分析测试手段—光电子能谱XPS
X射线光电子能谱分析方法及原理(XPS)
半导体工业
晶体缺陷分析、界面性质研究 等。
环境科学
大气污染物分析、土壤污染研 究等。
X射线光电子能谱分析的优缺点
1 优点
提供元素化学状态信息、非破坏性分析、高表面敏感性。
2 ห้องสมุดไป่ตู้点
样品需真空处理、分析深度有限、昂贵的设备和维护成本。
总结和展望
X射线光电子能谱分析是研究材料表面的有力工具。未来,随着仪器和技术的 不断进步,XPS将在更多领域发挥重要作用。
X射线光电子能谱分析方 法及原理(XPS)
X射线光电子能谱分析(XPS)是一种表面分析技术,通过测量材料的X射线光 电子能谱来研究材料的电子结构和化学组成。
X射线光电子能谱分析的基本 原理
XPS基于光电效应,探测材料与X射线相互作用所放出的光电子。通过测量光 电子能量和强度,可以推断材料表面元素的化学态。
X射线光电子能谱分析的仪器和实验设备
XPS仪器
包含X射线源、光电子能谱仪 和数据处理系统。
电子枪
产生高能电子束,用于激发材 料表面。
光电子能谱仪
测量光电子的能量和角度,用 于分析材料的电子结构。
X射线光电子能谱分析的样品准备方法
1 表面清洗
去除杂质和氧化层,以确保准确测量。
2 真空处理
在超高真空条件下进行实验,避免气体影响。
3 固定样品
使用样品架或夹具将样品固定在仪器中。
X射线光电子能谱分析的数据处理和解 析方法
峰面积计算
根据光电子峰的面积计算元素含量。
能级分析
通过分析光电子的能级分布,推断材料的化学状态。
谱峰拟合
将实验谱峰与已知标准进行拟合,确定元素的化学态和含量。
X射线光电子能谱分析的应用领域
XPS_X射线光电子能谱技术
X射线光电子能谱X射线光电子能谱学(英文:X-ray photoelectron spectroscopy,简称XPS)是一种用于测定材料中元素构成、实验式,以及其中所含元素化学态和电子态的定量能谱技术。
这种技术用X射线照射所要分析的材料,同时测量从材料表面以下1纳米到10纳米范围内逸出电子的动能和数量,从而得到X射线光电子能谱。
X射线光电子能谱技术需要在超高真空环境下进行。
XPS是一种表面化学分析技术,可以用来分析金属材料在特定状态下或在一些加工处理后的表面化学。
这些加工处理方法包括空气或超高真空中的压裂、切割、刮削,用于清除某些表面污染的离子束蚀刻,为研究受热时的变化而置于加热环境,置于可反应的气体或溶剂环境,置于离子注入环境,以及置于紫外线照射环境等。
∙XPS也被称作ESCA,这是化学分析用电子能谱学(Electron Spectroscopy for Chemical Analysis)的简称。
∙XPS能够检测到所有原子序数大于等于3的元素(即包括锂及所有比锂重的元素),而不能检测到氢和氦。
∙对大多数元素而言的检出限大约为千分之几,在特定条件下检出极限也有可能达到百万分之几,例如元素在表面高度集中或需要长时间的累积时间。
XPS可以用来测量:∙表面的元素构成(通常范围为1纳米到10纳米)∙纯净材料的实验式∙不纯净表面的杂质的元素构成∙表面每一种元素的化学态和电子态∙表面元素构成的均匀性XPS特点XPS作为一种现代分析方法,具有如下特点[3]:(1)可以分析除H和He以外的所有元素,对所有元素的灵敏度具有相同的数量级。
(2)相邻元素的同种能级的谱线相隔较远,相互干扰较少,元素定性的标识性强。
(3)能够观测化学位移。
化学位移同原子氧化态、原子电荷和官能团有关。
化学位移信息是XPS用作结构分析和化学键研究的基础。
(4)可作定量分析。
既可测定元素的相对浓度,又可测定相同元素的不同氧化态的相对浓度。
xps 测定标准
XPS,全称为X-ray Photoelectron Spectroscopy(X射线光电子能谱),是一种使用电子谱仪测量X-射线光子辐照时样品表面所发射出的光电子和俄歇电子能量分布的方法。
XPS可用于定性分析以及半定量分析,一般从XPS图谱的峰位和峰形获得样品表面元素成分、化学态和分子结构等信息,从峰强可获得样品表面元素含量或浓度。
XPS是一种典型的表面分析手段,其根本原因在于:尽管X射线可穿透样品很深,但只有样品近表面一薄层发射出的光电子可逃逸出来。
