高中数学-集合的含义与表示教案

合集下载

集合的含义与表示教案

集合的含义与表示教案

集合的含义与表示教案主题:集合的含义与表示教案目标:1. 理解集合的基本含义。

2. 掌握集合的表示方法。

3. 能够用集合的表示方法描述给定的情境。

4. 能够运用集合的基本操作解决问题。

教学重点:1. 集合的含义与基本操作。

2. 集合的表示方法。

教学难点:1. 运用集合的表示方法描述实际情境。

教学准备:1. PowerPoint课件。

2. 教学板书。

教学过程:Step 1:导入新知1. 教师出示一些实物,如水果、玩具等,引导学生思考这些实物有什么相同之处。

2. 引导学生总结归纳,提出“集合”的概念,解释集合的基本含义。

Step 2:集合的含义1. 引导学生研究集合的定义:集合是由一些元素组成的整体。

2. 通过实例让学生理解集合的概念,如{1, 2, 3}表示由1、2、3三个元素组成的集合。

Step 3:集合的表示方法1. 教师出示集合的符号表示方法,如用大括号{}括起来的元素列表。

2. 通过实例让学生掌握集合的符号表示方法,如{苹果, 香蕉, 梨子}表示由苹果、香蕉、梨子三个元素组成的集合。

3. 教师引导学生讨论集合中的元素是否有顺序之分,解释集合与序列的区别。

4. 教师出示集合的文字表示方法,如用描述性的句子来表示集合。

Step 4:集合的基本操作1. 教师引导学生了解集合的基本操作:包含关系、相等关系、子集关系。

2. 通过实例让学生掌握集合的基本操作,如集合A={1, 2, 3},集合B={1, 2},则A包含B,B是A的子集。

Step 5:运用集合的表示方法描述实际情境1. 教师设计一些情境,如描述班级同学的集合、描述某个地区的居民集合等。

2. 学生进行小组讨论,用集合的表示方法描述给定情境。

3. 学生报告讨论结果,集体分享。

Step 6:拓展应用1. 教师引导学生思考集合在数学中的应用,如数集、函数等。

2. 学生进行小组讨论,分享集合的拓展应用。

3. 教师总结讨论结果,提出个人思考问题。

Step 7:小结与评价1. 教师总结集合的基本含义与表示方法,并强调集合的基本操作。

集合的含义与表示教案

集合的含义与表示教案

§1.1.1集合的含义与表示教案一. 教学目标:(1)通过实例,了解集合的含义,体会元素与集合的属于关系; (2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性; (4)会用集合语言表示有关数学对象; (5)培养学生抽象概括的能力. 二. 教学重点.难点重点:集合的含义与表示方法. 难点:表示法的恰当选择.(1)集合 :一般地, 称为集合(简称为集). 叫作这个集合的元素. (2)集合中的元素的有哪些特征? (1)确定性:(2)互异性:,(3)无序性: 下列各组对象能确定一个集合吗?1.所有很大的实数2.好心的人 3 . 1,2,2,3,4,5.(3)元素与集合的关系:a 是集合A 的元素就说 ,记作 ,如果a 不是集合A 的元素就说 ,记作a A ∉(注意:元素和集合的关系只能是属于或者不属于)常见数集及记法:自然数集记作 ,Q 表示 集,整数集记作 ,正整数集记作 ,R 表示 . 1.用符合“∈”或“∉”填空:课本P5练习题1(4)集合的表示:集合通常用 字母表示,如A,B,C 等.元素通常用小写字母表示,如a,b,c 等.列举法:把 表示集合的方法,如方程方程2560x x -+=的解集可表示为 .正奇数组成的集合可表示为 .描述法:用 表示集合的方法.如不等式30x ->的所有解组成的集合可表示为:注意:你在表示集合时怎样去选择合适的方法?(4)集合的分类: 叫有限集, 叫无限集. 叫空集,空集记作 . 2.用适当的方法表示下列集合:大于-3小于2的整数组成的集合: ;方程x 2-2=0的解组成的集合: ;小于3的有理数组成的集合: ; 所有偶数组成的集合: . 区别∅,{∅},0,{0}的差异. 四. 练一练:(5分钟)2.设a,b 是非零实数,那么b baa+可能取的值组成集合的元素是 .3.由实数x,-x,|x |,332,x x -所组成的集合,最多含( )个元素4.下列结论不正确的是( ) A.O ∈N B. 2∉Q C.O ∉Q D.-1∈Z 5.下列结论中,不正确的是( ) A.若a ∈N ,则-a ∉N B.若a ∈Z ,则a 2∈ZC.若a ∈Q ,则|a |∈QD.若a ∈R +,则Ra ∈+5、下列关系中正确的是( )A 、{}),(100∈ B 、{}),(101∈ C 、{}100,∈ D 、{}101,∉6、在数集{}x x x -2,2中,实数x 的取值范围是7、已知集合{}R x x ax x A ∈=--=,0122,若集合A 中至多有一个元素,求实数a 的取值范围。

