2+4x+4=0,x∈R,a∈R} 只有一个元素,求a的值与这个元素.
解:当a=0时,x=-1.
当a≠0时,=16-4×4a=0. a=1. 此时x=-2. ∴a=1时这个元素为-2. ∴a=0时这个元素为-1.
课堂练习
1.教科书5面练习第1、2题
2.教科书11面习题1.1第1、2题
主讲教师:
知识点
集 合
1. 正整数1, 2, 3, ; 2. 中国古典四大名著; 3. 高10班的全体学生; 4. 我校篮球队的全体队员; 5. 到线段两端距离相等的点.
1.集合的概念:
一般地,指定的某些对象的全体 称为集合,简称“集”.
集合中每个对象叫做这个集合的 元素.
练习1.下列指定的对象,能构成一个集合 ( B ) 的是 ①很小的数 ②不超过 30的非负实数 ③直角坐标平面的横坐标与纵坐标相等的点 ④的近似值 ⑤高一年级优秀的学生 ⑥所有无理数 ⑦大于2的整数 ⑧正三角形全体 A. ②③④⑥⑦⑧ C. ②③⑥⑦ B. ②③⑥⑦⑧ D. ②③⑤⑥⑦⑧
6.集合的分类:
有限集、无限集 问题2:我们看这样一个集合: { x |x2+x+1=0},它有什么特征?
显然这个集合没有元素.我们把这样的
集合叫做空集,记作.
6.集合的分类:
有限集、无限集 问题2:我们看这样一个集合: { x |x2+x+1=0},它有什么特征?