误差理论与数据处理实验报告
实验报告中误差分析
![实验报告中误差分析](https://img.taocdn.com/s3/m/7c99b394185f312b3169a45177232f60ddcce796.png)
实验报告中误差分析实验报告中误差分析实验是科学研究的基础,通过实验可以验证理论,揭示事物的本质。
然而,在实验过程中,误差是不可避免的。
误差是指实际测量值与真实值之间的差异,它可能来自于仪器的精度限制、操作者的技术水平、环境条件的变化等多种因素。
因此,对实验中的误差进行分析和处理是十分重要的。
一、误差的分类误差可以分为系统误差和随机误差两大类。
1. 系统误差:系统误差是由于实验装置、仪器设备或实验条件的固有缺陷而引起的,它在一系列实验中具有一定的规律性。
例如,仪器的刻度不准确、温度的波动、材料的不均匀性等都可能导致系统误差。
系统误差会使得实验结果偏离真实值,并且在多次实验中具有一定的一致性。
2. 随机误差:随机误差是由于种种偶然因素而引起的,它在一系列实验中具有无规律性。
例如,实验者的手颤抖、电路中的噪声干扰等都可能导致随机误差。
随机误差是不可避免的,但可以通过多次实验取平均值的方法来减小其影响。
二、误差的评估在实验中,我们需要对误差进行评估,以确定实验结果的可靠性和准确性。
常用的误差评估方法有以下几种。
1. 绝对误差:绝对误差是指实际测量值与真实值之间的差异。
绝对误差可以通过实验测量值减去真实值来计算得到。
绝对误差越小,说明实验结果越接近真实值。
2. 相对误差:相对误差是指绝对误差与真实值之比。
相对误差可以用来评估实验结果的相对准确性。
相对误差越小,说明实验结果越可靠。
3. 标准偏差:标准偏差是用来评估随机误差的大小的指标。
标准偏差越小,说明随机误差越小,实验结果越可靠。
标准偏差可以通过多次实验取得的数据的方差来计算得到。
三、误差的处理对于实验中的误差,我们可以采取一些方法来进行处理,以提高实验结果的准确性和可靠性。
1. 仪器校准:在进行实验之前,应对使用的仪器进行校准,以确保仪器的准确度和精度。
如果仪器存在明显的偏差,应及时进行调整或更换。
2. 多次测量:通过多次测量取平均值的方法,可以减小随机误差的影响。
误差理论实验报告
![误差理论实验报告](https://img.taocdn.com/s3/m/2321475e0722192e4536f6b5.png)
《误差理论与数据处理》实验报告实验名称:线性函数的最小二乘法处理一、实验目的线性函数的最小二乘法是解决有关组合测量最佳估计问题的典型的数据处理方法。
本实验要求学生编写最小二乘数据处理程序并对组合测量数据进行处理,求出最佳估计值并进行精度分析。
二、实验原理1.最小二乘法原理指出,最可信赖值应在是残差误差平方和的条件下求得。
2.最小二乘法可以将误差方程转化为有确定解的代数方程组(其方程组的数目正好等于未知数的个数),从而可求解出这些未知参数。
这个有确定解的代数方程组称为最小二乘法的正规方程。
3.线性参数的最小二乘法处理程序为:首先根据具体问题列出误差方程式;再按最小二乘原理,利用求极值的方法将误差方程转化为正规方程;然后求解正规方程,得到代求的估计量;最后给出精度估计。
4.正规方程又转化为残差方程,残差方程可用矩阵方法求出方程的解。
因此可用Matlab求解最小二乘法参数。
5.求出最小二乘法的参数后,还要对参数进行精度估计。
相应的标准差为ttxtxxddd222111,其中ttddd..2211称为不定乘数。
三、实验内容和结果1.程序及流程在MATLAB环境下建立一个命令M-文件,编写解答以下组合测量问题数据处理的程序:现要检定刻线A,B,C,D间的距离x1,x2,x3,采用组合测量方法,直接测量刻线间的各种组合量,得到数据如下测量数据:l1=1.051mm; l2=0.985; l3=1.020mm; l4=2.016mm; l5=1.981mm; l6=3.032mm1.编程求x1,x2和x3的最小二乘估计值;2.对直接测量数据进行精度估计3.对x1,x2和x3的最小二乘估计值进行精读估计。
程序:>> A=[1 0 0;0 1 0;0 0 1;1 1 0;0 1 1;1 1 1]>> A'*A>> C=A'*A>> inv(C)>> l=[1.015;0.985;1.020;2.016;1.981;3.032];>> X=inv(C)*A'*l>> V=l-A*X>> V'*V>> STD1=sqrt(V'*V/3)>> inv(C)>> STDX1=sqrt(0.5)*STD12.实验结果(数据或图表)3.结果分析四、心得体会通过本次实验,我掌握等精度测量线性参数最小二乘法的处理,并能够应用Matlab用矩阵的方法求出拟合方程的参数,及能够对各个参数进行精度估计。
误差理论及实验数据处理
![误差理论及实验数据处理](https://img.taocdn.com/s3/m/7a46d43b192e45361066f57e.png)
可以设法减小或排除掉的,如对试验机和应变仪等定期校准和检验。又如单向拉伸时由于夹
具装置等原因而引起的偏心问题,可以用试样安装双表或者两对面贴电阻应变片来减少这种
误差。系统误差越小,表明测量的准确度越高,也就是接近真值的程度越好。
偶然误差是由一些偶然因素所引起的,它的出现常常包含很多未知因素在内。无论怎样
差出现的可能性小。
3)随着测量次数的增加,偶然误差的平均值趋向于零。
4)偶然误差的平均值不超过某一限度。
根据以上特性,可以假定偶然误差Δ 遵循母体平均值为零
的高斯正态分布,如图Ⅰ-1 所示。
f (Δ) =
1
− Δ2
e 2σ 2
σ 2π
图Ⅰ-1 偶然误差的正态频率曲线
·97·
材料力学实验指导与实验基本训练
Δ ≤ Δ1 + Δ2 [注]:上述法则对于两个相差甚大的数在相减时是正确的。但是对两个相互十分接近的 数,在相减时有效位数大大减少,上述结论就不适用。在建立运算步骤时要尽量避免两个接 近相等的数进行相减。 2)如果经过多次连乘除后要达到 n 个有效位数,则参加运算的数字的有效位数至少要 有 (n + 1) 个或 (n + 2) 个。例如,两个 4 位有效数的数字经过两次相乘或相除后,一般只能 保证 3 位有效数。 3)如果被测的量 N 是许多独立的可以直接测量的量 x1, x2,", xn 的函数,则一个普遍的 误差公式可表示为下列形式,即
控制实验条件的一致,也不可避免偶然误差的产生,如对同一试样的尺寸多次量测其结果的
分散性即起源于偶然误差。偶然误差小,表明测量的精度高,也就是数据再现性好。
实验表明,在反复多次的观测中,偶然误差具有以下特性:
实验报告 误差分析
![实验报告 误差分析](https://img.taocdn.com/s3/m/651ce0534531b90d6c85ec3a87c24028915f8518.png)
实验报告误差分析实验报告:误差分析引言:实验是科学研究中不可或缺的一部分,通过实验可以验证理论的正确性,探索未知的领域。
然而,实验中难免会出现误差,这些误差可能会对实验结果产生一定的影响。
