直线与圆(典型例题和练习题)
直线与圆的位置关系经典例题
直线与圆的位置关系经典例题一、点与圆的位置关系结合图形认识直线与圆的位置关系,比较OA 与r 的大小关系若点A 在⊙O 内OA r 若点A 在⊙O 上OA r 若点A 在⊙O 外OA r小练习:1.在△ABC 中,90C ∠=︒,AC=2,BC=4,如果以点A 为圆心,AC 为半径作⊙A,那么斜边中点D 与⊙A 的位置关系是()(A)D 在圆外(B)D 在圆上(C)D 在圆内(D)无法确定二、直线与圆的位置关系(1)实验创境:用移动的观点认识如果我们把太阳看作一个圆,那么太阳在升起的过程中,太阳和海平面就有图中的几种位置关系。
(可让学生用硬币自己操作演示)根据直线与圆公共点的个数可以得到三种位置关系:、、。
(2)用数量关系判断从以上的一个例子,可以看到,直线与圆的位置关系只有以下三种,如下图所示:若要判断圆与直线的位置关系,可以将______与_____进行比较大小,由比较的结果得出结论。
典型例题:例1、已知圆的半径等于5厘米,圆心到直线MN 的距离是:(1)4厘米;(2)5厘米;(3)6厘米。
分别说出直线MN 与圆的位置关系以及直线MN 和圆分别有几个公共点?例2.Rt △ABC 中,∠C=90°,AC=3,BC=4,若以C 为圆心,r 为半径作圆,当3,4.2,2===r r r 时,⊙C 与直线AB 分别是怎样的位置关系?★①直线l 和⊙O 相交d r ②直线l 和⊙O 相切d r ③直线l 和⊙O 相离d r1、如果⊙O 的直径为10厘米,圆心O 到直线AB 的距离为10厘米,那么⊙O 与直线AB有怎样的位置关系是2、已知:⊙A 的直径为6,点A 的坐标为)4,3(--,则⊙A 与x 轴的位置关系是;⊙A 与y 轴的位置关系是。
三、切线的判定实验探究:在练习纸上画⊙O ,在⊙O 上任取一点A ,连结OA ,过A 点作直线l ⊥OA ,判断直线l 是否与⊙O 相切?为什么?当直线和圆有唯一公共点时,直线是圆的切线;当直线和圆的距离等于该圆半径时,直线是圆的切线;那么,直接从直线和圆的位置上观察,具备什么条件的直线也是圆的切线呢?两个条件缺一不可(1)经过半径外端(2)垂直于这条半径切线判定定理:经过直径外端并且于这条直径的直线是圆的切线。
直线与圆知识点及经典例题(含答案)
圆的方程、直线和圆的位置关系【知识要点】一、 圆的定义:平面内与一定点距离等于定长的点的轨迹称为圆 (一)圆的标准方程222()()x a y b r -+-= 这个方程叫做圆的标准方程。
说 明:1、若圆心在坐标原点上,这时0a b ==,则圆的方程就是222x y r +=。
2、圆的标准方程的两个基本要素:圆心坐标和半径;圆心和半径分别确定了圆的位置和大小,从而确定了圆,所以,只要,,a b r 三个量确定了且r >0,圆的方程就给定了。
就是说要确定圆的方程,必须具备三个独立的条件确定,,a b r ,可以根据条件,利用待定系数法来解决。
(二)圆的一般方程将圆的标准方程222)()(r b y a x =-+-,展开可得02222222=-++--+r b a by ax y x 。
可见,任何一个圆的方程都可以写成 :220x y Dx Ey F ++++= 问题:形如220x y Dx Ey F ++++=的方程的曲线是不是圆? 将方程022=++++F Ey Dx y x 左边配方得:22224()()222D E D E Fx x +-+++=(1)当F E D 422-+>0时,方程(1)与标准方程比较,方程022=++++F Ey Dx y x 表示以(,)22D E--为圆 心,以2242D E F+-为半径的圆。
,(3)当F E D 422-+<0时,方程022=++++F Ey Dx y x 没有实数解,因而它不表示任何图形。
圆的一般方程的定义:当224D E F +->0时,方程220x y Dx Ey F ++++=称为圆的一般方程. 圆的一般方程的特点:(1)2x 和2y 的系数相同,不等于零; (2)没有xy 这样的二次项。
(三)直线与圆的位置关系 1、直线与圆位置关系的种类(1)相离---求距离; (2)相切---求切线; (3)相交---求焦点弦长。
2、直线与圆的位置关系判断方法: 几何方法主要步骤:(1)把直线方程化为一般式,利用圆的方程求出圆心和半径 (2)利用点到直线的距离公式求圆心到直线的距离(3)作判断: 当d>r 时,直线与圆相离;当d =r 时,直线与圆相切;当d<r 时,直线与圆相交。
直线与圆的方程经典例题
一、直线的倾斜角和斜率1.直线的倾斜角:一条直线向上的方向与x 轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x 轴平行或重合时,其倾斜角为0 ,故直线倾斜角α的范围是0180α< ≤.2.直线的斜率:倾斜角不是90的直线其倾斜角α的正切叫这条直线的斜率k ,即tan k α=. 注:①每一条直线都有倾斜角,但不一定有斜率.②当 90=α时,直线l 垂直于x 轴,它的斜率k 不存在.③过两点111(,)P x y 、222(,)P x y 12()x x ≠的直线斜率公式2121tan y y k x x α-==-二、直线方程的五种形式及适用条件直线的方程注:⑴确定直线方程需要有两个互相独立的条件,通常用待定系数法;⑵确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围.⑶直线是平面几何的基本图形,它与方程中的二元一次方程A x +B y +C=0(A 2+B 2≠0)是一一对应的.直线的方程例1. 过点),2(a M -和)4,(a N 的直线的斜率等于1, 则a 的值为( ) (A)1 (B)4 (C)1或3 (D)1或4 例2. 若,62ππα⎡⎫∈⎪⎢⎣⎭, 则直线2x cos α+3y +1=0的倾斜角的取值范围( ) (A),62ππ⎡⎫⎪⎢⎣⎭(B) 5,6ππ⎡⎫⎪⎢⎣⎭(C) (0,6π) (D)5,26ππ⎛⎤ ⎥⎝⎦例3. 直线123y x =-+的倾斜角是( ). (A )1arctan()3- (B )1arctan 3 (C )1πarctan()3+- (D )1arctan()3π--例4. 连接(4,1)A 和(2,4)B -两点的直线斜率为____,与y 轴的交点P 的坐标为____. 例5. 以点)1,5()3,1(-和为端点的线段的中垂线的方程是 .例6. 将直线0632=--y x绕着它与y 轴的交点逆时针旋转45的角后,在x 轴上的截距是( )(A)54(B) 52 (C) 25(D)45 例7. 将一张画了直角坐标系且两轴的长度单位相同的纸折叠一次,使点(2,0)与点(-2,4)重合,若点(7,3)与点(m ,n )重合,则m +n 的值为( ) (A)4 (B)-4 (C)10 (D)-10 例8. 与直线:2350x y ++= 平行且过点(1,4)A -的直线' 的方程是__________。
