教学设计1_集合的含义与表示
1.1.1 集合的含义及其表示教案

§1.1.1 集合的含义及其表示一、教学目标(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;初步了解属于关系和集合相等的意义(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;(3)熟记有关数集,培养学生认识事物的能力二、教学重点集合的基本概念与表示方法;三、教学难点运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;四、教学过程1、创设情境,引入新课在小学和初中我们已经接触了一些集合,例如自然数的集合,有理数的集合,不等式x-7<3的解的集合,到一个定点的距离的定长的集合(即圆),到一条线段的两个端点距离相等的点的集合(即这条线段的垂直平分线)……那么集合的含义是什么呢?我们再来看看下面的一些例子:(1)1~20以内的所有质数(2)2010年4月1日之前与我国建立外交关系的所有国家(2)所有的正方形(3)高一<2>班的学生在上数学课(4)方程x2+3x-2=0的所有实数解上面这些例子有什么共同的特征?2、推进新课(1)元素与集合的概念:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集)。
(2)集合的性质○1确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可。
○2互异性:集合中的元素必须是互不相同的(即没有重复现象),相同的元素在集合中只能算作一个。
○3无序性:集合中的元素间是无次序关系的。
(3)集合相等:只要构成两个集合的元素是一样的,我们就称这两个集合是相等的。
练习:1.判断以下元素的全体是否组成集合(1)大于3小于11的偶数。
(2)我国的小河流。
2.说出集合A={a,b,c}和集合B={b, a,c}的关系。
(4)集合与元素的表示:集合通常用大括号或大写的拉丁字母表示,如{1,2,3,4,5}与{高一(2)班的所有学生},又如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……如果a是集合A的元素,就说a属于A,记作a∈A。
集合的含义与表示教案

集合的含义与表示教案集合的含义与表示教案(精选6篇)作为一位杰出的老师,常常要根据教学需要编写教案,借助教案可以提高教学质量,收到预期的教学效果。
教案应该怎么写才好呢?以下是店铺为大家收集的集合的含义与表示教案,欢迎大家借鉴与参考,希望对大家有所帮助。
集合的含义与表示教案篇1教学目的:要求学生初步理解集合的概念,理解元素与集合间的关系,掌握集合的表示法,知道常用数集及其记法.教学重难点:1、元素与集合间的关系2、集合的表示法教学过程:一、集合的概念实例引入:⑴ 1~20以内的所有质数;⑵ 我国从1991~2003的13年内所发射的所有人造卫星;⑶ 金星汽车厂2003年生产的所有汽车;⑷ 2004年1月1日之前与我国建立外交关系的所有国家;⑸ 所有的正方形;⑹ 黄图盛中学2004年9月入学的高一学生全体.结论:一般地,我们把研究对象统称为元素;把一些元素组成的总体叫做集合,也简称集.二、集合元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写练习:判断下列各组对象能否构成一个集合⑴ 2,3,4⑵(2,3),(3,4)⑶ 三角形⑷ 2,4,6,8,…⑸ 1,2,(1,2),{1,2}⑹我国的小河流⑺方程x2+4=0的所有实数解⑻好心的人⑼著名的数学家⑽方程x2+2x+1=0的解三、集合相等构成两个集合的元素一样,就称这两个集合相等四、集合元素与集合的关系集合元素与集合的关系用“属于”和“不属于”表示:(1)如果a是集合A的元素,就说a属于A,记作a∈A(2)如果a不是集合A的元素,就说a不属于A,记作a∈A五、常用数集及其记法非负整数集(或自然数集),记作N;除0的非负整数集,也称正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R.练习:(1)已知集合M={a,b,c}中的三个元素可构成某一三角形的三条边,那么此三角形一定不是()A直角三角形 B 锐角三角形 C钝角三角形 D等腰三角形(2)说出集合{1,2}与集合{x=1,y=2}的异同点?六、集合的表示方式(1)列举法:把集合中的元素一一列举出来,写在大括号内;(2)描述法:用集合所含元素的共同特征表示的方法.(具体方法)例 1、用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成。