因此,我们需要进行误差分析,以了解误差的来源、大小以及对实验结果的影响程度,从而更准确地解读实验结果。
一、误差的分类误差可以分为系统误差和随机误差两种类型。
1. 系统误差系统误差是由于实验设备、测量仪器、操作方法等方面的固有缺陷或不准确性引起的误差。
它具有一定的可预测性和一致性,会对实验结果产生持续性的偏差。
例如,如果实验仪器的刻度不准确,或者实验操作中存在固定的偏差,那么实验结果就会受到系统误差的影响。
2. 随机误差随机误差是由于实验过程中的各种偶然因素引起的误差,它具有不可预测性和不规律性。
随机误差会导致实验结果的波动和不确定性增加。
例如,实验中的环境条件、人为操作的不稳定性、测量仪器的灵敏度等都可能引起随机误差。
二、误差的来源误差的来源多种多样,下面列举几个常见的来源。
1. 人为误差人为误差是由于实验操作者的技术水平、主观判断等因素引起的误差。
例如,实验操作者对实验步骤的理解不准确、操作不规范、读数不准确等都可能导致人为误差的出现。
2. 仪器误差仪器误差是由于测量仪器的精度、灵敏度等方面的限制引起的误差。
例如,实验仪器的刻度不准确、仪器的响应时间较长等都可能导致仪器误差。
3. 环境误差环境误差是由于实验环境的变化、干扰等因素引起的误差。
例如,实验室温度的波动、噪音的干扰等都可能对实验结果产生影响。
三、误差的影响与控制误差对实验结果的影响程度取决于误差的大小和实验的目的。
在一些实验中,误差的影响可能会被忽略,而在一些对结果要求较高的实验中,误差的控制则显得尤为重要。
1. 影响程度误差的影响程度可以通过误差分析和数据处理来评估。
例如,可以通过计算误差的标准差、置信区间等指标来评估误差的大小,并根据实验目的和要求判断误差对结果的影响程度。
实验五误差分析
![实验五误差分析](https://img.taocdn.com/s3/m/fc74f6a2fe4733687f21aa5d.png)
实验五绪论--误差分析【实验目的】1、了解数值计算中的误差种类,及避免误差危害的几种手段,2、深刻体会”数学上恒等,数值上不一定恒等”的含义3、为本课程的学习准备良好的数值思想【实验内容】1、误差的来源与分类2、数值计算中避免误差危害的若干方法3、数值实验举例4、根据要求,完成实验报告中的内容【实验指导】1)误差的来源与分类误差的来源是多方面的,通常误差主要由以下4个方面的因素引起:⑴模型误差vModeling Error )------ 把实际问题向数学问题转化的过程中,忽略了一些对问题影响不是很大的因素,我们称这种忽略了的因素为模型误差;b5E2RGbCAP(2)观测误差vMeasurement Error)------ 在一般的数学模型中,往往含有比较多的参数,而这些参数的值一般都需要通过观测得到,而观测得到的结果由于受到观测设备、观测方法等因素的影响往往都有误差,我们称这种由于观测引起的误差为观测误差。
p1Ea nqFDPw(3)截断误差<Truncation Error )------ 当我们不能得到数学模型的精确解时,通常要用数值方法求它的近似解,其近似解与精确解之间的误差称为截断误差。
例如:在计算机上直接使用公式计算时,会出现无穷过程的计算,不能在有限时间内得到需要的结果,因此,Lrl通常需要将上述无穷过程近似为有穷过程:—,由此可以得到近似的计算结果,这样用数值方法中的有穷过程替代数学模型中的无限过程时,就会产生上述截断误差。
截断误差又称为方法误差。
DXDiTa9E3d(4)舍入误差<Roundof Error )------ 由于计算机的字长有限,在使用计算机进行数据处理时,计算机表示的数据或计算结果会与原始数据或理论上的计算结果有差异,这种误差就是舍入误差。
比如说,在计算机上表示时,只能表示成二的形式,这里与的误差就是舍入误差。
RTCrpUDGiT由于误差是不可避免的,我们只能尽可能的减少它对计算结果的影响。
大学物理实验报告数据处理及误差分析
![大学物理实验报告数据处理及误差分析](https://img.taocdn.com/s3/m/4c4c754bf242336c1eb95e99.png)
大学物理实验报告数据处理及误差分析部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑力学习题误差及数据处理一、指出下列原因引起的误差属于哪种类型的误差?1.M尺的刻度有误差。
2.利用螺旋测微计测量时,未做初读数校正。
3.两个实验者对同一安培计所指示的值读数不同。
4.天平测量质量时,多次测量结果略有不同。
5.天平的两臂不完全相等。
6.用伏特表多次测量某一稳定电压时,各次读数略有不同。
7.在单摆法测量重力加速度实验中,摆角过大。
二、区分下列概念1.直接测量与间接测量。
2.系统误差与偶然误差。
3.绝对误差与相对误差。
4.真值与算术平均值。
5.测量列的标准误差与算术平均值的标准误差。
三、理解精密度、准确度和精确度这三个不同的概念;说明它们与系统误差和偶然误差的关系。
四、试说明在多次等精度测量中,把结果表示为 <单位)的物理意义。
五、推导下列函数表达式的误差传递公式和标准误差传递公式。
1.2.3.六、按有效数字要求,指出下列数据中,哪些有错误。
1.用M尺<最小分度为1mm)测量物体长度。
3.2cm50cm78.86cm6.00cm16.175cm2.用温度计<最小分度为0.5℃)测温度。
68.50℃31.4℃100℃14.73℃七、按有效数字运算规则计算下列各式的值。
1.99.3÷2.0003=?2.=?3.4.八、用最小分度为毫M的M尺测得某物体的长度为=12.10cm<单次测量),若估计M尺的极限误差为1mm,试把结果表示成的形式。
b5E2RGbCAP九、有n组测量值,的变化范围为2.13 ~ 3.25,的变化范围为0.1325 ~0.2105,采用毫M方格纸绘图,试问采用多大面积的方格纸合适;原点取在何处,比例取多少?p1EanqFDPw十、并排挂起一弹簧和M尺,测出弹簧下的负载和弹簧下端在M尺上的读数如下表:据处理。
长度测量1、游标卡尺测量长度是如何读数?游标本身有没有估读数?2、千分尺以毫M为单位可估读到哪一位?初读数的正、负如何判断?待测长度如何确定?3、被测量分别为1mm,10mm,10cm时,欲使单次测量的百分误差小于0.5%,各应选取什么长度测量仪器最恰当?为什么?DXDiTa9E3d物理天平侧质量与密度1、在使用天平测量前应进行哪些调节?如何消除天平的不等臂误差?2、测定不规则固体的密度时,若被测物体进入水中时表面吸有气泡,则实验所得的密度是偏大还是偏小?为什么?RTCrpUDGiT用拉伸法测量金属丝的杨氏模量1、本实验的各个长度量为什么要用不同的测量仪器测量 ?2、料相同,但粗细、长度不同的两根金属丝,它们的杨氏模量是否相同?3、本实验为什么要求格外小心、防止有任何碰动现象?5PCzVD7HxA精密称衡—分析天平的使用1、如果被测物体的密度与砝码的密度不同,即使它们的质量相等,但体积不同,因而受到空气浮力也不同,便产生浮力误差。
误差理论与数据处理实验报告.
