初三数学二次函数基础练习题
中考数学二次函数练习题
二次函数课前检测1. 抛物线y=﹣(x+)2﹣3的顶点坐标是()A .(,﹣3)B .(﹣,﹣3)C .(,3)D .(﹣,3)2. 将抛物线y=x2向右平移2个单位,再向上平移1个单位,所得抛物线相应的函数表达式是()A.y=(x+2)2+1 B.y=(x+2)2﹣1 C.y=(x﹣2)2+1 D.y=(x﹣2)2﹣13. 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,以下四个结论:①a>0;②c>0;③b2﹣4ac>0;④﹣<0,正确的是()A.①②B.②④C.①③D.③④4. (2017齐齐哈尔)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,则下列结论:①4a﹣b=0;②c <0;③﹣3a+c>0;④4a﹣2b>at2+bt(t 为实数);⑤点(﹣,y1),(﹣,y2),(﹣,y3)是该抛物线上的点,则y1<y2<y3,正确的个数有()A .4个B .3个C .2个D .1个5. (2017贵州)如图,抛物线y=ax2+bx+c (a≠0)的对称轴为直线x=﹣1,给出下列结论: ①b2=4ac ;②abc >0;③a >c ;④4a ﹣2b+c >0,其中正确的个数有( )A .1个B .2个C .3个D .4个一、二次函数的概念一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数. 二、二次函数解析式的三种形式(1)一般式:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).(2)顶点式:y =a (x –h )2+k (a ,h ,k 为常数,a ≠0),顶点坐标是(h ,k ).(3)交点式:y =a (x –x 1)(x –x 2),其中x 1,x 2是二次函数与x 轴的交点的横坐标,a ≠0. 三、二次函数的图象及性质 1.二次函数的图象与性质解析式 二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)对称轴x =–2b a知识梳理顶点 (–2ba,244ac b a -)a 的符号a >0a <0图象开口方向开口向上 开口向下 最值当x =–2ba 时, y 最小值=244ac b a-当x =–2ba时, y 最大值=244ac b a-最点抛物线有最低点抛物线有最高点增减性当x <–2ba时,y 随x 的增大而减小;当x >–2ba时,y 随x 的增大而增大 当x <–2ba时,y 随x 的增大而增大;当x >–2ba时,y 随x 的增大而减小 2. 字母的符号图象的特征 aa >0 开口向上 a <0 开口向下b b =0对称轴为y 轴ab >0(a 与b 同号) 对称轴在y 轴左侧 ab <0(a 与b 异号)对称轴在y 轴右侧c c =0经过原点 c >0 与y 轴正半轴相交 c <0 与y 轴负半轴相交 b 2–4ac b 2–4ac =0与x 轴有唯一交点(顶点)b 2–4ac >0 与x 轴有两个交点 b 2–4ac <0与x 轴没有交点四、抛物线的平移1.将抛物线解析式化成顶点式y =a (x –h ) 2+k ,顶点坐标为(h ,k ). 2.保持y =ax 2的形状不变,将其顶点平移到(h ,k )处,具体平移方法如下:3.注意二次函数平移遵循“上加下减,左加右减”的原则,据此,可以直接由解析式中常数的加或减求出变化后的解析式;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式. 五、二次函数与一元二次方程的关系1.二次函数y =ax 2+bx +c (a ≠0),当y =0时,就变成了一元二次方程ax 2+bx +c =0(a ≠0). 2.ax 2+bx +c =0(a ≠0)的解是抛物线y =ax 2+bx +c (a ≠0)的图象与x 轴交点的横坐标. 3.(1)b 2–4ac >0⇔方程有两个不相等的实数根,抛物线与x 轴有两个交点;学#科网 (2)b 2–4ac =0⇔方程有两个相等的实数根,抛物线与x 轴有且只有一个交点; (3)b 2–4ac <0⇔方程没有实数根,抛物线与x 轴没有交点.考向一 二次函数的有关概念1.二次函数的一般形式的结构特征:①函数的关系式是整式;②自变量的最高次数是2;③二次项系数不等于零.学科+网2.一般式,顶点式,交点式是二次函数常见的表达式,它们之间可以互相转化.典例1 下列函数中,二次函数是 A .y =–4x +5B .y =x (2x –3)C .y =(x +4)2–x 2D .y =21x典例2 函数y =211mm x ++()是二次函数,则m 的值是考点突破C .–1D .以上都不对1.下列函数中,y 关于x 的二次函数是 A .y =ax 2+bx +c B .y =x (x –1)C .y =21xD .y =(x –1)2–x 22.如果y =(a –1)x 2–ax +6是关于x 的二次函数,那么a 的取值范围是 A .a ≠0B .a ≠1C .a ≠1且a ≠0D .无法确定考向二 二次函数的图象二次函数的图象是一条关于某条直线对称的曲线,叫做抛物线,该直线叫做抛物线的对称轴,对称轴与抛物线的交点叫做抛物线的顶点.典例3 函数y =ax 2+bx +a +b (a ≠0)的图象可能是A .B .C .D .典例4 如果二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,那么下列不等式成立的是C.ac<0 D.bc<03.如果a、b同号,那么二次函数y=ax2+bx+1的大致图象是A.B.C.D.4.已知函数y=ax+b的大致图象如图所示,那么二次函数y=ax2+bx+1的图象可能是A.B.C.D.5.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论正确的是A.a<0 B.c>0C.a+b+c>0 D.b2–4ac<0考向三二次函数的性质二次函数的解析式中,a决定抛物线的形状和开口方向,h、k仅决定抛物线的位置.若两个二次函数的图象形状完全相同且开口方向相同,则它们的二次项系数a必相等.学科#网典例5二次函数y=x2+2x+3的图象的开口方向为A.向上B.向下C.向左D.向右典例6对于抛物线y=–(x+2)2+3,下列结论中正确结论的个数为①抛物线的开口向下;②对称轴是直线x=–2;③图象不经过第一象限;④当x>2时,y随x的增大而减小.A.4 B.3C.2 D.16.如果二次函数y=ax2+bx+c的图象全部在x轴的下方,那么下列判断正确的是A.a<0,b<0 B.a>0,b<0C.a<0,c>0 D.a<0,c<07.对于下列结论:①二次函数y=6x2,当x>0时,y随x的增大而增大.②关于x的方程a(x+m)2+b=0的解是x1=–2,x2=1(a、m、b均为常数,a≠0),则方程a(x+m+2)2+b=0的解是x1=–4,x2=–1.③设二次函数y=x2+bx+c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是c≥3.其中,正确结论的个数是A.0个B.1个C.2个D.3个考向四二次函数的平移1.抛物线在平移的过程中,a的值不发生变化,变化的只是顶点的位置,且与平移方向有关.2.涉及抛物线的平移时,首先将表达式转化为顶点式y=a(x–h)2+k的形式.3.抛物线的移动主要看顶点的移动,y=ax2的顶点是(0,0),y=a(x–h)2的顶点是(h,0),y=a(x–h)2+k的顶点是(h,k).4.抛物线的平移口诀:自变量加减左右移,函数值加减上下移.典例7如果将抛物线y=–x2–2向右平移3个单位长度,那么所得到的新抛物线的表达式是A.y=–x2–5 B.y=–x2+1C.y=–(x–3)2–2 D.y=–(x+3)2–2典例8如图,如果把抛物线y=x2沿直线y=x向上方平移22个单位后,其顶点在直线y=x上的A处,那么平移后的抛物线解析式是A.y=(x+22)2+22B.y=(x+2)2+2C.y=(x–22)2+22D.y=(x–2)2+28.已知抛物线C:y=x2+2x–3,将抛物线C平移得到抛物线C′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是A.将抛物线C沿x轴向右平移52个单位得到抛物线C′B.将抛物线C沿x轴向右平移4个单位得到抛物线C′C.将抛物线C沿x轴向右平移72个单位得到抛物线C′D.将抛物线C沿x轴向右平移6个单位得到抛物线C′9.把抛物线y=12x2–1先向右平移1个单位长度,再向下平移2个单位长度,得到的抛物线的解析式为A.y=12(x+1)2–3 B.y=12(x–1)2–3C.y=12(x+1)2+1 D.y=12(x–1)2+1考向五二次函数与一元二次方程、不等式的综合抛物线y=ax2+bx+c(a≠0)与x轴的交点个数及相应的一元二次方程根的情况都由Δ=b2–4ac决定.1.当Δ>0,即抛物线与x轴有两个交点时,方程ax2+bx+c=0有两个不相等的实数根,这两个交点的横坐标即为一元二次方程的两个根.2.当Δ=0,即抛物线与x轴有一个交点(即顶点)时,方程ax2+bx+c=0有两个相等的实数根,此时一元二次方程的根即为抛物线顶点的横坐标.3.当Δ<0,即抛物线与x轴无交点时,方程ax2+bx+c=0无实数根,此时抛物线在x轴的上方(a>0时)或在x轴的下方(a<0时).典例9二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表,则方程ax2+bx+c=0的一个解的范围是x 6.17 6.18 6.19y–0.03 –0.01 0.02A.–0.03<x<–0.01 B.–0.01<x<0.02典例10如图是二次函数y=a(x+1)2+2图象的一部分,则关于x的不等式a(x+1)2+2>0的解集是A.x<2 B.x>–3C.–3<x<1 D.x<–3或x>110.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c>0的解集是A.–1<x<5 B.x>5C.x<–1 D.x<–1或x>511.抛物线y=2x2–4x+m的部分图象如图所示,则关于x的一元二次方程2x2–4x+m=0的解是__________.考向六二次函数的实际应用在生活中,我们常会遇到与二次函数及其图象有关的问题,解决这类问题的一般思路:首先要读懂题意,弄清题目中牵连的几个量的关系,并且建立适当的直角坐标系,再根据题目中的已知条件建立数学模型,即列出函数关系式,然后运用数形结合的思想,根据函数性质去解决实际问题.典例11如图,正方形ABCD的边长为5,点E是AB上一点,点F是AD延长线上一点,且BE=DF.四边形AEGF是矩形,则矩形AEGF的面积y与BE的长x之间的函数关系式为A.y=5–x B.y=5–x2C.y=25–x D.y=25–x2典例12烟花厂为雁荡山旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=–52t2+20t+1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为A .3 sB .4 sC .5 sD .6 s12.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x 元后,每星期售出商品的总销售额为y 元,则y 与x 的关系式为A .y =60(300+20x )B .y =(60–x )(300+20x )C .y =300(60–20x )D .y =(60–x )(300–20x )13.图(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面2 m ,水面宽4 m .如图(2)建立平面直角坐标系,则抛物线的关系式是A .y =–2x 2B .y =2x 2C .y =–0.5x 2D .y =0.5x 21.若273m y m x -=-()是二次函数,则m 的值是 A .±3 B .3C .–3D .92.将抛物线y =x 2平移得到抛物线y =x 2+5,下列叙述正确的是 A .向上平移5个单位长度 B .向下平移5个单位长度 C .向左平移5个单位长度D .向右平移5个单位长度3.二次函数y =x 2–2x +1的图象与x 轴的交点情况是达标测评A .有一个交点B .有两个交点C .没有交点D .无法确定4.二次函数y =ax 2+bx +c 与一次函数y =ax +c 在同一直角坐标系内的大致图象是A .B .C .D .5.二次函数y =(x –2)2+m 的图象如图所示,一次函数y =kx +b 的图象经过该二次函数图象上的点A (1,0)及点B (4,3),则满足kx +b ≥(x –2)2+m 的x 的取值范围是A .1≤x ≤4B .x ≤1C .x ≥4D .x ≤1或x ≥46.如图,已知正方形ABCD 的边长为4,P 是BC 边上一动点(与B ,C 不重合),连接AP ,作PE ⊥AP 交∠BCD 的外角平分线于E ,设BP =x ,△PCE 的面积为y ,则y 与x 的函数关系式是A .y =–x 2+4xB .2122y x x =-C .2122y x x =-+D .y =x 2–4x7.如图是抛物线形拱桥,当拱顶高离水面2 m 时,水面宽4 m ,水面下降2.5 m ,水面宽度增加A.1 m B.2 mC.3 m D.6 m8.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc<0;②3a+c>0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac.其中正确的结论的有A.2个B.3个C.4个D.5个9.抛物线y=(x–2)(x+3)与y轴的交点坐标是__________.10.若A(–3.5,y1)、B(–1,y2)、C(1,y3)为二次函数y=–x2–4x+5的图象上三点,则y1,y2,y3的大小关系是__________.(用>连接)11.二次函数y=x(x–6)的图象的对称轴是__________.12.已知一个二次函数的图象经过A(1,6)、B(–3,6)、C(0,3)三点,求这个二次函数的解析式,并指出它的开口方向.学#科网13.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25 m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40 m的栅栏围住(如图).设绿化带的BC边长为x m,绿化带的面积为y m2.(1)求y与x之间的函数关系式,并写出自变量x的取值范围.(2)当x为何值时,满足条件的绿化带的面积最大?14.已知二次函数y=–12x2–x+72.(1)用配方法把这个二次函数的解析式化为y=a(x+m)2+k的形式;(2)写出这个二次函数图象的开口方向、顶点坐标和对称轴;(3)将二次函数y=–12x2的图象如何平移能得到二次函数y=–12x2–x+72的图象,请写出平移方法.1.(2017•长沙)抛物线y =2(x –3)2+4顶点坐标是 A .(3,4) B .(–3,4)C .(3,–4)D .(2,4)2.(2017•牡丹江)若抛物线y =–x 2+bx +c 经过点(–2,3),则2c –4b –9的值是 A .5B .–1C .4D .183.(2017•金华)对于二次函数y =–(x –1)2+2的图象与性质,下列说法正确的是 A .对称轴是直线x =1,最小值是2B .对称轴是直线x =1,最大值是2C .对称轴是直线x =–1,最小值是2D .对称轴是直线x =–1,最大值是24.(2017•连云港)已知抛物线y =ax 2(a >0)过A (–2,y 1)、B (1,y 2)两点,则下列关系式一定正确的是A .y 1>0>y 2B .y 2>0>y 1C .y 1>y 2>0D .y 2>y 1>05.(2017•眉山)若一次函数y =(a +1)x +a 的图象过第一、三、四象限,则二次函数y =ax 2–axA .有最大值4a B .有最大值–4aC .有最小值4aD .有最小值–4a6.(2017•陕西)已知抛物线y =x 2–2mx –4(m >0)的顶点M 关于坐标原点O 的对称点为M ′,若点M ′在这条抛物线上,则点M 的坐标为 A .(1,–5) B .(3,–13)C .(2,–8)D .(4,–20)7.(2017•丽水)将函数y =x 2的图象用下列方法平移后,所得的图象不经过点A (1,4)的方法是 A .向左平移1个单位 B .向右平移3个单位 C .向上平移3个单位D .向下平移1个单位实战演练8.(2017•成都)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是A.abc<0,b2–4ac>0 B.abc>0,b2–4ac>0C.abc<0,b2–4ac<0 D.abc>0,b2–4ac<09.(2017•兰州)下表是一组二次函数y=x2+3x–5的自变量x与函数值y的对应值:x 1 1.1 1.2 1.3 1.4y–1 –0.49 0.04 0.59 1.16 那么方程x2+3x–5=0的一个近似根是A.1 B.1.1 C.1.2 D.1.310.(2017•日照)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a–b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是A.①②③B.③④⑤C.①②④D.①④⑤11.(2017•邵阳)若抛物线y=ax2+bx+c的开口向下,则a的值可能是__________.(写一个即可)12.(2017•锦州)如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(12,1),下列结论:①abc>0;②a=b;③a=4c–4;④方程ax2+bx+c=1有两个相等的实数根,其中正确的结论是__________.(只填序号即可)13.(2017•衡阳)已知函数y=–(x–1)2图象上两点A(2,y1),B(a,y2),其中a>2,则y1与y2的大小关系是y1__________y2(填“<”“>”或“=”).14.(2017•百色)经过A(4,0),B(–2,0),C(0,3)三点的抛物线解析式是__________.15.(2017•阿坝州)某商品的进价为每件40元,售价为每件60元时,每个月可卖出100件;若每件商品的售价每上涨1元,则每个月少卖2件.设每件商品的售价为x元(x为正整数),每个月的销售利润为y元.(1)当每件商品的售价是多少元时,每个月的利润刚好是2250元?(2)当每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?16.(2017•广东)如图,在平面直角坐标系中,抛物线y=–x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=–x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.附:二次函数专题训练一、关于等腰三角形问题1、如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点(4,0)A -、(2,0)B ,交y 轴于点(0,6)C ,在y 轴上有一点(0,2)E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值;(3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.2、如图,直线3y交x轴于A点,交y轴于B点,过A、B两点的抛物线交x轴于另一点3+=xC(3,0).⑴求抛物线的解析式;⑵在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.二、二次函数关于垂直问题1、如图,△ABC是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,抛物线2=++经过A,By x bx c两点,抛物线的顶点为D.(1)求b,c的值;(2)点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;(3)在(2)的条件下:①求以点E、B、F、D为顶点的四边形的面积;②在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形? 若存在,求出所有点P的坐标;若不存在,说明理由.26题图26题备用图2、如图,是将抛物线y=-x2平移后得到的抛物线,其对称轴为x=1,与x轴的一个交点为A(-1,0),另一交点为B,与y轴的交点为C.(1)求抛物线的函数表达式;(2)若点N为抛物线上一点,且BC⊥NC,求点N的坐标;(3)点P是抛物线上一点,点Q是一次函数y=32x+32的图象上一点,若四边形OAPQ为平行四边形,这样的点P,Q是否存在?若存在,分别求出点P,Q的坐标;若不存在,说明理由.三、二次函数关于平行四边形问题1、如图,是将抛物线y=﹣x2平移后得到的抛物线,其对称轴为x=1,与x轴的一个交点为A (﹣1,0),另一个交点为B,与y轴的交点为C.(1)求抛物线的函数表达式;(2)若点N为抛物线上一点,且BC⊥NC,求点N的坐标;(3)点P是抛物线上一点,点Q是一次函数y=x+的图象上一点,若四边形OAPQ为平行四边形,这样的点P、Q是否存在?若存在,分别求出点P、Q的坐标;若不存在,说明理由.2、如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.(1)求二次函数y=ax2+bx+c的表达式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.四、二次函数关于相似问题1、如图,把抛物线2=向左平移1个单位,再向下平移4个单位,得到抛物线2y x=-+.()y x h k所得抛物线与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,顶点为D.(1)写出h k、的值;(2)判断△ACD的形状,并说明理由;(3)在线段AC上是否存在点M,使△AOM∽△ABC?若存在,求出点M的坐标;若不存在,说明理由.2、如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)若点D 在抛物线上,点E 在抛物线的对称轴上,且A 、O 、D 、E 为顶点的四边形是平行四边形,求点D 的坐标;(3)P 是抛物线上的第一象限内的动点,过点P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以P 、M 、A 为顶点的三角形△BOC 相似?若存在,求出点P 的坐标;若不存在,请说明理由.3、如图,抛物线()20y ax bx c a =++≠的顶点坐标为()21,-,并且与y 轴交于点()03,C ,与x 轴交于A 、B 两点.(1)求抛物线的表达式.(2)如图1,设抛物线的对称轴与直线BC交于点D,点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F,问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似.若存在,求出点E的坐标;若不存在,请说明理由.4、如图,直线y=-23x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=-43x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的表达式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其他两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.。
初三数学二次函数的练习题
初三数学二次函数的练习题1. 求解方程:2x² - 5x + 3 = 0解:首先,我们可以使用求根公式来求解二次方程:x = (-b ± √(b² - 4ac)) / (2a)根据给定方程,我们可以将其对应的a、b和c的值代入计算:a = 2b = -5c = 3将这些值代入求根公式:x = (-(-5) ± √((-5)² - 4(2)(3))) / (2(2))x = (5 ± √(25 - 24)) / 4x = (5 ± √1) / 4x₁ = (5 + 1) / 4 = 6 / 4 = 1.5x₂ = (5 - 1) / 4 = 4 / 4 = 1所以,方程2x² - 5x + 3 = 0的解为 x₁ = 1.5 和 x₂ = 1。