直线与圆的典型问题
当 r1 r2 d 时,两圆外切;
当 r1 r2 d 时,两圆外离;
当 r1 r2 d 时,两圆内切;
当 r1 r2 d 时,两圆内含.
(3)
弦长 l
具有的关系
r2
d2
l 2
2
二 典型例题
1.直线 3x-4y+6=0 与圆(x-2)2+(y-3)2=4 的位置关系是
13
132
+16,解得 c=10 或 c=-68.
89.自点 P(-6,7)发出的光线 l 射到 x 轴上的点 A 处,被 x 轴反
射,其反射光线所在直线与圆 x2+y2-8x-6y+21=0 相切于点 Q.
求光线 l 所在直线方程.
解:如图所示,作圆 x2+y2-8x-6y+21=0 关于 x 轴的对称圆 x2+y2-8x+6y+21=0,由几何光学原理,知直线 l 与圆 x2+y2-8x +6y+21=0 相切.
110.(本小题满分 12 分)已知圆 x2+y2=4 上一定点 A(2,0),B(1, 1)为圆内一点,P,Q 为圆上的动点.
(1)求线段 AP 中点的轨迹方程; (2)若∠PBQ=90°,求线段 PQ 中点的轨迹方程.
解:(1)设 AP 中点为 M(x,y), 由中点坐标公式可知,P 点坐标(2x-2,2y). 因为 P 点在圆 x2+y2=4 上,所以(2x-2)2+(2y)2=4. 故线段 AP 中点的轨迹方程为(x-1)2+y2=1. (2)设 PQ 的中点为 N(x,y). 在 Rt△PBQ 中,|PN|=|BN|, 设 O 为坐标原点,连接 ON(图略), 则 ON⊥PQ, 所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2, 所以 x2+y2+(x-1)2+(y-1)2=4. 故线段 PQ 中点的轨迹方程为 x2+y2-x-y-1=0.
直线和圆的方程典型例题
高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(ra r a 解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程.分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:.圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x . (2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a .∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x . 说明:对本题,易发生以下误解:由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2227)14()2(=-+-a ,解之得1022±=a .所以欲求圆的方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x . 上述误解只考虑了圆心在直线0=y 上方的情形,而疏漏了圆心在直线0=y 下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的.例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切, ∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x . 又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t . 解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r . 则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2. ∴222b r =又圆截y 轴所得弦长为2. ∴122+=a r .又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=ab b a 4422-+=)(242222b a b a +-+≥ 1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 又2222==b r故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=. 将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d . 将55=d 代入方程得1±=b .又1222+=a b ∴1±=a . 由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线.解:∵点()42,P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y 根据r d =∴21422=++-kk解得 43=k 所以 ()4243+-=x y即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例 6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D .∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D . 说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例7、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。
第二讲直线与圆方程含答案