![误差理论与数据处理实验报告.](https://img.taocdn.com/s3/m/387953571711cc7931b71698.png)
误差理论与数据处理实验报告姓名:黄大洲学号:3111002350班级:11级计测1班指导老师:陈益民实验一 误差的基本性质与处理一、实验目的了解误差的基本性质以及处理方法二、实验原理(1)算术平均值对某一量进行一系列等精度测量,由于存在随机误差,其测得值皆不相同,应以全部测得值的算术平均值作为最后的测量结果。
1、算术平均值的意义:在系列测量中,被测量所得的值的代数和除以n 而得的值成为算术平均值。
设 1l ,2l ,…,n l 为n 次测量所得的值,则算术平均值121...nin i l l l l x n n=++==∑算术平均值与真值最为接近,由概率论大数定律可知,若测量次数无限增加,则算术平均值x 必然趋近于真值0L 。
i v = i l -xi l ——第i 个测量值,i =1,2,...,;n i v ——i l 的残余误差(简称残差)2、算术平均值的计算校核算术平均值及其残余误差的计算是否正确,可用求得的残余误差代数和性质来校核。
残余误差代数和为:11n niii i v l nx ===-∑∑当x 为未经凑整的准确数时,则有:1nii v==∑01)残余误差代数和应符合:当1n ii l =∑=nx ,求得的x 为非凑整的准确数时,1nii v =∑为零;当1nii l =∑>nx ,求得的x 为凑整的非准确数时,1nii v =∑为正;其大小为求x 时的余数。
当1n ii l =∑<nx ,求得的x 为凑整的非准确数时,1nii v =∑为负;其大小为求x 时的亏数。
2)残余误差代数和绝对值应符合: 当n 为偶数时,1ni i v =∑≤2n A; 当n 为奇数时,1ni i v =∑≤0.52n A ⎛⎫- ⎪⎝⎭式中A 为实际求得的算术平均值x 末位数的一个单位。
(2)测量的标准差测量的标准偏差称为标准差,也可以称之为均方根误差。
1、测量列中单次测量的标准差2222121...nini nnδδδδσ=+++==∑式中 n —测量次数(应充分大)i δ —测得值与被测量值的真值之差211nii vn σ==-∑2、测量列算术平均值的标准差:x nσσ=三、实验内容:1.对某一轴径等精度测量8次,得到下表数据,求测量结果。
误差理论与数据处理-实验报告
![误差理论与数据处理-实验报告](https://img.taocdn.com/s3/m/e06c0ccc534de518964bcf84b9d528ea81c72fb5.png)
误差理论与数据处理-实验报告本实验旨在研究误差理论与数据处理方法。
通过实验可了解如何在实验中处理数据以及如何评定实验误差。
本次实验的主要内容为分别在天平、游标卡尺、万能表等实验仪器上取数,计算出测量数值的平均值与标准偏差,并分析误差来源。
1. 实验步骤1.1 天平测量将一块铁片置于天平盘上,进行三次称量,记录每次的质量值。
将数据带入Excel进行平均值、标准偏差等计算。
1.2 游标卡尺测量1.3 万能表测量2. 实验结果及分析对于天平测量、游标卡尺测量和万能表测量所得的测量值进行平均值、标准偏差的计算,结果如下:表1. 测量数据统计表| 项目 | 测量数据1 | 测量数据2 | 测量数据3 | 平均值 | 标准偏差 || :---: | :---: | :---: | :---: | :---: | :---: || 天平质量测量 | 9.90g | 9.89g | 9.92g | 9.90g | 0.015g || 游标卡尺测厚度 | 1cm | 1cm | 1cm | 1.00cm | 0.002cm || 万能表测电阻| 575Ω | 577Ω | 578Ω | 577Ω | 1.00Ω |从数据统计表中可以看出,三次实验所得数据相近,平均数与标准偏差较为准确。
天平测量的数据波动较小,标准偏差仅为0.015g,说明该仪器测量精确度较高;游标卡尺测量的数据也相比较准确,标准偏差仅为0.002cm,说明该仪器测量稳定性较好;万能表测量的数据较为不稳定,标准偏差较大,为1.00Ω,可能是由于接线不良,寄生电容等误差较大造成。
3. 实验结论通过本次实验,学生可掌握误差理论与数据处理方法,对实验数据进行统计、分析,得出各项指标,如标准偏差、最大值、最小值等。
在实际实验中,应注重数据精度和测量误差的评估,保证实验数据的准确性和可靠性。
除此之外,应加强对实验仪器的了解,并合理利用其特性,提高实验的成功率和准确性。
分析化学第二章误差与分析数据处理
![分析化学第二章误差与分析数据处理](https://img.taocdn.com/s3/m/f2be12630166f5335a8102d276a20029bd6463e2.png)
根据待测组分的性质和含量选择合适的分析 方法。
空白实验
通过扣除空白值来减小误差。
标准化样品分析
使用标准样品对实验过程进行质量控制。
回收率实验
通过添加已知量的标准物质来评估分析方法 的准确性。
04
有效数字及其运算规则
有效数字的定义与表示
01
有效数字是指测量或计算中能够反映被测量大小的部分数字 ,其位数与被测量的精密度有关。
数据统计
计算平均值、中位数、众数等统计量,以反映数据的集 中趋势和离散程度。
实验结果的评价与表达
误差分析
计算误差、偏差、相对误差 等,评估实验结果的可靠性
。
1
精密度与偏差
通过多次重复实验,评估实 验结果的精密度和偏差。
置信区间
根据实验数据,计算结果的 置信区间,反映结果的可靠 性。
结果表达
选择合适的单位和量纲,将 实验结果以表格、图表等形 式表达,便于分析和比较。
02
表示有效数字时,需保留一位不确定位,采用指数或修约的 形式表示。
03