2. 求解方程:3x² + 7x - 2 = 0解:同样地,我们使用求根公式求解二次方程:a = 3b = 7c = -2将这些值代入求根公式:x = (-7 ± √(7² - 4(3)(-2))) / (2(3))x = (-7 ± √(49 + 24)) / 6x = (-7 ± √73) / 6这里的根数是无理数,所以我们保留根的精确形式:x₁ = (-7 + √73) / 6x₂ = (-7 - √73) / 6所以,方程3x² + 7x - 2 = 0的解为 x₁ = (-7 + √73) / 6 和 x₂ = (-7 -√73) / 6。
3. 求二次函数y = x² - 4x + 3的顶点坐标和对称轴方程。
解:二次函数的顶点坐标可以通过求x轴对称的线(x = -b / 2a)来找到,对称轴方程为x = -b / 2a。
对于给定的二次函数 y = x² - 4x + 3,我们可以计算出a、b和c的值:a = 1b = -4c = 3顶点坐标为(x, y),其中x = -b / 2a = -(-4) / (2*1) = 4 / 2 = 2。
九年级数学二次函数练习题
九年级数学二次函数练习题一、选择题1. 已知二次函数y = ax² + bx + c 的图象在 x 轴上有两个不同的零点,那么判断条件为:A. a > 0B. b > 0C. c > 0D. δ > 02. 已知二次函数y = 2x² + kx + 3 在 x 轴上只有一个零点,那么 k 的取值范围是:A. k ≤ 0B. k < 3C. 0 < k < 3D. k > 33. 根据二次函数y = ax² + bx + c 的图像,当 a > 0 且 b > 0 时,函数图像的开口方向和最小值分别是:A. 上,最小值存在B. 上,最小值不存在C. 下,最小值存在D. 下,最小值不存在4. 对于二次函数y = ax² + bx + c,当 a < 0 时,它的图像是关于x 轴的对称图形。
那么当 a > 0 时,它的图像是关于:A. y 轴的对称图形B. 原点的对称图形C. x 轴的对称图形D. 零点的对称图形5. 已知二次函数y = ax² - bx + c 的两个零点的和为 4,积为 -3,那么 a, b, c 的值分别为:A. 1, 7, 12B. 1, -3, 12C. 1, 3, 12D. 1, -7, 12二、填空题1. 已知二次函数y = ax² + bx + c 的图象在点(1, 2)上,且 a + b +c = 6,求函数的表达式。
2. 已知二次函数y = 2x² - 5x + 3,求函数的最小值。
3. 当二次函数y = ax² + bx + c 的图象过点(1, 3)时,若 a = 2, b= 1,求 c 的值。
4. 如果抛物线y = ax² + bx + c 的图象关于 y 轴对称,且 (1, 3) 在图象上,求 a, b, c 的值。
中考数学《二次函数》专项练习题及答案
中考数学《二次函数》专项练习题及答案一、单选题1.如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b;⑤3a+c<0.其中正确的结论有()A.5个B.4个C.3个D.2个2.对于抛物线y=−13(x−5)2+3,下列说法正确的是()A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(-5,3)D.开口向上,顶点坐标(-5,3)3.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的?()A.第8秒B.第10秒C.第12秒D.第15秒4.已知二次函数y=x2−4x+2,当自变量x取值在−2≤x≤5范围内时,下列说法正确的是()A.有最大值14,最小值-2B.有最大值14,最小值7C.有最大值7,最小值-2D.有最大值14,最小值25.如图,二次函数y=ax2+bx+c图象的对称轴为x=1,则下列说法正确的有()①abc<0,②2a+b=0,③a−b+c>0,④若4a+2b+c>0.A.①②③B.②③④C.①②④D.①②③④6.在平面直角坐标系中,对于点 P(x ,y) 和 Q(x ,y′) ,给出如下定义:若 y′={y +1 (x ≥0)−y (x <0),则称点 Q 为点 P 的“亲密点”.例如:点 (1,2) 的“亲密点”为点 (1,3) ,点 (−1,3) 的“亲密点”为点 (−1,−3) .若点 P 在函数 y =x 2−2x −3 的图象上.则其“亲密点” Q 的纵坐标 y′ 关于 x 的函数图象大致正确的是( )A .B .C .D .7.对于二次函数 y =2(x −1)2−3 ,下列说法正确的是( )A .图象开口向下B .图象和y 轴交点的纵坐标为-3C .x <1 时,y 随x 的增大而减小D .图象的对称轴是直线 x =−18.抛物线 y =−3x 2+12x −3 的顶点坐标是( )A .(2,9)B .(2,-9)C .(-2,9)D .(-2,-9)9.如图,二次函数y=ax 2+bx+c 的图象经过点(0,﹣2),与x 轴交点的横坐标分别为x 1,x 2,且﹣1<x 1<0,1<x 2<2,下列结论正确的是( )A .a <0B .a ﹣b+c <0C .−b 2a>1D .4ac ﹣b 2<﹣8a10.已知抛物线y =ax 2+bx +c(a ≠0)交x 轴于点A(1,0),B(3,0).P 1(x 1,y 1),P 2(x 2,y 2)是抛物线上两个点.若|x 1−2|>|x 2−2|>1,则下列结论一定正确的是( ) A .y 1<y 2B .y 1>y 2C .|y 1|<|y 2|D .|y 1|>|y 2|11.二次函数y=x2-1的图象可由下列哪个函数图象向右平移2个单位,向下平移2个单位得到()A.y=(x−2)2+1B.y=(x+2)2+1C.y=(x−2)2−3D.y=(x+2)2+312.如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF△BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()A.B.C.D.二、填空题13.二次函数y=x2﹣2x﹣3的图象如图所示,若线段AB在x轴上,且AB为2 √3个单位长度,以AB为边作等边△ABC,使点C落在该函数y轴左侧的图象上,则点C的坐标为.14.将y=x2的向右平移3个单位,再向上平移5个单位后,所得的解析式是.15.为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每瓶零售价由100元降为81元,则平均每次降价的百分率是.16.如果抛物线y=x2﹣6x+c的顶点到x轴的距离是3,那么c的值等于.17.不等式x2+ax+b≥0(a≠0)的解集为全体实数,假设f(x)=x2+ax+b,若关于x的不等式f(x)<c的解集为m<x<m+6,则实数c的值为.18.用16m长的篱笆围成长方形的生物园饲养小兔,设围成长方形的生物园的长为x m,则围成长方形的生物的面积S(单位:m2)与x的函数表达式是.(不要求写自变量x的取值范围)三、综合题19.鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?20.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200﹣2x(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.21.如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=−12x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和四边形ABCD的面积.22.在平面直角坐标系xOy中,已知抛物线y=x2﹣4x+2m﹣1与x轴交于点A,B.(点A在点B的左侧)(1)求m的取值范围;(2)当m取最大整数时,求点A、点B的坐标.23.我市某电器商场代理销售某种家用空气净化器,其进价是200元/台,经过市场销售后发现,在一个月内,当售价是400元/台时,可售出200台,且售价每降低1元,就可多售出5台,若供货商规定这种空气净化器售价不低于330元/台,代理销售商每月要完成不低于450台的销售任务.(1)若某月空气净化器售价降低30元,则该月可售出多少台?(2)试确定月销售量y(台)与售价x(元/台)之间的函数关系式,并求出售价x的范围.(3)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获的利润w(元)最大,最大利润是多少?24.一家超市,经销一种地方特色产品,每千克成本为50元.这种产品在不同季节销量与单价满足一次函数变化关系.下表是其中不同4个月内一天的销量y(kg)与单价x(元/kg)的对应值.单价x(元/kg)55606570销量y(kg)70605040(2)平均每天获得600元销售利润的季节,顾客利益也较大,销售单价是多少?(3)当销售单价为多少时,一天的销售利润最大?最大利润是多少?参考答案1.【答案】B 2.【答案】A 3.【答案】B 4.【答案】A 5.【答案】D 6.【答案】B 7.【答案】C 8.【答案】A 9.【答案】D 10.【答案】D 11.【答案】B 12.【答案】D13.【答案】(1﹣ √7 ,﹣3) 14.【答案】y=(x ﹣3)2+5 15.【答案】10% 16.【答案】c=6或12 17.【答案】918.【答案】S =−x 2+8x19.【答案】(1)解:依题意有:y=10x+160;(2)解:依题意有:W=(80﹣50﹣x )(10x+160)=﹣10(x ﹣7)2+5290,∵-10<0且x 为偶数,故当x=6或x=8时,即故当销售单价定为74或72元时,每周销售利润最大,最大利润是5280元; (3)解:依题意有:﹣10(x ﹣7)2+5290≥5200,解得4≤x≤10,则200≤y≤260,200×50=10000(元).答:他至少要准备10000元进货成本.20.【答案】(1)解:当1≤x <50时,y=(200-2x )(x+40-30)=-2x 2+180x+2000当50≤x≤90时y=(200-2x )(90-30)=-120x+12000综上所述:y= {−2x 2+180x +2000(1≤x <50)−120x +12000(50≤x ≤90)(2)解:当1≤x <50时,二次函数开口向下,二次函数对称轴为x=45 当x=45时,y 最大=-2×452+180×45+2000=6050 当50≤x≤90时,y 随x 的增大而减小当x=50时,y最大=6000综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元(3)解:当1≤x<50时,y=-2x2+180x+2000≥4800,解得20≤x≤50,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=-120x+12000≥4800,解得x≤60因此利润不低于4800元的天数是50≤x≤60,共11天所以该商品在销售过程中,共41天每天销售利润不低于4800元;21.【答案】(1)解:由已知得:C(0, 4),B(4, 4)把B与C坐标代入y=−12x2+bx+c得:{4b+c=12c=4解得:b=2则解析式为y=−12x2+2x+4;(2)解:∵y=−12x2+2x+4=−12(x−2)2+6∴抛物线顶点坐标为(2, 6)则S四边形ABDC=S△ABC+S△BCD=12×4×4+12×4×2=8+4=12. 22.【答案】(1)解:根据题意得△=(-4)2-4(2m-1)>0解得m<5 2;(2)解:m的最大整数为2抛物线解析式为y=x2-4x+3当y=0时,x2-4x+3=0,解得x1=1,x2=3所以A(1,0),B(3,0).23.【答案】(1)解:由题意得:200+30×5=350(台)答:该月可售出350台(2)解:由题意得:y=200+5(400−x)=−5x+2200由供货商对售价和销售量的规定得:{x≥330y≥450,即{x≥330−5x+2200≥450解得:330≤x≤350答:所求的函数关系式为y=−5x+2200,售价x的范围为330≤x≤350(3)解:由题意和(2)可得:w=(x−200)(−5x+2200)整理得:w=−5(x−320)2+72000由二次函数的性质可知:当330≤x≤350时,w随x的增大而减小则当x=330时,w取得最大值,最大值为w=−5×(330−320)2+72000=71500(元)答:当售价定为330元/台时,商场每月销售这种空气净化器所获的利润最大,最大利润是71500元24.【答案】(1)解:设y=kx+b,由题意得:{55k+b=70 60k+b=60解得{k=−2 b=180∴y(kg)与x(元/kg)之间的函数关系式为y=﹣2x+180.(2)解:由题意得:(x﹣50)(﹣2x+180)=600整理,得x2﹣140x+4800=0解得x1=60,x2=80∵顾客利益也较大∴x=60∴平均每天获得600元销售利润的季节,顾客利益也较大,销售单价是60元/千克.(3)解:一天的销售利润为:w=(x﹣50)(﹣2x+180)=﹣2x2+280x﹣9000=﹣2(x﹣70)2+800∴当x=70时,w最大=800.∴当销售单价为70元/kg时,一天的销售利润最大,最大利润是800元。
中考数学真题二次函数专项练习(带答案)
中考数学真题二次函数一、选择题1.已知点M(−4,a−2) N(−2,a) P(2,a)在同一个函数图象上.则这个函数图象可能是()A.B.C.D.2.抛物线y=ax2−a(a≠0)与直线y=kx交于A(x1,y1).B(x2,y2)两点.若x1+x2<0.则直线y= ax+k一定经过().A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限3.设二次函数y=a(x−m)(x−m−k)(a>0,m,k是实数).则()A.当k=2时.函数y的最小值为−a B.当k=2时.函数y的最小值为−2aC.当k=4时.函数y的最小值为−a D.当k=4时.函数y的最小值为−2a4.已知二次函数y=ax2−(3a+1)x+3(a≠0).下列说法正确的是()A.点(1,2)在该函数的图象上B.当a=1且−1≤x≤3时.0≤y≤8C.该函数的图象与x轴一定有交点D.当a>0时.该函数图象的对称轴一定在直线x=32的左侧5.一个球从地面竖直向上弹起时的速度为10米/秒.经过t(秒)时球距离地面的高度h(米)适用公式h=10t-5t2.那么球弹起后又回到地面所花的时间t(秒)是()A.5B.10C.1D.2二、填空题6.在平面直角坐标系xOy中.一个图形上的点都在一边平行于x轴的矩形内部(包括边界).这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图.函数y=(x−2)2(0⩽x⩽3)的图象(抛物线中的实线部分).它的关联矩形为矩形OABC.若二次函数y=14x2+bx+c(0⩽x⩽3)图象的关联矩形恰好也是矩形OABC.则b=.三、解答题7.设二次函数y=ax2+bx+1.(a≠0.b是实数).已知函数值y和自变量x的部分对应取值如下表所示:(1)若m=4.求二次函数的表达式;(2)写出一个符合条件的x的取值范围.使得y随x的增大而减小.(3)若在m、n、p这三个实数中.只有一个是正数.求a的取值范围.8.如图.已知二次函数y=x2+bx+c图象经过点A(1,−2)和B(0,−5).(1)求该二次函数的表达式及图象的顶点坐标.(2)当y≤−2时.请根据图象直接写出x的取值范围.9.已知二次函数y=−x2+bx+c.(1)当b=4,c=3时.①求该函数图象的顶点坐标.②当−1⩽x⩽3时.求y的取值范围.(2)当x⩽0时.y的最大值为2;当x>0时.y的最大值为3.求二次函数的表达式.10.在二次函数y=x2−2tx+3(t>0)中.(1)若它的图象过点(2,1).则t的值为多少?(2)当0≤x≤3时.y的最小值为−2.求出t的值:(3)如果A(m−2,a),B(4,b),C(m,a)都在这个二次函数的图象上.且a<b<3.求m的取值范围。
初中数学二次函数综合复习基础题(含答案)
初中数学二次函数综合复习基础题一、单选题(共13道,每道8分)1.若二次函数的图象经过原点,则a的值必为()A.1或2B.0C.1D.2答案:D试题难度:三颗星知识点:二次函数表达式2.在同一坐标系中,作,,的图象,它们的共同特点是()A.抛物线的开口方向向上B.都是关于x轴对称的抛物线,且y随x的增大而增大C.都是关于y轴对称的抛物线,且y随x的增大而减小D.都是关于y轴对称的抛物线,有公共的顶点答案:D试题难度:三颗星知识点:二次函数图象特征3.对于反比例函数,当x>0时,y随x的增大而增大,则二次函数的大致图象是()A. B.C. D.答案:C试题难度:三颗星知识点:二次函数图象初步判定4.抛物线可以由抛物线平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位答案:B试题难度:三颗星知识点:二次函数图像平移5.已知二次函数,当x=-1时有最大值,把x=-5,-2,1时对应函数值分别记为y1,y2,y3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y1>y2>y3C.y2>y1>y3D.y2>y3>y1答案:D试题难度:三颗星知识点:二次函数图像增减性、对称轴固定6.若二次函数,当时,y随x的增大而减小,则m的取值范围是()A. B.C. D.答案:C试题难度:三颗星知识点:二次函数图像增减性、对称轴固定7.(2011四川雅安)已知二次函数的图象如图,其对称轴为直线x=-1,给出下列结果:①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0.则正确的结论是()A.①②③④B.②④⑤C.②③④D.①④⑤答案:D试题难度:三颗星知识点:二次函数数形结合8.二次函数的图象经过点A(0,-3),B(2,-3),C(-1,0).则此二次函数的表达式为()A. B.C. D.答案:A试题难度:三颗星知识点:二次函数一般式9.有一条抛物线,三位学生分别说出了它的一些性质:甲说:对称轴是直线x=2;乙说:与x轴的两个交点距离为6;丙说:抛物线与x轴的交点和其顶点围成的三角形面积等于9,请选出一个满足上述全部条件的一条抛物线的解析式:()A. B.C. D.答案:B试题难度:三颗星知识点:二次函数顶点式10.二次函数图象过A、C、B三点,点A的坐标为(-1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC.求二次函数的解析式()A. B.C. D.答案:A试题难度:三颗星知识点:二次函数交点式11.若直线与二次函数的图象交于A、B两点,求以A、B及原点O为顶点的三角形的面积().A. B.C. D.无法计算答案:C试题难度:三颗星知识点:二次函数初步综合12.设一元二次方程的两根分别为,,且,则,满足()A. B.C. D.且答案:D试题难度:三颗星知识点:二次函数图象与方程、不等式13.设一元二次方程的两根分别为,,且,则二次函数的函数值y>m时自变量x的取值范围是()A. B.C. D.答案:B试题难度:三颗星知识点:二次函数图象与方程、不等式。
(完整版)初中数学二次函数专题经典练习题(附答案)
二次函数总复习经典练习题1.抛物线y=-3x2+2x-1 的图象与坐标轴的交点情况是( )(A) 没有交点.(B) 只有一个交点.(C) 有且只有两个交点.(D) 有且只有三个交点.2.已知直线y=x 与二次函数y=ax2-2x- 1 图象的一个交点的横坐标为1,则 a 的值为( )(A)2 .(B)1 .(C)3 .(D)4 .3.二次函数y=x2-4x+3的图象交x轴于A、B两点,交y 轴于点C,则△ ABC的面积为( ) (A)6 .(B)4 .(C)3 .(D)1 .24.函数y=ax 2+bx+ c 中,若a> 0,b< 0,c<0,则这个函数图象与x 轴的交点情况是( )(A) 没有交点.(B) 有两个交点,都在x 轴的正半轴.(C) 有两个交点,都在x 轴的负半轴.(D) 一个在x 轴的正半轴,另一个在x 轴的负半轴.5.已知(2 ,5) 、(4 ,5)是抛物线y=ax2+bx+c 上的两点,则这个抛物线的对称轴方程是( ) a(A) x= .(B) x=2.(C) x=4.(D) x=3.b6.已知函数y=ax2+bx+ c 的图象如图 1 所示,那么能正确反映函数y=ax+ b 图象的只可能是( )7.二次函数y=2x2-4x+5 的最小值是_____ .28.某二次函数的图象与x轴交于点( -1,0) ,(4 ,0) ,且它的形状与y=-x2形状相同.则这个二次函数的解析式为_____ .9.若函数y=-x2+4 的函数值y> 0,则自变量x 的取值范围是______ .10.某品牌电饭锅成本价为70 元,销售商对其销量与定价的关系进行了调查,结果如下:801001101008060为获得最大利润,销售商应将该品牌电饭锅定价为元.11.函数y=ax 2-(a-3)x+ 1 的图象与x 轴只有一个交点,那么 a 的值和交点坐标分别为12.某涵洞是一抛物线形, 它的截面如图3 所示, 现测得水面宽AB 1.6m, 涵洞顶点O 到水面的距离为2.4m, 在图中的直角坐标系内, 涵洞所在抛物线的解析式为13.(本题8 分)已知抛物线y=x2-2x-2 的顶点为A,与y 轴的交点为B,求过A、B 两点的直线的解析式.14.(本题8分)抛物线y=ax2+2ax+a2+2的一部分如图3所示,求该抛物线在y 轴左侧与x 轴的交点坐标.15.(本题8 分)如图4,已知抛物线y=ax2+bx+c(a> 0)的顶点是C(0,1),直线l :y=-ax+3 与这条抛物线交于P、Q两点,且点P 到x 轴的距离为2.(1)求抛物线和直线l 的解析式;(2)求点Q的坐标.16.(本题8 分)工艺商场以每件155 元购进一批工艺品.若按每件200 元销售,工艺商场每天可售出该工艺品100 件;若每件工艺品降价 1 元,则每天可多售出该工艺品 4 件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?17.(本题10 分))杭州休博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第 1个月到第x 个月的维修保养费用累计为y(万元),且y=ax2+bx;若将创收扣除投资和维修保养费用称为游乐场的纯收益g(万元) ,g也是关于x 的二次函数.(1) 若维修保养费用第 1 个月为 2 万元,第 2 个月为 4 万元.求y 关于x 的解析式;(2) 求纯收益g 关于x 的解析式;(3) 问设施开放几个月后,游乐场的纯收益达到最大?几个月后,能收回投资?18(本题10分)如图所示,图4- ①是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m,支柱A3B3=50m,5 根支柱A1B1、A2B2、A3B3、A4B4、A5B5 之间的距离均为15m,B1B5∥ A1A5,将抛物线放在图4- ②所示的直角坐标系中.(1) 直接写出图4- ②中点B1、B3、B5的坐标;(2) 求图4- ②中抛物线的函数表达式;(3) 求图4- ①中支柱A2B2、A4B4 的长度.B319、如图5,已知A(2,2),B(3,0).动点P( m,0)在线段OB上移动,过点P作直线l 与x 轴垂直.(1) 设△ OAB中位于直线l 左侧部分的面积为S,写出S与m之间的函数关系式;(2) 试问是否存在点P,使直线l 平分△ OAB的面积?若有,求出点P 的坐标;若无,请说明理由.更多学习方法和中高考复习资料,免费下载,扫一扫关注微信:答案:一、1.B 2 .D 3 .C 4 .D 5 .D 6.B二、 7.3 8 .y =- x +3x +4 9 .- 2< x <2 10 .1301 115 211. a =0, ( ,0);a =1,(-1,0);a =9,( ,0) 12 . y x 23 3 413.抛物线的顶点为 (1,- 3),点 B 的坐标为 (0,- 2).直线 AB 的解析式为 y =-x -2 14.依题意可知抛物线经过点 (1,0) .于是 a + 2a + a 2+ 2=0,解得 a 1=-1,a 2=-2.当 a = -1 或 a =-2 时,求得抛物线与 x 轴的另一交点坐标均为 ( -3,0)2 15. (1) 依题意可知 b =0,c =1,且当 y =2 时,ax 2+1=2①,- ax +3=2②.由①、②解得 a =1, x =1.故抛物线与直线的解析式分别为: y =x 2+ 1,y =- x +3;(2) Q ( -2,5)216.设降价 x 元时,获得的利润为 y 元.则依意可得 y =(45-x )(100 +4x )= -4x 2+80x +4500, 即 y =-4(x -10)2+4900.故当 x =10时, y 最大=4900(元)2217. (1) 将(1,2)和(2,6) 代入 y =ax 2+bx ,求得 a =b =1.故 y =x 2+x ;(2) g =33x -150-y , 22即 g =-x 2+32x -150;(3) 因 y =-(x -16) 2+106,所以设施开放后第 16 个月,纯收益最大.令 g =0,得- x 2+ 32 x - 150=0.解得 x =16± 106 ,x ≈16- 10.3=5.7( 舍去 26.3) .当 x =5 时, g <0, 当 x =6 时, g >0,故 6 个月后,能收回投资18.(1) B 1( 30,0), B 3 (0,30) , B 5 (30,0) ;(2)设抛物线的表达式为 y a (x 30)(x 30) ,把 B 3 (0,30) 代入得 y a(0 30)(0 30) 30.1∴ a .30∵所求抛物线的表达式为: y3)∵ B 4 点的横坐标为 15, 1 45∴B 4 的纵坐标 y 4 (15 30)(15 30) .4 30 2∵ A 3B 3 50 ,拱高为 30,1 (x 30)(x 30) . 30∴立柱A4B445 8520 (m) .22由对称性知:85A2B2 A4B4 (m) .2四、1 2 1 119.(1)当0≤m≤2时,S= m2;当2<m≤3时,S= ×3×2-(3 -m)(-2m+6)= -m22 2 2+6m-6.(2)若有这样的P点,使直线l 平分△ OAB的面积,很显然0<m<2.由于△ OAB3 1 3的面积等于3,故当l 平分△ OAB面积时,S= .∴ m2.解得m= 3 .故存在这样2 2 2的P点,使l 平分△ OAB的面积.且点P的坐标为(3 ,0).。