样品的探测深度(d)由电子的逃逸深度(λ,受X射线波长和样品状态等因素影响)决定,通常,取样深度 d = 3λ。
对于金属而言λ为0.5\~3 nm;无机非金属材料为2\~4 nm;有机物和高分子为4\~10 nm。
另外,样品状态可以是粉末、块状、薄膜样品,具体如下:
1. 粉末样品:20\~30mg。
2. 块状、薄膜样品:块体/薄膜样品尺寸小于5\*5\*3mm。
以上信息仅供参考,如有需要,建议查阅XPS测定标准的专业书籍或咨询专业人士。
X射线光电子能谱(XPS)谱图分析
一、X光电子能谱分析的基本原理X光电子能谱分析的基本原理:一定能量的X光照射到样品表面,和待测物质发生作用,可以使待测物质原子中的电子脱离原子成为自由电子。
该过程可用下式表示:hn=Ek+Eb+Er (1)其中:hn:X光子的能量;Ek:光电子的能量;Eb:电子的结合能;Er:原子的反冲能量。
其中Er很小,可以忽略。
对于固体样品,计算结合能的参考点不是选真空中的静止电子,而是选用费米能级,由内层电子跃迁到费米能级消耗的能量为结合能Eb,由费米能级进入真空成为自由电子所需的能量为功函数Φ,剩余的能量成为自由电子的动能Ek,式(1)又可表示为:hn=Ek+Eb+Φ(2) Eb=hn-Ek-Φ(3)仪器材料的功函数Φ是一个定值,约为 4 eV,入射X光子能量已知,这样,如果测出电子的动能Ek,便可得到固体样品电子的结合能。
各种原子,分子的轨道电子结合能是一定的。
因此,通过对样品产生的光子能量的测定,就可以了解样品中元素的组成。
元素所处的化学环境不同,其结合能会有微小的差别,这种由化学环境不同引起的结合能的微小差别叫化学位移,由化学位移的大小可以确定元素所处的状态。
例如某元素失去电子成为离子后,其结合能会增加,如果得到电子成为负离子,则结合能会降低。
因此,利用化学位移值可以分析元素的化合价和存在形式。
二、电子能谱法的特点(1)可以分析除H和He以外的所有元素;可以直接测定来自样品单个能级光电发射电子的能量分布,且直接得到电子能级结构的信息。
(2)从能量范围看,如果把红外光谱提供的信息称之为“分子指纹”,那么电子能谱提供的信息可称作“原子指纹”。
它提供有关化学键方面的信息,即直接测量价层电子及内层电子轨道能级。
而相邻元素的同种能级的谱线相隔较远,相互干扰少,元素定性的标识性强。
(3)是一种无损分析。
(4)是一种高灵敏超微量表面分析技术,分析所需试样约10-8g即可,绝对灵敏度高达10-18g,样品分析深度约2nm。
X射线光电子能谱分析(XPS)
第18章X射线光电子能谱分析18.1 引言固体表面分析业已发展为一种常用的仪器分析方法,特别是对于固体材料的分析和元素化学价态分析。
目前常用的表面成分分析方法有:X射线光电子能谱(XPS), 俄歇电子能谱(AES),静态二次离子质谱(SIMS)和离子散射谱(ISS)。
AES 分析主要应用于物理方面的固体材料科学的研究,而XPS的应用面则广泛得多,更适合于化学领域的研究。
SIMS和ISS由于定量效果较差,在常规表面分析中的应用相对较少。
但近年随着飞行时间质谱(TOF-SIMS)的发展,使得质谱在表面分析上的应用也逐渐增加。
本章主要介绍X射线光电子能谱的实验方法。
X射线光电子能谱(XPS)也被称作化学分析用电子能谱(ESCA)。
该方法是在六十年代由瑞典科学家Kai Siegbahn教授发展起来的。
由于在光电子能谱的理论和技术上的重大贡献,1981年,Kai Siegbahn获得了诺贝尔物理奖。
三十多年的来,X射线光电子能谱无论在理论上和实验技术上都已获得了长足的发展。
XPS已从刚开始主要用来对化学元素的定性分析,业已发展为表面元素定性、半定量分析及元素化学价态分析的重要手段。
XPS的研究领域也不再局限于传统的化学分析,而扩展到现代迅猛发展的材料学科。
目前该分析方法在日常表面分析工作中的份额约50%,是一种最主要的表面分析工具。
在XPS谱仪技术发展方面也取得了巨大的进展。
在X射线源上,已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源;传统的固定式X射线源也发展到电子束扫描金属靶所产生的可扫描式X射线源;X射线的束斑直径也实现了微型化,最小的束斑直径已能达到6μm大小, 使得XPS在微区分析上的应用得到了大幅度的加强。