有效数字的表示方法:科学记数法(a x 10^n)或一般表示法。
有效数字的运算规则
加减法
以小数点后位数最少的数字为标准,对 其他数字进行修约,然后再进行运算。
乘方和开方
运算结果的有效数字位数与原数相同。
乘除法
以有效数字位数最少的数为标准,对 其他数字进行修约,然后再进行运算。
THANKS
准确度检验
通过标准物质或标准方法对比,检验分析结 果的准确性。
线性检验
验证测量系统是否符合线性关系,确保数据 在一定范围内准确可靠。
范围检验
评估分析方法在一定浓度或含量范围内的适 用性。
大学物理实验报告数据处理及误差分析
![大学物理实验报告数据处理及误差分析](https://img.taocdn.com/s3/m/d09a26af84868762cbaed50e.png)
大学物理实验报告数据处理及误差分析
篇一:大学物理实验1误差分析
云南大学软件学院实验报告
课程:大学物理实验学期:2014-2015学年第一学期任课教师:
专业:
学号:
姓名:
成绩:
实验1误差分析
一、实验目的
1.测量数据的误差分析及其处理。
二、实验内容
1.推导出满足测量要求的表达式,即v0?f(?)的表达式;
二、误差与偏差
1.真值与误差
任何一个物理量,在一定的条件下,都具有确定的量值,这是客观存在的,这个客观存在的量值称为该物理量的真值。测量的目的就是要力图得到被测量的真值。我们把测量值与真值之差称为测量的绝对误差。设被测量的真值为χ0,测量值为χ,则绝对误差ε为
ε = χ – χ0(1)
由于误差不可避免,故真值往往是得不到的。所以绝对误差的的概念只有理论上的价值。
2.最佳值与偏差
在实际测量中,为了减小误差,常常对某一物理量x进行多次等精度测量,得到一系列测量值x1,x2,…,xn,则测量结果的算术平均值为
1??2n
n1ni(2)ni?1
算术平均值并非真值,但它比任一次测量值的可靠性都要高。系统误差忽略不计时的算术平均值可作为最佳值,称为近真值。我们把测量值与算术平均值之差称为偏差(或残差):
误差处理
物理实验的任务,不仅仅是定性地观察物理现象,也需要对物理量进行定量测量,并找出各物理量之间的内在联系。
由于测量原理的局限性或近似性、测量方法的不完善、测量仪器的精度限制、测量环境的不理想以及测量者的实验技能等诸多因素的影响,所有测量都只能做到相对准确。随着科学技术的不断发展,人们的实验知识、手段、经验和技巧不断提高,测量误差被控制得越来越小,但是绝对不可能使误差降为零。因此,作为一个测量结果,不仅应该给出被测对象的量值和单位,而且还必须对量值的可靠性做出评价,一个没有误差评定的测量结果是没有价值的。
误差理论与数据处理第五版课程设计
![误差理论与数据处理第五版课程设计](https://img.taocdn.com/s3/m/28dea9e251e2524de518964bcf84b9d528ea2ca9.png)
误差理论与数据处理第五版课程设计一、实验目的本次课程设计旨在帮助学生深入了解误差理论及其应用,并通过实验学习数据处理方法,掌握误差分析的原理、方法和技能,提高学生的实验能力。
二、实验原理误差是指在测量或实验中取得的数据与真值之间的差异。
误差的大小和形式取决于许多因素,包括仪器的精度、环境条件、测量技术和操作人员的技能。
误差理论是研究误差大小和形式及其影响因素的一门学科。
误差分析的基本原理是通过设计实验、收集数据、分析数据和计算误差来确定测量结果的可靠程度和精确度。
数据处理是一种重要的实验技能,它涉及对实验数据进行收集、整理、分析和解释,从而得出有效信息和结论的过程。
数据处理方法包括平均值、标准差、方差、概率分布和回归分析等。
三、实验内容1.实验器材:万能表、示波器、励磁电源、电容、电感、电阻等。
2.实验步骤:1.熟悉实验器材和测量原理,了解误差和精度的概念。
2.设计实验方案,了解实验误差来源,并采取相应的措施进行误差分析和控制。
3.收集实验数据,选择合适的数据处理方法进行分析和解释。
4.计算并比较测量结果的相对误差和标准偏差,评估测量结果的可靠程度和精确度。
5.统计实验数据,画出数据分布图,形成概率分布和回归分析模型。
6.总结实验结果,分析实验误差的影响因素,提出改进方案。
四、实验要求1.学生需按照实验步骤认真做好实验,保证数据的准确性和可靠性。
2.学生需理解实验原理,熟练掌握实验器材的使用方法和实验技巧。
3.学生需采用合适的数据处理方法,保证数据的质量和准确性。
4.学生需按照实验步骤撰写实验报告,详细描述实验过程和结果,并进行合理的分析和解释。
五、实验评分标准1.实验技能(40分):包括仪器的使用、实验操作的流畅性、误差的控制和数据处理技能等。
2.实验思路(20分):包括实验方案的设计、实验数据的采集和分析方法的选择等。
3.实验报告(40分):包括实验步骤的描述、实验结果的分析和解释等。
六、实验结论本次课程设计通过设计实验、收集数据、分析数据和计算误差等实验步骤,掌握误差分析的原理、方法和技能。
误差理论与数据处理实验报告4
![误差理论与数据处理实验报告4](https://img.taocdn.com/s3/m/30ef6518482fb4daa58d4bf4.png)
end end end
3、用 t 检验法判断下列两组数据间有无系统误差。
%用 t 检验法判断下列两组数据间有无系统误差。 x=[1.9 0.8 1.1 0.1 -0.1 4.4 5.5 1.6 4.6 3.4]; y=[0.7 -1.6 -0.2 -1.2 -0.1 3.4 3.7 0.8 0.0 2.0]; X=sum((x-mean(x)).^2); Y=sum((y-mean(y)).^2); t=(mean(x)-mean(y))*sqrt((numel(x)*numel(y)*(numel(x)+numel(y)-2))/...