中考数学《二次函数》专项练习(附答案解析)
中考数学《二次函数》专项练习(附答案解析)一、综合题1.如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是()(填方案一,方案二,或方案三),则B点坐标是(),求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.2.如图,抛物线 y =-x2+3x +4 与x轴负半轴相交于A点,正半轴相交于B点,与 y 轴相交于C 点.(1)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线 BC 对称的点的坐标;(2)在(1)的条件下,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标.3.如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A,B,C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似时,点P的坐标;②是否存在一点P,使△PCD的面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.4.已知抛物线C1:y=ax2+4ax+4a+b(a≠0,b>0)的顶点为M,经过原点O且与x轴另一交点为A.(1)求点A的坐标;(2)若△AMO为等腰直角三角形,求抛物线C1的解析式;(3)现将抛物线C1绕着点P(m,0)旋转180°后得到抛物线C2,若抛物线C2的顶点为N,当b=1,且顶点N在抛物线C1上时,求m的值.5.如图,抛物线G:y=−x2+2mx−m2+m+3的顶点为P(x P,y P),抛物线G与直线l:x=3交于点Q.(1)x P=,y P=(分别用含m的式子表示);y P与x P的函数关系式为;(2)求点Q的纵坐标y Q(用含m的式子表示),并求y Q的最大值;(3)随m的变化,抛物线G会在直角坐标系中移动,求顶点P在y轴与l之间移动(含y轴与l)的路径的长.6.如图,抛物线的顶点D的坐标为(﹣1,4),抛物线与x轴相交于A.B两点(A在B的左侧),与y轴交于点C(0,3).(1)求抛物线的表达式;(2)如图1,已知点E(0,﹣3),在抛物线的对称轴上是否存在一点F,使得△CEF的周长最小,如果存在,求出点F的坐标;如果不存在,请说明理由;(3)如图2,连接AD,若点P是线段OC上的一动点,过点P作线段AD的垂线,在第二象限分别与抛物线、线段AD相交于点M、N,当MN最大时,求△POM的面积.7.已知:如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.8.如图,在平面直角坐标系xOy中,O为坐标原点,点A(4,0),点B(0,4),ΔABO的中线AC与y轴交于点C,且⊙M经过O,A,C三点.(1)求圆心M的坐标;(2)若直线AD与⊙M相切于点A,交y轴于点D,求直线AD的函数表达式;(3)在过点B且以圆心M为顶点的抛物线上有一动点P,过点P作PE∥y轴,交直线AD于点E.若以PE为半径的⊙P与直线AD相交于另一点F.当EF=4√5时,求点P的坐标.9.如图1所示,已知抛物线y=−x2+4x+5的顶点为D,与x轴交于A、B两点(A左B右),与y轴交于C点,E为抛物线上一点,且C、E关于抛物线的对称轴对称,作直线AE.(1)求直线AE的解析式;(2)在图2中,若将直线AE沿x轴翻折后交抛物线于点F,则点F的坐标为(直接填空);(3)点P为抛物线上一动点,过点P作直线PG与y轴平行,交直线AE于点G,设点P的横坐标为m,当S△PGE∶S△BGE=2∶3时,直接写出所有符合条件的m值,不必说明理由.10.综合与探究如图,直线y=−23x+4与x轴,y轴分别交于B,C两点,抛物线y=ax2+43x+c经过B,C两点,与x轴的另一个交点为A(点A在点B的左侧),抛物线的顶点为点D.抛物线的对称轴与x轴交于点E.(1)求抛物线的表达式及顶点D的坐标;(2)点M是线段BC上一动点,连接DM并延长交x轴交于点F,当FM:FD=1:4时,求点M的坐标;(3)点P是该抛物线上的一动点,设点P的横坐标为m,试判断是否存在这样的点P,使∠PAB+∠BCO=90°,若存在,请直接写出m的值;若不存在,请说明理由.11.如图,点A,B在函数y=14x2的图像上.已知A,B的横坐标分别为-2、4,直线AB与y轴交于点C,连接OA,OB.(1)求直线AB的函数表达式;(2)求ΔAOB的面积;(3)若函数y=14x2的图像上存在点P,使得ΔPAB的面积等于ΔAOB的面积的一半,则这样的点P共有个.12.如图,已知二次函数y=ax2﹣2ax+c(a<0)的图象与x轴负半轴交于点A(﹣1,0),与y 轴正半轴交于点B,顶点为P,且OB=3OA,一次函数y=kx+b的图象经过A、B.(1)求一次函数解析式;(2)求顶点P的坐标;,求点M (3)平移直线AB使其过点P,如果点M在平移后的直线上,且tan∠OAM=32坐标;(4)设抛物线的对称轴交x轴于点E,连接AP交y轴于点D,若点Q、N分别为两线段PE、PD上的动点,连接QD、QN,请直接写出QD+QN的最小值.13.如图,抛物线y=ax2+bx+4经过点A(−1,0),B(2,0)两点,与y轴交于点C,点D是拋物线在x轴上方,对称轴右侧上的一个动点,设点D的横坐标为m.连接AC,BC,DB,DC.(1)求抛物线的解析式;(2)当△BCD的面积与△AOC的面积和为7时,求m的值;2(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,请直接写出点M的坐标;若不存在,请说明理由.(x+m)(x−3m)图象的顶点为M,图象交x轴于A、14.如图,y关于x的二次函数y=−√33mB两点,交y轴正半轴于D点.以AB为直径作圆,圆心为C.定点E的坐标为(−3,0),连接ED.(m>0)(1)写出A、B、D三点的坐标;(2)当m为何值时M点在直线ED上?判定此时直线与圆的位置关系;(3)当m变化时,用m表示△AED的面积S,并在给出的直角坐标系中画出S关于m的函数图象的示意图.15.在图1中,抛物线y=ax2+2ax﹣8(a≠0)与x轴交于点A、B(点A在B左侧),与y轴负半轴交于点C,OC=4OB,连接AC,抛物线的对称轴交x轴于点E,交AC于点F.(1)AB的长为,a的值为;(2)图2中,直线ON分别交EF、抛物线于点M、N,OM=√17,连接NC.①求直线ON的解析式;②证明:NC∥AB;③第四象限存在点P使△BFP与△AOC相似,且BF为△BFP的直角边,请直接写出点P坐标.16.如图,直线AB的解析式为y=−43x+4,抛物线y=−13x2+bx+c与y轴交于点A,与x轴交于点C(6,0),点P是抛物线上一动点,设点P的横坐标为m.(1)求抛物线的解析式;(2)如图(1),当点P在第一象限内的抛物线上时,求△ABP面积的最大值,并求此时点P的坐标;(3)过点A作直线l//x轴,过点P作PH⊥l于点H,将△APH绕点A顺时针旋转,使点H的对应点恰好落在直线AB上,同时恰好落在坐标轴上,请直接写出点P的坐标.参考答案与解析1.【答案】(1)解:方案一:点B的坐标为(5,0),设抛物线的解析式为:y=a(x+5)(x−5).由题意可以得到抛物线的顶点为(0,5),代入解析式可得:a=−15,∴抛物线的解析式为:y=−15(x+5)(x−5)方案2:点B的坐标为(10,0).设抛物线的解析式为:y=ax(x−10).由题意可以得到抛物线的顶点为(5,5),代入解析式可得:a=−15,∴抛物线的解析式为:y=−15x(x−10);方案3:点B的坐标为(5,−5),由题意可以得到抛物线的顶点为(0,0).设抛物线的解析式为:y=ax2,把点B的坐标(5,−5),代入解析式可得:a=−15,∴抛物线的解析式为:y=−15x2;(2)解:方案一:由题意:把x=3代入y=−15(x+5)(x−5),解得:y=165=3.2,∴水面上涨的高度为3.2m方案二:由题意:把x=2代入y=−15x(x−10)解得:y=165=3.2,∴水面上涨的高度为3.2m.方案三:由题意:把x=3代入y=−15x2解得:y=−95= −1.8,∴水面上涨的高度为5−1.8= 3.2m.2.【答案】(1)解: 将点D( m,m+1 )代入y=−x2+3x+4中,得:m+1=−m2+3m+4,解得:m=−1或3,∵点D在第一象限,∴m=3,∴点D的坐标为(3,4);令y=0,则−x2+3x+4=0,解得:x1=−1,x2=4,令x=0,则y=4,由题意得A(-1,0),B(4,0),C(0,4),∴OC=OB=4,BC= 4√2,CD=3,∵点C、点D的纵坐标相等,∴CD∥AB,∠OCB=∠OBC=∠DCB=45°,∴点D关于直线BC的对称点E在y轴上.根据对称的性质知:CD=CE=3 ,∴OE=OC−CE=4−3=1,∴点D关于直线BC对称的点E的坐标为(0,1);(2)解: 作PF⊥AB于F,DG⊥BC于G,由(1)知OB=OC=4,∠OBC=45°.∵∠DBP=45°,∴∠CBD=∠PBF.∵CD=3,∠DCB=45°,∴CG=DG= 3√22,∵BC= 4√2,∴BG= 4√2−3√22=5√22∴tan∠PBF=tan∠CBD=DGBG =35.设PF=3t,则BF=5t,OF=5t−4.∴P(−5t+4,3t),∵P点在抛物线上,∴3t=−(−5t+4)2+3(−5t+4)+4解得:t=2225或t=0(舍去).∴点P的坐标为( −25,6625).3.【答案】(1)解:在Rt△AOB中,OA=1,tan∠BAO= OBOA=3,∴OB=3OA=3.∵△DOC是由△AOB绕点O逆时针旋转90°而得到的,∴△DOC≌△AOB,∴OC=OB=3,OD=OA=1,∴A、B、C的坐标分别为(1,0),(0,3)(﹣3,0).代入解析式为{a+b+c=09a−3b+c=0c=3,解得: {a =−1b =−2c =3.∴抛物线的解析式为y=﹣x 2﹣2x+3(2)解:①∵抛物线的解析式为y=﹣x 2﹣2x+3,∴对称轴l=﹣ b2a =﹣1,∴E 点的坐标为(﹣1,0).如图, 当∠CEF=90°时,△CEF ∽△COD .此时点P 在对称轴上,即点P 为抛物线的顶点,P (﹣1,4);当∠CFE=90°时,△CFE ∽△COD ,过点P 作PM ⊥x 轴于点M ,则△EFC ∽△EMP . ∴EMMP =EFFC =DO OC=13 ,∴MP=3EM .∵P 的横坐标为t ,∴P (t ,﹣t 2﹣2t+3).∵P 在第二象限,∴PM=﹣t 2﹣2t+3,EM=﹣1﹣t ,∴﹣t 2﹣2t+3=﹣(t ﹣1)(t+3),解得:t 1=﹣2,t 2=﹣3(因为P 与C 重合,所以舍去),∴t=﹣2时,y=﹣(﹣2)2﹣2×(﹣2)+3=3.∴P (﹣2,3).∴当△CEF 与△COD 相似时,P 点的坐标为:(﹣1,4)或(﹣2,3); ②设直线CD 的解析式为y=kx+b ,由题意,得{−3k +b =0b =1 ,解得: {k =13b =1,∴直线CD 的解析式为:y= 13 x+1.设PM 与CD 的交点为N ,则点N 的坐标为(t , 13 t+1),∴NM= 13 t+1.∴PN=PM ﹣NM=﹣t 2﹣2t+3﹣( 13 t+1)=﹣t 2﹣ 73t +2. ∵S △PCD =S △PCN +S △PDN ,∴S △PCD = 12 PN •CM+ 12 PN •OM= 12 PN (CM+OM )= 12 PN •OC= 12 ×3(﹣t 2﹣ 73t +2)=﹣ 32 (t+76)2+ 12124 ,∴当t=﹣ 76 时,S △PCD 的最大值为 12124 . 4.【答案】(1)解:∵抛物线C 1:y=ax 2+4ax+4a+b (a ≠0,b >0)经过原点O , ∴0=4a+b ,∴当ax 2+4ax+4a+b=0时,则ax 2+4ax=0, 解得:x=0或﹣4,∴抛物线与x 轴另一交点A 坐标是(﹣4,0)(2)解:∵抛物线C1:y=ax2+4ax+4a+b=a(x+2)2+b(a≠0,b>0),(如图1)∴顶点M坐标为(﹣2,b),∵△AMO为等腰直角三角形,∴b=2,∵抛物线C1:y=ax2+4ax+4a+b=a(x+2)2+b过原点,∴a(0+2)2+2=0,解得:a=﹣12,∴抛物线C1:y=﹣12x2﹣2x(3)解:∵b=1,抛物线C1:y=ax2+4ax+4a+b=a(x+2)2+b过原点,(如图2)∴a=﹣14,∴y=﹣14(x+2)2+1=﹣14x2﹣x,设N(n,﹣1),又因为点P(m,0),∴n﹣m=m+2,∴n=2m+2即点N的坐标是(2m+2,﹣1),∵顶点N在抛物线C1上,∴﹣1=﹣14(2m+2+2)2+1,解得:m=﹣2+ √2或﹣2﹣√2 5.【答案】(1)m;m+3;y P=x P+3(2)解:∵抛物线 G :y =−x 2+2mx −m 2+m +3 与直线 l :x =3 交于点 Q , ∴把 x =3 代入 y =−x 2+2mx −m 2+m +3 , 得 y Q =−m 2+7m −6 .∵y Q =−m 2+7m −6=−(m −72)2+254,∴当 m =72 时, y Q 的最大值为 254 .(3)解:∵点 P 在 y 轴与 l 之间沿直线 l 1:y =x +3 运动, 如图,设直线 l 1:y =x +3 与 y 轴和直线 l 分别交于点 B 和点 P 1 ,线段 BP 1 的长即为点 P 路径长.把 x B =0 , x P 1=3 代入 y =x +3 得点 B(0,3) ,点 P 1(3,6) , 过点 P 1 作 P 1M ⊥y 轴,垂足为M , 则 P 1M =3,BM =3 , 在 Rt △BMP 1 中, BP 1=√BM 2+MP 12=√32+32=3√2 ,∴点 P 路径长为 3√2 .6.【答案】(1)解:设抛物线的表达式为:y =a (x+1)2+4, 把x =0,y =3代入得:3=a (0+1)2+4,解得:a =﹣1 ∴抛物线的表达式为y =﹣(x+1)2+4=﹣x 2﹣2x+3(2)解:存在.如图1,作C 关于对称轴的对称点C ′,连接EC ′交对称轴于F ,此时CF+EF的值最小,则△CEF的周长最小.∵C(0,3),∴C′(﹣2,3),易得C′E的解析式为:y=﹣3x﹣3,当x=﹣1时,y=﹣3×(﹣1)﹣3=0,∴F(﹣1,0)(3)解:如图2,∵A(﹣3,0),D(﹣1,4),易得AD的解析式为:y=2x+6,过点D作DH⊥x轴于H,过点M作MG⊥x轴交AD于G,AH=﹣1﹣(﹣3)=2,DH=4,∴AD=√AH2+DH2=√22+42=2√5,设M(m,﹣m2﹣2m+3),则G(m,2m+6),(﹣3≤m≤﹣1),∴MG=(﹣m2﹣2m+3)﹣(2m+6)=﹣m2﹣4m﹣3,由题易知△MNG∽△AHD,∴MGMN =ADAH即MN=AH×MGAD =22√5=−√55(m+2)2+√55∵√55<0∴当m =﹣2时,MN 有最大值;此时M (﹣2,3),又∵C (0,3),连接MC ∴MC ⊥y 轴∵∠CPM =∠HAD ,∠MCP =∠DHA =90°, ∴△MCP ∽△DHA , ∴PCAH =MCDH 即 PC2=24 ∴PC =1∴OP =OC ﹣PG =3﹣1=2, ∴S △POM = 12×2×2 =2,7.【答案】(1)解:由题意,得 {0=16a −8a +c 4=c解得 {a =−12c =4∴所求抛物线的解析式为:y=﹣ 12 x 2+x+4(2)解:设点Q 的坐标为(m ,0),过点E 作EG ⊥x 轴于点G .由﹣ 12 x 2+x+4=0, 得x 1=﹣2,x 2=4∴点B 的坐标为(﹣2,0) ∴AB=6,BQ=m+2 ∵QE ∥AC ∴△BQE ∽△BAC∴EG CO =BQBA 即 EG4=m+26 ∴EG =2m+43∴S △CQE =S △CBQ ﹣S △EBQ = 12 BQ •CO ﹣ 12 BQ •EG = 12 (m+2)(4﹣2m+43)= −13m 2+23m +83 =﹣ 13 (m ﹣1)2+3 又∵﹣2≤m ≤4∴当m=1时,S △CQE 有最大值3,此时Q (1,0) (3)解:存在.在△ODF 中. (ⅰ)若DO=DF ∵A (4,0),D (2,0) ∴AD=OD=DF=2又在Rt △AOC 中,OA=OC=4 ∴∠OAC=45度 ∴∠DFA=∠OAC=45度∴∠ADF=90度.此时,点F 的坐标为(2,2) 由﹣ 12 x 2+x+4=2, 得x 1=1+ √5 ,x 2=1﹣ √5此时,点P 的坐标为:P (1+ √5 ,2)或P (1﹣ √5 ,2). (ⅱ)若FO=FD ,过点F 作FM ⊥x 轴于点M由等腰三角形的性质得:OM= 12OD=1∴AM=3∴在等腰直角△AMF中,MF=AM=3∴F(1,3)由﹣12x2+x+4=3,得x1=1+ √3,x2=1﹣√3此时,点P的坐标为:P(1+ √3,3)或P(1﹣√3,3).(ⅲ)若OD=OF∵OA=OC=4,且∠AOC=90°∴AC= 4√2∴点O到AC的距离为2√2,而OF=OD=2 <2√2,与OF≥2 √2矛盾,所以AC上不存在点使得OF=OD=2,此时,不存在这样的直线l,使得△ODF是等腰三角形综上所述,存在这样的直线l,使得△ODF是等腰三角形所求点P的坐标为:P(1+ √5,2)或P(1﹣√5,2)或P(1+ √3,3)或P(1﹣√3,3)8.【答案】(1)解:∵C为OB的中点,点B(0,4),∴点C(0,2),又∵M为AC中点,点A(4,0),0+4 2=2,2+02=1,∴点M(2,1)(2)解:∵⊙P与直线AD,则∠CAD=90°,设:∠CAO=α,则∠CAO=∠ODA=∠PEH=α,tan∠CAO=OCOA =12=tanα,则sinα=√5,cosα=√5,AC=√10,则CD=ACsin∠CDA =√10sinα=10,则点D(0,−8),设直线AD的解析式为:y=mx+n,将点A、D的坐标分别代入得:{0=4m+n−8=n,解得:{m=2n=−8,所以直线AD的表达式为:y=2x−8(3)解:设抛物线的表达式为:y=a(x−2)2+1,将点B坐标代入得:4=a(0-2)2+1,解得:a=34,故抛物线的表达式为:y=34x2−3x+4,过点P作PH⊥EF,则EH=12EF=2√5,cos∠PEH=EHPE =2√5PE=cosα=√5,解得:PE=5,设点P(x,34x2−3x+4),则点E(x,2x−8),则PE=34x2−3x+4−2x+8=5,解得x=143或2(舍去2),则点P(143,193) .9.【答案】(1)解:∵抛物线的解析式为y=−x2+4x+5,∴该抛物线的对称轴为:x=−42×(−1)=2,令y=−x2+4x+5中x=0,则y=5,∴点C的坐标为(0,5),∵C、E关于抛物线的对称轴对称,∴点E的坐标为(2×2−0,5),即(4,5),令y =−x 2+4x +5中y =0,则−x 2+4x +5=0, 解得:x 1=−1,x 2=5,∴点A 的坐标为(−1,0)、点B 的坐标为(5,0), 设直线AE 的解析式为y =kx +b ,将点A(−1,0)、E(4,5)代入y =kx +b 中, 得:{0=−k +b 5=4k +b ,解得:{k =1b =1,∴直线AE 的解析式为y =x +1; (2)(6,-7)(3)解:符合条件的m 值为0、3、3−√412和3+√412.10.【答案】(1)解:当x =0时,得y =4, ∴点C 的坐标为(0,4),当y =0时,得−23x +4=0,解得:x =6, ∴点B 的坐标为(6,0), 将B ,C 两点坐标代入,得{36a +43×6+c =0,c =4. 解,得{a =−13,c =4.∴抛物线线的表达式为y =−13x 2+43x +4.∵y =−13x 2+43x +4=−13(x 2−4x +4−4)+4=−13(x −2)2+163.∴顶点D 坐标为(2,163). (2)解:作MG ⊥x 轴于点G ,∵∠MFG =∠DFE ,∠MGF =∠DEF =90°, ∴ΔMGF ∽ΔDEF .∴FM FD =MG DE.∴14=MG163.∴MG =43当y =43时,43=−23x +4 ∴x =4.∴点M 的坐标为(4,43).(3)解:∵∠PAB +∠BCO =90°,∠CBO +∠BCO =90°, ∴∠PAB =∠CBO ,∵点B 的坐标为(6,0),点C 的坐标为(0,4), ∴tan ∠CBO =46=23, ∴tan ∠PAB =23, 过点P 作PQ ⊥AB , 当点P 在x 轴上方时,−13m 2+4m +12m +2=23解得m=4符合题意, 当点P 在x 轴下方时,13m 2−4m −12m +2=23解得m=8符合题意, ∴存在,m 的值为4或8.11.【答案】(1)解:∵A ,B 是抛物线 y =14x 2 上的两点,∴当 x =−2 时, y =14×(−2)2=1 ;当 x =4 时, y =14×42=4 ∴点A 的坐标为(-2,1),点B 的坐标为(4,4) 设直线AB 的解析式为 y =kx +b , 把A ,B 点坐标代入得 {−2k +b =14k +b =4解得, {k =12b =2所以,直线AB 的解析式为: y =12x +2 ; (2)解:对于直线AB : y =12x +2 当 x =0 时, y =2 ∴OC =2∴S ΔAOB =S ΔAOC +S ΔBOC = 12×2×2+12×2×4 =6 (3)412.【答案】(1)解:∵A (﹣1,0), ∴OA=1 ∵OB=3OA , ∴B (0,3)∴图象过A 、B 两点的一次函数的解析式为:y=3x+3(2)解:∵二次函数y=ax 2﹣2ax+c (a <0)的图象与x 轴负半轴交于点A (﹣1,0),与y 轴正半轴交于点B (0,3), ∴c=3,a=﹣1,∴二次函数的解析式为:y=﹣x 2+2x+3 ∴抛物线y=﹣x 2+2x+3的顶点P (1,4) (3)解:设平移后的直线的解析式为:y=3x+m ∵直线y=3x+m 过P (1,4), ∴m=1,∴平移后的直线为y=3x+1 ∵M 在直线y=3x+1,且 设M (x ,3x+1)①当点M 在x 轴上方时,有 3x+1x+1=32 ,∴x =13 , ∴M 1(13,2)②当点M 在x 轴下方时,有 −3x+1x+1=32 ,∴x =−59 , ∴M 2(−59 , −23)(4)解:作点D 关于直线x=1的对称点D ′,过点D ′作D ′N ⊥PD 于点N , 当﹣x 2+2x+3=0时,解得,x=﹣1或x=3, ∴A (﹣1,0), P 点坐标为(1,4),则可得PD 解析式为:y=2x+2, 根据ND ′⊥PD ,设ND ′解析式为y=kx+b , 则k=﹣ 12 ,将D ′(2,2)代入即可求出b 的值, 可得函数解析式为y=﹣ 12 x+3,将两函数解析式组成方程组得: {y =−12x +3y =2x +2 ,解得 {x =25y =145 ,故N ( 25 , 145 ),由两点间的距离公式:d= √(2−25)2+(2−145)2 = 4√55, ∴所求最小值为4√5513.