第二讲第二讲 直线与圆的方程含答案直线与圆的方程含答案一、知识要点一、知识要点二、典型例题二、典型例题例1(1)、求与x 轴相交于A (1,0)和B (5,0)两点且半径为5的圆的标准方程.标准方程.解:法一:设圆的标准方程为(x -a )2+(y -b )2=5. ∵点A ,B 在圆上,所以可得到方程组:îïíïì(1-a )2+(0-b )2=5(5-a )2+(0-b )2=5,解得a =3,b =±1. ∴圆的标准方程是(x -3)2+(y -1)2=5或(x -3)2+(y +1)2=5. 法二:由A 、B 两点在圆上可知线段AB 是圆的一条弦,是圆的一条弦,根据平面根据平面几何知识:这个圆的圆心在线段AB 的垂直平分线x =3上,于是可设圆心为C (3,b ),又|AC |=5,即(3-1)2+b 2=5,解得b =1或b =-1. 因此,所求圆的标准方程为(x -3)2+(y -1)2=5或(x -3)2+(y +1)2 (2)、圆C 通过不同的三点P (k,0)、Q (2,0)、R (0,1),已知圆C 在点P 处的切线斜率为1,试求圆C 的方程.的方程.解:设圆C 的方程为x 2+y 2+Dx +Ey +F =0,则k 、2为x 2+Dx +F =0的两根,∴k +2=-D,2k =F ,即D =-(k +2),F =2k ,又圆过R (0,1),故1+E +F =0. ∴E =-2k -1. 故所求圆的方程为x 2+y 2-(k +2)x -(2k +1)y +2k =0,圆心坐标为(k +22,2k +12).∵圆C 在点P 处的切线斜率为1,∴k CP =-1=2k +12-k,∴k =-3.∴D =1,E =5,F =-6. ∴所求圆C 的方程为x 2+y 2+x +5y -6=0. 变式练习1:1.过点A (1,-1),B (-1,1),且圆心在直线x +y -2=0上的圆的方程是( ) A .(x -3)2+(y +1)2=4 B .(x +3)2+(y -1)2=4 C .(x -1)2+(y -1)2=4 D .(x +1)2+(y +1)2=4 解析:选C.设圆心C 的坐标为(a ,b ),半径为r . ∵圆心C 在直线x +y -2=0上,∴b =2-a . 由|CA |2=|CB |2得(a -1)2+(b +1)2=(a +1)2+(b -1)2,即(a -1)2+(2-a +1)2=(a +1)2+(2-a -1)2,解得a =1,b =1,∴r =|CA |=(1-1)2+(1+1)2=2. 即所求圆的方程为(x -1)2+(y -1)2=4. 2.(2009年高考辽宁卷)已知圆C 与直线x -y =0及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为( ) A .(x +1)2+(y -1)2=2 B .(x -1)2+(y +1)2=2 C .(x -1)2+(y -1)2=2 D .(x +1)2+(y +1)2=2 解析:选B.由题意可设圆心坐标为(a ,-a ),则|a +a |2=|a +a -4|2,解得a =1,故圆心坐标为(1,-1),半径r =|1+1|2=2,所以圆的方程为(x -1)2+(y +1)2=2. 3.(2008年高考山东卷)若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( ) A .(x -3)2+(y -73)2=1 B .(x -2)2+(y -1)2=1 C .(x -1)2+(y -3)2=1 D .(x -32)2+(y -1)2=1 解析:选B.设圆心坐标为(a ,b ),则îíì|b |=1|4a -3b |5=1,又b >0,故b =1,由|4a -3|=5得a =2或a =-12,又a >0,故a =2,所求圆的标准方程是(x -2)2+(y -1)2=1.(采用检验的方法也可以) 4.圆心在原点且圆周被直线3x +4y +15=0分成1∶2两部分的圆的方程为________.解析:如图,因为圆周被直线3x +4y+15=0分成1∶2两部分,所以∠AOB =120°而圆心到直线3x +4y +15=0的距离d =1532+42=3,在△AOB 中,可求得OA =6.所以所求圆的方程为x 2+y 2=36. 答案:x 2+y 2=36 )(,=-,4,4)1|1·|·||41,=,解得2)43k 3(3)3(-3方程①②联立得圆心坐标为(0,78)或(0,-78), 半径为(0-3)2+(±78-0)2=258, 所求圆的方程为x 2+(y +78)2=62564或x 2+(y -78)2=62564. 答案:x 2+(y +78)2=62564或x 2+(y -78)2=62564=5. 3.(2010重庆理数)(8) 直线y=323x +与圆心为D 的圆33cos ,13sin x y q q ì=+ïí=+ïî())0,2q p éÎë交与A 、B 两点,则直线AD 与BD 的倾斜角之和为的倾斜角之和为 A. 76p B. 54p C. 43p D. 53p 解析:数形结合解析:数形结合301-=Ða b p -+=Ð 302由圆的性质可知21Ð=Ðbp a -+=-\ 3030 故=+b a 43p4.(2010全国卷1理数)(1111)已知圆)已知圆O 的半径为1,PA PA、、PB 为该圆的两条切线,为该圆的两条切线,A A 、B 为两切点,那么P A P B ·的最小值为的最小值为(A) 42-+ (B)32-+ (C) 422-+ (D)322-+例3、已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点.圆上的动点.(1)求线段AP 中点的轨迹方程;中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.中点的轨迹方程.解:(1)设AP 中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ).∵P 点在圆x 2+y 2=4上, ∴(2x -2)2+(2y )2=4. 故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设PQ 的中点为N (x ,y ),在Rt △PBQ 中,|PN |=|BN |,设O 为坐标原点,则ON ⊥PQ ,所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2,所以x 2+y 2+(x -1)2+(y -1)2=4. 故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0. 变式练习3:1.若曲线x 2+y 2+a 2x +(1-a 2)y -4=0关于直线y -x =0对称的曲线仍是其本身,则实数a 为( ) A .±12B .