由⻢利科夫方法得存在系统误差 不同公式计算标准差比较法不存在系统误差 2、 用秩和检验法分析下列两组数据间有无系统误差。 秩和检验法不存在系统误差 3、用 t 检验法判断下列两组数据间有无系统误差。 怀疑存在系统误差
3.结果分析 四、回答问题
为什么不能用残余误差观察法发现恒定的系统误差? 残余误差为测量列中任一测量值与测量列的算术平均值之差,若系统误差为恒定系统误差,那么算数平均 值与测量值的残余误差不会受改变,所以不能用不能用残余误差观察法发现恒定的系统误差
l=[20.06,20.07,20.06,20.08,20.10,20.12,20.11,... 20.14,20.18,20.18,20.21,20.19];
V=[]; for i=1:12
v=l(i)-mean(l); V=[V,v]; end %残余误差观察法 scatter(1:12,V) %⻢利科夫
二、实验原理
为了在测量中消除或削弱系统误差对测量的影响,首先就要解决如何发现系统误差的问 题。发现系统误 差的方法针对单列测量数据,主要有残余误差观察法、残余误差校核法和误 差直接计算法等;针对两组 测量数据,主要采用假设检验的方法。假设检验是数理统计的重 要内容,它的目的是对根据实际问题的 需要所提出的假设进行检验。在误差理论中,可以用 来检验测量数据中是否存在系统误差。其基本思想 是:假设随机误差是服从正态分布规律, 对实际测量误差的分布进行检验,若测量误差的实际分布偏离 正态分布即可认为存在系统误 差,否则,即为无系统误差。常用检验方法有:符号检验法、秩和检验 法、t 检验法和 2 检 验法等。
实验报告误差
![实验报告误差](https://img.taocdn.com/s3/m/a5a1d7849fc3d5bbfd0a79563c1ec5da50e2d6b7.png)
实验报告误差实验报告误差实验是科学研究的重要手段之一,通过实验可以验证理论,探索未知,获取数据和结果。
然而,任何实验都不可避免地会存在误差。
误差是指实验结果与真实值之间的差异,可以分为系统误差和随机误差两种类型。
本文将探讨实验报告误差的产生原因以及如何有效减小误差。
一、误差的产生原因1. 仪器设备误差:仪器设备的精度和灵敏度是实验误差的重要来源。
仪器设备的精度决定了实验结果的准确度,而灵敏度则影响了实验结果的稳定性。
如果使用的仪器设备精度不高或者存在故障,就会导致实验结果的误差增大。
2. 实验操作误差:实验操作的不准确性也是产生误差的重要原因。
实验人员的技术水平、经验以及对实验步骤的理解程度都会影响实验结果的准确性。
例如,在体积测量时,如果实验人员读数不准确或者操作不规范,就会导致实验结果的偏差。
3. 环境条件误差:实验环境的温度、湿度、气压等因素也会对实验结果产生影响。
这些环境条件的变化可能会导致实验结果的不稳定性,从而增加实验误差。
4. 样本误差:样本的选择和处理也是产生误差的重要因素。
如果样本的数量不足或者样本的选择不合理,就会导致实验结果的偏差。
此外,样本的处理过程中可能会发生误差,例如样本的保存、运输和处理过程中可能会导致样本的污染或者损失。
二、减小误差的方法1. 提高仪器设备的精度和灵敏度:选择合适的仪器设备是减小误差的关键。
在实验前应对仪器设备进行校准和检验,确保其精度和灵敏度符合实验要求。
此外,定期对仪器设备进行维护和保养,及时修复故障,可以提高仪器设备的性能,减小误差。
2. 严格操作规范:实验人员应严格按照实验操作规范进行实验,确保每个步骤的准确性和可重复性。
在实验过程中,应注意读数的准确性,避免人为误差的产生。
此外,实验人员应接受专业培训,提高自身的技术水平和操作能力。
3. 控制环境条件:实验前应对实验环境进行调查和分析,了解环境条件的变化规律。
在实验过程中,应尽量控制环境条件的稳定性,避免因环境因素导致的误差。
大物实验----误差理论与数据处理
![大物实验----误差理论与数据处理](https://img.taocdn.com/s3/m/76b5bbe019e8b8f67c1cb93b.png)
随机误差具有以下的性质: (1)单峰性 绝对值小的误差出现的机会(概率) 大,绝对值大的误差出现的机会(概率)小。 (2)对称性 大小相等、 符号相反的误差出现的概 率相等。 (3)有界性 非常大的正 负误差出现的概率趋于零。 (4)抵偿性 当测量次数 非常多时,由于正负误差 相互抵消,各误差的代数 随机误差的正态分布曲线 和趋于零。
(1)理论分析法 观测者凭借有关某项实验的物理理论、实验 方法和实验经验等对实验理论公式的近似性、所 采用的实验方法的完善性等进行研究与分析。 (2)对比法 (3)数据分析法
4.系统误差的减小或消除
(1)利用标准器具减消系统误差; (2)修正已经确定的定值系统误差; (3)采用合理、规范的测量步骤减消系统误差; (4)选择或改进测量方法减消系统误差。
根据统计理论可得:
f ( ) 1 e 2
2 2 2
式中σ是一个取决于具体测量条件的常数称为标 准误差(或称均方误差)。 σ反映的是一组测量数据的离散程度,常称 它为测量列的标准误差;它的数学表达式为:
( xi a ) 2 lim n n
可以证明
f ( )d 0.683 68.3%
称为绝对误差。 相对误差是误差与真值之比;通常用标准偏 差和平均值之比作为相对误差的估计值。相对误 差常他用符号 E 来表示,并表示成百分数。
三.过失误差(异常值)的剔除 1.拉依达准则:适用于测量次数n较大的测 量。 2.肖维涅准则: x cn S (x) (16页) 3.格拉布斯准则:x g( n, P ) S ( x)
(3)人的因素 由于观测者本人的生理或心理特 点所造成的误差。 (4)环境 由于环境条件如温度、气压、湿度的 变化等所引起的误差。
实验报告误差
![实验报告误差](https://img.taocdn.com/s3/m/1538a5b61ed9ad51f01df2da.png)
实验报告误差篇一:误差分析实验报告实验一误差的基本性质与处理(一) 问题与解题思路:假定该测量列不存在固定的系统误差,则可按下列步骤求测量结果1、算术平均值2、求残余误差3、校核算术平均值及其残余误差4、判断系统误差5、求测量列单次测量的标准差6、判别粗大误差7、求算术平均值的标准差8、求算术平均值的极限误差9、写出最后测量结果(二) 在matlab中求解过程:a =[24.674,24.675,24.673,24.676,24.671,24.678,24.672,24.674] ;%试验测得数据x1 = mean(a) %算术平均值b = a -x1 %残差c = sum(b) %残差和c1 = abs(c) %残差和的绝对值bd = (8/2) *0.0001 %校核算术平均值及其误差,利用c1(残差和的绝对值)% 3.5527e-015(c1) xt = sum(b(1:4)) - sum(b(5:8)) %判断系统误差,算的xt= 0.0030.由于xt较小,不存在系统误差dc = sqrt(sum(b.^2)/(8-1)) %求测量列单次的标准差dc = 0.0022sx = sort(a) %根据格罗布斯判断准则,先将测得数据按大小排序,进而判断粗大误差。