【答案】(1)解:把A (-1,0),B (2,0)代入抛物线解析式得: {a −b +4=04a +2b +4=0,解得: {a =−2b =2∴抛物线的解析式为: y =−2x 2+2x +4 (2)解:如图,连接OD ,由 y =−2x 2+2x +4 可得: 对称轴为 x =−22×(−2)=12 ,C (0,4)∵D(m,−2m 2+2m +4)(12<m <2) ,A (-1,0),B (2,0) ∴∴S △BCD =S △OCD +S △BCD −S △OBC=12×4m +12×2·(−2m 2+4m +2)−12×2×4=−2m 2+4m S △AOC =12×1×4=2又∵S △BCD +S △AOC =72 ∴−2m 2+4m +2=72 ,∴4m 2−8m +3=0解得: m 1=12 , m 2=32 ,当 m 1=12 时,点在对称轴上,不合题意,舍去,所以取 m 2=32 , 综上, m =32(3)解: M 1(0,0) , M 2(4,0) , M 3(√142,0) , M 4(−√142,0)14.【答案】(1)解:令y =0,则−√33m (x +m)(x −3m)=0,解得x 1=−m ,x 2=3m ;令x =0,则y =−√33m (0+m)(0−3m)=√3m .故A(−m ,0),B(3m ,0),D(0,√3m).(2)解:设直线ED 的解析式为y =kx +b ,将E(−3,0),D(0,√3m)代入得:{−3k +b =0b =√3m解得,k =√33m ,b =√3m .∴直线ED 的解析式为y =√33mx +√3m .将y =−√33m (x +m)(x −3m)化为顶点式:y =−√33m (x −m)2+4√33m . ∴顶点M 的坐标为(m ,4√33m).代入y =√33mx +√3m 得:m 2=m∵m >0,∴m =1.所以,当m =1时,M 点在直线DE 上. 连接CD ,C 为AB 中点,C 点坐标为C(m ,0). ∵OD =√3,OC =1, ∴CD =2,D 点在圆上又∵OE =3,DE 2=OD 2+OE 2=12, EC 2=16,CD 2=4, ∴CD 2+DE 2=EC 2.∴∠EDC =90°∴直线ED 与⊙C 相切.(3)解:当0<m <3时,S △AED =12AE ⋅OD =√32m(3−m)S =−√32m 2+3√32m . 当m >3时,S ΔAED =12AE ⋅OD =√32m(m −3).即S =√32m 2_3√32m . S 关于m 的函数图象的示意图如右:15.【答案】(1)6;1(2)解:①由抛物线的表达式知,抛物线的对称轴为x=﹣1,故设点M的坐标为(﹣1,m),则OM=12+m2=(√17)2,解得m=4(舍去)或﹣4,故点M的坐标为(﹣1,﹣4),由点O、M的坐标得,直线OM(即ON)的表达式为y=4x②,故答案为y=4x;②联立①②并解得{x=−2y=−8,故点N(﹣2,﹣8),∵点C、N的纵坐标相同,故NC∥x轴,即NC∥AB;③当∠BFP为直角时,由A(﹣4,0),C(0,-8)可求AC解析式为y=-2x﹣8,把x=-1,代入y=-2x﹣8得,y=-6,点F的坐标为:(-1,-6),由点F、B的坐标得,直线BF的表达式为y=2x﹣4,当x=﹣2时,y=2x﹣4=﹣8,故点N在直线BF上,连接FN,过点F作FP⊥BF交NC的延长线于点K,由直线BF 的表达式知,tan ∠BNK =2,则tan ∠FKN = 12 , 故设直线PF 的表达式为y =﹣ 12 x+t , 将点F 的坐标代入上式并解得t =﹣ 132 ,则直线PF 的表达式为y =﹣ 12 x ﹣ 132 ,故设点P 的坐标为(m ,﹣ 12 m ﹣ 132 ), 在Rt △AOC 中,tan ∠ACO = AOCO = 12 ,则tan ∠OCA =2, ∵△BFP 与△AOC 相似, 故∠FBP =∠ACO 或∠OAC ,则tan ∠FBP =tan ∠ACO 或tan ∠OAC ,即tan ∠FBP = 12 或2, 由点B 、F 的坐标得:BF = √32+62=3√5 , 则PF =BFtan ∠FBP =3√52或6 √5 ,由点P 、F 的坐标得:PF 2=(m+1)2+(﹣ 12 m ﹣ 132 +6)2=( 3√52)2或(6 √5 )2, 解得m =2或﹣4(舍去)或11或﹣13(舍去), 故点P 的坐标为(11,﹣12)或(2,﹣ 152 ); 当∠PBF 为直角时,过点B 作BP ⊥BF ,同理可求直线PF 的表达式为y =﹣ 12 x+1,故设点P 的坐标为(m ,﹣ 12 m ﹣1),同理可得,PB =BFtan ∠FBP =3√52或6 √5 ,由点P 、B 的坐标得:PB 2=(m-2)2+(﹣ 12 m+1)2=(3√52)2或(6 √5 )2,解得m=-1(舍去)或5或14或﹣10(舍去),点P的坐标为(5,﹣32)或(14,-6);综上,点P的坐标为(11,﹣12)或(2,﹣152)或(5,﹣32)或(14,-6);16.【答案】(1)解:当x=0时,y=−43x+4=4,则A(0,4),把A(0,4),C(6,0)代入y=−13x2+bx+c得{−12+6b+c=0c=4,解得{b=43c=4,∴抛物线解析式为y=−13x2+43x+4;(2)连接OP,设P(m,−13m2+43m+4),当y=0时,−43x+4=0,解得x=3,则B(3,0),S△ABP=S△AOP+S△POB−S△AOB=12⋅4⋅m+12⋅3⋅(−13m2+43m+4)−12⋅3⋅4=−12m2+4m,=−12(m−4)2+8,当m=4时,△ABP面积有最大值,最大值为8,此时P点坐标为(4,4);(3)在Rt△OAB中,AB=√32+42=5,当点P′落在x轴上,如图2,∵△APH绕点A顺时针旋转,使点H的对应点恰好落在直线AB上,同时恰好落在x 轴上∴P′H′=PH=4−(−13m2+43m+4)=13m2−43m,AH′=AH=m,∠P′H′A=∠PHA=90∘,∵∠P′BH′=∠ABO,∴△BP ′H ′ ∽ △BAO ,∴P ′H ′ : OA =BH ′ :OB ,即 (13m 2−43m) : 4=BH ′ :3, ∴BH ′=14m 2−m , ∵AH ′+BH ′=AB ,∴m +14m 2−m =5 ,解得 m 1=2√5 , m 2=−2√5( 舍去 ) ,此时P 点坐标为 (2√5,−8+8√53) ; 当点 P ′ 落在y 轴上,如图3,同理可得 P ′H ′=PH =13m 2−43m , AH ′=AH =m , ∠P ′H ′A =∠PHA =90∘ , ∵∠P ′AH ′=∠BAO , ∴△AH ′P ′′ ∽ △AOB ,∴P ′H ′ : OB =AH ′ :AO ,即 (13m 2−43m) : 3=m :4, 整理得 4m 2−25m =0 ,解得 m 1=254, m 2=0( 舍去 ) ,此时P 点坐标为 (254,−4348) ; 综上所述,P 点坐标为 (2√5,−8+8√53) 或 (254,−4348) ;。
初三数学二次函数练习题及答案
初三数学二次函数练习题及答案一、基础练习1.把抛物线y=2x向上平移1个单位,得到抛物线_______,把抛物线y=-2x?向下平移个单位,得到抛物线________..抛物线y=3x-1的对称轴是_____,顶点坐标为________,它是由抛物线y=3x?向_______平移______个单位得到的..把抛物线向左平移1个单位,得到抛物线_________,把抛物线 ?向右平移3个单位,得到抛物线________.24.抛物线y=x-1)的开口向________,对称轴是______,顶点坐标是_________,222222?它是由抛物线x2向______平移______个单位得到的..把抛物线y=-13132向_____平移______个单位,就得到抛物线y=-13x2.6.把抛物线y=42向______平移_______个单位,就得到函数y=42的图象..函数y=-的最大值为________,函数y=-x-22213的最大值为________.8.若抛物线y=a的对称轴为x=-3,且它与抛物线y=-2x2的形状相同,?开口方向相同,则点关于原点的对称点为________..已知抛物线y=a2过点,则该函数y=a2当x=________?的时候,?有最____值______.10.若二次函数y=ax2+b,当x取x1,x2时,函数值相等,则x取x1+x2时,函数的值为________.11.一台机器原价50万元.如果每年的折旧率是x,两年后这台机器的价格为y?万元,则y与x的函数关系式为A.y=50B.y=50C.y=50-x2D.y=5012.下列命题中,错误的是 A.抛物线221212x2-1不与x轴相交;B.抛物线x2-1与121222形状相同,位置不同;12C.抛物线y= D.抛物线y=2的顶点坐标为;12)的对称轴是直线x=13.顶点为且开口方向、形状与函数y=- A.y=-13 1313x的图象相同的抛物线是 D.y=1222B.y=-13x2-5C.y=-13214.已知a x-2的图象上,则A.y1 2在同一坐标系中的图象大致为二、整合练习 1.已知反比例函数y=kx的图象经过点A,若二次函数y=12x2-x?的图象平移后经过该反比例函数图象上的点B,C,求平移后的二次函数图象的顶点坐标.2.如图,在正方形ABCD中,AB=2,E是AD边上一点.BE?的垂直平分线交AB于M,交DC于N.设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式;当AE为何值时,四边形ADNM的面积最大?最大值是多少?3.将二次函数y=-2x2+8x-5的图象开口反向,并向上、下平移得一新抛物线,新抛物线与直线y=kx+1有一个交点为.求:这条新抛物线的函数解析式;这条新抛物线和直线y=kx+1的另一个交点.答案: 一、1.y=2x2+1 y=-2x2-2.y轴下 1.x+1)2x-3)2.上直线x=1 右 1.右,6.左.0138..大 0 10.11.A 12.D 13.C 14.C15.B+k过原点,所以0=1+k,k=-1,双曲线y=-1x )二、1.由反比例函数y=kx的图象过点A,所以1k2=4,k=2,?所以反比例函数的解析式为y=2x.又因为点B,C在y=2x的图象上,所以m=2,n=1222=1,设二次函数y=12x-x的图象平移后的解析式为y=2+k,它过点B,C,所以平移后的二次函数图象的顶点为.2.连接ME,设MN交BE交于P,根据题意得MB=ME,MN⊥BE.过N作NG⊥AB于F,在Rt△MBP和Rt△MNE中,∠MBP+∠BMN=90°,∠FNM+∠BMN=90°,∠MBP=∠MNF,又AB=FN,Rt△EBA≌Rt△MNE,MF=AE=x.在Rt△AME中,由勾股定理得 ME2=AE2+AM2,所以MB2=x2+AM2,即2=x2+AM2,解得AM=1- 所以四边形ADNM的面积S=AM?DN2?AD?12AM?AF214x2.×2=AM+AM+MF=2AM+AE=2+x=-12x2+x+2.即所求关系式为S=-S=-12x2+x+2.52x2+x+2=-12+=-122+52.52当AE=x=1时,四边形ADNM的面积S的值最大,此时最大值是.3.y=-2x2+8x-5=-22+3,将抛物线开口反向,且向上、?下平移后得新抛物线方程为y=22+m.因为它过点,所以4=22+m,m=2,这条新抛物线方程为y=22+2,即y=2x2-8x+10.直线y=kx+1过点,4=3k+1,k=1,求得直线方程为y=x+1.另一个交点坐标为。
中考数学专项复习《二次函数的三种形式》练习题带答案
中考数学专项复习《二次函数的三种形式》练习题带答案一、单选题1.二次函数y=x 2﹣2x+4化为y=a (x ﹣h )2+k 的形式,下列正确的是( )A .y=(x ﹣1)2+2B .y=(x ﹣1)2+3C .y=(x ﹣2)2+2D .y=(x ﹣2)2+42.抛物线y=x 2﹣2x ﹣3的对称轴和顶点坐标分别是( ).A .x=1,(1,﹣4)B .x=1(1,4)C .x=﹣1,(﹣1,4)D .x=﹣1,(﹣1,﹣4)3.把y=4x 2﹣4x+2配方成y=a (x ﹣h )2+k 的形式是( )A .y=(2x ﹣1)2+1B .y=(2x ﹣1)2+2C .y=(x ﹣ 12)2+1D .y=4(x ﹣ 12)2+24.若把抛物线y =x 2-2x +1先向右平移2个单位,再向下平移3个单位,所得到的抛物线的函数关系式为y =ax 2+bx +c ,则b 、c 的值为( ) A .b =2,c =-2 B .b =-8,c =14 C .b =-6,c =6D .b =-8,c =185.直角坐标平面上将二次函数y=x 2-2的图象向左平移1个单位,再向上平移1个单位,则其顶点为( ) A .(0,0)B .(1,-1)C .(0,-1)D .(-1,-1)6.将二次函数y=x 2+4x ﹣8化为y=(x+m )2+n 的形式正确的是( )A .y=(x+2)2+8B .y=(x+2)2﹣8C .y=(x+2)2+12D .y=(x+2)2﹣127.若b<0,则二次函数y=x 2-bx-1的图象的顶点在( )A .第一象限B .第二象限C .第三象限D .第四象限8.通过配方法将二次函数y=ax 2+bx+c (a≠0)化成y=a (x ﹣h )2+k 的形式,此二次函数可变形为( )A .y=a (x+ b 2a )2+ 4ac−b 24aB .y=a (x ﹣ b 2a )2+ 4ac−b 24aC .y=a (x+ b 2a )2+ b 2−4ac 4aD .y=a (x ﹣ b 2a )2+ b 2−4ac 4a9.将二次函数y=x 2﹣2x+3化为y=(x ﹣h )2+k 的形式,结果为( )A .y=(x+1)2+4B .y=(x+1)2+2C .y=(x ﹣1)2+4D .y=(x ﹣1)2+210.抛物线y=﹣ 15 x 2+ 25x ﹣1,经过配方化成y=a (x ﹣h )2+k 的形式是( )A .y =15(x +1)2−45B .y =15(x −1)2+45C .y =15(x −1)2−45D .y =15(x +1)2+4511.如图,在 ΔABC 中 ∠B =90° ,tan ∠C =34,AB=6cm.动点P 从点A 开始沿边AB 向点B 以1cm/s 的速度移动,动点Q 从点B 开始沿边BC 向点C 以2cm/s 的速度移动.若P,Q 两点分别从A,B 两点同时出发,在运动过程中 ΔPBQ 的最大面积是( )A .18cm 2B .12cm 2C .9cm 2D .3cm 212.如图,在平面直角坐标系中抛物线所表示的函数解析式为y=﹣2(x ﹣h )2+k ,则下列结论正确的是( )A .h >0,k >0B .h <0,k >0C .h <0,k <0D .h >0,k <0二、填空题13.二次函数 y =−x 2+2x +3 的图象与 x 轴交于 A 、 B 两点, P 为它的顶点,则S △PAB = .14.把二次函数的表达式y=x 2﹣6x+5化为y=a (x ﹣h )2+k 的形式,那么h+k= 15.将二次函数y=x 2﹣2x+4化成y=(x ﹣h )2+k 的形式,则y= . 16.若二次函数y=x 2+bx+5配方后为y=(x ﹣2)2+k ,则b+k= .17.若将二次函数y=x 2﹣2x+3配方为y=(x ﹣h )2+k 的形式,则y= . 18.已知抛物线的表达式是y =2(x +2)2−1,那么它的顶点坐标是 ;三、综合题19.如图,抛物线的顶点M 在x 轴上,抛物线与y 轴交于点N ,且OM=ON=4,矩形ABCD 的顶点A 、B 在抛物线上,C 、D 在x 轴上.(1)求抛物线的解析式;(2)设点A的横坐标为t(t>4),矩形ABCD的周长为l,求l与t之间函数关系式.20.已知二次函数y= 2x2 -4x-6.(1)用配方法将y= 2x2 -4x-6化成y=a (x-h) 2 +k的形式;并写出对称轴和顶点坐标。
初三数学二次函数必刷题
初三数学二次函数必刷题以下是一些初三数学二次函数的必刷题,涵盖了二次函数的基本概念、性质以及应用等方面:一、选择题1.下列函数中,哪些是二次函数?A. y = 3x + 5B. y = x^2 - 2xC. y = 1/xD. y = x3答案:B2.二次函数y = ax^2 + bx + c的对称轴是直线()。
A. x = -b/aB. x = b/aC. x = -b/2aD. x = b/2a答案:C3.已知二次函数y = 2x^2 + 9x + 34,当x取何值时,y有最小值?A. x = -9/4B. x = -3/4C. x = 9/4D. x = 3/4答案:A(通过公式x=-b/2a求得)二、填空题4.二次函数y = -3x^2 + 6x的顶点坐标为______。
答案:(1,3)(通过公式-b/2a求得x坐标,再代入求得y坐标)5.已知二次函数y = ax^2经过点(2,4),则a的值为______。
答案:2(代入点(2,4)到y=ax^2中求解)三、解答题6.已知二次函数y = x^2 - 4x + 3。
(1)求该二次函数的顶点坐标和对称轴;答案:顶点坐标为(2,-1),对称轴为直线x=2(通过公式-b/2a求得对称轴,再代入求得顶点坐标)(2)求该二次函数与x轴的交点坐标;答案:交点坐标为(1,0)和(3,0)(令y=0,求解x的值)(3)当x取何值时,y随x的增大而增大?当x取何值时,y随x的增大而减小?答案:当x>2时,y随x的增大而增大;当x<2时,y随x的增大而减小(根据二次函数的开口方向和对称轴判断)7.某商店销售一种商品,每件的成本为40元。
若按每件50元销售,一个月能售出500件。
销售单价每涨1元,月销售量就减少10件。
设销售单价为x元,月销售利润为y元。
(1)求y与x的函数关系式;答案:y=-10x^2+1400x-40000(根据题意,利润=销售量×(销售单价-成本),销售量=500-10(销售单价-50))(2)当销售单价定为多少元时,该商店一个月销售这种商品所获得的利润最大?最大利润是多少元?答案:当销售单价定为70元时,利润最大,最大利润为9000元(将y=-10x^2+1400x-40000转化为顶点式求解)8.抛物线y = -x^2 + 3x + 4与x轴负半轴相交于点A,正半轴相交于点B,与y轴相交于点C。
初中数学:二次函数测试题(含答案)
一、选择题1.若将抛物线y=5x2先向右平移2个单位,再向上平移1个单位,得到的新抛物线的表达式为()=5(x-2)2+1 =5(x+2)2+1 =5(x-2)2-1 =5(x+2)2-12.函数y=﹣2x2﹣8x+m的图象上有两点A(x1,y1),B(x2,y2),若x1<x2<﹣2,则()<y2>y2 =y2、y2的大小不确定3.二次函数y=ax2+bx+c的部分图象如图所示,则下列结论中正确的是()>0 B.不等式ax2+bx+c>0的解集是﹣1<x<5﹣b+c>0 D.当x>2时,y随x的增大而增大4.一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象可能是()5.一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()6.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=-1,有以下结论:①abc>0;②4ac<b2;③2a+b=0;④a-b+c>2.其中正确的结论的个数是()个个个个7.某种正方形合金板材的成本y(元)与它的面积成正比,设边长为xcm.当x=3时,y=18,那么当成本为72元时,边长为()8.在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是()<y2 >y2 的最小值是﹣3 的最小值是﹣49.河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为,当水面离桥拱顶的高度DO是4m时,这时水面宽度AB为()A.﹣20m D.﹣10m10.如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度向B点运动,同时动点N自A点出发沿折线AD﹣DC﹣CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2),运动时间为x(秒),则下列图象中能大致反映y与x之间的函数关系的是()11.如图所示,向一个半径为R、容积为V的球形容器内注水,则能够反映容器内水的体积y 与容器内水深x间的函数关系的图象可能是()A.B.C.D.12.如图,正方形ABCD中,AB=8 cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1 cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为( B )二、填空题13.在直角坐标平面中,将抛物线y=2x2先向上平移1个单位,再向右平移1个单位,那么平移后的抛物线解析式是14.二次函数y=(a﹣1)x2﹣x+a2﹣1 的图象经过原点,则a的值为.15.若将二次函数y=x2﹣2x+3配方为y=(x﹣h)2+k的形式,则y=.16.已知函数y=ax2+bx+c的图象如图所示,则下列结论中:①abc>0;②b=2a;③a+b+c<0;④a-b+c>0.正确的是.17.如图,在平面直角坐标系中,点A在第二象限,以A为顶点的抛物线经过原点,与x轴负半轴交于点B,对称轴为直线x=﹣2,点C在抛物线上,且位于点A、B之间(C不与A、B重合).若△ABC的周长为a,则四边形AOBC的周长为(用含a的式子表示).18.如图,光源P在横杆AB的正上方,AB在灯光下的影子为CD,AB245=-+化成y=a (x-h) 2 +k的形式;y x xy x x=-+(1)将245(2)指出该二次函数图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而增大19.如图,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;(2)求△MCB的面积S.△MCB20.如图所示,抛物线y=ax2+bx+c与直线y=﹣x+6分别交于x轴和y轴上同一点,交点分别是点B和点C,且抛物线的对称轴为直线x=4.(1)求出抛物线与x轴的两个交点A,B的坐标.(2)试确定抛物线的解析式.21.如图,有一个长为24米的篱笆,一面利用墙(墙的最大长度a为10米)围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式;(2)如果要围成面积为45平方米的花圃,AB的长为多少米22.已知抛物线y=ax2+bx+3的对称轴是直线x=1.(1)求证:2a+b=0;(2)若关于x的方程ax2+bx﹣8=0的一个根为4,求方程的另一个根.23.大学生自主创业,集资5万元开品牌专卖店,已知该品牌商品成本为每件a元,市场调查发现日销售量y(件)与销售价x(元/件)之间存在一次函数关系,如下表所示:若该店某天的销售价定为110元/件,雇有3名员工,则当天正好收支平衡(即支出=商品成本+员工工资+应支付的其他费用).已知员工的工资为每人每天100元,每天还应支付其他费用200元(不包括集资款).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)该店现有2名员工,试求每件服装的销售价定为多少元时,该服装店每天的毛利润最大(毛利润=销售收入-商品成本-员工工资-应支付的其他费用);(3)在(2)的条件下,若每天毛利润全部积累用于一次性还款,而集资款每天应按其万分之二的利率支付利息,则该店最少需要多少天(取整数)才能还清集资款24.如图,已知抛物线经过点A(-1,0),B(3,0),C(0,3)三点.(1)求抛物线的解析式;(2)点M是线段BC上的点(不与B,C重合),过M作NM∥y轴交抛物线于N,若点M的横坐标为m,请用含m的代数式表示MN的长;(3)在(2)的条件下,连接NB,NC,是否存在点m,使△BNC的面积最大若存在,求m的值;若不存在,说明理由.参考答案1.A;2.A.3.B.4.B.5.C6.C.7.A8.D9.C10.A11.B12.B.13.答案为:y=2(x-1)2+114.答案为:﹣1.15.答案为:y=(x﹣1)2+2.16.答案为:①③④.17.答案为:a+4;18.答案为:;19.20.解:(1)依题意:,解得∴抛物线的解析式为y=﹣x2+4x+5(2)令y=0,得(x ﹣5)(x+1)=0,x 1=5,x 2=﹣1,∴B (5,0).由y=﹣x 2+4x+5=﹣(x ﹣2)2+9,得M (2,9)作ME ⊥y 轴于点E ,可得S △MCB =S 梯形MEOB ﹣S △MCE ﹣S △OBC =(2+5)×9﹣×4×2﹣×5×5=15.21.解:(1)∵抛物线y=ax2+bx+c 与直线y=﹣x+6分别交于x 轴和y 轴上同一点,交点分别是点B 和点C ,∴将x=0代入y=﹣x+6得,y=6;将y=0代入y=﹣x+6,得x=6.∴点B 的坐标是(6,0),点C 的坐标是(0,6).∵抛物线y=ax2+bx+c 与x 轴交于点A 、B 两点,对称轴为直线x=4,∴点A 的坐标为(2,0).即抛物线与x 轴的两个交点A ,B 的坐标分别是(2,0),(6,0).(2)∵抛物线y=ax2+bx+c 过点A (2,0),B (6,0),C (0,6),∴4a+2b+c=0,36a+6b+c=0,c=6,解得a=,b=﹣4,c=6.∴抛物线的解析式为:y=+6.22. (1)S=x(24-3x),即S=-3x 2+24x.(2)当S=45时,-3x 2+24x=45.解得x 1=3,x 2=5.又∵当x=3时,BC >10(舍去),∴x=5.答:AB 的长为5米.23.(1)见解析;(2)x=-224.解:(1)由表可知,y 是关于x 的一次函数,设y=kx +b ,将x=110,y=50;x=115,y=45分别代入,得110k+b=50,115k+b=45,解得k=-1,b=160.∴y=-x +160(0<x ≤160);(2)由已知可得50×110=50a +3×100+200,解得a=100.设每天的毛利润为W 元,则W=(x -100)(-x +160)-2×100-200=-x 2+260x -16 400=-(x -130)2+500,∴当x=130时,W 取最大值500.答:每件服装的销售价定为130元时,该服装店每天的毛利润最大,最大毛利润为500元;(3)设需t天才能还清集资款,则500t≥50 000+2×50 000t,解得t≥102.∵t为整数,∴t的最小值为103天.答:该店最少需要103天才能还清集资款.25.解:(1)y=-x2+2x+3(2)易求直线BC的解析式为y=-x+3,∴M(m,-m+3),又∵MN⊥x轴,∴N(m,-m2+2m+3),∴MN=(-m2+2m+3)-(-m+3)=-m2+3m(0<m<3)(3)S△BNC=S△CMN+S△MNB=|MN|·|OB|,∴当|MN|最大时,△BNC的面积最大,MN=-m2+3m=-2+,所以当m=时,△BNC的面积最大为.{。