±22 C.12或-22 D .-12或22解析:选B.由题意知,圆心C (-a 22,a 2-12)在直线y -x =0上,∴a 2-12+a 22=0,∴a 2=12,∴a =±22.故选B. (注:F =-4<0,不需验D 2+E 2-4F >0) 2.(2009年高考上海卷)点P (4,-2)与圆x 2+y 2=4上任一点连线的中点轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=1 D .(x +2)2+(y -1)2=1 解析:选A.设圆上任意一点为(x 1,y 1),中点为(x ,y ),则îíì x =x 1+42,y =y 1-22,îïíïì x 1=2x -4,y 1=2y +2,代入x 2+y 2=4得 (2x -4)2+(2y +2)2=4,化简得(x -2)2+(y +1)2=1. 3.一束光线从点A (-1,1)出发经x 轴反射到圆C :(x -2)2+(y -3)2=1上的最短路程是( ) A .4 B .5 C .32-1 D .26 解析:选A.圆C 的圆心C 的坐标为(2,3),半径r =1.点A (-1,1)关于x 轴的对称点A ′的坐标为(-1,-1).因A ′在反射线上,所以最短距离为|A ′C |-r ,即[2-(-1)]2+[3-(-1)]2-1=4. 例4、已知圆O: 122=+y x ,圆C: 1)4()2(22=-+-y x ,由两圆外一点),(b a P 引两圆切线P A 、PB ,切点分别为A 、B ,满足|PA|=|PB|. (1)求实数a 、b 间满足的等量关系;间满足的等量关系;(2)求切线长|PA|的最小值;的最小值;(3)是否存在以P 为圆心的圆,使它与圆O 相内切并且与圆C 相外切?若存在,求出圆P 的方程;若不存在,说明理由. (1)连结PO 、PC ,∵|PA|=|PB|,|OA|=|CB|=1 ∴|PO|2=|PC|2,从而2222)4()2(-+-=+b a b a化简得实数a 、b 间满足的等量关系为: 052=-+b a . (2)由052=-+b a ,得52+-=b a1||||||2222-+=-=b a OA PO PA 1)52(22-++-=b b 4)2(52420522+-=+-=b b b∴当2=b 时,2||min=PA (3) ∵圆O 和圆C 的半径均为1,若存在半径为R 圆P ,与圆O 相内切并且与圆C 相外切,则有1||-=R PO 且1||+=R PC 于是有: 2||||=-PO PC 即2||||+=PO PC从而得从而得2)4()2(2222++=-+-b a b a 两边平方,整理得)2(422b a b a +-=+将52=+b a 代入上式得:0122<-=+b a 故满足条件的实数a 、b 不存在,∴不存在符合题设条件的圆P . 三、规律与方法三、规律与方法四、过关检测四、过关检测1.圆(x +2)2+y 2=5关于原点(0,0)对称的圆的方程为( ) A .(x -2)2+y 2=5 B .x 2+(y -2)2=5 C .(x +2)2+(y +2)2=5 D .x 2+(y +2)2=5 答案:A 2.已知⊙C :x 2+y 2+Dx +Ey +F =0,则F =E =0且D <0是⊙C 与y 轴相切于原点的( ) A .充分不必要条件.充分不必要条件B .必要不充分条件.必要不充分条件C .充要条件.充要条件D .既不充分也不必要条件.既不充分也不必要条件解析:选A.由题意可知,要求圆心坐标为(-D 2,0),而D 可以大于0,故选A. 3.已知两定点A (-2,0),B (1,0),如果动点P 满足|PA |=2|PB |,则点P 的轨迹所包围的图形的面积等于( ) A .πB .4πC .8π D .9π解析:选B.设P (x ,y ),由题知有:(x +2)2+y 2=4[(x -1)2+y 2],整理得x 2-4x +y 2=0,配方得(x -2)2+y 2=4.可知圆的面积为4π,故选B. 4.(2009年高考广东卷)以点(2,-1)为圆心且与直线x +y =6相切的圆的方程是________.解析:将直线x +y =6化为x +y -6=0,圆的半径r =|2-1-6|1+1=52,所以圆的方程为(x -2)2+(y +1)2=252. 答案:(x -2)2+(y +1)2=252 5.(原创题)已知圆x 2+y 2+2x -4y +a =0关于直线y =2x +b 成轴对称,则a -b 的取值范围是________. 解析:圆的方程变为(x +1)2+(y -2)2=5-a ,∴其圆心为(-1,2),且5-a >0,即a <5. 又圆关于直线y =2x +b 成轴对称,∴2=-2+b ,∴b =4.∴a -b =a -4<1. 答案:(-∞,1) 6.若直线x a +y b =1与圆x 2+y 2=1有公共点,则( ) A .a 2+b 2≤1 B .a 2+b 2≥1 C.1a 2+1b 2≤1 D.1a 2+1b 2≥1 解析:选D.由题意知直线与圆相交或相切,故有11a 2+1b 2≤1⇒1a 2+1b 2≥1,故选D. 7.过点(0,1)的直线与圆x 2+y 2=4相交于A ,B 两点,则|AB |的最小值为( ) A .2 B .23 C .3 D .25 解析:选B.据由弦长一半及圆的半径和圆心到直线的距离所组成的直角三角形可知,当圆心到直线距离最大时,弦长最短,易知当圆心与定点G (0,1)的连线与直线AB 垂直时,圆心到直线AB 的距离取得最大值,即d ≤|OG |=1,此时弦长最短,即|AB |2≥R 2-d 2=4-1⇒|AB |≥23,故选B. 8.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线3x +4y +4=0与圆C 相切,则圆C 的方程为( ) A .x 2+y 2-2x -3=0 B .x 2+y 2+4x =0 C .x 2+y 2+2x -3=0 D .x 2+y 2-4x =0 解析:选D.设圆心为(a,0),且a >0,则(a,0)到直线3x +4y +4=0的距离为2,即|3×a +4×0+4|32+42=2⇒3a +4=±10⇒a =2或a =-143(舍去),则圆的方程为:(x -2)2+(y -0)2=22,即x 2+y 2-4x =0. 9.设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →·CM →=0,则y x =( ) A.33B.33或-33C.3 D.3或-3 解析:选D.