集合的含义与表示教案

集合的含义与表示教案一、教学目标1. 了解集合的含义,理解集合中元素的特征。
2. 学会用列举法、描述法表示集合。
3. 能够运用集合的基本运算解决实际问题。
二、教学重点与难点1. 教学重点:集合的含义,列举法、描述法表示集合。
2. 教学难点:理解集合中元素的确定性、互异性、无序性。
三、教学准备1. 教学素材:黑板、PPT、教学卡片。
2. 教学工具:多媒体投影仪、笔记本电脑。
四、教学过程1. 导入新课:通过生活中的实例,引导学生思考集合的概念。
2. 讲解集合的含义:讲解集合的定义,强调集合中元素的确定性、互异性、无序性。
3. 表示集合的方法:(1)列举法:引导学生学会用列举法表示集合。
(2)描述法:引导学生学会用描述法表示集合。
4. 集合的基本运算:讲解并演示集合的并、交、差运算。
5. 课堂练习:布置练习题,让学生巩固所学知识。
五、课后作业1. 完成练习册上的相关题目。
2. 思考生活中的集合实例,总结集合的特点。
教学反思:本节课通过生活中的实例,引导学生了解集合的含义,学会用列举法、描述法表示集合。
在教学过程中,要注意强调集合中元素的确定性、互异性、无序性,帮助学生建立正确的集合观念。
通过课堂练习和课后作业,让学生巩固所学知识,提高运用集合解决实际问题的能力。
六、教学拓展1. 讲解集合的其他表示方法:数轴法、Venn图法。
2. 引导学生学会利用数轴、Venn图解决集合问题。
七、课堂小结1. 回顾本节课所学内容,总结集合的含义、表示方法及基本运算。
2. 强调集合中元素的确定性、互异性、无序性。
八、教学评价1. 课后收集学生的课堂练习和课后作业,评估学生对集合知识的掌握程度。
2. 在下一节课开始时,进行简要的知识点测试,了解学生对所学知识的巩固情况。
九、教学建议1. 针对不同学生的学习水平,适当调整教学难度,给予学困生更多的关心和帮助。
2. 鼓励学生积极参与课堂讨论,提高学生的思维能力和解决问题的能力。
集合的含义与表示教案

集合的含义与表示教案第一章:集合的基本概念1.1 集合的定义引导学生理解集合的概念,了解集合是由一些确定的、互不相同的对象组成的整体。
通过举例说明集合的表示方法,如用大括号{}括起来的一组元素。
1.2 集合的元素解释集合中的元素是指构成集合的各个对象。
强调元素的唯一性和确定性。
1.3 集合的表示方法介绍集合的表示方法,包括列举法和描述法。
举例说明如何用列举法表示集合,以及如何用描述法表示集合。
第二章:集合的运算2.1 集合的并集解释并集的定义,即两个集合中所有元素的集合。
引导学生了解并集的表示方法,如A∪B。
2.2 集合的交集解释交集的定义,即两个集合中共有元素的集合。
引导学生了解交集的表示方法,如A∩B。
2.3 集合的补集解释补集的定义,即在全集U中不属于集合A的元素的集合。
引导学生了解补集的表示方法,如A'。
第三章:集合的性质3.1 集合的互异性强调集合中元素的唯一性,即集合中的元素不重复。
通过举例说明如何判断集合中元素的互异性。
3.2 集合的确定性解释集合的确定性,即集合中的元素是明确指定的。
强调集合中的元素是确定的,不会有歧义。
3.3 集合的无序性解释集合的无序性,即集合中元素的顺序无关紧要。
强调集合中的元素无论顺序如何排列,其表示的集合是相同的。
第四章:集合的例子4.1 自然数集合介绍自然数集合N,包括0和所有正整数。
解释自然数集合的性质,如无限性和递增性。
4.2 整数集合介绍整数集合Z,包括所有正整数、0和所有负整数。
解释整数集合的性质,如无限性和对称性。
4.3 实数集合介绍实数集合R,包括所有有理数和无理数。
解释实数集合的性质,如无限性和连续性。