湖南省湘潭凤凰中学高中数学 集合的含义与表示教案 新人教A版必修

湖南省湘潭凤凰中学高中数学 集合的含义与表示教案 新人教A版必修

教案:湖南省湘潭凤凰中学高中数学集合的含义与表示教案新人教A版必修一、教学目标:1. 理解集合的含义,掌握集合的表示方法。

2. 能够运用集合的概念解决实际问题。

3. 培养学生逻辑思维能力和抽象思维能力。

二、教学重点:1. 集合的含义。

2. 集合的表示方法。

三、教学难点:1. 理解集合的含义。

2. 掌握集合的表示方法。

四、教学方法:1. 采用问题驱动法,引导学生主动探究集合的含义与表示方法。

2. 通过实例分析,让学生感受集合在实际问题中的应用。

3. 利用小组讨论,培养学生的合作意识与沟通能力。

五、教学过程:1. 导入新课:利用多媒体展示一些生活中常见的集合,如学校里的班级、图书馆的书籍等,引导学生思考集合的概念。

2. 讲解集合的含义:讲解集合的定义,解释集合中的元素具有“确定性”、“互异性”和“无序性”的特点。

3. 讲解集合的表示方法:讲解集合的表示方法,包括列举法、描述法和图示法。

并通过实例展示各种表示方法的运用。

4. 应用练习:布置一些练习题,让学生运用集合的概念和表示方法解决实际问题。

5. 课堂小结:对本节课的内容进行总结,强调集合的含义和表示方法的重要性。

6. 课后作业:布置一些课后作业,巩固所学知识。

7. 课后反思:对本节课的教学进行反思,总结经验教训,为下一步教学做好准备。

六、教学目标:1. 能够理解集合间的基本关系,包括子集、真子集、非子集等。

2. 能够运用集合的关系判断题目,提高逻辑推理能力。

3. 培养学生运用数学语言表达问题,解决问题的能力。

七、教学重点:1. 集合间的基本关系。

2. 运用集合的关系判断题目。

八、教学难点:1. 理解集合间的基本关系。

2. 运用集合的关系判断题目。

九、教学方法:1. 采用案例分析法,通过具体的集合实例讲解集合间的基本关系。

2. 利用小组讨论法,让学生分组讨论集合间的关系,培养学生的合作意识与沟通能力。

3. 采用问答法,教师提问,学生回答,激发学生的思维,提高学生的逻辑推理能力。

【集合的含义与表示教案】集合的含义及其表示教案

【集合的含义与表示教案】集合的含义及其表示教案

【集合的含义与表示教案】集合的含义及其表示教案集合的含义及其表示教案教学目标:使学生初步理解集合的基本概念,了解“属于”关系的意义、常用数集的记法和集合中元素的特性. 了解有限集、无限集、空集概念,教学重点:集合概念、性质;“∈”,“ ”的使用教学难点:集合概念的理解;课型:新授课教学手段:教学过程:一、引入课题军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

研究集合的数学理论在现代数学中称为集合论,它不仅是数学的一个基本分支,在数学中占据一个极其独特的地位,如果把数学比作一座宏伟大厦,那么集合论就是这座宏伟大厦的基石。