∵OM→·CM →=0, ∴OM ⊥CM ,∴OM 是圆的切线.设OM 的方程为y =kx , 由|2k |k 2+1=3,得k =±3,即y x =± 3. 10.(2008年高考山东卷)已知圆的方程为x 2+y 2-6x -8y =0.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( ) A .106 B .206 C .306 D .406 解析:选 B.圆的标准方程为(x -3)2+(y -4)2=52,由题意得|AC |=2×5=10,|BD |=252-12=46,且AC ⊥BD ,四边形ABCD 的面积S =12|AC |·|·||BD |=12×10×46=20 6.故选B. 11.已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (1)当a 为何值时,直线l 与圆C 相切;相切;(2)当直线l 与圆C 相交于A 、B 两点,且AB =22时,求直线l 的方程.的方程.解:将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2. (1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2.解得a =-34. (2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,得îïíïìCD =|4+2a |a 2+1,CD 2+DA 2=AC 2=22,DA =12AB = 2. 解得a =-7,或a =-1. 故所求直线方程为7x -y +14=0或x -y +2=0. 12.如右图,圆O 1与圆O 2的半径都是1,O 1O 2=4,过动点P 分别作圆O 1、圆O 2的切线PM 、PN (M 、N 分别为切点),使得PM =2PN ,试建立适当的坐标系,并求动点P 的轨迹方程.迹方程.解:以O 1O 2的中点O 为原点, O 1O 2所在直线为x 轴,建立如图所示的坐标系,则O 1(-2,0),O 2(2,0).由已知|PM |=2|PN |,∴|PM |2=2|PN |2. 又∵两圆的半径均为1,所以|PO 1|2-1=2(|PO 2|2-1).设P (x ,y ),即(x +2)2+y 2-1=2[(x -2)2+y 2-1],即(x -6)2+y 2=33. ∴所求动点P 的轨迹方程为(x-6)2+y2=33(或x2+y2-12x+3=0).。
《直线和圆的位置关系》典型例题
《直线和圆的位置关系》典型例题例1在R t△ABC中,∠C=90°,AB=4cm,BC=2cm,以C为圆心,r为半径的圆与AB有何种位置关系为什么(1)r=1cm;(2)r= cm;(3)r=2.5cm.例2 在R t△ABC中,∠C=90°,AB=4cm,BC=2cm,以C为圆心,r为半径的圆,若直线AB与⊙C,(1)相交;(2)相切;(3)相离.求半径r的取值.例3如图,在直角梯形ABCD中,AD∥BC,∠C=∠D=90°,若AB=6,AD=4,BC=2,试问:DC上是否存在点P,使R t△PBC∽R t△APD例4如图,直角梯形中,,,,为上的一点,平分,平分 .求证:以为直径的圆与相切.例5已知中,,于,,,以为圆心,为半径画圆.求证直线和⊙相离.参考答案例1分析如图,欲判定⊙C与直线AB的关系,只需先求出圆心C到直线AB的距离CD的长,然后再与r比较即可.解:过C点作CD⊥AB于D,在R t△ABC中,∠C=90°,AB=4,BC=2,∴AC=2,∴AB·CD=AC·BC,∴,(1)当r =1cm时CD>r,∴圆C与AB相离;(2)当r= cm时,CD=r,∴圆C与AB相切;(3)当r=2.5cm时,CD<r,∴圆C与AB相交.说明:从“数”到“形”,判定圆与直线位置关系.例2 解:过C点作CD⊥AB于D,在R t△ABC中,∠C=90°,AB=4,BC=2,∴AC=2,∴AB·CD=AC·BC,∴,(1)∵直线AB与⊙C相离,∴0r<CD,即0<r<;(2)∵直线AB与⊙C相切,∴ r =CD,即r=;(3)∵直线AB与⊙C相交,∴r>CD,即r>.说明:从“形”到“数”,由圆与直线位置关系来确定半径.例3 分析:若R t△PBC∽R t△APD,则∠APD+∠BPC=90°,可知∠APB=90°,所以P点为以AB为直径的圆O与DC的交点,由条件可知为⊙O与DC相切,所以存在一点P,使R t△PBC∽R t△APD.解:设以AB为直径的圆为⊙O,OP⊥DC,则:OP为直角梯形ABCD的中位线,∴OP=(AD+BC)/2=(4+2)/2=3,又∵OA=OB=AB/2=3,∴OP=OA,∴⊙O与DC相切,∴∠APB=90°,∴∠APD+∠BPC=90°.又∵∠PBC+∠BPC=90°,∴∠APD=∠PBC,又∵∠C=∠D=90°,∴R t△PBC∽R t△APD.因此,DC上存在点P,使R t△PBC∽R t△APD.说明:①直线与圆位置关系的应用;②此题目可以变动数值,使DC与⊙O 相交、相离.例4 分析:要证以为直径的圆与相切,只需证明的中点到的距离等于 .证明:过点作于,同理可证:为的中点,即:以为直径的圆与相切.说明:在判定直线是圆的切线时,若条件没有告诉它们有公共点,常用的方法就是“距离判定”法,即先由圆心到该直线作垂线,证明圆心到该直线的距离恰好等于半径,从而得出直线是圆的切线的结论.例5 分析:欲证直线和⊙相离,只需计算点到的距离的长,若,则判定与⊙相离(如图)证明于,是圆心到的距离∽ .又⊙的半径为,故与⊙相离.。
直线和圆的方程知识及典型例题