中考数学总复习《二次函数》练习题及答案
中考数学总复习《二次函数》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.要得到二次函数y=−x2图象,可将y=−(x−1)2+2的图象如何移动()A.向左移动1单位,向上移动2个单位B.向右移动1单位,向上移动2个单位C.向左移动1单位,向下移动2个单位D.向右移动1单位,向下移动2个单位2.若二次函数y=a x2+bx+c(a≠0)的图象的顶点在第二象限,且过点(0,1)和(1,0),则m=a-b+c的值的变化范围是()A.0<m<1B.0<m<2C.1<m<2D.-1<m<13.“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1−(x−a)(x−b)=0的两根,且a<b,则a、b、m、n的大小关系是()A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b4.对于二次函数y=x2﹣2mx﹣3,有下列说法:①它的图象与x轴有两个公共点;②若当x≤1时y随x的增大而减小,则m=1;③若将它的图象向左平移3个单位后过原点,则m=﹣1;④若当x=4时的函数值与x=2时的函数值相等,则当x=6时的函数值为﹣3.其中正确的说法是()A.①②③B.①④C.②④D.①②④5.已知二次函数y=x2+2mx+m的图象与x轴交于A(a,0),B(b,0)两点,且满足,4≤a+b≤6.当1≤x≤3时,该函数的最大值H与m满足的关系式是()A.H=3m+1B.H=5m+4C.H=7m+9D.H=−m2+m6.如图,抛物线y=ax2+bx+c(a≠0)过点(1,0)和点(0,﹣1),且顶点在第三象限,则a的取值范围是()A.a>0B.0<a<1C.1<a<2D.﹣1<a<17.二次函数y=ax2+bx+c与一次函数y=ax+c,它们在同一直角坐标系中的图象大致是()A.B.C.D.8.正方形的边长为3,边长增加x,面积增加y,则y关于x的函数解析式为()A.y=(x+3)2B.y=x2+9C.y=x2+6x D.y=3x2+12x9.若将抛物线y=2x2+1先向右平移1个单位长度,再向下平移3个单位长度,则所得抛物线的表达式为()A.y=2(x−1)2−2B.y=2(x+1)2−2C.y=2(x−1)2+3D.y=2(x+1)2+310.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列五个结论中:①2a−b<0;②abc<0;③a+b+c<0;④a−b+c>0;⑤4a+2b+c>0.其中正确的个数有()A.1个B.2个C.3个D.4个11.如图,二次函数y=ax2+bx+c的图象如图所示,则关于x的一元二次方程ax2+bx+c=0的解为()A.x1=1,x2=3B.x1=1,x2=﹣3C.x1=﹣1,x2=3D.x1=﹣1,x2=﹣312.已知某种礼炮的升空高度ℎ(m)与飞行时间t(s)的关系式是ℎ=−52t2+20t+1.若此礼炮在升空到最高处时引爆,则引爆需要的时间为()A.3 s B.4 s C.5 s D.6 s二、填空题13.若把函数y=x的图象用E(x,x)记,函数y=2x+1的图象用E(x,2x+1)记,……则E(x,x2−2x+3)图象上的最低点是.14.有一个角是60°的直角三角形,它的面积S与斜边长x之间的函数关系式是.15.如图,点P是双曲线C:y=4x(x>0)上的一点,过点P作x轴的垂线交直线AB:y=12x−2于点Q,连结OP,OQ.当点P在曲线C上运动,且点P在Q的上方时,△ POQ面积的最大值是.16.已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的y与x的部分对应值如表:下列结论:①a>0;②当x=﹣2时,函数最小值为﹣6;③若点(﹣8,y1),点(8,y2)在二次函数图象上,则y1<y2;④方程ax2+bx+c=﹣5有两个不相等的实数根.其中,正确结论的序号是(把所有正确结论的序号都填上)x﹣5﹣4﹣202y60﹣6﹣4617<3时,x的取值范围是.18.在平面直角坐标系中,抛物线y=-x2+2ax与直线y=x+2的图象在-1≤x≤1的范围有且只有一个公共点P,则a的取值范围是.三、综合题19.已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0),B(3,0).(1)求抛物线的解析式;(2)过点D(0,74)作x轴的平行线交抛物线于E,F两点,求EF的长;(3)当y≤ 74时,直接写出x的取值范围是.20.已知抛物线y=−12x2+bx+c经过点(1,0),(0,32).(1)求该抛物线的函数表达式;(2)将抛物线y=−12x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.21.如图,有一个长为24米的篱笆,一面有围墙(墙的最大长度为10米)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S米2.(1)求S与的函数关系式及x的取值范围.(2)如果要围成的花圃ABCD的面积是45平方米,则AB的长为多少米?22.如图,二次函数y=−x2+2x+3的图象与x轴交于A、B两点,与y轴交于点C,顶点为D(1)求点A,B,C的坐标.(2)求△BCD的面积23.给出两种上宽带网的收费方式:收费方式月使用费/元包月上网时间/h超时费/(元/ min)A30250.05B50500.0512(1)直接写出y1,y2与x之间的函数关系式;(2)x为何值时,两种收费方式一样?(3)某用户选择B方式宽带网开网店.若该用户上网时间x小时,产生y=−x2+ax+1950(元)(a>103)的经济收益.若某月该用户上网获得的利润最大值为5650元,直接写出a的值.(上网利润=上网经济收益-月宽带费)24.已知抛物线y=ax2−2ax+c(a<0)的图象过点A(3,m).(1)当a=-1,m=0时,求抛物线的顶点坐标;(2)若P(t,n)为该抛物线上一点,且n<m,求t的取值围;(3)如图,直线l:y=kx+c(k<0)交抛物线于B,C两点,点Q(x,y)是抛物线上点B,C之间的一个动点,作QD△x轴交直线l于点D,作QE△y轴于点E,连接DE.设△QED=b,当2≤x≤4时,b 恰好满足30°≤β≤60°,求a的值.参考答案1.【答案】C2.【答案】B3.【答案】A4.【答案】B5.【答案】A6.【答案】B7.【答案】A8.【答案】C9.【答案】A10.【答案】C11.【答案】C12.【答案】B13.【答案】(1,2)14.【答案】√38x 215.【答案】3 16.【答案】①③④ 17.【答案】-1<x <3 18.【答案】a≥0或a≤-119.【答案】(1)解:把A (﹣1,0),B (3,0)代入y =ax 2+bx+3解得:a =﹣1,b =2抛物线的解析式为y =﹣x 2+2x+3(2)解:把点D 的y 坐标y = 74,代入y =﹣x 2+2x+3解得:x = 12 或 32则EF 长 =32−(−12)=2 (3)x ≤12 或 x ≥32.20.【答案】解:把(1,0),(0,32)代入抛物线解析式得:{−12+b +c =0c =32,解得:{b =−1c =32,则抛物线解析式为y =−12x 2−x +32(2)将抛物线y =−12x 2+bx +c 平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.【答案】解:抛物线解析式为y =−12x 2−x +32=−12(x +1)2+2,将抛物线向右平移一个单位,向下平移2个单位,解析式变为y =−12x 2.(1)解:把(1,0),(0,32)代入抛物线解析式得:{−12+b +c =0c =32解得:{b =−1c =32则抛物线解析式为y =−12x 2−x +32(2)解:抛物线解析式为y=−12x2−x+32=−12(x+1)2+2将抛物线向右平移一个单位,向下平移2个单位,解析式变为y=−12x2.21.【答案】解:AB为xm,则BC就为(24-3x)m,S=(24-3x)x=24x-3x2,∵x>0,且10≥24-3x>0,∴143≤x<8. (2)如果要围成的花圃ABCD的面积是45平方米,则AB的长为多少米?解:45=24x-3x2,解得x=5或x=3;故AB的长为5米.(1)解:AB为xm,则BC就为(24-3x)mS=(24-3x)x=24x-3x2∵x>0,且10≥24-3x>0∴143≤x<8.(2)解:45=24x-3x2解得x=5或x=3;故AB的长为5米.22.【答案】(1)解:令y=0,可得x=3或x=﹣1.令x=0,可得y=3.∴A(-1,0)B(3,0)C(0,3)(2)解:依题意,可得y=-x2+2x+3=-(x-1)2+4.∴顶点D(1,4).令y=0,可得x=3或x=-1.∴令x=0,可得y=3.∴C(0,3).∴OC=3,∴直线DC的解析式为y=x+3.设直线DE交x轴于E.∴BE=6.∴S△BCD=S△BED-S△BCE=3.∴△BCD的面积为3.23.【答案】(1)解:由题意可得:A、B两种收费超时收费都为0.05×60=3元/小时A种上网的月收费为y1=30+3(x−25)=3x−45;B种上网的月收费可分①当25≤x≤50时,y2=50,②当x>50时,y2=50+3(x−50)=3x−100综上所述:y2={50,25≤x≤503x−100,x>50.(2)解:由(1)可分:①当25≤x≤50时,两种收费一样,则有3x−45=50解得:x=953②当x>50时,两种收费一样,则有3x−45=3x−100,方程无解,故不成立∴综上所述:当上网时间为953小时,两种上网收费一样;答:当上网时间x为953小时,两种上网收费一样.(3)解:设上网利润为w元,则由题意得:①当上网时间25≤x≤50时,上网利润为w=−x2+ax+1950−50=−x2+ax+1900∵a>103∴x=a2>50∵该二次函数的图象开口向下,在25≤x≤50,y随x的增大而增大∴该用户上网获得的利润最大值为5650元,所以当x=50时,则有:−2500+50a+1900=5650,解得:a=125;②当x>50时,上网利润为w=−x2+ax+1950−3x+100=−x2+(a−3)x+2050∴该二次函数的图象向下,对称轴为直线x=a−3 2∵a>103∴x=a−32>50∴y随x的增大而减小∴当x=a−32时,y有最大值,即−(a−32)2+(a−3)(a−32)+2050=5650解得:a1=123,a2=−117(不符合题意,舍去)综上所述:当某月该用户上网获得的利润最大值为5650元,则a=125或123. 24.【答案】(1)解:当a=-1,m=0时,y=−x2+2x+c,A点的坐标为(3,0)∴-9+6+c=0.解得c=3∴抛物线的表达式为y=−x2+2x+3.即y=−(x−1)2+4.∴抛物线的顶点坐标为(1,4).(2)解:∵y=ax2−2ax+c的对称轴为直线x=−2a−2a=1∴点A关于对称轴的对称点为(-1,m).∵a<0∴当x<1,y随x的增大而增大;当x>1,y随x的增大而减小.又∵n <m∴当点P 在对称轴左边时,t <-1; 当点P 在对称轴右边时,t >3.综上所述:t 的取值范围为t <-1或t >3; (3)解:∵点Q (x ,y )在抛物线上 ∴y =ax 2−2ax +c .又∵QD△x 轴交直线 l :y =kx +c(k <0) 于点D ∴D 点的坐标为(x ,kx +c ).又∵点Q 是抛物线上点B ,C 之间的一个动点 ∴QD =ax 2−2ax +c −(kx +c)=ax 2−(2a +k)x . ∵QE =x∴在Rt△QED 中, tanβ=QD QE =ax 2−(2a+k)x x=ax −2a −k . ∴tanβ 是关于x 的一次函数 ∵a <0∴tanβ 随着x 的增大而减小.又∵当 2≤x ≤4 时, β 恰好满足 30°≤β≤60° ,且 tanβ 随着 β 的增大而增大 ∴当x =2时, β =60°;当x =4时, β =30°. ∴{2a −2a −k =√34a −2a −k =√33解得 {k =−√3a =−√33∴a =−√33.。
人教版数学九年级上册《二次函数》基础课时练习题(含答案)
二次函数基础分类练习题附答案练习一 二次函数1、 一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:时间t (秒) 1 2 3 4 … 距离s (米)281832…写出用t 表示s 的函数关系式. 2、 下列函数:① 23y x ;② 21y x x x ;③ 224y x x x ;④ 21yx x ;⑤ 1yx x ,其中是二次函数的是 ,其中a,b,c3、当m 时,函数2235y mx x(m 为常数)是关于x 的二次函数4、当____m 时,函数2221mm y m m x 是关于x 的二次函数5、当____m时,函数2564mm ymx +3x 是关于x 的二次函数6、若点 A ( 2, m ) 在函数 12-=x y 的图像上,则 A 点的坐标是____.7、在圆的面积公式 S =πr 2 中,s 与 r 的关系是( )A 、一次函数关系B 、正比例函数关系C 、反比例函数关系D 、二次函数关系8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子. (1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式; (2)当小正方形边长为3cm 时,求盒子的表面积.9、如图,矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm ,那么面积增加 ycm 2, ① 求 y 与 x 之间的函数关系式. ② 求当边长增加多少时,面积增加 8cm 2.10、已知二次函数),0(2≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式.11、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1) 如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2)与x 有怎样的函数关系?(2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?练习二 函数2ax y =的图象与性质1、填空:(1)抛物线221x y =的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; (2)抛物线221x y -=的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; 2、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图象关于y 轴对称.其中正确的是 . 3、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2(g =9.8),则 s 与 t 的函数图像大致是( )A B C D5、函数2ax y =与b ax y +-=的图象可能是( )A .B .C .D .6、已知函数24m m y mx的图象是开口向下的抛物线,求m 的值.7、二次函数12-=mmx y 在其图象对称轴的左侧,y 随x 的增大而增大,求m 的值.s t OstOstOs tO8、二次函数223x y -=,当x 1>x 2>0时,求y 1与y 2的大小关系.9、已知函数()422-++=m m xm y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大; (3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小?10、如果抛物线2y ax 与直线1y x 交于点,2b ,求这条抛物线所对应的二次函数的关系式.练习三 函数c ax y +=2的图象与性质1、抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时, y 随x 的增大而增大, 当x 时, y 随x 的增大而减小. 2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 .3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是 .4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当x= 时,该抛物线有最 (填大或小)值,是 .5、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;6、二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 .练习四 函数()2h x a y -=的图象与性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有最 值 2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标. (1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位.3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个).4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式.5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积.6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6. (1)求出此函数关系式.(2)说明函数值y 随x 值的变化情况.7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值.练习五 ()k h x a y +-=2的图象与性质1、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________.2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.3、函数 y =12(x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大.4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到. 5、 已知抛物线的顶点坐标为2,1,且抛物线过点3,0,则抛物线的关系式是6、 如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( ) A 、x>3 B 、x<3 C 、x>1 D 、x<17、已知函数()9232+--=x y .(1) 确定下列抛物线的开口方向、对称轴和顶点坐标; (2) 当x= 时,抛物线有最 值,是 .(3) 当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小. (4) 求出该抛物线与x 轴的交点坐标及两交点间距离; (5) 求出该抛物线与y 轴的交点坐标;(6) 该函数图象可由23x y -=的图象经过怎样的平移得到的?8、已知函数()412-+=x y .(1) 指出函数图象的开口方向、对称轴和顶点坐标;(2) 若图象与x 轴的交点为A 、B 和与y 轴的交点C ,求△ABC 的面积;(3) 指出该函数的最值和增减性;(4) 若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式; (5) 该抛物线经过怎样的平移能经过原点.(6) 画出该函数图象,并根据图象回答:当x 取何值时,函数值大于0;当x 取何值时,函数值小于0.练习六 c bx ax y ++=2的图象和性质1、抛物线942++=x x y 的对称轴是 .2、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .3、试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____.5、把二次函数215322yx x的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是6、抛物线1662--=x x y 与x 轴交点的坐标为_________; 7、函数x x y +-=22有最____值,最值为_______;8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( ) A 、6,4 B 、-8,14 C 、-6,6 D 、-8,-149、二次函数122--=x x y 的图象在x 轴上截得的线段长为( ) A 、22 B 、23 C 、32 D 、3310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标: (1)12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y11、把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由.12、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标13、已知一次函数的图象过抛物线223y x x 的顶点和坐标原点1) 求一次函数的关系式; 2) 判断点2,5是否在这个一次函数的图象上14、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?