第五章:集合的应用5.1 集合在数学中的应用强调集合在数学中的基础作用,如解决方程、不等式等问题。
通过举例说明集合在数学中的应用。
5.2 集合在科学中的应用解释集合在科学中的作用,如分类和归纳。
举例说明集合在科学研究中的应用。
5.3 集合在生活中的应用强调集合在日常生活中的应用,如购物时的商品分类、旅行时的景点选择等。
教学设计1_集合的含义与表示

§1.1集合的含义与表示人教版数学必修一第一章第一节【教材分析】1.知识内容与结构分析集合论是现代数学的一个重要的基础.在高中数学中,集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础,集合论以及它所反映的数学思想在越来越广泛的领域中得到应用.课本从学生熟悉的集合(自然数集合、有理数的集合等)出发,结合实例给出了元素、集合的含义,学生通过对具体实例的抽象、概括发展了逻辑思维能力.2.知识学习意义分析通过自主探究的学习过程,了解集合的含义,体会元素与集合的“属于”关系,能选择合适的语言描述不同的具体问题,感受集合语言的意义和作用.3.教学建议与学法指导由于本节新概念、新符号较多,虽然内容较为浅显,但不应讲得过快,应在讲解概念的同时,让学生多阅读课本,互相交流,在此基础上理解概念并熟悉新符号的使用.通过问题探究、自主探索、合作交流、自我总结等形式,调动学生的积极性.【教学目标】1.知识与技能(1)学生通过自主学习,初步理解集合的概念,理解元素与集合间的关系,了解集合元素的确定性、互异性,无序性,任意性,知道常用数集及其记法;(2)掌握集合的常用表示法——列举法和描述法.2.过程与方法通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择合适的语言(如自然语言、图形语言、集合语言)描述不同的具体问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识.3.情态与价值在掌握基本概念的基础上,能够解决相关问题,获得数学学习的成就感,提高学生分析问题和解决问题的能力,培养学生的应用意识.【重点难点】1.教学重点:集合的基本概念与表示方法.2.教学难点:选择合适的方法正确表示集合.【教学环境】◆多媒体教室◆课件【教学思路】通过实例以及学生熟悉的数集,引入集合的概念,进而给出集合的表示方法,学生通过自我体会、自主学习、自我总结达到掌握本节课内容的目的.教学过程按照“提出问题——学生讨论——归纳总结——获得新知——自我检测”环节安排.【教学过程】一、导入新课师:今天上课老师要考考大家语文学的怎么样了?谁能解释一下“物以类聚,人以群分”是什么意思呢?学:师:同学们的语文都学得很好!那老师现在又要考大家的数学知识了,在数学里我们把指定的所有的“物”聚在一起,或所有的“人”分在一起叫什么呢?学:师:回答不出来吗?没关系,因为你们还没学啊。
优秀教案1-集合的含义与表示

优秀教案1-集合的含义与表示第一章集合与函数的概念1.1 集合1.1.1 集合的含义与表示教材分析集合语言是现代数学的基本语言,可以简洁、准确地表达数学内容,是学习后续知识的基础.而本节课是集合章节的起始课,掌握集合的相关概念与表示是研究集合间关系与集合间运算的必备前提. 课时分配1课时教学目标重点:集合的基本概念与表示方法.难点:集合元素性质的应用.知识点:集合的相关概念;列举法、描述法能力点:分类讨论思想的运用.教育点:体会探究的乐趣,激发学生的学习热情.自主探究点:列举法、描述法的优缺点.考试点:列举法、描述法的格式;含参问题的求解.易错易混点:忽视集合元素的互异性要求.拓展点:实数有大小,集合间是否也有”大小”教具准备教学案、三角板课堂模式一、引入新课:探究1:考察下列几组对象:试回答:各组对象分别是什么?有多少个对象?① 1~20以内所有的素数(质数);② 到定点的距离等于定长的所有点;③ 所有的锐角三角形;④ 2x , 32x +, 35y x -, 22x y +;⑤ 枣庄三中高一年级全体学生;⑥ 方程230x x +=的所有实数根;⑦ 购物中心2012年8月卖出的所有苹果4S 手机;⑧ 1995年,枣庄市所有出生的婴儿.【师生活动】教师引导,学生组内讨论.