数学基础知识与典型例题直线和圆的方程直线和圆的方程知识关系直线的方程一、直线的倾斜角和斜率1.直线的倾斜角:一条直线向上的方向与x轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x轴平行或重合时,其倾斜角为0,故直线倾斜角α的范围是0180α<≤.2.直线的斜率:倾斜角不是90的直线其倾斜角α的正切叫这条直线的斜率k,即tankα=.注:①每一条直线都有倾斜角,但不一定有斜率.②当90=α时,直线l垂直于x轴,它的斜率k不存在.③过两点111(,)P x y、222(,)P x y12()x x≠的直线斜率公式2121tany ykx xα-==-二、直线方程的五种形式及适用条件名称方程说明适用条件斜截式y=kx+bk—斜率b—纵截距倾斜角为90°的直线不能用此式点斜式y-y0=k(x-x0)(x0,y0)—直线上已知点,k ──斜率倾斜角为90°的直线不能用此式两点式121y yy y--=121x xx x--(x1,y1),(x2,y2)是直线上两个已知点与两坐标轴平行的直线不能用此式截距式xa+yb=1a—直线的横截距b—直线的纵截距过(0,0)及与两坐标轴平行的直线不能用此式一般式A x+B y+C=0(A、B不全为零)A、B不能同时为零例8. 与直线:23x y +(1,4)A -的'的方__________例9. 已知二直线8:1+y mx l 和2:2+my x l ,若21l l ⊥,m =_____,n =____.两直线的位置关系⑵两条相交直线1l与2l的夹角:两条相交直线1l与2l的夹角,是指由1l与2l相交所成的四个角中最小的正角θ,又称为1l和2l所成的角,它的取值范围是0,2π⎛⎤⎥⎦⎝,当两直线的斜率k1,k2都存在且k1·k2≠-1时,则有2112tan1k kk kθ-=+.4.距离公式。
⑴已知一点P(x0,y0)及一条直线l:A x+B y+C=0,则点P到直线l的距离d=0022||Ax By CA B+++;⑵两平行直线l1:A x+B y+C1=0,l2:A x+B y+C2=0之间的距离d=1222||C CA B-+。
直线与圆知识点及经典例题(含答案)
圆的方程、直线和圆的位置关系【知识要点】 一、圆的定义:平面内与一定点距离等于定长的点的轨迹称为圆 (一) 圆的标准方程(x a)2 (y b)2『这个方程叫做圆的标准方程。
-____ 2 2 2说明:1、若圆心在坐标原点上,这时 a b 0,则圆的方程就是 x y r 。
2、圆的标准方程的两个基本要素:圆心坐标和半径;圆心和半径分别确定了圆的位置和大小,从而确定了 圆,所以,只要a ,b ,r 三个量确定了且r > 0,圆的方程就给定了。
就是说要确定圆的方程,必须具备三个独立的条件-确定a ,b ,r ,可以根据条件,利用待定系数法来解决。
(二) 圆的一般方程2 2 2 2 2 2 2 2将圆的标准方程(x a) (y b) r ,展开可得x y 2ax 2by a b r。
可见,任何一个2圆的方程都可以写成 :X2y Dx Ey F 02 2问题:形如xy DxEy F 0的方程的曲线是不是圆?2 2FD 2E 2 J D ‘ E 4F将方程X y Dx Ey左边配方得:2)2) 2D E0表示以 22为圆2 2(1)当 D E 4F >° 时,方程(1 )与标准方程比较,方程xyDx Ey FD 2E 2 4F心,以2为半径的圆。
DE DE⑵当DmE —4F=Q 时,方fc a +y a +Dx+Ey+F = OR 有实数解汁亍 厂亍 所以表示一个点(亍-計2 2(3)当D 2E 24F v 0时,方程x y Dx Ey F °没有实数解,因而它不表示任何图形。
圆的一般方程的定义:2 2当D 2 E 2 4F >°时,方程x y Dx Ey F °称为圆的一般方程. 圆的一般方程的特点:22(1) X 和y 的系数相同,不等于零;(2) 没有xy 这样的二次项。
(三) 直线与圆的位置关系 1、 直线与圆位置关系的种类 (1)相离---求距离; ⑵相切---求切线; (3)相交---求焦点弦长。
直线与圆的关系典型例题
高中数学必修2直线与圆的位置关系(典例)已知圆C:(x-a)2+(y-b)2=r2(r>0),直线L:Ax+By+C=01.位置关系的判定:判定方法1:联立方程组得到关于x(或y)的方程(1)△>0相交;(2)△=0相切;(3)△<0相离。
判定方法2:若圆心(a,b)到直线L的距离为d(1)d<r相交;(2)d=r相切;(3)d>r相离。
例1、判断直线L:(1+m)x+(1-m)y+2m-1=0与圆O:x2+y2=9的位置关系。
法一:直线L:m(x-y+2)+x+y-1=0恒过点,∵点P在圆O内,∴直线L与圆O相交。
法二:圆心O到直线L的距离为当d<3时,(2m-1)2<9(2m2+2),∴14m2+4m+17>0∴m∈R所以直线L与直线O相交。
法三:联立方程,消去y得2(1+m2)x2+(4m2+2m-2)x-5m2+14m-8=0∴△=56m4-96m3+92m2-120m+68=4(m-1)2(14m2+4m+17)当m≠1时,△>0,直线与圆相交;当m=1时,直线L:,此时直线L与圆O相交综上得直线L与圆O恒相交。
[评]法二和法三是判断直线与圆位置关系的方法,但计算量偏大;而法一是先观察直线的特点再结合图,避免了大量计算,因此体现了数形结合的优点。
例2、求圆x2+y2=1上的点到直线3x+4y=25的距离的最大最小值法一:设P(cosα,sinα)为圆上一点,则点P到直线的距离为=∴当时,dmin=4.法二:如图,直线L过圆心,且与直线3x+4y=25垂直于点M,此时,l 与圆有两个交点A、B,∵原点到直线3x+4y=25的距离|OM|=5,∴圆上的点到直线3x+4y=25的距离的最大值为:|AM|=|OM|+r=5+1=6最小值为:|BM|=|OM|-r=5-1=4[评]法二是几何做法,充分体现了它计算量小的优势。
2.切线问题:例3:(1)已知点P(x0,y)是圆C:x2+y2=r2上一点,求过点P的圆C的切线方程;(x0x+yy=r2)法一:∵点P(x,y)是圆C:x2+y2=r2上一点,∴当x≠0且y≠0时,∴切线方程为当P为(0,r)时,切线方程为y=r,满足方程(1);当P为(0,-r)时,切线方程为t=-r,满足方程(1);当P为(r,0)时,切线方程为x=r,满足方程(1);当P为(-r,0)时,切线方程为x=-r,满足方程(1);综上,所求切线方程为x0x+yy=r2法二:设M(x,y)为所求切线上除P点外的任一点,则由图知|OM|2=|OP|2+|PM|2,即x2+y2=r2+(x-x0)2+(y-y)2∴x0x+yy=r2且P(x,y)满足上面的方程。
直线与圆的方程典型例题