图像XPS技术的发展,大大促进了XPS在新材料研究上的应用。
在谱仪的能量分析检测器方面,也从传统的单通道电子倍增器检测器发展到位置灵敏检测器和多通道检测器,使得检测灵敏度获得了大幅度的提高。
材料研究分析方法XPS
材料研究分析方法XPSX射线光电子能谱(X-ray photoelectron spectroscopy,XPS)是一种广泛应用于材料研究和分析的表征技术。
它利用入射的X射线激发材料表面的电子,测量所产生的光电子的能量分布,从而确定样品的化学组成、元素状态和电子结构等信息。
本文将介绍XPS的基本原理、仪器及其应用。
XPS的基本原理是利用X射线激发材料表面的原子和分子,使其内层电子跃迁到外层,产生光电子。
这些光电子的动能与原子或分子的电子结构、化学环境和束缚能有关。
通过测量光电子的能谱,可以得到元素的化学状态、电荷状态和化学键的形式等信息。
XPS的实验装置一般包括X射线源、光学系统、电子能量分析器和探测器。
X射线源通常是基于一个X射线管,产生具有一定能量和强度的X射线。
光学系统将X射线聚焦到样品表面,同时也可以调节入射角度和区域。
电子能量分析器由能量选择器和探测器组成,能够分析光电子的能量分布。
探测器可以是多个位置灵敏的通道探测器,也可以是二维面探测器,用于测量光电子的能谱图像。
整个实验装置可以通过各种外围设备和计算机进行控制和数据处理。
XPS广泛应用于表面和界面的化学分析、薄膜和涂层的研究、材料的性能表征等领域。
在表面化学分析中,XPS可以用来确定元素的种类和含量,分析化学键的形式和强度,表征材料的化学性质和表面组成。
在薄膜和涂层研究中,XPS可以用来分析薄膜的厚度、界面的结构和反应机理,以及薄膜的成分和含量。
在材料性能表征中,XPS可以用来研究材料的电子结构、能带结构和载流子状态,了解材料的电子特性和导电机制。
XPS作为一种非接触性和表面敏感的表征技术,具有高分辨率、高灵敏度和高静态深度分辨能力等优点。
然而,XPS也有一些局限性,例如不能获取样品的化学状态和元素的价态,不能分析材料的体积成分等。
此外,XPS在样品准备和实验条件等方面要求较高,样品表面必须光滑且真空条件下进行测量。
总体而言,XPS是一种非常有用的表征技术,可以提供材料的表面和界面的化学信息,对于材料研究和分析具有重要的应用价值。
分析测试手段—光电子能谱(XPS)
一 概述
表面分析技术 (Surface Analysis)是对材料外层(the Outer-Most Layers of Materials (<100 ))的研究的 技术。包括: 1 电子谱学(Electron Spectroscopies) X-射线光电子能谱 XPS: X-ray Photoelectron Spectroscopy 俄歇能谱 AES: Auger Electron Spectroscopy 电子能量损失谱 EELS: Electron Energy Loss Spectroscopy
1激发光源——X射线(软X射线;Mg Kα : hv = 1253.6 eV ;Al Kα : hv = 1486.6 eV)或UV; 2电子能量分析器-对应上述能量的分析器,只可能是表 面分析; 3高真空系统:超高真空腔室super-high vacuum chamber( UHV避免光电子与气体分子碰撞的干扰。
2 离子谱学 Ion Spectroscopies
二次离子质谱SIMS: Secondary Ion Mass Spectrometry 溅射中性质谱SNMS: Sputtered Neutral Mass Spectrometry 离子扫描能谱ISS: Ion Scattering Spectroscopy
X-ray Beam
Electrons are extracted only from a narrow solid angle.
X-ray penetration depth ~1mm. Electrons can be excited in this entire volume.