【设计意图】分析8个背景例子的共同特征,概括出元素与集合的含义二、探究新知1:集合的含义:一般地,我们把研究对象统称为元素(element ),把一些元素组成的总体叫做集合(set ).集合通常用大写的拉丁字母A,B,C …表示,集合的元素用小写的拉丁字母a ,b ,c …表示.探究2:“好心的人”与“1,2,1”能否构成集合?【设计意图】引出集合元素的三个性质.2:集合元素的三个性质:(1)确定性:某一个具体对象,它或者是一个给定的集合的元素,或者不是该集合的元素,两种情况必有一种且只有一种成立.(2)互异性:同一集合中不应重复出现同一元素.(3)无序性:集合中的元素没有顺序.只要构成两个集合的元素是一样的,我们称这两个集合相等.例1 考查下列每组对象能否构成一个集合:(1)数组1、3、5、7;(2)到两定点距离的和等于两定点间距离的点;(3)满足323x x ->+的全体实数;(4)所有直角三角形;(5)美国NBA 的著名篮球明星;(6)所有绝对值等于6的数;(7)所有绝对值小于3的整数;(8)中国男子足球队中技术很差的队员;(9)参加2012年奥运会的中国代表团成员. (10)3的近似值的全体.【师生活动】师:请同学们阅读并完成教学案中例1,1分钟后我们“开火车”回答问题.生:1,2,3,4,6,7,9可以构成集合,5,8,10不能构成集合.【设计意图】学以致用,体会集合元素确定性的要求.同时通过“开火车”的形式,活跃课堂气氛. 练习1:分析下列对象,将能构成集合的用√标出:√① 不等式30x ->的解;√② 3的倍数;√③ 方程2210x x -+=的解;√④a ,b ,c ,,,x y z ;⑤ 最小的整数;√⑥ 周长为10 cm 的三角形;√⑦ 中国古代四大发明;√⑧ 全班每个学生的年龄;⑨ 地球的小河流.【设计意图】进一步巩固所学,加深理解.3:集合与元素的关系如果a 是集合A 的元素,就说a 属于(belong to)集合A ,记作:a ∈A ;如果a 不是集合A 的元素,就说a 不属于(not belong to)集合A ,记作:a ?A .练习2:完成课本第5页练习1【设计意图】熟悉属于、不属于的符号.4:常见数集的记法自然数集:全体非负整数组成的集合,记作:N ;正整数集; 全体正整数组成的集合记作:*N 或N +整数集:全体整数的集合,记作:Z ;有理数集:全体有理数的集合,记作:Q ;实数集:全体实数的集合,记作:R.5.集合的表示方法(1)列举法:把集合的元素一一列举出来,并用花括号“{ }”括起来.注意:不必考虑顺序,元素之间用“,”隔开;a 与{a }不同.例2 用列举法表示下列集合:① 15以内质数的集合; { 2,3,5,7,11,13}② 方程2(1)0x x -=的所有实数根组成的集合; { 0,1,-1}③ 一次函数y x =与21y x =-的图象的交点组成的集合. { (1,1)}【设计意图】熟悉列举法的格式,并体会集合中元素的无序性.(2)描述法:用集合所含元素的共同特征表示集合的方法称为描述法,一般格式为{x ∈A| P (x )},其中x 代表元素,P(x)是确定条件.注意:以下三个集合含义不同.(1)2{(,)|1}x y y x =-;(2)2{|1}y y x =-;(3)2{|1}x y x =-.三、理解新知认识集合时我们应首先识别其表示法,尤其是描述法,要看清代表元.四、运用新知例3.试分别用列举法和描述法表示下列集合:(1)方程x 2-2=0的所有实数根组成的集合.(2)由大于10小于20的所有整数组成的集合.(1)列举法{2,2-}描述法{220x x -=}(2)列举法{11,12,13,14,15,16,17,18,19}描述法{1020x Z x ∈<<}【设计意图】熟悉列举法、描述法的格式,并体会两种表示法的优缺点.练习4:完成课本第5页练习2【设计意图】进一步巩固所学.例4 已知集合A 是由三个元素2a -,225a a +,12组成的,且-3∈A ,求a .解∵-3∈A ,则-3=2a - 或-3=225a a +∴a =-1或a =-32当a =-1时, a -2=-3;225a a +=-3,不符合集合中元素的互异性,故a =-1应舍去.当a =-32时,2-a =-72,225a a +=-3,∴a =-32. 