集合理论创始者是由德国数学家康托尔,他创造的集合论是近代许多数学分支的基础。

(参看阅教材中读材料P17)。

下面几节课中,我们共同学习有关集合的一些基础知识,为以后数学的学习打下基础。

二、新课教学“物以类聚,人以群分”数学中也有类似的分类。

如:自然数的集合0,1,2,3,。

如:2__13,即x2所有大于2的实数组成的集合称为这个不等式的解集。

如:几何中,圆是到定点的距离等于定长的点的集合。

1、一般地,指定的某些对象的全体称为集合,标记:A,B,C,D,。

集合中的每个对象叫做这个集合的元素,标记:a,b,c,d,。

2、元素与集合的关系a是集合A的元素,就说a属于集合A ,记作a∈A ,a不是集合A的元素,就说a不属于集合A,记作a A思考1:列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。

例1:判断下列一组对象是否属于一个集合呢?(1)小于10的质数(2)著名数学家(3)中国的直辖市(4)maths中的字母(5)book中的字母(6)所有的偶数(7)所有直角三角形(8)满足3__2x+3的全体实数(9)方程的实数解评注:判断集合要注意有三点:范围是否确定;元素是否明确;能不能指出它的属性。

集合的含义与表示教案

集合的含义与表示教案

集合的含义与表示教案教学目标:1. 了解集合的含义和表示方法。

2. 学会使用集合符号和描述法表示集合。

3. 能够解决与集合相关的基本问题。

教学内容:一、集合的含义1. 集合的定义2. 集合的元素3. 集合的特点二、集合的表示方法1. 集合符号表示法2. 描述法表示法3. 集合的列举法三、集合的关系1. 子集的概念2. 真子集与非真子集3. 集合的包含关系四、集合的运算1. 集合的并集2. 集合的交集3. 集合的补集五、集合的应用1. 集合的分类2. 集合在数学中的应用3. 集合在日常生活中的应用教学步骤:一、导入(5分钟)1. 引入集合的概念,引导学生思考日常生活中遇到的集合现象。

2. 举例说明集合的特点,引起学生对集合的兴趣。

二、讲解集合的含义(15分钟)1. 给出集合的定义,解释集合的元素和特点。

2. 通过示例让学生理解集合的概念。

三、学习集合的表示方法(20分钟)1. 介绍集合符号表示法和描述法表示法。

2. 讲解集合的列举法,让学生学会用符号表示集合。

四、探讨集合的关系(15分钟)1. 讲解子集的概念,区分真子集与非真子集。

2. 引导学生理解集合的包含关系。

五、学习集合的运算(20分钟)1. 讲解集合的并集、交集和补集的定义和性质。

2. 通过示例让学生掌握集合的运算方法。

六、集合的应用(10分钟)1. 讲解集合的分类,让学生了解不同类型的集合。

2. 引导学生思考集合在数学和日常生活中的应用。

教学评价:1. 课堂讲解的清晰度和连贯性。

2. 学生的参与度和提问反馈。

3. 课后作业的完成质量和学生的掌握程度。

教学资源:1. PPT课件。

2. 集合的相关例题和习题。

3. 教学参考书籍和网络资源。

教学建议:1. 在讲解集合的含义时,举例要贴近学生的生活,让学生更容易理解。

2. 在学习集合的表示方法时,引导学生动手练习,加深对集合符号的理解。

3. 在探讨集合的关系和运算时,注重引导学生思考和发现规律,提高学生的逻辑思维能力。

集合的含义与表示优秀教案

集合的含义与表示优秀教案

篇一:《集合的含义与表示》教学设计《集合的含义与表示》教学设计一、教材分析1、教材的地位与作用剖析《集合与函数的概念》是高中数学必修1的第一章内容,是高中数学的基础,集合作为一种数学思想在其它一些章节中也都有渗透,因此学好这一章内容是十分关键的。

本章又是高中数学课程的起始章,内容有一定的抽象性,研究的方法也与初中数学不一样,因此设计好这一章内容的教学不但对学生的知识掌握情况而且对学生能否入门高中数学都是很重要的。

2、教学内容与学情剖析本教材对集合的定位是将集合作为一种语言来学习的,通过教学使学生感受到用集合语言来表示数学内容时的简洁性、准确性,并使学生能用集合语言简洁、准确地表示数学对象。