练习七 c bx ax y ++=2的性质1、函数2yx px q 的图象是以3,2为顶点的一条抛物线,这个二次函数的表达式为 2、二次函数2224ymx xmm 的图象经过原点,则此抛物线的顶点坐标是3、如果抛物线2yax bx c 与y 轴交于点A (0,2),它的对称轴是1x ,那么ac b4、抛物线c bx x y ++=2与x 轴的正半轴交于点A 、B 两点,与y 轴交于点C ,且线段AB 的长为1,△ABC 的面积为1,则b 的值为______.5、已知二次函数c bx ax y ++=2的图象如图所示,则a___0,b___0,c___0,ac b 42-____0;6、二次函数c bx ax y ++=2的图象如图,则直线bc ax y +=的图象不经过第 象限.7、已知二次函数2yax bx c (0≠a )的图象如图所示,则下列结论:1),a b 同号;2)当1x 和3x 时,函数值相同;3)40a b ;4)当2y 时,x 的值只能为0;其中正确的是 8、已知二次函数2224m mx x y +--=与反比例函数xm y 42+=的图象在第二象限内的一个交点的横坐标是-2,则m= 9、二次函数2yx ax b 中,若0a b ,则它的图象必经过点( )A 1,1B 1,1C 1,1 D1,110、函数b ax y +=与c bx ax y ++=2的图象如图所示,则下列选项中正确的是( ) A 、0,0>>c ab B 、0,0><c ab C 、0,0<>c ab D 、0,0<<c ab11、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( ) A .4个 B .3个 C .2个 D .1个13、抛物线的图角如图,则下列结论:①>0;②;③>;④<1.其中正确的结论是( ).(A )①② (B )②③ (C )②④ (D )③④ 14、二次函数2y ax bx c 的最大值是3a ,且它的图象经过1,2,1,6两点,求a 、b 、c15、试求抛物线2yax bx c 与x 轴两个交点间的距离(240b ac练习八 二次函数解析式1、抛物线y=ax 2+bx+c 经过A(-1,0), B(3,0), C(0,1)三点,则a= , b= , c=2、把抛物线y=x 2+2x-3向左平移3个单位,然后向下平移2个单位,则所得的抛物线的解析式为 .3、 二次函数有最小值为1,当0x 时,1y ,它的图象的对称轴为1x ,则函数的关系式为 4、根据条件求二次函数的解析式(1)抛物线过(-1,-6)、(1,-2)和(2,3)三点(2)抛物线的顶点坐标为(-1,-1),且与y 轴交点的纵坐标为-3(3)抛物线过(-1,0),(3,0),(1,-5)三点;(4)抛物线在x 轴上截得的线段长为4,且顶点坐标是(3,-2);5、已知二次函数的图象经过1,1、2,1两点,且与x 轴仅有一个交点,求二次函数的解析式6、抛物线y=ax 2+bx+c 过点(0,-1)与点(3,2),顶点在直线y=3x-3上,a<0,求此二次函数的解析式.7、已知二次函数的图象与x 轴交于A (-2,0)、B (3,0)两点,且函数有最大值是2. (1) 求二次函数的图象的解析式;(2) 设次二次函数的顶点为P ,求△ABP 的面积.8、以x 为自变量的函数)34()12(22-+-++-=m m x m x y 中,m 为不小于零的整数,它的图象与x 轴交于点A 和B ,点A 在原点左边,点B 在原点右边.(1)求这个二次函数的解析式;(2)一次函数y=kx+b 的图象经过点A ,与这个二次函数的图象交于点C ,且ABC S ∆=10,求这个一次函数的解析式.练习九 二次函数与方程和不等式1、已知二次函数772--=x kx y 与x 轴有交点,则k 的取值范围是 .2、关于x 的一元二次方程02=--n x x 没有实数根,则抛物线n x x y --=2的顶点在第_____象限;3、抛物线222++-=kx x y 与x 轴交点的个数为( ) A 、0 B 、1 C 、2 D 、以上都不对4、二次函数c bx ax y ++=2对于x 的任何值都恒为负值的条件是( ) A 、0,0>∆>a B 、0,0<∆>a C 、0,0>∆<a D 、0,0<∆<a5、12++=kx x y 与k x x y --=2的图象相交,若有一个交点在x 轴上,则k 为( )A 、0B 、-1C 、2D 、41 6、若方程02=++c bx ax 的两个根是-3和1,那么二次函数c bx ax y ++=2的图象的对称轴是直线( )A 、x =-3B 、x =-2C 、x =-1D 、x =1 7、已知二次函数2yx px q 的图象与x 轴只有一个公共点,坐标为1,0,求,p q 的值8、画出二次函数322--=x x y 的图象,并利用图象求方程0322=--x x 的解,说明x 在什么范围时0322≤--x x .9、如图:(1) 求该抛物线的解析式;(2) 根据图象回答:当x 为何范围时,该函数值大于0.10、二次函数c bx ax y ++=2的图象过A(-3,0),B(1,0),C(0,3),点D 在函数图象上,点C 、D 是二次函数图象上的一对对称点,一次函数图象过点B 、D ,求(1)一次函数和二次函数的解析式,(2)写出使一次函数值大于二次函数值的x 的取值范围.11、已知抛物线22yx mx m .(1)求证此抛物线与x 轴有两个不同的交点; (2)若m 是整数,抛物线22yx mx m 与x 轴交于整数点,求m 的值;(3)在(2)的条件下,设抛物线顶点为A,抛物线与x轴的两个交点中右侧交点为B.若M为坐标轴上一点,且MA=MB,求点M的坐标.练习十二次函数解决实际问题1、某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年种蔬菜的销售价格进行了预测,预测情况如图,图中的抛物线表示这种蔬菜销售价与月份之间的关系.观察图像,你能得到关于这种蔬菜销售情况的哪些信息?(至少写出四条)2、某企业投资100万元引进一条农产品生产线,预计投产后每年可创收33万元,设生产线投产后,从第一年到第x 年维修、保养费累计..为y(万元),且y=ax2+bx,若第一年的维修、保养费为 2 万元,第二年的为 4 万元.求:y 的解析式.3、校运会上,小明参加铅球比赛,若某次试掷,铅球飞行的高度y (m) 与水平距离x (m) 之间的函数关系式为y=-1 12x2+23x+53,求小明这次试掷的成绩及铅球的出手时的高度.4、用6m 长的铝合金型材做一个形状如图所示的矩形窗框,应做成长、宽各为多少时,才能使做成的窗框的透光面积最大?最大透光面积是多少?5、商场销售一批衬衫,每天可售出20 件,每件盈利40 元,为了扩大销售,减少库存,决定采取适当的降价措施,经调查发现,如果一件衬衫每降价 1 元,每天可多售出 2 件.①设每件降价x 元,每天盈利y 元,列出y 与x 之间的函数关系式;3.50.50 2 7月份千克销售价(元)②若商场每天要盈利1200 元,每件应降价多少元?③每件降价多少元时,商场每天的盈利达到最大?盈利最大是多少元?6、有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m,跨度为10m,如图所示,把它的图形放在直角坐标系中.①求这条抛物线所对应的函数关系式.②如图,在对称轴右边1m 处,桥洞离水面的高是多少?7、有一座抛物线形拱桥,正常水位时桥下水面宽度为20m,拱顶距离水面4m.(1)在如图所示的直角坐标系中,求出该抛物线的解析式.(2)在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),试求出用d表示h的函数关系式;(3)设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下顺利航行?8、某一隧道内设双行线公路,其截面由一长方形和一抛物线构成,如图所示,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5m,若行车道总宽度AB为6m,请计算车辆经过隧道时的限制高度是多少米?(精确到0.1m).练习一 二次函数参考答案1:1、22t s =;2、⑤,-1,1,0;3、≠2,3,1;6、(2,3);7、D ;8、),2150(2254S 2<<+-=x x 189;9、x x y 72+=,1;10、22-=x y ;11、,244S 2x x +-=当a<8时,无解,168<≤a 时,AB=4,BC=8,当16≥a 时,AB=4,BC=8或AB=2,BC=16.练习二 函数2ax y =的图象与性质参考答案2:1、(1)x=0,y 轴,(0,0),>0,,<0,0,小,0; (2)x=0,y 轴,(0,0),<,>, 0,大,0;2、④;3、C ;4、A ;5、B ;6、-2;7、3-;8、021<<y y ;9、(1)2或-3,(2)m=2、y=0、x>0,(3)m=-3,y=0,x>0;10、292x y =练习三 函数c ax y +=2的图象与性质参考答案3:1、下,x=0,(0,-3),<0,>0;2、2312-=x y ,1312+=x y ,(0,-2),(0,1);3、①②③;4、322+=x y ,0,小,3;5、1;6、c.练习四 函数()2h x a y -=的图象与性质参考答案4:1、(3,0),>3,大,y=0;2、2)2(3-=x y ,2)32(3-=x y ,2)3(3-=x y ;3、略;4、2)2(21-=x y ;5、(3,0),(0,27),40.5;6、2)4(21--=x y ,当x<4时,y 随x 的增大而增大,当x>4时,y 随x 的增大而减小;7、-8,-2,4.练习五 ()k h x a y +-=2的图象与性质参考答案5:1、略;2、1;3、>1;4、左、下;5、342-+-=x x y ;6、C ;7、(1)下,x=2,(2,9),(2)2、大、9,(3)<2、>2,(4)( 32-,0)、( 32+,0)、 32,(5)(0,-3);(6)向右平移2个单位,再向上平移9个单位;8、(1)上、x=-1、(-1,-4);(2)(-3,0)、(1,0)、(0,-3)、6,(3)-4,当x>-1 时,y 随x 的增大而增大;当x<-1 时,y 随x 的增大而减小,(4) 2)1(-=x y ;(5)向右平移1个单位,再向上平移4个单位或向上平移3个单位或向左平移1个单位;(6)x>1或x<-3、-3<x<1练习六 c bx ax y ++=2的图象和性质参考答案6:1、x=-2;2、上、(3,7);3、略;4、2)1(2+-x ;5、5)1(212+--=x y ;6、(-2,0)(8,0);7、大、81;8、C ;9、A ;10、(1)1)2(212--=x y 、上、x=2、(2,-1),(2)310)34(32+--=x y、下、34=x 、(310,34),(3)3)2(412---=x y 、下、x=2、(2,-3);11、有、y=6;12、(2,0)(-3,0)(0,6);13、y=-2x 、否;14、定价为3000元时,可获最大利润125000元练习七 c bx ax y ++=2的性质参考答案7:1、1162+-=x x y ;2、(-4,-4);3、1;4、-3;5、>、<、>、>;6、二;7、②③;8、-7;9、C ;10、D ;11、B ;12、C ;13、B ;14、4422++-=x x y ;15、aacb 42-练习八 二次函数解析式参考答案8:1、31-、32、1;2、1082++=x x y ;3、1422+-=x x y ;4、(1)522-+=x x y 、(2)3422---=x x y 、(3)41525452--=x x y 、(4)253212+-=x x y ;5、9194942+-=x x y ;6、142-+-=x x y ;7、(1)25482582582++-=x x y 、5;8、322++-=x x y 、y=-x-1或y=5x+5练习九 二次函数与方程和不等式参考答案9:1、47-≥k 且0≠k ;2、一;3、C ;4、D ;5、C ;6、C ;7、2,1;8、31,3,121≤≤-=-=x x x ;9、(1)x x y 22-=、x<0或x>2;10、y=-x+1,322+--=x x y ,x<-2或x>1;11、(1)略,(2)m=2,(3)(1,0)或(0,1)练习十 二次函数解决实际问题参考答案10:1、①2月份每千克3.5元 ②7月份每千克0.5克 ③7月份的售价最低21 ④2~7月份售价下跌;2、y =x 2+x ;3、成绩10米,出手高度35米;4、23)1(232+--=x S ,当x =1时,透光面积最大为23m 2;5、(1)y =(40-x) (20+2x)=-2x 2+60x +800,(2)1200=-2x 2+60x +800,x 1=20,x 2=10 ∵要扩大销售 ∴x 取20元,(3)y =-2 (x 2-30x)+800=-2 (x -15)2+1250 ∴当每件降价15元时,盈利最大为1250元;6、(1)设y =a (x -5)2+4,0=a (-5)2+4,a =-254,∴y =-254 (x -5)2+4,(2)当x =6时,y =-254+4=3.4(m);7、(1)2251x y -=,(2)h d -=410,(3)当水深超过2.76m 时;8、)64(6412≤≤-+-=x x y ,x =3,m y 75.3496=-=,m 2.325.35.075.3≈=-,货车限高为3.2m.。
人教版九年级数学上册 第22章 二次函数 基础测试题(含答案)
人教版九年级数学第22章基础测试题(含答案)22.1 二次函数的图象和性质一、选择题(本大题共8道小题)1. 已知直线y=bx-c与抛物线y=ax2+bx+c在同一直角坐标系中的图象可能是()2. 将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的是() A.向左平移1个单位长度B.向右平移3个单位长度C.向上平移3个单位长度D.向下平移1个单位长度3. (2019•岳阳)对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是A.c<-3 B.c<-2C.c<14D.c<14. 如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动.过点P作PD⊥BC于点D,设BD=x,△BDP 的面积为y,则下列能大致反映y与x函数关系的图象是()5. 二次函数y=ax2+bx+c(a,b,c为常数且a≠0)的图象如图所示,则一次函数y=ax+b与反比例函数y=cx的图象可能是()6. 二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()7. 如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6 cm,在矩形ABCD中,AB=2 cm,BC=10 cm,点C和点M重合,点B,C(M),N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1 cm的速度向右移动,至点C与点N重合为止.设移动x s 后,矩形ABCD与△PMN重叠部分的面积为y cm2,则y关于x的大致图象是()8. 二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x …-2 -1 0 1 2 …y=ax2+bx+c …t m -2 -2 n …且当x =-12时,与其对应的函数值y>0,有下列结论:(1)abc>0;(2)-2和3是关于x 的方程ax 2+bx +c =t 的两个根;(3)0<m +n<203.其中正确结论的个数是( )A .0B .1C .2D .3二、填空题(本大题共8道小题)9. 抛物线y =12(x +3)2-2是由抛物线y =12x 2先向________(填“左”或“右”)平移________个单位长度,再向________(填“上”或“下”)平移________个单位长度得到的.10. 函数y =-4x 2-3的图象开口向________,对称轴是________,顶点坐标是________;当x ________0时,y 随x 的增大而减小,当x ________时,y 有最________值,是________,这个函数的图象是由y =-4x 2的图象向________平移________个单位长度得到的.11. 二次函数y =-x 2+6x -5的图象开口________,对称轴是________,顶点坐标是________;与x 轴的两个交点坐标分别是________,与y 轴的交点坐标是________;在对称轴左侧,即x ________时,y 随x 的增大而________,在对称轴右侧,即x ________时,y 随x 的增大而________,当x =________时,y 有最________值为________;抛物线y =-x 2+6x -5是由抛物线y =-x 2向________(填“左”或“右”)平移________个单位长度,再向________(填“上”或“下”)平移________个单位长度得到的.12. 抛物线y =ax 2+bx +c 经过点A (-3,0),对称轴是直线x =-1,则a +b +c =________.13. 如图,在平面直角坐标系中,抛物线y =ax 2(a >0)与y =a (x -2)2交于点B ,抛物线y =a (x -2)2交y 轴于点E ,过点B 作x 轴的平行线与两条抛物线分别交于D ,C 两点.若A 是x 轴上两条抛物线顶点之间的一点,连接AD ,AC ,EC ,ED ,则四边形ACED 的面积为________.(用含a 的代数式表示)14. 如图,抛物线y =ax 2+bx +c(a ,b ,c 是常数,a≠0)与x 轴交于A ,B 两点,顶点为P(m ,n).给出下列结论:①2a +c <0;②若(-32,y 1),(-12,y 2),(12,y 3)在抛物线上,则y 1>y 2>y 3;③若关于x 的方程ax 2+bx +k =0有实数解,则k >c -n ;④当n =-1a 时,△ABP 为等腰直角三角形.其中正确的结论是________.(填序号)15. 如图,平行于x 轴的直线AC 与函数y 1=x 2(x ≥0),y 2=13x 2(x ≥0)的图象分别交于B ,C 两点,过点C 作y 轴的平行线交y 1的图象于点D ,直线DE ∥AC 交y 2的图象于点E ,则DEAB =________.16. 如图,在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx (a >0)的顶点为C ,与x 轴的正半轴交于点A ,它的对称轴与抛物线y =ax 2(a >0)交于点B .若四边形ABOC 是正方形,则b 的值是________.三、解答题(本大题共4道小题)17. 如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.18. 如图,抛物线y=ax2+bx+c经过点A(-1,0),B(5,-6),C(6,0).(1)求抛物线的解析式.(2)在直线AB下方的抛物线上是否存在点P,使四边形PACB的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.19. 已知:如图所示,抛物线y=-x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0).(1)求抛物线的解析式.(2)设点P在该抛物线上滑动,则满足条件S△PAB=1的点P有几个?求出所有点P的坐标.(3)设抛物线交y轴于点C,该抛物线的对称轴上是否存在点M,使得△MAC的周长最小?若存在,求出点M的坐标;若不存在,请说明理由.20. (2019·山西)综合与探究如图,抛物线26y ax bx =++经过点A (–2,0),B (4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为(14)m m <<.连接AC ,BC ,DB ,D C.(1)求抛物线的函数表达式;(2)△BCD 的面积等于△AOC 的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.人教版 九年级数学 22.1 二次函数的图象和性质 培优训练-答案一、选择题(本大题共8道小题)1. 【答案】C【解析】在A 中,抛物线的对称轴在y 轴右边,∴-b2a >0,∵a>0,∴b <0;而从一次函数图象知b >0,∴选项A 错误;在B 中,抛物线对称轴-b2a >0,∵a <0,∴b >0;而从一次函数图象知b <0,∴选项B 错误;在C 中,抛物线的对称轴在y 轴左边,∴-b2a <0,∵a >0,∴b >0;抛物线与y 轴负半轴相交,∴c <0;而从一次函数图象知b >0,-c >0,∴c <0,∴选项C 正确;在D 中,抛物线与y 轴的正半轴相交,c >0,由一次函数图象知-c >0,即c <0,∴选项D 错误.2. 【答案】D [解析] A .将函数y =x 2的图象向左平移1个单位长度得到函数y =(x +1)2的图象,它经过点(1,4);B.将函数y =x 2的图象向右平移3个单位长度得到函数y =(x -3)2的图象,它经过点(1,4);C.将函数y =x 2的图象向上平移3个单位长度得到函数y =x 2+3的图象,它经过点(1,4);D.将函数y =x 2的图象向下平移1个单位长度得到函数y =x 2-1的图象,它不经过点(1,4).故选D.3. 【答案】B【解析】由题意知二次函数y=x2+2x+c 有两个相异的不动点x1、x2, 所以x1、x2是方程x2+2x+c=x 的两个不相等的实数根, 整理,得:x2+x+c=0, 所以∆=1–4c>0,又x2+x+c=0的两个不相等实数根为x1、x2,x1<1<x2, 所以函数y=x2+x+c=0在x=1时,函数值小于0, 即1+1+c<0,综上则140110c c ->⎧⎨++<⎩,解得c<-2, 故选B .4. 【答案】B【解析】∵△ABC 是等腰直角三角形,∴∠A =90°,∠B =∠C =45°.(1)当0≤x ≤2时,点P 在AB 边上,△BDP 是等腰直角三角形,∴PD =BD =x ,y =12x 2 (0≤x ≤2),其图象是抛物线的一部分; (2)当2<x ≤4时,点P 在AC 边上,△CDP 是等腰直角三角形,∴PD =CD =4-x ,∴y =12BD ·PD =12x (4-x ) (2<x ≤4),其图象也是抛物线的一部分.综上所述,两段图象均是抛物线的一部分,因此选项B 的图象能大致反映y 与x 之间的函数关系.5. 【答案】C 【解析】抛物线开口向上,所以a >0,对称轴在y 轴右侧,所以a 、b 异号,所以b <0,抛物线与y 轴交于负半轴,所以c <0,所以直线y =ax +b过第一、三、四象限,反比例函数y =cx 位于第二、四象限,故答案为C.6. 【答案】D [解析] 由一次函数y =ax +a 可知,其图象与x 轴交于点(-1,0),排除A ,B ;当a >0时,二次函数y =ax 2的图象开口向上,一次函数y =ax +a 的图象经过第一、二、三象限;当a <0时,二次函数y =ax 2的图象开口向下,一次函数y =ax +a 的图象经过第二、三、四象限.排除C.7. 【答案】A [解析] (1)当点D 位于PM 上时,x =2.当0≤x <2时,重叠部分是等腰直角三角形,y =12x2,图象是顶点为(0,0)且开口向上的抛物线的一部分.(2)当点D 位于PN 上时,x =4.当2≤x≤4时,重叠部分是直角梯形,y =12×(x -2+x)×2=2x -2,图象是直线的一部分;(3)当4<x≤6时,重叠部分是一个五边形,y =12×(2+6)×2-12(6-x)2=8-12(6-x)2,图象是顶点为(6,8)且开口向下的抛物线的一部分.故选A.8. 【答案】C [解析] (1)因为当x =-12时,与其对应的函数值y>0,由表格可知x =0时,y=-2,x =1时,y =-2,可以判断在对称轴左侧,y 随x 的增大而减小,图象开口向上,a>0;由表格可知x =0时,y =-2,x =1时,y =-2,可得对称轴为直线x =12,所以b<0;当x =0时,y =-2,所以c =-2<0,故abc>0,(1)正确.(2)由于对称轴是直线x =12,x =-2和x =3关于对称轴对称,当x =-2时,y =t ,所以当x =3时,y =t ,即-2和3是关于x 的方程ax 2+bx +c =t 的两个根,所以(2)正确.(3)依题意可得c =-2,a +b =0,当x =-12时,与其对应的函数值y>0可得a>83,当x =-1时,m =a -b -2=2a -2>103.因为x=-1和x =2关于对称轴对称,所以m =n ,所以m +n>203,故(3)错误.故选C.二、填空题(本大题共8道小题)9. 【答案】左3 下 2 [解析] 抛物线y =12x 2的顶点坐标为(0,0),而抛物线y =12(x +3)2-2的顶点坐标为(-3,-2),所以把抛物线y =12x 2先向左平移3个单位长度,再向下平移2个单位长度,就得到抛物线y =12(x +3)2-2.10. 