【设计意图】培养学生分析问题的能力,体会数学常用的思想方法-----分类讨论.练习5 已知集合A 是由0,m ,232m m -+三个元素组成的集合,且2∈A ,求实数m 的值.解∵2∈A ,∴m =2或232m m -+=2.若m =2,232m m -+=0,不符合集合中元素的互异性,舍去.若232m m -+=2,求得m =0或3.m =0不合题意,舍去.∴m 只能取3.【设计意图】由学生独立完成,检验学生的学习效果. 五、课堂小结教师提问:本节课我们学习了哪些知识,涉及到哪些数学方法?学生:知识上: 1、集合的含义. 2、集合元素的三个性质.3、常见数集的专用符号.4、集合的两种常用表示方法.思想上: 归纳、分类讨论的数学思想六、布置作业1.阅读教材25P P -2.书面作业(1)必做题:课本11P 习题1.1 A 组 1,2,3,4(2)选做题:①下列几组对象可以构成集合的是( D )A .充分接近π的实数的全体B .善良的人C .枣庄三中高一年级所有聪明的同学D .高一年级所有身高在1.7 m 以上的人②下列四个说法中正确的个数是( A )①集合N 中最小数为1;②若a ∈N ,则-a ? N ;③若a ∈N ,b ∈N ,则a +b 的最小值为2;④所有小的正数组成一个集合.A .0B .1C .2D .3③由2a ,2a -,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( C )A .1B .-2C .6D .2④下列说法正确的是( C ).A.不等式253x -<的解集表示为{4}x <B.所有偶数的集合表示为{|2}x x k =C.全体自然数的集合可表示为{自然数}D. 方程240x -=实数根的集合表示为{(2,2)}-⑤已知,,x y z 为非零实数,代数式x y z xyz x y z xyz+++的值所组成的集合是M ,则下列判断正确的是( D ) A .0 ? M B .2 ∈M C .-4 ? M D .4 ∈M⑥用“∈”或“?”填空(1)-8___?___N ;(2)3.14__∈____Q ;(3)13___ ?___Z ; (4)-12___∈___R ;(5)1___∈___N *;(6)0___∈_____N. ⑦由实数323,,,x x x x --所组成的集合里最多有____2____个元素.⑧用列举法将集合{(x,y )|x ∈{1,2},y ∈{1,2}}可以表示为{(1,1),(1,2),(2,1),(2,2)} .⑨已知集合M ={2-,2334x x +-,24x x +- },若2∈M ,求x .( x =-3或x =2)⑩若集合{1,3}A =-,集合2{|0}B x x ax b =++=,且A B =,求实数,a b .(2,3a b =-=-)3.预习任务:根据下列预习提纲预习1.1.2集合间的关系阅读教材第7页中的相关内容,并思考回答下列问题:(1)集合A 是集合B 的真子集的含义是什么?什么叫空集?(2)集合A 是集合B 的真子集与集合A 是集合B 的子集之间有什么区别?(3)0,{0}与?三者之间有什么关系?(4)包含关系{}a A ?与属于关系a A ∈有什么区别?(5)空集是任何集合的子集吗?空集是任何集合的真子集吗?(6)能否说任何一个集合是它本身的子集,即A A ??(7)对于集合A ,B ,C ,D ,如果A ?B ,B ?C ,那么集合A 与C 有什么关系?【设计意图】作业1是引导学生先复习,再作业,培养学生良好的学习习惯.书面作业的必做题,是为了让学生掌握基本的知识,达成本节课的教学目标.选做题难度递进,供学有余力的同学,加深理解,提高解题的能力.预习作业的安排是为了培养学生预习的习惯,为下一节课的学习打下必备的基础. 七、教后反思1.本教案的亮点是例题覆盖全面,变式与例题衔接好,有讲有练,课后题针对例题,有助于学生掌握知识.2.本节课的弱项是课容量大,在课堂上没有充分暴露学生的思维过程,并给予针对性的诊断与分析.如果课前提前预习定能有效的改善弱项.八、板书设计1.1.1集合的含义与表示一、集合的相关概念二、集合的表示三、例题导航1.集合的含义 1.列举法:例1 例32.集合元素的三个性质格式:①确定性 2.描述法:例2 例4②无序性格式:③互异性注:3.集合与元素的关系:4.常见数集的记法:。