高一新生经历了初中的启发式学习,对一些具体的知识已有了一定的掌握,但对一些抽象的知识还不能完全明了如何来学,一些良好的数学素养还需要去形成,一些能力还需要去培养、提高。

3、教学目标与重、难点剖析鉴于以上分析,又结合《课程标准》的要求,我确定本节课的教学目标、教学重、难点如下:(1)教学目标知识技能目标:①了解。

(集合的含义)②理解。

(元素与集合的关系)③掌握。

(集合的表示方法)④培养。

(学生观察、类比、归纳、表达的能力)过程与方法目标:①体验从特殊到一般的学习规律;②渗透分类思想;情感与价什观目标:①通过教学,激发学生的学习兴趣,培养学生积极的学习态度;②通过教学,让学生体会集合的文化价值,感受数学问题探究的过程之美及数学思维的严谨之美;(2)教学重、难点重点:集合的基本概念与表示。

难点:用集合的两种常用表示法――列举法与描述法,正确表示一些简单的集合。

[难点突破:]对于难点,则是通过实例引导,启发学生分析、寻找概念区分点,尽而把握概念特点,从而达到准确表达等一系列活动来完成突破。

二、教法设计由于本节课的特殊地位,在本节课的教法设计中,我力图通过这一节课的教学不仅使学生能学到知识,更能使学生掌握怎样来学到知识,从而实现培养学生学习能力的目的。

集合的概念教案5篇

集合的概念教案5篇

集合的概念教案5篇教师需要了解学生的学习偏好,以确保教案包括多种教学方法,以满足不同学生的需求,教案包括教学评估的方法,用于测量学生的学习成果和教学效果,以下是作者精心为您推荐的集合的概念教案5篇,供大家参考。

集合的概念教案篇1第二教时教材:1、复习2、《课课练》及《教学与测试》中的有关内容目的:复习集合的概念;巩固已经学过的内容,并加深对集合的理解。

过程:一、复习:(结合提问)1.集合的概念含集合三要素2.集合的表示、符号、常用数集、列举法、描述法3.集合的分类:有限集、无限集、空集、单元集、二元集4.关于“属于”的概念二、例一用适当的方法表示下列集合:1.平方后仍等于原数的数集解:{x|x2=x}={0,1}2.比2大3的数的集合解:{x|x=2+3}={5}3.不等式x2-x-64.过原点的直线的集合解:{(x,y)|y=kx}5.方程4x2+9y2-4x+12y+5=0的解集解:{(x,y)| 4x2+9y2-4x+12y+5=0}={(x,y)| (2x-1)2+(3y+2)2=0}={(x,y)| (1,3)} 6.使函数y=有意义的实数x的集合解:{x|x2+x-60}={x|x2且x3,xr}三、处理苏大《教学与测试》第一课含思考题、备用题四、处理《课课练》五、作业《教学与测试》第一课练习题集合的概念教案篇2一、说教材(1)说教材的内容和地位本次说课的内容是人教版高一数学必修一第一单元第一节《集合》(第一课时)。

集合这一课里,首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。

然后,介绍了集合的常用表示方法,集合元素的特征以及常用集合的表示。

把集合的初步知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握以及使用数学语言的基础。

从知识结构上来说是为了引入函数的定义。

因此在高中数学的模块中,集合就显得格外的举足轻重了。

集合的含义与表示教案

集合的含义与表示教案

§1 集合的含义与表示(1课时)一、教材分析《集合的含义与表示》是在学生系统地学习了初中课程,并对集合有了感性认识的基础上对集合的含义与表示进行学习,在这里只是将集合作为一种语言来学习,为进一步学习数学奠定基础,集合是高中数学中最原始的概念,高中数学的运算结果,大都需要使用集合语言来描述,所以正确使用最基本的集合语言表示有关的数学对象,提高运用数学语言进行交流的能力正确使用集合语言处理高中数学各种数与形的问题,是一项极为重要的基本功。

《集合的含义与表示》教学在《大纲》中用一个课时完成:主要通过实例了解集合的含义,体会元素与集合的“属于”关系;能够选择自然语言、图形语言、集合语言(列举法或者描述法)描述不同的具体问题,提高语言的转换能力,感受集合语言表示数学内容的简洁性和准确性。