【答案】下y 轴 (0,-3) > =0 大 -3 下 311. 【答案】向下直线x =3 (3,4) (1,0),(5,0) (0,-5) <3 增大 >3 减小 3 大4 右 3 上 412. 【答案】0 [解析] ∵抛物线y =ax 2+bx +c 经过点A(-3,0),对称轴是直线x =-1,∴抛物线y =ax 2+bx +c 与x 轴的另一交点的坐标为(1,0), ∴a +b +c =0.13. 【答案】8a[解析] ∵抛物线y =ax 2(a >0)与y =a(x -2)2交于点B ,∴BD =BC =2, ∴DC =4.∵y =a(x -2)2=ax 2-4ax +4a , ∴E(0,4a),∴S 四边形ACED =S △ACD +S △CDE =12DC·OE =12×4×4a =8a.14. 【答案】②④ [解析] (1)当x =-1时,y =a -b +c >0.由x =-b 2a <12和a >0可得-b<a.∴0<a -b +c <a +a +c =2a +c ,即2a +c >0,①错误; (2)结合图象易知②正确;(3)方程ax 2+bx +k =0有实数解,即ax 2+bx +c =c -k 有实数解.∵y =ax 2+bx +c≥n ,∴c -k≥n ,即k≤c -n ,③错误;(4)设抛物线的解析式为y =-1n (x -m)2+n(n <0).令y =0,得-1n (x -m)2+n =0.∴n 2-(x -m)2=0,∴(n -x +m)(n +x -m)=0.∴x 1=m +n ,x 2=m -n.AB =|x 1-x 2|=-2n.设对称轴交x 轴于点H ,则AH =BH =PH =-n ,∴△ABP 为等腰直角三角形,④正确.15. 【答案】3-3 [解析] 设点A 的坐标为(0,b),则B(b ,b),C(3b ,b),D(3b ,3b),E(3 b ,3b).所以AB =b ,DE =3 b -3b =(3-3) b.所以DE AB =(3-3)bb=3- 3.16. 【答案】-2 [解析] 抛物线y =ax 2+bx 的顶点C 的坐标为(-b 2a ,-b24a).把x =-b 2a 代入y =ax 2,得点B 的坐标为(-b 2a ,b 24a ).在y =ax 2+bx 中,令y =0,则ax 2+bx =0,解得x 1=0,x 2=-b a ,∴A(-ba ,0).∵四边形ABOC 为正方形,∴BC =OA ,∴2·b 24a =-b a ,即b 2+2b =0.解得b =-2或b =0(不符合题意,舍去).三、解答题(本大题共4道小题)17. 【答案】解:(1)∵抛物线y =ax 2+2ax +1与x 轴仅有一个交点, ∴b 2-4ac =(2a)2-4a =0,解得a =1,a =0(舍去), ∴抛物线的解析式:y =x 2+2x +1.(3分)(2)设直线AB 的解析式为y =kx +b , ∵抛物线解析式y =x 2+2x +1=(x +1)2, ∴A(-1,0),(4分)过点B 作BD ⊥x 轴于点D ,如解图, ∵OC ⊥x 轴, ∴OC ∥BD ,∵C 是AB 中点, ∴O 是AD 中点, ∴AO =OD =1,(6分) ∴点B 的横坐标为1,把x =1代入抛物线中,得y =(x +1)2=(1+1)2=4, ∴B 的坐标为(1,4).(7分)把点A(-1,0) ,B(1,4)代入y =kx +b , 得⎩⎨⎧0=-k +b 4=k +b , 解得⎩⎨⎧k =2b =2,∴直线AB 的解析式为: y =2x +2.(8分)18. 【答案】解:(1)设y =a(x +1)(x -6),把(5,-6)代入解析式,得a(5+1)(5-6)=-6, 解得a =1,∴y =(x +1)(x -6)=x2-5x -6. (2)存在.如图,分别过点P ,B 向x 轴作垂线,垂足为M ,N.设P(m ,m2-5m -6),其中-1<m <5,设四边形PACB 的面积为S ,则PM =-m2+5m +6,AM =m +1,MN =5-m ,CN =6-5=1,BN =6,∴S =S △AMP +S 梯形PMNB +S △BNC =12(-m2+5m +6)(m +1)+12(6-m2+5m +6)(5-m)+12×1×6=-3m2+12m +36=-3(m -2)2+48,当m =2时,S 有最大值为48,这时m2-5m -6=22-5×2-6=-12, ∴P(2,-12).19. 【答案】解:(1)将(1,0),(3,0)分别代入y =-x2+bx +c ,得⎩⎪⎨⎪⎧-1+b +c =0,-9+3b +c =0,解得⎩⎪⎨⎪⎧b =4,c =-3.∴该抛物线的解析式为y =-x2+4x -3. (2)设点P 的坐标为(x ,y).∵AB =2,S △PAB =12AB·|y|=1,∴y =±1.当y =1时,有1=-x2+4x -3, 即x2-4x +4=(x -2)2=0, 解得x1=x2=2;当y =-1时,有-1=-x2+4x -3,即x2-4x +2=0,解得x1=2-2,x2=2+ 2. ∴满足条件的点P 有3个,坐标分别为(2,1), (2+2,-1),(2-2,-1). (3)存在.作点C 关于抛物线的对称轴的对称点C′,连接AC′交抛物线的对称轴于点M ,连接MC ,任取抛物线对称轴上除点M 外的任意一点N ,连接NA ,NC ,NC′,如图所示.∵NA +NC =NA +NC′>AC′=MA +MC′=MA +MC , ∴当点A ,M ,C′共线时,△MAC 的周长最小. ∵抛物线的解析式为y =-x2+4x -3,∴点C 的坐标为(0,-3),抛物线的对称轴为直线x =-42×(-1)=2,∴C′(4,-3).设直线AC′的解析式为y =mx +n. ∵点A(1,0),C′(4,-3)在直线AC′上,∴⎩⎪⎨⎪⎧m +n =0,4m +n =-3,解得⎩⎪⎨⎪⎧m =-1,n =1,∴直线AC′的解析式为y =-x +1. 当x =2时,y =-x +1=-1,∴直线AC′与抛物线对称轴的交点的坐标为(2,-1),即M(2,-1). ∴存在点M(2,-1),使得△MAC 的周长最小.20. 【答案】(1)抛物线2y ax bx c =++经过点A(–2,0),B(4,0),∴426016460a b a b -+=⎧⎨++=⎩,解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的函数表达式为233642y x x =-++;(2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F , ∵点A 的坐标为(–2,0),∴OA=2,由0x =,得6y =,∴点C 的坐标为(0,6),∴OC=6,∴S △OAC=1126622OA OC ⋅⋅=⨯⨯=,∵S△BCD=34S△AOC,∴S△BCD=39642⨯=,设直线BC的函数表达式为y kx n=+,由B,C两点的坐标得406k nn+=⎧⎨=⎩,解得326kn⎧=-⎪⎨⎪=⎩,∴直线BC的函数表达式为362y x=-+,∴点G的坐标为3(,6)2m m-+,∴2233336(6)34224DG m m m m m=-++--+=-+,∵点B的坐标为(4,0),∴OB=4,∵S△BCD=S△CDG+S△BDG=1111()2222DG CF DG BE DG CF BE DG BO⋅⋅+⋅⋅=⋅+=⋅⋅,∴S△BCD=22133346242m m m m-+⨯=-+(),∴239622m m-+=,解得11m=(舍),23m=,∴m的值为3;(3)存在,如下图所示,以BD为边或者以BD为对角线进行平行四边形的构图,以BD为边时,有3种情况,∵D点坐标为15(3,)4,∴点N点纵坐标为±154,当点N的纵坐标为154时,如点N2,此时233156424x x -++=,解得:121,3x x =-=(舍),∴215(1,)4N -,∴2(0,0)M ; 当点N 的纵坐标为154-时,如点N3,N4, 此时233156424x x -++=-,解得:12114,114x x =-=+∴315(114,)4N +-,415(114,)4N --, ∴3(14,0)M ,4(14,0)M -;以BD 为对角线时,有1种情况,此时N1点与N2点重合, ∵115(1,)4N -,D(3,154),∴N1D=4, ∴BM1=N1D=4, ∴OM1=OB+BM1=8, ∴M1(8,0),综上,点M 的坐标为:1234(80)(00)(140)(140)M M M M -,,,,,,,.【名师点睛】本题考查的是二次函数的综合题,涉及了待定系数法、三角形的面积、解一元二次方程、平行四边形的性质等知识,运用了数形结合思想、分类讨论思想等数学思想,熟练掌握和灵活运用相关知识是解题的关键.【22.2二次函数与一元二次方程】一.选择题1.若抛物线y=x2﹣6x+m与x轴只有一个交点,则m的值为()A.﹣6B.6C.3D.92.已知某二次函数的图象与x轴相交于A,B两点,若该二次函数图象的对称轴是直线x =3,且点A的坐标是(8,0),则AB的长为()A.5B.8C.10D.113.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,当y>0时,x的取值范围是()A.﹣1<x<2B.x>2C.x<﹣1D.x<﹣1或x>2 4.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如下表所示:x…0100400…y…2﹣22…则方程ax2+bx+4=0的根是()A.x1=x2=200B.x1=0,x2=400C.x1=100,x2=300D.x1=100,x2=5005.已知二次函数y=ax2+bx+c(a≠0)的图象过点(0,m)(2,m)(m>0),与x轴的一个交点为(x1,0),且﹣1<x1<0.则下列结论:①若点(,y)是函数图象上一点,则y>0;②若点(﹣),()是函数图象上一点,则y2>y1;③(a+c)2<b2.其中正确的是()A.①B.①②C.①③D.②③6.二次函数y=kx2﹣6x+3的图象与x轴有交点,则k的取值范围是()A.k<3B.k<3且k≠0C.k≤3D.k≤3且k≠0 7.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表,则方程ax2+bx+c =0的一个解的范围是()x 6.17 6.18 6.19 6.20y﹣0.03﹣0.010.020.04A.﹣0.01<x<0.02B.6.17<x<6.18C.6.18<x<6.19D.6.19<x<6.208.已知函数y=3﹣(x﹣m)(x﹣n),并且a,b是方程3﹣(x﹣m)(x﹣n)=0的两个根,则实数m,n,a,b的大小关系可能是()A.m<n<b<a B.m<a<n<b C.a<m<b<n D.a<m<n<b 9.若抛物线y=x2+bx+c与x轴交于(1,0),(3,0),则b和c的值为()A.b=4,c=﹣3B.b=﹣4,c=3C.b=﹣4,c=﹣3D.b=4,c=﹣3 10.如图,抛物线y=ax2+2ax﹣3a(a>0)与x轴交于A,B,顶点为点D,把抛物线在x 轴下方部分关于点B作中心对称,顶点对应D′,点A对应点C,连接DD′,CD′,DC,当△CDD′是直角三角形时,a的值为()A.或B.或C.或D.或二.填空题11.抛物线y=ax2﹣2x﹣1与x轴有两个交点,则a的取值范围为.12.已知函数y=(m+3)x2+2x+1的图象与x轴只有一个公共点,则m的值为13.已知二次函数y=x2+2x+n,当自变量x的取值在﹣2≤x≤1的范围内时,函数的图象与x轴有且只有一个公共点,则n的取值范围是.14.已知抛物线y=a(x﹣h)2+k经过点A(﹣2,0),B(3,0)两点.若关于x的一元二次方程a(x﹣h+m)2+k=0的一个根是1,则m的值为.15.抛物线y=ax2﹣3x+2与x轴正半轴交于A、B两点,且AB=2,则a=.三.解答题16.已知关于x的函数y=(k﹣1)x2﹣2kx+k+2的图象与x轴有交点,求k的取值范围.17.抛物线y=﹣x2+bx+c交x轴于A(3,0)、B两点,与y轴交于点C(0,3),点D为顶点,对称轴l交x轴于点E,点P是抛物线上一点,AP交对称轴于点M,BP交对称轴于点N.求点D坐标及对称轴l.18.如图,已知二次函数y=﹣x2﹣2x+3的图象交x轴于A、B两点(A在B左边),交y 轴于C点.(1)求A、B、C三点的坐标和直线AC的解析式;(2)点P是直线AC上方抛物线上一动点(不与A,C重合),过点P作x轴平行线交直线AC于M点,求线段PM的最大值.19.已知二次函数y=ax2+bx+c,自变量x与函数y的部分对应值如下表:x…﹣2﹣101234…y…50﹣3﹣4﹣30m…(1)二次函数图象的开口方向,顶点坐标是,m的值为;(2)点P(﹣3,y1)、Q(2,y2)在函数图象上,y1y2(填<、>、=);(3)当y<0时,x的取值范围是;(4)关于x的一元二次方程ax2+bx+c=5的解为.20.如图,已知抛物线y=﹣x2+(m﹣1)x+m的对称轴为x=1,请你解答下列问题:(Ⅰ)求m的值;(Ⅱ)求出抛物线与x轴的交点;(Ⅲ)当y随x的增大而减小时x的取值范围是.(Ⅳ)当y<0时,x的取值范围是.参考答案一.选择题1.解:根据题意得△=(﹣6)2﹣4m=0,解得m=9.故选:D.2.解:∵某二次函数的图象与x轴相交于A,B两点,该二次函数图象的对称轴是直线x =3,且点A的坐标是(8,0),∴点B的坐标为(﹣2,0),∴AB=8﹣(﹣2)=8+2=10,故选:C.3.解:由图象可知,当y>0时,x的取值范围是x<﹣1或x>2,故选:D.4.解:由抛物线经过点(0,2)得到c=2,因为抛物线经过点(0,2)、(400,2),所以抛物线的对称轴为直线x=200,而抛物线经过点(100,﹣2),所以抛物线经过点(300,﹣2),所以二次函数解析式为y=ax2+bx+2,方程ax2+bx+4=0变形为ax2+bx+2=﹣2,所以方程ax2+bx+4=0的根理解为函数值为﹣2所对应的自变量的值,所以方程ax2+bx+4=0的根为x1=100,x2=300.故选:C.5.解:∵抛物线经过点(0,m)(2,m)(m>0),(x1,0)(﹣1<x1<0),∴抛物线开口向下,对称轴为直线x=﹣=1,即b=﹣2a,∴当x=时,y>0,则①正确;∵点()到直线x=1和点()到直线x=1的距离相等,∴y1=y2,所以②错误;∵x=1,y>0;x=﹣1,y<0,即a+b+c>0,a﹣b+c<0,∴(a+b+c)(a﹣b+c)<0,即(a+c)2<b2,则③正确.故选:C.6.解:∵二次函数y=kx2﹣6x+3的图象与x轴有交点,∴方程kx2﹣6x+3=0(k≠0)有实数根,即△=36﹣12k≥0,k≤3,由于是二次函数,故k≠0,则k的取值范围是k≤3且k≠0.故选:D.7.解:由表格中的数据看出﹣0.01和0.02更接近于0,故x应取对应的范围.故选:C.8.解:由3﹣(x﹣m)(x﹣n)=0变形得(x﹣m)(x﹣n)=3,∴x﹣m>0,x﹣n>0或x﹣m<0,x﹣n<0,∴x>m,x>n或x<m,x<n,∵a,b是方程的两个根,将a,b代入,得:a>m,a>n,b<m,b<n或a<m,a<n,b>m,b>n,观察选项可知:a<b,m<n,只有D可能成立.故选:D.9.解:抛物线解析式为y=(x﹣1)(x﹣3),即y=x2﹣4x+3.所以b=﹣4,c=3.故选:B.10.解:∵y=ax2+2ax﹣3a=a(x+3)(x﹣1)=a(x+1)2﹣4a,∴点A的坐标为(﹣3,0),点B(1,0),点D(﹣1,﹣4a),∴D′(3,4a),C(5,0),∵△CDD′是直角三角形,∴当∠DD′C=90°时,4a=×(5﹣1)=2,得a=,当∠D′CD=90°时,CB=DD′,∴5﹣1=,解得,a1=,a2=﹣(舍去),由上可得,a的值是或,故选:A.二.填空题21.解:∵抛物线y=ax2﹣2x﹣1与x轴有两个交点,∴,解得,a>﹣1且a≠0,故答案为:a>﹣1且a≠0.22.解:∵函数y=(m+3)x2+2x+1的图象与x轴只有一个公共点,∴或(m+3)=0,解得,m=﹣1或m=﹣3,故答案为:m=﹣1或m=﹣3.23.解:抛物线的对称轴为直线x=﹣=﹣1,若抛物线与x轴有一个交点,则当x=﹣1,y=0;当x=1,y≥0时,在﹣2≤x≤1的范围内时,抛物线与x轴有且只有一个公共点,即1+2+n≥0且4﹣4+n<0,解得﹣3≤n <0;所以,n的取值范围是n=1或﹣3≤n<0.故答案为n=1或﹣3≤n<0.24.解:由已知可得:对称轴为x=,∴h=,∴y=a(x﹣)2+k,将点A(﹣2,0)代入y=a(x﹣)2+k,∴k=﹣a,∵a(x﹣h+m)2+k=0,∴a(x﹣+m)2﹣a=0,∵a≠0,∴(x﹣+m)2=,∵方程的一个根为1,∴(1﹣+m)2=,故答案为m=2或m=﹣3.25.解:当y=0时,ax2﹣3x+2=0,∵a>0,∴(x﹣1)(x﹣2)=0,解得x1=,x2=,∴A、B两点的坐标为(,0),(,0),∵AB=2,∴﹣=2,解得a=.故答案为.三.解答题31.解:∵关于x的函数y=(k﹣1)x2﹣2kx+k+2的图象与x轴有交点,∴或,解得,k≤2且k≠1或k=1,由上可得,k的取值范围是k≤2.32.解:把A(﹣3,0),C(0,3)分别代入y=﹣x2+bx+c得,解得,所以抛物线解析式为y=﹣x2+2x+3,因为y=﹣(x﹣1)2+4,所以D点坐标为(1,4),抛物线的对称轴l为直线x=1.33.解:(1)令y=0,得:﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,∴点A(﹣3,0),点B(1,0);令x=0,得:y=3,∴点C(0,3);设直线AC的解析式为:y=kx+b,点A(﹣3,0),点C(0,3)在直线AC上,,解得:,∴直线AC的解析式为:y=x+3.(2)如图所示,设点P的坐标为(a,﹣a2﹣2a+3),由PM∥x轴,可知点M的纵坐标为﹣a2﹣2a+3,∴x=﹣a2﹣2a,∴PM=﹣a2﹣2a﹣a=﹣a2﹣3a(﹣3<a<0),=.当a=时,PM最大34.解:(1)由表格可见,函数的对称轴为x=1,对称轴右侧,y随x的增大而增大,故抛物线开口向上,顶点坐标为(1,﹣4),根据函数的对称性m=5;故答案为:向上;(1,﹣4);5;(2)从P、Q的横坐标看,点Q离函数的对称轴近,故y1>y2;故答案为:>;(3)从表格看,当y<0时,x的取值范围是:﹣1<x<3,故答案为:﹣1<x<3;(4)从表格看,关于x的一元二次方程ax2+bx+c=5的解为:x=﹣2或4,故答案为:x=﹣2或4.35.解:(Ⅰ)抛物线的对称轴为直线x=﹣=1,∴m=3;(Ⅱ)∵m=3,∴抛物线解析式为y=﹣x2+2x+3,当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,∴抛物线与x轴的交点为(﹣1,0),(3,0);(Ⅲ)∵a=﹣1<0,对称轴为直线x=1,∴当x>1时,y的值随x的增大而减小,故答案为x>1;(Ⅳ)当x<﹣1或x>3时,y<0,故答案为x<﹣1或x>3.22.3 实际问题与二次函数一、选择题(本大题共10道小题)1. 小敏用一根长为8 cm的细铁丝围成矩形,则矩形的最大面积是()A.4 cm2B.8 cm2C.16 cm2D.32 cm22. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段防护栏需要间距0.4 m加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A.50 m B.100 mC.160 m D.200 m3. 从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.有下列结论:①小球在空中经过的路程是40 m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度h=30 m时,t=1.5 s.其中正确的是()A.①④B.①②C.②③④D.②③4. 如图,利用一面墙,其他三边用80米长的篱笆围成一块矩形场地,墙长为30米,则围成矩形场地的最大面积为()A.800平方米B.750平方米C .600平方米D .2400平方米5. 如图,△ABC 是直角三角形,∠A =90°,AB =8 cm ,AC =6 cm ,点P 从点A出发,沿AB 方向以2 cm/s 的速度向点B 运动;同时点Q 从点A 出发,沿AC 方向以1 cm/s 的速度向点C 运动,当其中一个动点到达终点时,另一个动点也停止运动,则四边形BCQP 面积的最小值是( )A .8 cm 2B .16 cm 2C .24 cm 2D .32 cm 26. 中环桥是省城太原的一座跨汾河大桥(如图①),它由五个高度不同,跨径也不同的抛物线形钢拱通过吊杆,拉索与主梁相连.最高的钢拱如图②所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点,拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB =90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系.则此抛物线形钢拱的函数解析式为( )A .y =26675x 2 B .y =-26675x 2 C .y =131350x 2D .y =-131350x 27. 如图,在△ABC 中,∠C =90°,AB =10 cm ,BC =8 cm ,点P 从点A 沿AC向点C 以1 cm/s 的速度运动,同时点Q 从点C 沿CB 向点B 以2 cm/s 的速度运动(点Q 运动到点B 时,两点同时停止运动),在运动过程中,四边形P ABQ 的面积的最小值为 ( )A .19 cm 2B .16 cm 2C .15 cm 2D .12 cm 28. 在羽毛球比赛中,羽毛球的运动路线可以看作是抛物线y =-14x 2+bx +c 的一部分(如图),其中出球点B 离地面点O 的距离是1 m ,球落地点A 到点O 的距离是4 m ,那么这条抛物线的解析式是( )A .y =-14x 2+34x +1B .y =-14x 2+34x -1C .y =-14x 2-34x +1D .y =-14x 2-34x -19. 一位篮球运动员在距离篮圈中心水平距离4 m 处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5 m 时,达到最大高度3.5 m ,然后准确落入篮筐内.已知篮圈中心距离地面高度为3.05 m ,在如图 (示意图)所示的平面直角坐标系中,下列说法正确的是( )A .此抛物线的解析式是y =-15x 2+3.5 B .篮圈中心的坐标是(4,3.05) C .此抛物线的顶点坐标是(3.5,0) D .篮球出手时离地面的高度是2 m10. 一种包装盒的设计方法如图所示,四边形ABCD 是边长为80 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四点重合于图中的点O ,得到一个底面为正方形的长方体包装盒.设BE =CF =x cm ,要使包装盒的侧面积最大,则x 应取( )A.30 B.25 C.20 D.15二、填空题(本大题共7道小题)11. 某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50 m),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48 m,则这三间长方形种牛饲养室的总占地面积的最大值为________ m2.12. 已知一个直角三角形两直角边长的和为30,则这个直角三角形的面积最大为________.13. 某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m宽的门.已知计划中的材料可建墙体总长为27 m,则能建成的饲养室总占地面积最大为________m2.14. 某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t·为正整数....)的增大而增大,a 的取值范围应为________.15. 如图所示是一座抛物线形拱桥,当水面宽为12 m时,桥拱顶部离水面4 m,以水平方向为x轴,建立平面直角坐标系.若选取点A为坐标原点时的抛物线解析式为y=-19(x-6)2+4,则选取点B为坐标原点时的抛物线解析式为________________.16. 竖直上抛的小球离地高度是它运动时间的二次函数.小军相隔1秒依次竖直向上抛出两个小球.假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度.第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=________.17. 