集合的含义与表示教案

集合的含义与表示教案第一章:集合的基本概念1.1 集合的定义讲解集合的定义:集合是由明确的、相互区别的对象组成的整体。
强调集合中元素的性质:无序、互异性、确定性。
1.2 集合的表示方法讲解集合的表示方法:列举法和描述法。
示例解析:如何用列举法和描述法表示给定的集合。
1.3 集合之间的关系讲解集合之间的包含关系、不相交关系和并集等概念。
示例解析:如何表示两个集合的包含关系、不相交关系和并集。
第二章:集合的基本运算2.1 集合的交集讲解集合的交集概念:包含属于两个集合的所有元素的集合。
示例解析:如何计算两个集合的交集。
2.2 集合的并集讲解集合的并集概念:包含属于任意一个集合的所有元素的集合。
示例解析:如何计算两个集合的并集。
2.3 集合的补集讲解集合的补集概念:在全集相对于某个集合的补集中,不属于该集合的所有元素的集合。
示例解析:如何计算一个集合的补集。
第三章:集合的性质与运算规律3.1 集合的性质讲解集合的性质:确定性、互异性、无序性。
示例解析:如何判断给定的集合是否满足这些性质。
3.2 集合运算的规律讲解集合运算的规律:交换律、结合律、分配律等。
示例解析:如何应用这些运算规律解决实际问题。
3.3 集合的分类讲解集合的分类:有限集、无限集、可数集、不可数集等。
示例解析:如何判断给定的集合属于哪种分类。
第四章:数学归纳法4.1 数学归纳法的基本概念讲解数学归纳法的基本概念:数学归纳法是一种证明命题对所有自然数成立的证明方法。
示例解析:如何应用数学归纳法证明一个命题。
4.2 数学归纳法的步骤讲解数学归纳法的步骤:基础步骤、归纳步骤。
示例解析:如何按照这些步骤进行数学归纳法证明。
4.3 数学归纳法的应用讲解数学归纳法的应用:解决与自然数有关的命题。
示例解析:如何利用数学归纳法解决实际问题。
第五章:集合的应用5.1 集合在生活中的应用讲解集合在生活中的应用:例如,购物时的商品分类、朋友圈等。
示例解析:如何运用集合的概念解决生活中的实际问题。
中职数学教案:集合及其表示

1.下列各语句中的对象能否组成集合?如果能组成集合,写出它的元素.如果不能组成集合,请说明理由.
(1)某校汉字录入速度快的学生;
(2)某校汉字录入速度为90字符/min及以上的所有学生;
(3)方程(2x-3)(x+1)=0的所有实数解;
(4)大于-5且小于5的整数;
(5)大于3且小于1的所有实数;
知的圆上所有的点都是这个圆的元素.
含有有限个元素的集合称为有限集.不含任何元素的集合称为空集,记作,空集
也是有限集.
含有无限个元素的集合称为无限集.由数组成的集合称为数集.
例如,例1(1)和(2),小于6的所有自然数组成的集合和方程x2+3x−4=0的所有实数解组成的集合都是有限集.
又例如,例1(3)所有的平行四边形组成的集合,不等式x−3<0的所有解组成的集合都是无限集。
重点
元素与集合之间的关系;集合的描述法.
难点
空集的理解;用描述法表示集合.
教法
教学
设备பைடு நூலகம்
制作多媒体课件
教学
环节
教学活动内容及组织过程
个案补充
教
学
内
容
教
学
内
容
教
学
内
容
教
学
内
容
1.1.1集合的概念
中国古代四大发明是:造纸术、印刷术、指南针和火药.四大发明可以组成一个集合.
图书馆里,为便于查找,会按照某种方式将同一类的书刊摆放在一起.比如,可以所有数学书籍放在一起组成数学书籍专区,专区内所有数学书就可以组成一个集合.
(6)非常接近0的数.
2.用符号“”或“”填空.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.1集合的含义与表示
人教版数学必修一第一章第一节
【教材分析】
1.知识内容与结构分析
集合论是现代数学的一个重要的基础.在高中数学中,集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础,集合论以及它所反映的数学思想在越来越广泛的领域中得到应用.课本从学生熟悉的集合(自然数集合、有理数的集合等)出发,结合实例给出了元素、集合的含义,学生通过对具体实例的抽象、概括发展了逻辑思维能力.