X射线光电子能谱(XPS)
另外,原子中的电子既有轨道运动又有自旋运动。它们之间存在着耦合(电磁相
互)作用,使得能级发生分裂。对于ι >0的内壳层,这种分裂可以用内量子数j来
表示。其数值为:
j=
l + ms
=
l±
1 2
所以:对于ι =0,j=1/2。对于ι >0,则j= ι +½或者ι -½。也就是说,除了s能
级不发生分裂外,其他能级均分裂为两个能级:在XPS谱图中出现双峰。
3
电子能谱的基本原理
基本原理就是光电效应。
能量关系可表示:
hv = Eb + Ek + Er
电子结合能 电子动能
原子的反冲能量
Er
=
1(M
2
− m)υa*2
忽略 Er (<0.1eV)得
hv = Ek + Eb
4
对孤立原子或分子,Eb 就是把电子从所在轨道
移到真空需的能量,是以真空能级为能量零点的。
S能级的内量子数½通 常省略。如:C的1s 能级没有分裂,在 XPS谱图上只有一个 峰,表示为:C1s。
C1s
14
基本原理
4、电子结合能Eb: 一个自由原子或者离子的结合能,等于将此电子从所在的能级转移到无限远处所 需要的能量。对于气体样品,如果样品室和谱仪制作材料的影响可以忽略,那么 电子的结合能Eb可以从光子的入射能量hν以及测得的电子的动能Ek求出,即:
21
X射线光电子能谱分析的基本原理
5、XPS信息深度: 在XPS分析中,一般用能量较低的软X射线激发光电子(如:Al 和Mg的Kα线)。虽然软X射线的能量不高,但是仍然可以穿透 10nm厚的固体表层,并引起那里的原子轨道上的电子光电离。 产生的光电子在离开固体表面之前,要经历一系列的弹性(光 电子与原子核或者其他电子相互作用时不损失能量)和非弹性 散射(光电子损失能量)。弹性散射的光电子形成了XPS谱的 主峰;非弹性散射形成某些伴峰或者信号的背底。 一般认为:对于那些具有特征能量的光电子穿过固体表面时, 其强度衰减遵从指数规律。假设光电子的初始强度为I0,在固体 中经过dt距离,强度损失了dI,有:
全方位解析X射线光电子能谱分析(XPS)
全方位解析X射线光电子能谱1引言固体表面分析业已发展为一种常用的仪器分析方法,特别是对于固体材料的分析和元素化学价态分析。
目前常用的表面成分分析方法有:X射线光电子能谱(XPS), 俄歇电子能谱(AES),静态二次离子质谱(SIMS)和离子散射谱(ISS)。
AES分析主要应用于物理方面的固体材料科学的研究,而XPS的应用面则广泛得多,更适合于化学领域的研究。
SIMS和ISS由于定量效果较差,在常规表面分析中的应用相对较少。
但近年随着飞行时间质谱(TOF-SIMS)的发展,使得质谱在表面分析上的应用也逐渐增加。
本章主要介绍X射线光电子能谱的实验方法。
X射线光电子能谱(XPS)也被称作化学分析用电子能谱(ESCA)。
该方法是在六十年代由瑞典科学家Kai Siegbahn教授发展起来的。
由于在光电子能谱的理论和技术上的重大贡献,1981年,Kai Siegbahn获得了诺贝尔物理奖。
三十多年的来,X射线光电子能谱无论在理论上和实验技术上都已获得了长足的发展。
XPS已从刚开始主要用来对化学元素的定性分析,业已发展为表面元素定性、半定量分析及元素化学价态分析的重要手段。
XPS的研究领域也不再局限于传统的化学分析,而扩展到现代迅猛发展的材料学科。
目前该分析方法在日常表面分析工作中的份额约50%,是一种最主要的表面分析工具。
在XPS谱仪技术发展方面也取得了巨大的进展。
在X射线源上,已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源;传统的固定式X射线源也发展到电子束扫描金属靶所产生的可扫描式X射线源;X射线的束斑直径也实现了微型化,最小的束斑直径已能达到6 m 大小, 使得XPS在微区分析上的应用得到了大幅度的加强。