高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(ra r a解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程.分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:. 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .(2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a .∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x .说明:对本题,易发生以下误解:由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2227)14()2(=-+-a ,解之得1022±=a .所以欲求圆的方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .上述误解只考虑了圆心在直线0=y 上方的情形,而疏漏了圆心在直线0=y 下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的.例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切, ∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x .又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t . 解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r . 则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2. ∴222b r =又圆截y 轴所得弦长为2. ∴122+=a r .又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=ab b a 4422-+= )(242222b a b a +-+≥ 1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a又2222==b r故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=. 将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d . 将55=d 代入方程得1±=b . 又1222+=a b ∴1±=a . 由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上, ∴切线PT 的直线方程可设为()42+-=x k y 根据r d =∴21422=++-kk解得 43=k 所以 ()4243+-=x y即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例 6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D . ∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D .说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例7、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。
直线与圆的方程典型例题
3
例10、求两圆x2y2xy20和x2y25的公共弦长
类型四:直线与圆的位置关系
例11、已知直线3x y 2 3
0和圆x2
y2
4,判断此直线与已知圆的位置关系.
例12、若直线y
x
m与曲线y
4
x2
有且只有一个公共点,求实数
m的取值范围.
解:∵曲线y
4
x2
表示半圆x2
y2
4( y
5
或圆心是(5 ,15),半径为5
5.
∴所求圆的方程为
(x 1)2
( y 3)2
5或( x 5)2
( y
15)2
125.
说明: 本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.
例4、 设圆满足:(1)截y轴所得弦长为2;(2)被x轴分成两段弧,其弧长的比为3 :1,在满足条件
.
设圆心O1到直线3x
4y
11
3
3
4
3
11
3.
0的距离为d,则d
32
42
2
如图, 在圆心O1同侧,与直线3x
4 y
11
0平行且距离为
1的直线l1与圆有两个交点,这两
个交点符合题意.
又r d 3 2 1.
∴与直线3x4 y110平行的圆的切线的两个切点中有一个切点也符合题意.
∴符合题意的点共有3个.
解法二: 符合题意的点是平行于直线3x4 y110,且与之距离为1的直线和圆的交点.设
0的距离为
2的点共有(
).
(A)1个
直线与圆的位置关系
线段 直线 AB与⊙C没有公共点。 时, 线段 直线 AB与⊙C只有一个公共点。 时,
12 5 ②当r满足 12 r﹥ 5 ③当r满足
r=
线段 直线 AB与⊙C有两个公共点。 时,
B
12 CD= 5
4 C
5 D
3
A
在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径作圆。 ①当r满足 时,线段AB与⊙C没有公共点。 ②当r满足 时,线段AB与⊙C只有一个公共点。 ③当r满足 时,线段AB与⊙C有两个公共点。
B
分析:要了解AB与⊙C的位置
关系,只要知道圆心C到AB的 距离d与r的关系.已知r,只需求 4 出C到AB的距离d。怎样求?图上 有没有? 如何作出? C
D
3
A
解:过C作CD⊥AB,垂足为D
在△ABC中, AB= AC 2 BC 2 32 4 2 5 根据三角形的面积公式有
1 1 CD AB AC BC 2 2 AC BC 3 4 CD 2.4(cm) AB 5
直线和圆相交
d< r
d
r
直线和圆相切
d= r
r
d
∟
直线和圆相离 数量关系
d> r
数形结合: 位置关系
总结:
两 判定直线 与圆的位置关系的方法有____种:
直线 与圆的公共点 (1)根据定义,由________________
的个数来判断; 圆心到直线的距离d与半径r (2)根据性质,由_________________ 的关系来判断。 在实际应用中,常采用第二种方法判定。
例:在Rt△ABC中,∠C=90°,AC=3cm,
直线和圆的位置关系典型例题