2.知识学习意义分析
通过自主探究的学习过程,了解集合的含义,体会元素与集合的“属于”关系,能选择合适的语言描述不同的具体问题,感受集合语言的意义和作用.
3.教学建议与学法指导
由于本节新概念、新符号较多,虽然内容较为浅显,但不应讲得过快,应在讲解概念的同时,让学生多阅读课本,互相交流,在此基础上理解概念并熟悉新符号的使用.通过问题探究、自主探索、合作交流、自我总结等形式,调动学生的积极性.
【教学目标】
1.知识与技能
(1)学生通过自主学习,初步理解集合的概念,理解元素与集合间的关系,了解集合元素的确定性、互异性,无序性,任意性,知道常用数集及其记法;
(2)掌握集合的常用表示法——列举法和描述法.
2.过程与方法
通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择合适的语言(如自然语言、图形语言、集合语言)描述不同的具体问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识.3.情态与价值
在掌握基本概念的基础上,能够解决相关问题,获得数学学习的成就感,提高学生分析问题和解决问题的能力,培养学生的应用意识.
【重点难点】
1.教学重点:集合的基本概念与表示方法.
2.教学难点:选择合适的方法正确表示集合.
【教学环境】
◆多媒体教室
◆课件
【教学思路】
通过实例以及学生熟悉的数集,引入集合的概念,进而给出集合的表示方法,学生通过自我体会、自主学习、自我总结达到掌握本节课内容的目的.教学过程按照“提出问题——学生讨论——归纳总结——获得新知——自我检测”环节安排.
【教学过程】
一、导入新课
师:今天上课老师要考考大家语文学的怎么样了?谁能解释一下“物以类聚,人以群分”是什么意思呢?
学:
师:同学们的语文都学得很好!那老师现在又要考大家的数学知识了,在数学里我们把指定的所有的“物”聚在一起,或所有的“人”分在一起叫什么呢?
学:
师:回答不出来吗?没关系,因为你们还没学啊。
在数学上,我们把它叫做集合。
这就是
今天我们要一起学习的新的知识集合的含义及表示。
二.层层递进,探索新知
介绍一下集合的创始人康托,引起学生对数学课堂的兴趣。
(一)集合的含义
1、集合——由一些确定的对象集在一起就成为一个集合,简称集。
集合常用大写字母A,B,C,D,…标记.
{英文的26个字母}={a,b,c,d……z},A={1,2,3,4,5} ,{我国的56个名族},{中国的直辖市}
={北京,上海,天津,重庆}
强调集合可以是字母,可以是事物,也可以是数字。
2.元素——集合中的每个对象叫做这个集合的元素.元素常用小写字母a,b,c,d,…标记.
例如:A={1,2,3,4,5},
1是集合A的元素,a=2是集合A的元素,6不是集合A的元素。
让学生练习说出集合里面的元素。
PPT上的内容。
注意:a与{a}不同:a表示一个元素,{a}表示一个集合,该集合只有一个元素。
3.元素与集合的关系:给定一个集合,任何一个对象是不是这个集合的元素就确定了.
若元素a在集合A中,就说元素a属于集合A,记作 a∈A ;
若元素a 不在集合A 中,就说元素a 不属于集合A ,记作a A .
例如:在上述的问题中,A={1,2,3,4,5}, ,5, 与集合A 的关系。
4.用一则幼儿园小朋友学集合的笑话巩固强化学生集合的知识。
幼儿园的一名女教师在向幼儿园小朋友讲授集合的知识,她是这么说的:“咱们班的男生全都站起来。
”男生都站起来了,女老师说:“咱们班的男生就是一个集合。
”男孩子坐下,女老师又说:“女生都站起来。
”女生都站起来了,女老师说:“咱们班的女生就是一个集合。
”女生坐下了,老师就问;“小朋友们你们说你们坐的的椅子是集合吗?”小朋友们异口同声的说:“不是,椅子不会站起来!”小朋友的回答对吗?集合有什么特征吗?难道真的是椅子不会站起来才不属于集合吗?我们来看看学习集合的特征。
5.集合的三大特征
(1)确定性;要是确定的对象,集合中的元素必须是确定的
例:(1){我们班的女生}(2) {中国古代的四大发明}={指南针,造纸术,印刷术,火药}(3){美女和帅哥}
(2)互异性;集合中的元素必须是互不相同的。
如果出现了两个或两个以上相同的元素就只能算一个。
例:{1,1}是不对的,要写成{1},{苹果,菠萝,西瓜,苹果}要改成{苹果,菠萝,西瓜}
现学现用。
已知A={x,x2},且1∈A ,求x 。
解:因为1∈A ,则有x=1或者x2等于1.