图像XPS技术的发展,大大促进了XPS在新材料研究上的应用。
在谱仪的能量分析检测器方面,也从传统的单通道电子倍增器检测器发展到位置灵敏检测器和多通道检测器,使得检测灵敏度获得了大幅度的提高。
X射线光电子能谱(XPS)课件
利用XPS对样品表面进行深度剖析, 了解表面元素的化学状态和组成, 为材料科学、环境科学等领域提供 有力支持。
05
XPS与其他分析方法的比 较
XPS与AES的比较
总结词
XPS和AES都是表面分析技术,但它们的工 作原理和应用范围有所不同。
详细描述
XPS(X射线光电子能谱)和AES(原子发 射光谱)都是表面分析技术,用于确定样品 表面的元素组成。然而,它们的工作原理和 应用范围有所不同。XPS主要测量的是光电 子的能量分布,可以提供元素种类、化学态 和电子态的信息。而AES则通过测量原子发 射出来的特征光谱来分析元素组成。在应用 方面,XPS更适用于轻元素的分析,而AES 更适用于重元素的分析。
02
XPS仪器设备
XPS仪器结构
01
02
03
04
发射源
X射线管,用于产生X射线。
真空系统
确保实验室内高真空度,以减 少气体对光电子的散射。
能量分析器
用于检测和测量光电子的能量 。
探测器
用于收集光电子,并将其转换 为电信号。
XPS仪器操作流程
样品安装
将样品放置在样品 台上,并确保稳定 固定。
数据采集
开发多元素同时分析的XPS技术, 能够快速获取样品中多种元素的
化学信息,提高分析效率。
XPS在各领域的应用前景
环境监测
生物医学研究
利用XPS技术对大气、水体、土壤等环境中 的有害物质进行快速、准确检测,为环境 保护和治理提供有力支持。
通过XPS技术对生物样品进行无损检测,有 助于深入了解生物分子结构和功能,推动 生物医学领域的发展。
数据采集
按照设定的参数进行测量,并 采集光谱数据。
xps 光谱的测试曲线和拟合曲线
xps 光谱的测试曲线和拟合曲线
XPS(X射线光电子能谱)是一种表征材料表面化学成分和化学
状态的分析技术。
在XPS测试中,会得到一条原始的光谱测试曲线,这些曲线通常包括峰和谷,代表了不同元素的光电子峰和背景信号。
而拟合曲线则是对原始曲线进行拟合处理,以便更清晰地分辨出不
同元素的峰,并计算出其相对丰度和化学状态。
在XPS测试曲线中,每个元素都会表现出特定的光电子峰,这
些峰的位置和形状可以提供关于元素种类和化学状态的信息。
拟合
曲线的目的是将原始曲线中的各种峰进行分离和拟合,从而准确地
确定各种元素的存在量和化学环境。
拟合曲线通常使用高斯-洛伦兹
混合函数来拟合原始曲线的峰,以获得更精确的峰位置和峰面积。
XPS测试曲线和拟合曲线的比较可以帮助分析人员验证拟合的
准确性,评估峰的分辨率和信噪比,并最终确定样品表面的化学成
分和状态。
通过对比原始曲线和拟合曲线,可以更好地理解样品的
化学性质,为进一步的材料表征和分析提供重要信息。
总的来说,XPS光谱的测试曲线和拟合曲线是XPS分析中的重
要数据,它们提供了关于样品表面化学成分和状态的丰富信息,对于材料科学研究和工业应用具有重要意义。
X射线光电子能谱(XPS)的基本原理及应用
85.1 4.68 10.22
BSCCO膜(超导材料)
2.元素化合价及化学态的确定
俄歇参数:俄歇电子动能与光电 子动能差(加X射线能量)。
有机物分子
3.成像XPS(XPS image)
XPS可对元素及其化学态进 行成像,绘出不同化学态的 不同元素在表面的分布图像。
4.深度剖析(depth profile)
X射线光电子能谱(XPS)的基 本原理及应用
西北有色金属研究的基本原理 XPS的应用
二.
三.