g0 = 2.03 %查表g(8,0.05)的值g1 = (x1 - sx(1))/dc %解得g1 = 1.4000g8 = (sx(8) - x1)/dc %解得g8 = 1.7361 由于g1和g8都小于g0,故判断暂不存在粗大误差 sc = dc/sqrt(8) %算术平均值得标准差 sc = 7.8916e-004t=2.36; %查表t(7,0.05)值jx = t*sc %算术平均值的极限误差 jx = 0.0019l1 = x1 - jx %测量的极限误差 l1 = 24.6723l2 = x1 + jx %测量的极限误差 l2 = 24.6760(三)在matlab中的运行结果实验二测量不确定度一、测量不确定度计算步骤:1. 分析测量不确定度的来源,列出对测量结果影响显著的不确定度分量;2. 评定标准不确定度分量,并给出其数值和自由度;3. 分析所有不确定度分量的相关性,确定各相关系数;4. 求测量结果的合成标准不确定度及自由度;5. 若需要给出伸展不确定度,则将合成标准不确定度乘以包含因子k,得伸展不确定度;二、求解过程:用matlab编辑以下程序并运行clcclear allclose allD=[8.075 8.085 8.095 8.085 8.080 8.060];h=[8.105 8.115 8.115 8.110 8.115 8.110];D1=sum(D)/length(D);%直径的平均数h1=sum(h)/length(D);%高度的平均数V=pi*D1^2*h1/4; %体积fprintf('体积V的测量结果的估计值=%.1fmm^3',V);fprintf('不确定度评定: ');fprintf('对体积V的测量不确定度影响显著的因素主要有:\n');fprintf('直径和高度的测量重复性引起的不确定度u1、u2,采用A类评定\n');fprintf('测微仪示值误差引起的不确定度u3,采用B类评定\n');%%下面计算各主要因素引起的不确定度分量fprintf('直径D的测量重复性引起的标准不确定度分量u1,自由度v1\n');M=std(D)/sqrt(length(D));%直径D 的平均值的标准差u1=pi*D1*h1*M/2v1=6-1fprintf('高度h的测量重复性引起的标准不确定度分量u2,自由度v2\n');N=std(h)/sqrt(length(h));%高度h 的平均值的标准差u2=pi*D1^2*N/4v2=6-1fprintf('测微仪示值误差引起的不确定度u3,自由度v3\n');u3=sqrt((pi*D1*h1/2)^2+(pi*D1^2/4)^2)*(0.01/sqrt(3) )v3=round(1/(2*0.35*0.35))fprintf('不确定度合成:\n');fprintf('不确定度分量u1,u2,u3是相互独立的\n');uc=round(sqrt(u1^2+u2^2+u3^2)*10)/10%标准不确定度v=round(uc^4/(u1^4/v1+u2^4/v2+u3^4/v3))%自由度fprintf('展伸不确定度:\n');fprintf('取置信概率P=0.95,可查表得t=2.31,即包含因子k=2.31\n');fprintf('体积测量的展伸不确定度:\n');P=0.95k=2.31U=round(k*uc*10)/10fprintf('不确定度报告:\n');fprintf('用合成标准不确定度评定体积测量的不确定度,其测量结果为:\n V=%.1fmm^3 uc=%.1fmm^3 v=%1.f\n',V,uc,v);fprintf('用展伸不确定度评定体积测量的不确定度,其测量结果为:\n V=(%.1f ±%.1f)mm^3 P=%.2f v=%1.f\n',V,U,P,v);fprintf('其中±后的数值是展伸不确定度U=k*uc=%.1fmm^3,是有合成标准不确定度uc=%.1fmm^3及包含因子k=%.2f\n',U,uc,k);三、在matlab中运行结果如下:篇二:物理实验误差分析与数据处理目录实验误差分析与数据处理 ................................................ (2)1 测量与误差 ................................................ ................................................... (2)2 误差的处理 ................................................ ................................................... (6)3 不确定度与测量结果的表示 ................................................ (10)4 实验中的错误与错误数据的剔除 ................................................ . (13)5 有效数字及其运算规则 ................................................ ..................................................... 156 实验数据的处理方法 ................................................ ................................................... (17)习题 ................................................ ................................................... .. (25)实验误差分析与数据处理1 测量与误差1.1 测量及测量的分类物理实验是以测量为基础的。
实验报告 误差分析
![实验报告 误差分析](https://img.taocdn.com/s3/m/ab4c87c6b8d528ea81c758f5f61fb7360b4c2b18.png)
实验报告误差分析实验报告:误差分析引言:实验是科学研究的重要手段之一,通过实验可以验证理论、探索未知、获取数据等。
然而,由于各种因素的干扰,实验结果往往会存在误差。
误差分析是对实验结果的准确性和可靠性进行评估和解释的过程。
本文将从误差的来源、分类以及常见的误差分析方法等方面进行探讨。
一、误差的来源1. 人为误差:人为操作不准确、读数不准确、实验设计不合理等都可能引入人为误差。
2. 仪器误差:仪器的精度、灵敏度、漂移等因素都会导致仪器误差。
3. 环境误差:实验环境的温度、湿度、气压等因素对实验结果产生影响。
4. 随机误差:由于实验条件的不确定性,导致每次实验结果有所偏差。
5. 系统误差:由于仪器、方法或实验设计的固有缺陷,导致实验结果整体偏离真值。
二、误差的分类1. 绝对误差:实验结果与真值之间的差别,可以用来评估实验的准确性。
2. 相对误差:绝对误差与真值之比,常用来评估实验结果的相对准确度。
3. 随机误差:由于实验条件的不确定性,导致每次实验结果有所偏差。
4. 系统误差:由于仪器、方法或实验设计的固有缺陷,导致实验结果整体偏离真值。
三、误差分析方法1. 均值与标准差:通过多次重复实验,计算实验结果的均值和标准差,可以评估实验结果的稳定性和可靠性。
2. 相对误差分析:将实验结果与真值进行比较,计算相对误差,可以评估实验结果的准确度。
3. 方差分析:通过对实验数据进行方差分析,可以确定不同因素对实验结果的影响程度,进而排除或降低误差。
4. 回归分析:通过建立实验数据与理论模型之间的关系,可以预测实验结果,并对误差进行分析和修正。
四、误差的影响与控制1. 影响实验结果的因素:实验条件、仪器精度、操作技巧等都会对实验结果产生影响,因此在实验设计和操作过程中应尽量控制这些因素。