①当x=1时,则x2等于1
与集合的互异性相矛盾,则x=1不成立。
②当x2=1,则x=±1,又因为x ≠1,则x=-1。
综上所述,x=-1
集合A={-1,1}
(3)无序性.集合中的元素是无先后顺序的.集合中的任何两个元素都可以交换位置.
从无序性引出集合相等的概念。
什么叫做集合相等?
只要构成两个集合的元素是一样的。
叫学生说一说一下两个集合分别有哪些元素?
A={1~20以内的质数}
B={2,3,5,7,11,13,17,19}
得出A=B
注意:让学生知道任意元素也可以组成集合。
让学生练习:判断以下元素的全体是否组成集合,并说明理由
(1) 地球上的四大洋
27
2
(2)中国的小河流
(3){1,x, x^2}
(4)大于3小于11的偶数。
巩固集合的知识
6.的常用表示法
1、列举法:把集合中的元素一一列举出来,写在大括号内的方法.
例(1)小于10的所有自然数组成的集合;
(2)方程x^2=x的所有实数根组成的集合;
(3)由1~20以内的所有质数组成的集合。
2、描述法:描述法用确定的条件表示某些对象是否属于这个集合,写成{x︱特征性质}的形式。
1.数式形式如由不等式x-3>2的所有解组成的集合,可表示为 {x│x-3>2};
由直线y=x+1上所有的点的坐标组成的集合,可表示为 {(x,y)│ y=x+1 }。
2、语言形式如由所有直角三角形组成的集合,可表示为{直角三角形};由所有小于6的正整数组成的集合,可表示为 {小于6的正整数}
例:试分别用列举法和描述法表示下列集合
(1)方程x^2-2=0的所有实数根组成的集合;
(2)由大于10小于20的所有的数组成的集合。
让学生思考结合此例,试比较用自然语言、列举法和描述法表示集合时各自的特点和适用的对象。
从而引出集合的分类。
7.集合的表示方法
有限集——含有个元素的集合叫有限集。
例:{-1,0,1}
无限集——含无限个元素的集合叫无限集.例:{x|x-3>0}
空集——不含有任何元素的集合叫做空集.记作∅.例:{x^2+x+1>0}
强调空集是有限集。
并告诉学生{0}不是空集,是由一个0元素组成的集合。
不能混淆0和空集的含义8.介绍重要的数集
自然数组成的集合简称自然数集,记作N ;(自然数就natural就是N)
正整数组成的集合简称正整数集,记作N+ ;
整数组成的集合简称整数集,记作Z ;(整数整数,拼音里面就Z打头的)
有理数组成的集合简称有理数集,记作Q ;(有理数可以想成有尾巴,字母里面只有Q是有尾巴的,方便学生的记忆)
实数组成的集合简称实数集,记作R.
学生会有疑问那无理数有自己的符号吗?我们可以说在学过以后的知识,我们能通过实数和有理数
表示无理数。
三.典型例题,分析讲解
1.已知A={a-2,2a2+5a,10},且-3∈A,求a
2.若A={x|x=3n+1,n ∈Z}, B={x|x=3n+2,n ∈Z}C={x|x=6n+3,n ∈Z}
(1)若c ∈C,问是否有a ∈A,b ∈B,使得c=a+b;
(2)对于任意a ∈A,b ∈B,是否一定有a+b ∈ C ?并证明你的结论;
问学生们第一题考的是什么知识点?
第二题理解属于的含义
四.课堂小结
1集合的概念;常用数集的记法;
2.集合元素的性质:确定性,互异性,无序性;
3.集合的表示方法:描述法和列举法。
4、集合的分类
五、作业布置
1、P6 A组题:
2、
3、4
2、思考:P6 B组题
板书设计。