高中物理带电粒子在电场中的运动答题技巧及练习题(含答案)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理带电粒子在电场中的运动答题技巧及练习题(含答案)

一、高考物理精讲专题带电粒子在电场中的运动

1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点

3

,0P L ⎛⎫ ⎪ ⎪⎝⎭

处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.

(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;

(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;

(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.

某同学查阅资料后,得到一种处理相关问题的思路:

带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq

32

2

3

0B E E v B +⎛⎫ ⎪⎝⎭

【解析】 【详解】

(1)粒子1在一、二、三做匀速圆周运动,则2

111

v qv B m r =

由几何憨可知:()2

22

1133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭

得到:123BLq

v m

=

(2)粒子2在第一象限中类斜劈运动,有:

13

3

L v t

=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到2

89qLB E m

=

又22

212v v Eh =+,得到:2221BLq

v =

(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0

E v B

'= 而'223

v v v ''=

+ 所以,运动过程中粒子的最小速率为v v v =''-'

即:2

2

003E E v v B B ⎛⎫=+- ⎪⎝⎭

2.如图所示,在平面直角坐标系xOy 的第二、第三象限内有一垂直纸面向里、磁感应强度为B 的匀强磁场区域△ABC ,A 点坐标为(0,3a ),C 点坐标为(0,﹣3a ),B 点坐标为(23a -,-3a ).在直角坐标系xOy 的第一象限内,加上方向沿y 轴正方向、场强大小为E=Bv 0的匀强电场,在x=3a 处垂直于x 轴放置一平面荧光屏,其与x 轴的交点为Q .粒子束以相同的速度v 0由O 、C 间的各位置垂直y 轴射入,已知从y 轴上y =﹣2a 的点射入磁场的粒子在磁场中的轨迹恰好经过O 点.忽略粒子间的相互作用,不计粒子的重力. (1)求粒子的比荷;

(2)求粒子束射入电场的纵坐标范围;

(3)从什么位置射入磁场的粒子打到荧光屏上距Q 点最远?求出最远距离.

【答案】(1)0v Ba

(2)0≤y≤2a (3)78y a =,9

4a

【解析】 【详解】

(1)由题意可知, 粒子在磁场中的轨迹半径为r =a 由牛顿第二定律得

Bqv 0=m 20

v r

故粒子的比荷

v q m Ba

= (2)能进入电场中且离O 点上方最远的粒子在磁场中的运动轨迹恰好与AB 边相切,设粒子运动轨迹的圆心为O ′点,如图所示.

由几何关系知

O ′A =r ·

AB

BC

=2a 则

OO ′=OA -O ′A =a

即粒子离开磁场进入电场时,离O 点上方最远距离为

OD =y m =2a

所以粒子束从y 轴射入电场的范围为0≤y ≤2a (3)假设粒子没有射出电场就打到荧光屏上,有

3a =v 0·t 0

2019

222

qE y t a a m =

=>, 所以,粒子应射出电场后打到荧光屏上

粒子在电场中做类平抛运动,设粒子在电场中的运动时间为t ,竖直方向位移为y ,水平方向位移为x ,则 水平方向有

x =v 0·t

竖直方向有

2

12qE y t m

=

代入数据得

x 2ay

设粒子最终打在荧光屏上的点距Q 点为H ,粒子射出电场时与x 轴的夹角为θ,则

002tan y x qE x v m v y v v a

θ⋅

===

H =(3a -x )·tan θ

=(32)2a y y -

当322a y y -=时,即y =9

8

a 时,H 有最大值 由于

98

a <2a ,所以H 的最大值H max =9

4a ,粒子射入磁场的位置为

y =

98

a -2a =-78a

3.如图所示,在竖直面内有一边长为

的正六边形区域,O 为中心点,CD 水平.将一

质量为m 的小球以一定的初动能从B 点水平向右拋出,小球运动轨迹过D 点.现在该竖直面内加一匀强电场,并让该小球带电,电荷量为+q ,并以前述初动能沿各个方向从B 点拋入六边形区域,小球将沿不同轨迹运动.已知某一方向拋入的小球过O 点时动能为初动能的,另一方向拋入的小球过C 点时动能与初动能相等.重力加速度为g ,电场区域足够大,求:

(1)小球的初动能;

(2)取电场中B 点的电势为零,求O 、C 两点的电势;

(3)已知小球从某一特定方向从B 点拋入六边形区域后,小球将会再次回到B ,求该特定方向拋入的小球在六边形区域内运动的时间. 【答案】(1);(2)

;(3)

【解析】 【分析】 【详解】

(1)设小球从B 点抛出时速度为,从B 到D 所用时间为t ,小球做平抛运动 在水平方向上 在竖直方向上

由几何关系可知:,

解得小球的初动能为:

相关文档
最新文档