2. 误差的传递与放大:误差在实验过程中可能会传递和放大,因此在实验设计和数据处理过程中应注意减小误差的传递和放大。
3. 误差的修正与校正:通过对误差的分析和研究,可以采取相应的修正和校正措施,提高实验结果的准确性和可靠性。
误差理论与数据处理期末报告范文
![误差理论与数据处理期末报告范文](https://img.taocdn.com/s3/m/923fe344773231126edb6f1aff00bed5b8f3736f.png)
误差理论与数据处理期末报告范文一、引言在科学实验和数据处理中,误差是一个不可避免的因素。
误差的存在会影响到数据的准确性和可靠性,因此正确理解误差是非常重要的。
误差理论作为一门独立的学科,主要研究在实验测量和数据处理中各种类型误差的产生、传递和处理的方法。
在本次报告中,我们将对误差理论的基本概念和数据处理方法进行介绍和分析。
二、误差理论的基本概念1. 误差的分类在实验测量和数据处理中,误差可以分为系统误差和随机误差两种基本类型。
系统误差是由某种固定原因引起的,通常具有一定的方向性和大小;而随机误差是由众多偶然因素造成的,其大小和方向是随机的,无法准确预测。
另外,在实际应用中还会遇到仪器误差、人为误差等其他类型的误差。
2. 误差的传递在实验测量过程中,误差会随着测量数据的传递而累积。
例如,测量仪器的精度、环境条件、操作者技术等因素都会对最终结果产生影响。
因此,在数据处理过程中需要考虑到误差的传递规律,采取相应的措施来减小误差的影响。
3. 误差的表示与估计误差通常通过误差限、标准差、置信度等指标来表示和估计。
误差限表示了测量结果的准确性,标准差表示了数据的离散程度,置信度则表示了对测量结果的信赖程度。
这些指标可以帮助我们更准确地评估测量数据的质量,从而做出科学合理的判断。
三、数据处理方法1. 数据整理在实验测量过程中,可能会出现各种原始数据,需要对其进行整理和筛选。
通常可以采用平均值、中值、众数等方法来处理数据,消除异常值和噪声。
2. 数据分析数据分析是对收集到的数据进行统计和推断的过程。
通过统计方法,可以得出数据的分布特征、相关性和趋势等信息,从而进行科学分析和判断。
3. 数据模型数据模型是描述数据之间关系和规律的数学模型。
通过建立数据模型,可以预测未来趋势、探索潜在规律、优化决策等。
常见的数据模型包括线性回归、非线性回归、时间序列分析等。
四、实例分析为了更好地理解误差理论与数据处理的原理和方法,我们通过一个实例来进行分析。
实验误差分析实验报告心得
![实验误差分析实验报告心得](https://img.taocdn.com/s3/m/55d570540a4e767f5acfa1c7aa00b52acfc79c8a.png)
实验误差分析实验报告心得实验误差分析实验报告心得在进行科学实验过程中,误差是不可避免的。
无论是人为操作的不精确,还是仪器设备的限制,都可能导致实验结果与理论值存在差异。
因此,对实验误差进行分析和评估,是保证实验结果准确性和可靠性的重要环节。
1. 引言实验误差分析是实验报告中不可或缺的一部分。
通过对实验误差的分析,可以帮助我们深入了解实验过程中可能存在的问题,并提供改进实验方法和结果解释的依据。
2. 实验误差类型实验误差可以分为系统误差和随机误差两种类型。
系统误差是由于实验设计或仪器设备本身的固有问题而引起的,具有一定的规律性。
而随机误差则是由于实验过程中的偶然因素所导致的,具有不确定性。
3. 实验误差来源实验误差的来源多种多样。
首先,人为操作不准确是常见的误差来源之一。
例如,在称量实验物质时,由于称量手法不规范或读数不准确,就会导致实验结果的误差。
其次,仪器设备的精度也会对实验结果产生影响。
如果使用的仪器精度较低或者校准不准确,就会引入额外的误差。
此外,环境条件的变化也可能对实验结果产生干扰。
例如,温度、湿度等因素的变化都可能对实验结果产生一定的影响。
4. 实验误差评估方法为了评估实验误差的大小和影响程度,我们可以采用一系列的统计学方法。
首先,可以计算实验数据的平均值和标准差,以了解数据的集中趋势和离散程度。
其次,可以绘制误差棒图或误差曲线图,直观地展示实验数据的误差范围。
此外,还可以进行假设检验,以判断实验结果是否与理论值存在显著差异。
5. 实验误差分析案例以化学实验为例,假设我们要测定某种溶液的浓度。
在实验过程中,我们使用了分光光度计测量吸光度,并根据标准曲线计算出溶液的浓度。
然而,在实验中发现,多次重复测量得到的吸光度值存在较大的差异。
通过对实验误差的分析,我们发现可能的误差来源包括:试剂的配制误差、分光光度计的仪器误差以及操作人员读数不准确等。
为了减小误差,我们可以采取以下改进措施:精确称量试剂、校准分光光度计、提高操作人员的技术水平等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
误差理论与数据处理实验报告姓名:小叶9101学号:小叶9101班级:小叶9101指导老师:小叶目录实验一误差的基本概念实验二误差的基本性质与处理实验三误差的合成与分配实验四线性参数的最小二乘法处理实验五回归分析实验心得体会实验一误差的基本概念一、实验目的通过实验了解误差的定义及表示法、熟悉误差的来源、误差分类以及有效数字与数据运算。
二、实验原理1、误差的基本概念:所谓误差就是测量值与真实值之间的差,可以用下式表示误差=测得值-真值1、绝对误差:某量值的测得值和真值之差为绝对误差,通常简称为误差。
绝对误差=测得值-真值2、相对误差:绝对误差与被测量的真值之比称为相对误差,因测得值与真值接近,故也可以近似用绝对误差与测得值之比值作为相对误差。
相对误差=绝对误差/真值≈绝对误差/测得值2、精度反映测量结果与真值接近程度的量,称为精度,它与误差大小相对应,因此可以用误差大小来表示精度的高低,误差小则精度高,误差大则精度低。
3、有效数字与数据运算含有误差的任何近似数,如果其绝对误差界是最末位数的半个单位,那么从这个近似数左方起的第一个非零的数字,称为第一位有效数字。
从第一位有效数字起到最末一位数字止的所有数字,不论是零或非零的数字,都叫有效数字。
数字舍入规则如下:①若舍入部分的数值,大于保留部分的末位的半个单位,则末位加1。
②若舍去部分的数值,小于保留部分的末位的半个单位,则末位加1。
③若舍去部分的数值,等于保留部分的末位的半个单位,则末位凑成偶数。
即当末位为偶数时则末位不变,当末位为奇数时则末位加1。
三、实验内容1、用自己熟悉的语言编程实现对绝对误差和相对误差的求解。
2、按照数字舍入规则,用自己熟悉的语言编程实现对下面数据保留四位有四、实验数据整理(一)用自己熟悉的语言编程实现对绝对误差和相对误差的求解。
1、分析:绝对误差:绝对误差=测得值-真值相对误差:相对误差=绝对误差/真值≈绝对误差/测得值2、程序%绝对误差和相对误差的求解x=1897.64 %已知数据真值x1=1897.57 %已知测量值d=x1-x %绝对误差l=(d/x)%相对误差3、在matlab中的编译及运行结果(二)按照数字舍入规则,用自己熟悉的语言编程实现对下面数据保留四位有效数字进行凑整。
1、分析:保留四位有效数字可使用matlab 控制运算精度函数vpa2、程序:%对数据保留四位有效数字进行凑整a=[3.14159,2.71729,4.51050,3.21551,6.378501]%定义数组,输入数值b=vpa(a,4)%利用vpa 函数保留四位有效数字 3、在matlab中的编译及运行结果小结第一个实验内容相对简单,也比较容易操作,较难的是matlab 的理解与使用,例如第二道题目还是需要查找资料和广泛学习才能找到比较简洁的方法,总体上来说细心就可以很好地完成,回顾了基础知识。