如图是某地一座抛物线形拱桥,桥拱在竖直平面内与水平桥面相交于A,B 两点,桥拱最高点C到AB的距离为9 m,AB=36 m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7 m,则DE的长为________m.三、解答题(本大题共4道小题)18. 某商场销售一批名牌衬衫,每件进价为300元,若每件售价为420元,则平均每天可售出20件.经调查发现,每件衬衫每降价10元,商场平均每天可多售出1件,为了扩大销售,增加盈利,减少库存,商场决定采取适当的降价措施.设每件衬衫降价x元.(1)每件衬衫的盈利为多少?(2)用含x的代数式表示每天可售出的衬衫件数.(3)若商场每天要盈利1920元,请你帮助商场算一算,每件衬衫应降价多少元?(4)这次降价活动中,1920元是最高日盈利吗?若是,请说明理由;若不是,试求最高日盈利值.19. 如图,工人师傅用一块长为10 dm,宽为6 dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形(厚度不计).(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕,并求长方体底面面积为12 dm2时,裁掉的正方形的边长;(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长为多少时,总费用最低,最低为多少元?20. 如图,某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50 m.设饲养室的长为x(m),占地面积为y(m2).(1)如图②,当饲养室的长x为多少时,占地面积y最大?(2)如图③,现要求在图中所示位置留2 m宽的门,且仍使饲养室的占地面积最大.小敏说:“只要饲养室的长比(1)中的长多2 m就行了.”请你通过计算,判断小敏的说法是否正确.21. 有一块形状如图所示的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B =90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.人教版 九年级数学 22.3 实际问题与二次函数同步训练-答案一、选择题(本大题共10道小题)1. 【答案】A [解析] 设矩形的一边长为x cm ,则另一边长为()4-x cm ,故矩形的面积S =x ()4-x =-x 2+4x =-(x -2)2+4,所以当x =2时,S 最大值=4.故矩形的最大面积为4 cm2.2. 【答案】C [解析] 以2 m 长线段所在直线为x 轴,以其垂直平分线为y 轴建立平面直角坐标系,求出抛物线的解析式,再求出不锈钢支柱的长度.3. 【答案】D [解析] ①由图象知小球在空中达到的最大高度是40 m ,故①错误;②小球抛出3秒后,速度越来越快,故②正确;③∵小球抛出3秒时达到最高点,∴速度为0,故③正确; ④设函数解析式为h =a(t -3)2+40, 把O(0,0)代入得0=a(0-3)2+40. 解得a =-409,∴函数解析式为h =-409(t -3)2+40.把h =30代入解析式,得30=-409(t -3)2+40,解得t =4.5或t =1.5,∴小球的高度h =30 m 时,t =1.5 s 或4.5 s ,故④错误.故选D.4. 【答案】B[解析] 设矩形场地中平行于墙的边长为x 米,则垂直于墙的边长为80-x2米,围成矩形场地的面积为y 平方米, 则y =x ·(80-x )2=-12x 2+40x =-12(x -40)2+800.∵a <0,∴x <40时,y 随x 的增大而增大,由于墙长为30米,∴0<x ≤30,∴当x =30时,y 取得最大值,为-12×(30-40)2+800=750.5. 【答案】A[解析] 设运动时间为t s ,四边形BCQP 的面积为S m 2,。
九年级数学二次函数全章例题+练习(基础、培优)
二次函数概念1.一般地,形如y =ax 2+bx +c(a ,b ,c 是常数,a≠0)的函数,叫做二次函数.其中二次项系数、一次项系数和常数项分别为a ,b ,c .(1)下列函数中,不是二次函数的是( )A .y =1-2x 2B .y =(x -1)2-1C .y =12(x +1)(x -1) D .y =(x -2)2-x 2(2)二次函数y =x 2+4x 中,二次项系数是 ,一次项系数是 ,常数项是 . 【点拨】 判断二次函数要紧扣定义.2.现在我们已学过的函数有一次函数、二次函数,它们的表达式分别是y =ax +b(a ,b 是常数,a≠0)、y =ax 2+bx +c(a ,b ,c 是常数,a≠0).二次函数y =ax 2的图象和性质1.一般地,当a>0时,抛物线y =ax 2的开口向上,对称轴是y 轴,顶点是原点,顶点是抛物线的最低点,a 越大,抛物线的开口越小.2.一般地,当a<0时,抛物线y =ax 2的开口向下,对称轴是y 轴,顶点是原点,顶点是抛物线的最高点,a 越小,抛物线的开口越小.3.从二次函数y =ax 2的图象可以看出:如果a>0,当x<0时,y 随x 的增大而减小,当x>0时,y 随x 的增大而增大;如果a<0,当x<0时,y 随x 的增大而增大,当x>0时,y 随x 的增大而减小.4.(1)抛物线y =2x 2的开口向上,对称轴是y 轴,顶点是原点,顶点是抛物线的最低点; (2)抛物线y =-3x 2的开口向下,对称轴是y 轴,顶点是原点,顶点是抛物线的最高点;(3)在抛物线y =2x 2对称轴的左侧,y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大; (4)在抛物线y =-3x 2对称轴的左侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小.二次函数y=ax2+k的图象和性质二次函数y=ax2+k的图象和性质二次函数y=a(x-h)2+k的图象和性质二次函数y=ax2+bx+c的图象和性质例1、求二次函数y=2x2+4x-1的对称轴,顶点坐标,并画出其函数图象.例2、将下列二次函数写成顶点式y=a(x-h)2+k的形式,并写出其开口方向,顶点坐标,对称轴.(1)y=x2-4x+5;(2)y=-2x2-12x-22.用待定系数法确定二次函数的解析式例1如果一个二次函数的图象经过(-1,10),(1,4),(2,7)三个点,能求出这个二次函数的解析式吗?如果能,求出这个二次函数的解析式.【跟踪训练1】已知二次函数y =ax 2+bx +c ,当x =0时,y =1;当x =-1时,y =6;当x =1时,y =0.求这个二次函数的解析式.例2已知抛物线的顶点坐标为(-1,-3),与y 轴的交点为(0,-5),求此抛物线的解析式.【点拨】 特别地,当抛物线的顶点为原点时,h =0,k =0,可设函数的解析式为y =ax 2; 当抛物线的对称轴为y 轴时,h =0,可设函数的解析式为y =ax 2+k ; 当抛物线的顶点在x 轴上时,k =0,可设函数的解析式为y =a (x -h )2.【跟踪训练2】 已知抛物线的顶点坐标是(3,-1),与y 轴的交点是(0,-4),则这个二次函数的解析式是 .例3已知抛物线与x 轴交于点A (-1,0),B (1,0)并经过点M (0,1),求此抛物线的解析式.【点拨】 交点式y =a (x -x 1)(x -x 2)中,x 1和x 2分别是抛物线与x 轴的两个交点的横坐标,这两个交点关于抛物线的对称轴对称,则直线x =x 1+x 22就是抛物线的对称轴.【跟踪训练3】 已知一个二次函数的图象与x 轴的两个交点的坐标分别为(-1,0)和(2,0),与y 轴的交点坐标为(0,-2),则该二次函数的解析式为 .巩固训练1.已知抛物线y =ax 2+bx +c 过(1,0),(2,0),(3,4)三点,则该抛物线的解析式为( )A .y =x 2-3x +2B .y =2x 2-6x +4C .y =2x 2-6x -4D .y =x 2-3x -22.如果抛物线的顶点坐标是(3,-1),与y 轴的交点是(0,-4),则它的解析式为( )A .y =-13x 2+2x -4B .y =-13x 2-2x -4C .y =-13(x +3)2-1 D .y =-x 2+6x -123.如图,抛物线的解析式为( )A .y =-x 2-x +2B .y =x 2+x +2C .y =-2x 2+x +2D .y =-x 2+x +24.若y =ax 2+bx +c ,则由表格中信息可知y 与x 之间的函数关系式为( )x -1 0 1 ax 21 ax 2+bx +c83A .y =x 2-3x +3B .y =x 2-3x +4C .y =x 2-4x +3D .y =x 2-4x +85、已知二次函数y =ax 2+bx+c 中,自变量x 与函数y 之间的部分对应值如表: x … 0 1 2 3 … y …﹣1232…在该函数的图象上有A(x 1,y 1)和B(x 2,y 2)两点,且﹣1<x 1<0,3<x 2<4,y 1与y 2的大小关系正确的是( ) A. y 1≥y 2 B. y 1>y 2 C. y 1≤y 2 D. y 1<y 26.函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是( )B .C .D .1111xoyyoxyoxxoy7.已知0≠a ,在同一直角坐标系中,函数ax y =与2ax y =的图象有可能是( ▲ )8.在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图象可能..是Oy x1-1A . xyO 1-1B . xy O1-1xyO1-1图像性质提高1.作出二次函数y=x2-2x-3的图象,当y=0时,自变量x= ;当y<0时,自变量x的取值范围是;当y>0时,自变量x的取值范围是.2、抛物线y=ax2+bx+c的对称轴是直线x=-1,且过点(1,0).顶点位于第二象限,其部分图象如图所示,给出以下判断:①ab>0且c<0;②4a-2b+c>0;③8a+c>0;④c=3a-3b;⑤直线y=2x+2与抛物线y=ax2+bx+c两个交点的横坐标分别为x1,x2,则x1+x2+x1x2=5.其中正确的结论是(只填序号)3.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,则下列四个结论错误的是()A.c>0 B.2a+b=0 C.b2﹣4ac>0 D.a﹣b+c>04.如图,二次函数y=ax2+bx+c(a≠0)的图象过点(﹣1,2),下列结论:①abc>0;②a+b+c>0;③2a+b <0;④b<﹣1;⑤b2﹣4ac<8a,正确的结论是(只填序号)5、小明在某次投篮中,球的运动路线是抛物线y=-51x 2+3.5的一部分,如图所示,若球命中篮圈中心,则他与篮底的距离L 是 m6、如图所示,二次函数y=ax 2+bx+c (a ≠0)的图象经过点(-1,2),且与x 轴交点的横坐标分别为x 1、x 2,其中-2<x 1<-1,0<x 2<1,下列结论:①4a-2b+c <0;②2a-b >0;③a <-1;④b 2+8a >4ac.其中正确的有: (填写番号).7、已知二次函数y=ax 2+bx+c 的图象如图所示,下列结论:①9a-3b+c=0;②4a-2b+c >0;③方程ax 2+bx+c-4=0有两个相等的实数根;④方程a (x-1)2+b (x-1)+c=0的两根是x 1=-2,x 2=2.其中正确的有: (填写番号).8.如图,二次函数y =ax 2+bx +c (a ≠0)的图象过点(﹣1,2),下列结论:①abc >0;②a +b +c >0;③2a +b <0;④b <﹣1;⑤b 2﹣4ac <8a ,正确的结论是 (只填序号)9.二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x =2,下列结论:①4a +b =0;②9a +c >3b ;③8a +7b +2c >0;④若方程a (x +1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则x 1<﹣1<5<x 2;⑤若点A (﹣3,y 1)、点B (﹣,y 2)、点C (,y 3)在该函数图象上,则y 1<y 3<y 2.其中正确的结论是 .二次函数的应用1.如图,某小区决定要在一块一边靠墙(墙长10米)的空地上用栅栏围成一个矩形绿化带ABCD,绿化带的一边靠墙,中间用栅栏隔成两个小矩形,所用栅栏总长为36米,设AB的长为x米,矩形绿化带的面积为S平方米.(1)求S与x之间的函数关系式,并直接写出x的取值范围;(2)求围成矩形绿化带ABCD面积S的最大值.2.如图,已知边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=1,在AB上的一点P,使矩形PNDM有最大面积,则矩形PNDM的面积最大值是 .3.天府新区某商场开业后要经营一种新上市的文具进价为10元/件.试营销阶段发现:当销售单价是13元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件,设该商场销售这种文具每天的销售量为y件,销售单价为x元/件(x≥13).(1)写出y与x之间的函数关系式;(2)设商场每天的销售利润为w(元),若每天销售量不少于150件,求商场每天的最大利润.4.每年5月的第二个星期日即为母亲节,“父母恩深重,恩怜无歇时”,许多市民喜欢在母亲节为母亲送鲜花,感恩母亲,祝福母亲.节日前夕,某花店采购了一批鲜花礼盒,成本价为30元每件,分析上一年母亲节的鲜花礼盒销售情况,得到了如下数据,同时发现每天的销售量y(件)是销售单价x(元/件)的一次函数.销售单价x(元/件)…30 40 50 60 …每天销售量y(件)…350 300 250 200 …(1)求出y与x的函数关系;(2)物价局要求,销售该鲜花礼盒获得的利润不得高于100%:①当销售单价x取何值时,该花店销售鲜花礼盒每天获得的利润为5000元?(利润=销售总价﹣成本价);②试确定销售单价x取何值时,花店销该鲜花礼盒每天获得的利润W(元)最大?并求出花店销该鲜花礼盒每天获得的最大利润.5.某商场以每件20元的价格购进一种商品,经市场调查发现:该商品每天的销售量y(件)与每件售价x(元)之间满足一次函数关系,其图象如图所示.设该商场销售这种商品每天获利w (元).(1)求y与x之间的函数关系式.(2)求w与x之间的函数关系式.(3)该商场规定这种商品每件售价不低于进价,又不高于36元,当每件商品的售价定为多少元时,每天销售利润最大?最大利润是多少?6.某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚,到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种的蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.7.2020年,新型冠状病毒肆虐,给人们的生活带来许多不便,网络销售成为这个时期最重要的一种销售方式.某乡镇农贸公司新开设了一家网店,销售当地农产品.其中一种当地特产在网上试销售,其成本为每千克2元.公司在试销售期间,调查发现,每天销售量y(kg)与销售单价x(元)满足如图所示的函数关系(其中2<x≤10).(1)求y与x之间的函数关系式;(2)销售单价x为多少元时,每天的销售利润最大?最大利润是多少元?8.某企业销售某商品,以“线上”与“线下”相结合的方式一共销售了100件.设该商品线下的销售量为x(10≤x≤90)件,线下销售的每件利润为y1元,线上销售的每件利润为y2元.如图中折线ABC、线段DE分别表示y1、y2与x之间的函数关系.(1)求y1与x之间的函数表达式;(2)若70≤x≤90,问线下的销售量为多少时,售完这100件商品所获得的总利润最大?最大利润是多少?{)5840(1402)7158(82≤≤+-≤<+-=x x x x y(3)①求他的销售利润w (元)与销售单价x (元/双)之间的函数关系式.(4)②小王每月需向银行还贷2075元,另童鞋店每月需缴纳水电费、营业税等固定费用3000元,通过计算判断,小王每月(按30天计算)能否有盈余?如果有,最多盈余多少元?(盈余=销售利润-固定费用-银行贷款)二次函数的综合如图,二次函数y=(x-2)2+m 的图象与y 轴交于点C ,点B 是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b 的图象经过该二次函数图象上点A (1,0)及点B . (1)求一次函数与二次函数的解析式;(2)根据图象,写出满足kx+b ≥(x-2)2+m 的x 的取值范围.练习1:如图所示,二次函数的图象与x 轴相交于A 、B 两点,与y 轴相交于点C ,点C 、D 是二次函数图象上的一对对称点,一次函数的图象过点B 、D .(1)求D 点的坐标和一次函数、二次函数的解析式;(2)根据图象写出使一次函数值大于二次函数值的x 的取值范围.练习2:在同一直角坐标系,开口向上的抛物线与坐标轴分别交于A (-1,0),B (3,0),C (0,-3),一次函数图象与二次函数图象交于B 、C 两点. (1)求一次函数和二次函数的解析式.(2)当自变量x 为何值时,两函数的函数值都随x 的增大而增大? (3)当自变量x 为何值时,一次函数值大于二次函数值. (4)当自变量x 为何值时,两函数的函数值的积小于0.ABC Oxy一次函数和二次函数的交点有关的面积类问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学下----二次函数基础题练习1
一、填空题: 1、若函数y =1)1(++a x a 是二次函数,则=a 。
2、二次函数开口向上,过点(1,3),请你写出一个满足条件的函数 。
3、二次函数y =x 2+x-6的图象:1)与y 轴的交点坐标 ;2)与x 轴的交点坐标 ; 3)当x 取 时,y <0; 4)当x 取 时,y >0。
4、把函数y =322-+-x x 配成顶点式 ;顶点 ,
对称轴 ,当x 取 时,函数y 有最________值是_____。
5、函数y =x 2-k x+8的顶点在x 轴上,则k = 。
6、抛物线y =3-x 2左平移2个单位,再向下平移4个单位,得到的解析式是 ,顶点坐标 。
7抛物线y =3-x 2向右移3个单位得解析式是 8、如果点(1-,1)在y =2ax +2上,则=a 。
9、函数y =21-
x 2
1- 对称轴是_______,顶点坐标是_______。
10、函数y =2
1
-2)2(-x 对称轴是______,顶点坐标____,当 时y 随x 的增大而减
少。
11、函数y =x 223+-x 的图象与x 轴的交点有 个,且交点坐标是 。
12、①y =x 2(-1+x )2;②y =2
1x
;③2+-=x y ;④y =21-2
)2(-x ;二次函数有 个。
二、选择题;
1、下列函数中,图象一定经过原点的函数是( ) A. 23-=x y B.X
y 1
=
C.x x y 22+=
D.12+=x y 2、二次函数422-+-=x x y ,它的对称轴、顶点坐标分别是( ) A 、直线x =1,(1,-3) B 、直线x =-1,(-1,-3) C 、直线x =1,(1, 3) D 、直线x =-1,(-1,3)
3、二次函数c bx x y ++=2的图象上有两点(3,8)和(-5,8),则此拋物线的对称轴是( )
A .x =4 B. x =3 C. x =-5 D. x =-1。
4、抛物线122+--=m mx x y 的图象过原点,则m 为( )
A .0
B .1
C .-1
D .±1
三、解答题:1、二次函数c x ax y ++=2过)1,1(-与(2,2-)求解析式。
2、画函数322--=x x y 的图象,利用图象回答问题。
①求方程0322=--x x 的解;②x 取什么时,y >0。
3、把二次函数y =2x 26-x+4;1)配成y =a (x-h )2+k 的形式,(2)画出这个函数的图象;(3)写出它的开口方向、对称轴和顶点坐标.
4、用长为18 m 的铁丝,围成一个矩形,设它的一边长为x m ,矩形面积为y m 2
1)求y 与x 的函数关系式;2)当边长为x 多少时,面积y 最大并求出y 的最大值是多少? 5、某产品每件的成本价是120元,试销阶段,每件产品的销售价x(元)与产品的日销售量y(台)之间的函数关系如下表:x (元)y (台)并且日销售量y 是每件售价x 的一次函数.
(1)求y 与x 之间的函数关系;(2)从表中
发
现什么规律(用具体的数字说明)? (3)为获得最大利润,每件产品的销售价应定
为多少元?此时每日销售的利润是多
九年级数学下----二次函数基础题练习2
一、填空题
1、函数①y=x +x 1
;②y=3(x -1)2+2;③y=(x +3)2-2x 2;④y=2
1x +x 中是二次函数的
有_______ 2、二次函数y=(m +1)x 2
2-m +2x -1的图象开口向下,则m= .
3、函数122
---=x x y
的对称轴是_______,顶点坐标为_________,函数有最____值
为______。
将函数化为顶点式为_________________,函数图象与x 轴的交点坐标为________,与y 轴的交点坐标为________,当x__ __时,y 随x 增大而减小。
4、函数()2122
++-=x y 的对称轴是_________,顶点坐标为____________,函数有最____值
为______。
将函数化为一般式为_________________,函数图象与x 轴的交点坐标为_______,与x 轴两交点之间的距离是_____,与y 轴的交点坐标为________,当x_______
时,y 随x 增大而增大。
5、函数()()313--=x x y 的对称轴是_______,顶点坐标为_____,将函数化为一般式为________。
6、通过配方把6422
---=x x y 写成()k m x a y ++=2
的形式后,a =___,m=___,k=___。
7、抛物线y=2x 2向左平移1个单位,再向下平移3个单位,得到的抛物线表达式为 __ 8、抛物线2ax y =与直线x y -=交于(1,m ),则抛物线的解析式_______________ 9、若二次函数9)1(22-++=m x m y 有最大值,且图象经过原点,则m=______。
10、抛物线)0(2≠++=a c bx ax y 过第二、三、四象限,则a 0,bc 0. 11、已知二次函数232)1(2-++-=m mx x m y ,则当=m 时,其最大值为0. 12、函数y =
2
1x 2
+2x +1写成y =a (x -h)2+k 的形式是__________________ 13、函数y=x 2-4x+1的图象经过_____象限.
14、抛物线122
++-=x x y 在x 轴上截得的线段长度是
15、二次函数y =-
4
1x 2
,当x 1<x 2<0时,y 1与y 2的大小为______. 16、如右图所示的抛物线:当x =_____时,y =0;当y< 0时,x 的取值范围是___________; 当y >0时,x 的取值范围是___________;当x =_____时,y 有最大值是_____. 17、若二次函数y =x 2-2x +c 图象的顶点在x 轴上,则c 等于______
18、函数 y =2
1(x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大。
19、请写出一个经过点(-2,0),(5,0)两点,且开口向下的抛物线的解析式:__________ 20、抛物线342+-=x x y 与x 轴的交点A 、B 的坐标是________和________,与y 轴的交点C 的坐标是______,△ABC 的面积为______
21、已知二次函数 y =ax 2
+bx +c
二、选择题
22、在同一直角坐标系中如上图,一次函数y =ax +c 和二次函数y =ax 2+c 的图象大致为( )
23、函数y =ax +b 的图象经过一、二、三象限,则二次函数y =ax 2+bx 的大致图象是( )
B
24、直线)0(≠+=ab b ax y 不经过第三象限,那么bx ax y +=2的图象大致为 ( )
25、如图,函数
y =-
a (x +a )与y =
-ax 2
(a ≠0)在同一坐标系上的图象是( ) 26、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =1
2gt 2(g =9.8),
则 s 与 t 的函数图像大致是( )
t
t
t
t。