典型例题1.如下图,在以O为圆心的两个同心圆中,大圆的弦AB和CD相等,且AB与小圆相切于点E.求证:CD与小圆相切.分析:因为已知条件没给出CD与小圆有公共点,所以可过圆心O作OF⊥CD,设垂足为F,只要证明OF等于小圆的半径即可.因为AB和小圆相切于E,连接OE,可知OE⊥AB,又AB、CD为大圆的弦,而且相等,而OE=OF分别为两弦的弦心距,因此有OE、OF,得证.证明:连接OE,过O作OF⊥CD,垂足为F,∵AB与小圆O切于点E,∴OE⊥AB.又∵OF⊥CD,AB=CD,∴OF=OE.∵OF⊥CD,∴CD与小圆O相切.2.已知Rt△ABC的斜边AB=8cm,AC=4cm.(1)以点C为圆心作圆,当半径为多长时,AB与⊙C相切?(2)以点C为圆心,分别以2 cm和4 cm的长为半径作两个圆,这两个圆与AB分别有怎样的位置关系?分析:根据d与r间的数量关系可知,d=r时,相切;d<r时,相交;d>r 时,相离.解:(1)如上图,过点C作AB的垂线段CD.∵AC=4 cm,AB=8 cm;∴cosA==,∴∠A=60°.∴CD=ACsinA=4sin60°=2(cm).因此,当半径长为2cm时,AB与⊙C相切.(2)由(1)可知,圆心C到AB的距离d=2cm,所以,当r=2cm时,d>r,⊙C与AB相离;当r=4 cm时.d<r.⊙C与AB相交.3.如下图,AB是⊙O的直径,∠ABT=45°,AT=AB.求证:AT是⊙O的切线.分析:AT经过直径的一端,因此只要证AT垂直于AB即可,而由已知条件可知AT=AB,所以∠ABT=∠ATB,又由∠ABT=45°,所以∠ATB=45°.由三角形内角和可证∠TAB=90°,即AT⊥AB.请大家自己写步骤.[生]证明:∵AB=AT,∠ABT=45°.∴∠ATB=∠ABT=45°.∴∠TAB=180°-∠ABT-∠ATB=90°.∴AT⊥AB,即AT是⊙O的切线.4.已知AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD.求证:DC是⊙O的切线.分析:要证DC是⊙O的切线,需证DC垂直于过切点的直径或半径,因此要作辅助线半径OD,利用平行关系推出∠3=∠4,又因为OD=OB,OC为公共边,因此△CDO≌△CBO,所以∠ODC=∠OBC=90°.证明:连结OD.∵OA=OD,∴∠1=∠2∵AD//OC,∴∠1=∠3,∠2=∠4.∴∠3=∠4.∵OD=OB,OC=OC,∴△ODC≌△OBC∴∠ODC=∠OBC∵BC是⊙O的切线,∴∠OBC=90°.∴∠ODC=90°.∴DC是⊙O的切线.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与圆
1.本单元知识点
本单元的学习重点包括:直线的斜率、直线的方程、直线与直线的位置关系,圆的方程、圆与圆的位置关系,直线与圆的位置关系,直线与圆的距离问题,其中直线与圆的位置关系是高考热点.
2.典型例题选讲
例1. 过点M (0,1)作直线,使它被两直线082:,0103:21=-+=+-y x l y x l 所截得的线段恰好被M 所平分,求此直线的方程.
说明:直线方程有三种基本形式:点斜式、两点式、一般式,求直线方程时应根据题目条件灵活选择,并注意不同形式的适用范围. 如采用点斜式,需要注意讨论斜率不存在的情况. 例2.已知圆0822:221=-+++y x y x C 与圆024102:2
22=-+-+y x y x C 交于A,B 两点.
(1)求直线AB 的方程;
(2)求过A 、B 两点且面积最小的圆的方程.
说明:应用两圆相减求两圆公共弦的方法,可避免通过求两个交点再求公共弦方程. 另外,在求解与圆有关的问题时,应注意多利用圆的相关几何性质,这样利于简化解题步骤.
例3.若过点A (4,0)的直线l 与曲线1)2(22=+-y x 有公共点,求直线l 的斜率k 的取值范围. (一题多解)
说明:直线与圆的位置关系问题,可以从几何和代数两方面入手. 相切问题应抓住角度问题求斜率;相交问题应抓住半径r 、弦心距d 、半弦长2l 构造的直角三角形使问题简化. 例4.设定点M (-3,4),动点N 在圆422=+y x 上运动,以OM ,ON 为邻边作平行四
边形MONP ,求点P 的轨迹.
说明:轨迹方程在必修2第122页有例题,求动点的轨迹方程要特别注意考虑轨迹与方程间的等价性,有时求得方程后还要添上或去掉某些点.
3.自测题
选择题:
1.过点A (1,-1)且与线段)11(0323≤≤-=--x y x 相交的直线的倾斜角的取值范围是( )
A. ]2,4[
ππ B. ],2[ππ C. ],2[]4,0(πππ D.),2[]4,0[πππ
2.若直线02)1(2=-++ay x a 与直线012=++y ax 垂直,则=a ( )
A.-2
B.0
C.-1或0
D.222±
3.若P (2,1)为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( )
A. 03=--y x
B.032=-+y x
C.03=-+y x
D.052=--y x
4.已知圆1)3()2(:221=-+-y x C ,圆9)4()3(:222=-+-y x C ,M ,N 分别是圆上的动点,P 为x 轴上的动点,则PN PM +的最小值为( )
A. 425-
B.117-
C.226-
D.17
5.已知)3,0(),0,3(B A -,若点P 在0222=-+x y x 上运动,则PAB ∆面积的最小值为( )
A.6
B. 26
C. 2236+
D.2236-
6.曲线241x y -+=与直线4)2(+-=x k y 有两个交点,则实数k 的取值范围是( )
A. )125,0(
B.),125(+∞
C. ]43,31(
D.]4
3,125(
填空题:
7.圆心在直线02=-y x 上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦长为32,则圆C 的标准方程为______________
8.若圆422=+y x 与圆)0(06222>=-++a ax y x 的公共弦长为32,则=a _______
9.设圆05422=--+x y x 的弦AB 的中点为P(3,1),则直线AB 的方程为_____________
10.已知P 是直线0843=++y x 上的动点,PA 、PB 是圆012222=+--+y x y x 的两切线,A 、B 是切点,C 是圆心,则四边形PACB 的面积的最小值为__________
解答题:
11. 在ABC ∆中,)1,3(-A ,AB 边上的中线CM 所在直线方程为059106=-+y x ,B ∠的平分线BT 的方程为0104=+-y x .
(1)求顶点B 的坐标; (2)求直线BC 的方程.
12.已知点)3,2(--P ,圆9)2()4(:22=-+-y x C ,过P 点作圆C 的两条切线,切点分别为A 、B.
(1)求过P 、A 、B 三点的圆的方程;(2)求直线AB 的方程.。