原有数据 3.14159 2.71729 4.51050 3.21551 6.378501 舍入后数据实验二 误差的基本性质与处理一、实验目的了解误差的基本性质以及处理方法二、实验原理(1)算术平均值对某一量进行一系列等精度测量,由于存在随机误差,其测得值皆不相同,应以全部测得值的算术平均值作为最后的测量结果。
1、算术平均值的意义:在系列测量中,被测量所得的值的代数和除以n 而得的值成为算术平均值。
设 1l ,2l ,…,n l 为n 次测量所得的值,则算术平均值121...nin i l l l l x n n=++==∑算术平均值与真值最为接近,由概率论大数定律可知,若测量次数无限增加,则算术平均值x 必然趋近于真值0L 。
i v = i l -xi l ——第i 个测量值,i =1,2,...,;n i v ——i l 的残余误差(简称残差)2、算术平均值的计算校核算术平均值及其残余误差的计算是否正确,可用求得的残余误差代数和性质来校核。
残余误差代数和为:11n niii i v l nx ===-∑∑当x 为未经凑整的准确数时,则有:1nii v==∑01)残余误差代数和应符合:当1n ii l =∑=nx ,求得的x 为非凑整的准确数时,1nii v =∑为零;当1nii l =∑>nx ,求得的x 为凑整的非准确数时,1nii v =∑为正;其大小为求x 时的余数。
当1n ii l =∑<nx ,求得的x 为凑整的非准确数时,1nii v =∑为负;其大小为求x 时的亏数。
2)残余误差代数和绝对值应符合: 当n 为偶数时,1ni i v =∑≤2n A; 当n 为奇数时,1nii v =∑≤0.52n A ⎛⎫- ⎪⎝⎭ 式中A 为实际求得的算术平均值x 末位数的一个单位。
(2)测量的标准差测量的标准偏差称为标准差,也可以称之为均方根误差。
1、测量列中单次测量的标准差σ==式中 n —测量次数(应充分大)i δ —测得值与被测量值的真值之差σ=2、测量列算术平均值的标准差:x σ=三、实验内容:1.对某一轴径等精度测量8次,得到下表数据,求测量结果。
1、算术平均值2、求残余误差3、校核算术平均值及其残余误差4、判断系统误差5、求测量列单次测量的标准差6、判别粗大误差7、求算术平均值的标准差 8、求算术平均值的极限误差 9、写出最后测量结果 四、实验数据整理: (一)、求算术平均值、残余误差 1、分析:(1)算术平均值:121...nin i l l l l x n n=++==∑ (2)残余误差:i v =i l -x(3)校核算术平均值及其残余误差: 残差和:11n niii i v l nx ===-∑∑残余误差代数和绝对值应符合:当n 为偶数时,1ni i v =∑≤2n A 当n 为奇数时,1nii v=∑≤0.52n A ⎛⎫- ⎪⎝⎭(4)测量列中单次测量的标准差:σ==(5)测量列算术平均值的标准差x σ=σ=2、程序:l=[24.674,24.675,24.673,24.676,24.671,24.678,24.672,24.674];%已知测量值x1=mean(l);%用mean 函数求算数平均值 v=l-x1;%求解残余误差 a=sum(v);%求残差和ah=abs(a);%用abs 函数求解残差和绝对值bh=ah-(8/2)*0.0001;%校核算术平均值及其残余误差,残差和绝对值小于n/2*A,bh<0,故以上计算正确xt=sum(v(1:4))-sum(v(5:8));%判断系统误差(算得差值较小,故不存在系统误差)bz=sqrt((sum(v.^2)/7));%单次测量的标准差p=sort(l)%用格罗布斯准则判断粗大误差,先将测量值按大小顺序重新排列g0=2.03;%查表g(8,0.05)的值 g1=(x1-p(1))/bz;g8=(p(8)-x1)/bz;%将g1与g8与g0值比较,g1和g8都小于g0,故判断暂不存在粗大误差sc=bz/(sqrt(8));%算数平均值的标准差t=2.36;%查表t(7,0.05)值jx=t*sc%算术平均值的极限误差l1=x1+jx;%写出最后测量结果l2=x1-jx%写出最后测量结果3、在matlab中的编译及运行结果实验三 误差的合成与分配一、实验目的通过实验掌握误差合成与分配的基本规律和基本方法。
二、实验原理(1)误差合成间接测量是通过直接测量与被测的量之间有一定函数关系的其他量,按照已知的函数关系式计算出被测的量。
因此间接测量的量是直接测量所得到的各个测量值的函数,而间接测量误差则是各个直接测得值误差的函数,这种误差为函数误差。
研究函数误差的内容实质上就是研究误差的传递问题,而对于这种具有确定关系的误差计算,称为误差合成。
随机误差的合成随机误差具有随机性,其取值是不可预知的,并用测量的标准差或极限误差来表征其取值的分散程度。
标准差的合成若有q 个单项随机误差,他们的标准差分别为1σ,2σ,…,q σ,其相应的误差传递系数为1a ,2a ,…,q a 。
根据方和根的运算方法,各个标准差合成后的总标准差为σ=一般情况下各个误差互不相关,相关系数ij ρ=0,则有σ=极限误差的合成在测量实践中,各个单项随机误差和测量结果的总误差也常以极限误差的形式来表示,因此极限误差的合成也很常见。
若已知个单项极限误差为1δ,2δ,...,q δ,且置信概率相同,则按方和根合成的总极限误差为δ=系统误差的合成系统误差的大小是评定测量准确度高低的标志,系统误差越大,准确度越低;反之,准确度越高。
已定系统误差的合成已定系统误差是指误差大小和方向均已确切掌握了的系统误差。
在测量过程中,若有r 个单项已定系统误差,其误差值分别为1∆,2∆,…,r ∆,相应的误差传递系数为1a ,2a ,…,r a ,则代数和法进行合成,求得总的已定系统误差为:1ri i i a =∆=∆∑未定系统误差的合成①标准差的合成:若测量过程中有s 个单项未定系统误差,它们的标准差分别为12,,,...,s u u u 其相应的误差传递系数为12,,,...,s a a a 则合成后未定系统误差的总标准差为u =当ij ρ=0,则有u =②极限误差的合成因为各个单项未定系统误差的极限误差为i i i e t u =± i =1,2,…s总的未定系统误差的极限误差为e tu =则可得e =±当各个单项未定系统误差均服从正态分布,且ij ρ=0,则有e =系统误差与随机误差的合成当测量过程中存在各种不同性质的多项系统误差与随机误差,应将其进行综合,以求得最后测量结果的总误差。
按极限误差合成若测量过程中有r 个单项已定系统误差,s 个单项未定系统误差,q 个单项随机误差,他们的误差值或极限误差分别为1∆,2∆,…,r ∆1e ,2e ,…,s e1δ,2δ,...,q δ设各个误差传递系数均为1,则测量结果总的极限误差为1r i i =∆=∆±∑R ——各个误差间协方差之和当各个误差均服从正态分布,且各个误差间互不相关时,上式可简化为1r i i =∆=∆∑系统误差经修正后,测量结果总的极限误差就是总的未定系统误差与总的随机误差的均方根∆=按标准差合成用标准差来表示系统误差与随机误差的合成公式,只需考虑未定系统误差与随机误差的合成问题。
若测量过程中有s 个单项未定系统误差,q 个单项随机误差,他们的标准差分别为12,,,...,s u u u 12,,,...,q σσσ为计算方便,设各个误差传递系数均为1,则测量结果总的标准差为σ=式中R 为各个误差间协方差之和,当合格误差间互不相关时,上式可简化为σ=对于n 次重复测量,测量结果平均值的总标准差公式则为σ=(2)误差分配测量过程皆包含多项误差,而测量结果的总误差则由各单项误差的综合影响所确定。