一、引言
电子能谱
电子能谱:是最常用的一种表面分析技术,多种表面分析技术集 合的总称,测量样品中发射电子的动能,分析电子结合能,主要 包括XPS,AES和UPS。 X 射线光电子能谱 (XPS) Auger 电 子 能 谱 (AES)
界面间物质的互扩散
刻蚀5s/层
Te3d5/2
Cr2p3/2
Cr/Te界面处元素的互扩散情况。突变界面,扩散很少。
8000000
Au4f
Au4d
Au4p3/2
Cr2p
6000000
Intensity
4000000
2000000
0 0 100 200 300 400 500 600 700 800
Binding Energy(eV)
二、XPS基本原理
内层电子吸收光子,逃逸出样品表面, 成为光电子,根据能量守恒: hv=Eb+Φ s+Ek+Er 其中 hv为X射线能量 Eb为电子结合能 Φ s为样品功函数 Ek为光电子动能 Er为反冲能(很小,可以忽略)
内电子层
Er
Ek
Evac
真空能级
Φs
X射线光电子能谱分析方法及原理(XPS)
XPS谱图中伴峰的鉴别:
(在XPS中化学位移比较小,一般只有几ev,要想对 化学状态作出鉴定,首先要区分光电子峰和伴峰)
• 光电子峰:在XPS中最强(主峰)一般比较对称且半宽
度最窄。
• 俄歇电子峰:Auger有两个特征:
1.Auger与X-ray源无关,改变X-ray,Auger不变。
2.Auger是以谱线群的形式出现的。
XPS谱图的解释步骤:
• 在XPS谱图中首先鉴别出C1s、O1s、C(KLL) 和 O(KLL)的谱峰(通常比较明显)。
• 鉴别各种伴线所引起的伴峰。 • 先确定最强或较强的光电子峰(或俄歇电子
峰),再鉴定弱的谱线。 • 辨认p、d、f自旋双重线,核对所得结论。
XPS 的特点:
• 可以分析除H和He以外的所有元素。
• 相邻元素的同种能级的谱线相隔较远,相互干扰 较少,元素定性的标识性强。
• 能够观测化学位移,化学位移同原子氧化态、原 子电荷和官能团有关。化学位移信息是利用XPS进 行原子结构分析和化学键研究的基础。
• 可作定量分析,即可测定元素的相对浓度,又可 测定相同元素的不同氧化态的相对浓度。
• 是一种高灵敏超微量表面分析技术,样品分析的 深度约为20Å,信号来自表面几个原子层,样品量 可少至10-8g,绝对灵敏度高达10-18g。
实际测量时,利用标准样品的基准谱线来校正
被测谱线的结合能,称为内标法:
Eb(测)=Ek(标)+Eb(标)-Ek(测)
(其中, Ek(标)和Eb(标)已知, Ek(测)可由谱仪测出)
• 化学位移:又称结合能位移,原子的内层电子结合
能随原子周围化学环境变化的现象称为化学位移。
影响化学位移的因素有: (如图所示)。
XPS
化学分析光电子能谱的一个重要特点是它能在不太 高的真空度下进行表面分析研究,这是所有其它方 法都做不到的。当用电子束激发时,如用俄歇电子 能谱法,必须用超高真空,以防止样品上形成碳的 沉积物而掩惹被测表面。 X射线束比较柔和的特点使我们有可能在中等真空 皮下对表面观察苦干小时,特别是当真空成分有利 时,例如使用离子泵或其它“干抽”时就是这种情 况,当然,原子尺度上清洁的金属表面在10-9到10 -10托以上的真空度下不能保持很长时间,这也是事 实,然而,大量的表面分析工作并不是在原子尺度 清桔的表面上进行的,因此,化学分析光电子能谱 不需要超高真空。
用X射线照射固体时,由于光电效应,原子的某一能级的电 子被击出物体之外,此电子称为光电子。 如果X射线光子的能量为hν,电子在该能级上的结合能为Eb, 射出固体后的动能为Ec,则它们之间的关系为:
hν=Eb+Ec+Ws
式中Ws为功函数,它表示固体中的束缚电子除克服个别原 子核对它的吸引外,还必须克服整个晶体对它的吸引才能逸 出样品表面,即电子逸出表面所做的功。上式可另表示为:
3600
D
3600
X bonding 图-14 600s时氧 的 xps图
E
1100S时刻的XPS图
2400S时刻的XPS图
3400
3400
3200
Y intensiyty
3200
Y intensity
3000
3000
2800
2800
2600
2600
2400
525 530 535 540 545
525