二、学情分析通过初中阶段的学习,学生对集合的认识已有了一定的认知结构,主要体现在三个层面:知识层面:学生学习了圆的定义、线段的垂直平分线的概念之后,对于集合已经有了一定的感性认识。

能力层面:学生在初中已经掌握了圆的定义,初步具备了抽象概括的能力。

情感层面:高中生活伊始,学生对数学新内容《集合的含义与表示》学习有相当的兴趣和积极性,但探究问题的能力以及合作交流等方面发展不够均衡。

三、教学方法和手段采用引导-发现式,合作-讨论式教学方式,配合多媒体、投影等辅助教学。

四、教学过程的设计为尽可能地让学生经历知识的形成与发展过程,更好地使不同层次的学生形成自己对集合的含义、表示方法、常用数集,集合分类的理解和掌握,结合本单元教材的特点,教学中采用了“自主探究”教学模式。

五、教学目标及重难点【目标呈现】1、通过举例(与本班有关的或生活中集合实例)让学生观察,能够说出集合,元素的概念,会用符号表示他们之间的关系;2、了解集合中元素的三大特征;内容识记常用的数集及其专用符号;3、阅读课本P44、会用描述法或列举法表示集合;5、能区分有限集、无限集;教学重点:描述法或列举法表示集合教学难点:描述法表示集合六、教学过程:引入问题(I)提出问题问题1:班级有20名男生,16名女生,问班级一共多少人?问题2:某次运动会上,班级有20人参加田赛,16人参加径赛,问一共多少人参加比赛?讨论问题:按小组讨论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学-集合的含义与表示教案
学习目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;
(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的
具体问题,感受集合语言的意义和作用;
学习重点:集合的基本概念与表示方法;
学习难点:运用集合的两种常用表示方法,即列举法与描述法,正确表示一些简单的集合;课堂探究:
一、引入课题
大家对“集合”这个词陌生吗?
初中时学过的自然数集,有理数集等.
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定对象的总体,而不是个别的对象,为此,我们将学习一个新的概念—集合,即是一些研究对象的总体.
阅读课本P2-P3内容.
二、新课教学
(一)集合的有关概念
1.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也
简称集.
2.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学
生的例子予以讨论、点评,进而讲解下面的问题.
3.关于集合的元素的特征
(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元
素,或者不是A的元素,两种情况必有一种且只有一种成立.
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.
(3)集合相等:构成两个集合的元素完全一样.
4.元素与集合的关系;
(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A;
(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a∉A(举例).
5.重要数集及其记法
自然数集(或非负整数集),记作N;
正整数集,记作N*或N+;
整数集,记作Z;
有理数集,记作Q;
实数集,记作R.
6.随堂练习
∈或填空.
用符号∉
(1) 3.14__Q;(2)π__Q;
(3) 0__N *; (4) (-2)0__N *; (5)32__Q ; (6)32__R.
(二)集合的表示方法
我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合.
1. 列举法:把集合中的元素一一列举出来,写在大括号内.
如:{1,2,3,4,5},{x 2,3x +2,5y 3-x ,x 2+y 2},…;
写出集合的元素,并用符号表示下列集合:
①方程x 2-9=0的解的集合;
②大于0且小于10的奇数的集合.
思考2:引入描述法
说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序.
2.描述法:把集合中的元素的公共属性描述出来,写在大括号{}内.
具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化) 范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.
如:{x|x-3>2},{(x,y)|y=x 2+1},{直角三角形},…;
例2(课本例2)
说明:(课本P 5最后一段)
说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意:一般集合中元素较多或有无限个元素时,不宜采用列举法.
3. 随堂练习
若方程x 2-5 x +6=0和方程x 2-x -2=0的解为元素的集合为M , 则 M 中元素的个数为( )
A .1
B .2
C .3
D .4
三、归纳小结
1. 集合的定义
2.集合元素的性质:确定性,互异性,无序性;
3. 数集及有关符号
4. 集合的表示方法
5. 集合的分类
四、作业布置
书面作业:习题1.1,第1- 4题。

相关文档
最新文档