在化学分桥光电子能谱中,探测深度是由样 品中电子的平均自由程(MFP)决定的。由于 在俄歇电子能谱中探测深度也是由电子的平 均自由程所控制,所以这两种方法所研究的 样品深度实际上是一样的。 电子平均自由程是样品成分和逃逸电子动能 的函数,因此.对光电子能谱的不同光电子 峰来说,有效样品厚度可能不完全相同,为 了进行仔细的定量研究,这个因素必须考虑。
X射线光电子能谱(XPS)的基本原理及应用
准备样品 - 放置于真空室中 - 照射X射线 - 测 量电子能谱 - 分析和解释结果。
XPS在材料表征中的应用
半导体材料
XPS可用于研究半导体材料的表面化学状况和 界面特性。
聚合物材料
对聚合物材料进行表面分析,了解其化学成分 和表面改性效果。
金属合金
生物材料
XPS可用于表征金属合金的成分和表面氧化状态。 研究生物材料表面的化学活性,用于医学和生 物工程领域。
XPS可用于确定催化剂表面的活性位点,帮助优化催化剂设计。
Hale Waihona Puke 2反应机理研究通过分析催化剂表面的元素状态和化学键情况,揭示催化反应的机理。
3
失活机制研究
通过分析催化剂失活前后的表面化学状态,探究失活机制并提出改进策略。
总结和展望
X射线光电子能谱 (XPS) 是一种强大的表面分析技术,广泛应用于材料科学和表面化学领域。未来,随 着技术的进一步发展,XPS将在更多领域发挥重要作用。
X射线光电子能谱 (XPS) 的基本原理及应用
X射线光电子能谱 (XPS) 是一种先进的分析技术,可用于研究和表征材料的 表面组成和化学状态。
定义和概述
1 什么是XPS?
2 工作原理
X射线光电子能谱 (XPS) 是一种非接触性的表面 分析技术,通过测量材 料表面上光电子的能谱 来了解元素的化学状态、 组成和表面反应性。
2
能谱测量
测量电子的能量和强度,建立能谱图,分析元素和化学状态。
3
定量分析
通过峰面积计算得到元素的相对含量,进一步分析材料组成。
XPS仪器的组成和工作流程
X射线源
发射足够强的X射线束以激发样品表面原子。
电子能谱仪
X射线光电子能谱(XPS)
化学位移
Inst. Of Photoelectronics
➢ 谱峰的物理位移和化学位移
物理位移:固体的热效应与表面荷电的作用引起的谱峰位移
化学位移:原子所处化学环境的变化引起的谱峰位移
产生原因:
(1)价态改变:内层电子受核电荷的库仑力和荷外其他电子
的屏蔽作用;电子结合能位移Eb;
• 氧化作用使内层电子结合能上升,氧化
(2)筒镜式电子能量分析器
(CMA)
同轴圆筒,外筒接负压、内
筒接地,两筒之间形成静电
场;
灵敏度高、分辨率低;二级
串联;
X射线光电子能谱仪
Inst. Of Photoelectronics
➢ 检测器
• 产生的光电流:10-3~10-9mA;
• 电子倍增器作为检测器;
• 单通道电子倍增器;多通道电子倍增器;
给出表面的化学组成,原子排列,电子状态等信息。
• 对于XPS和AES还可以对表面元素做出一次全部定性和定量
分析,还可以利用其化学位移效应进行元素价态分析;利
用离子束的溅射效应可以获得元素沿深度的化学成份分布
信息。
• 此外,利用其高空间分别率,还可以进行微区选点分析,
线分布扫描分析以及元素的面分布分析。
电子的能量是特征的。
• 因此,我们可以根据光电子的结合能定性分析物质的元
素种类。
X射线光电子能谱仪
Inst. Of Photoelectronics
样品
光电子
能量分析器
探测器
X射线源
AlK或MgK
超高真空系统
优于10-9mbar
数据处理系统
Inst. Of Photoelectronics
x光管 能谱
x光管能谱
x光管能谱(XPS)是一种电子材料与元器件显微分析中的先进分析技术。
它利用X射线源,通过测量样品表面发射出的光电子的能量,来推断样品中的元素组成和含量。
XPS技术具有以下优点:
1. 可以测量元素周期表上几乎所有元素,包括氢和氦。
2. 可以提供元素的化学状态和分子结构信息。
3. 测量精度高,误差通常在1%以内。
4. 可以对样品的微小区域进行分析,例如表面几个原子层。
5. 对样品的破坏性非常小,对分析有机材料和高分子材料非常有利。
XPS技术被广泛应用于化学、材料科学、生物学、医学等领域。
它可以帮助科学家们了解材料的性质、结构和组成,从而推动科学技术的发展。
XPS电子能谱分析法
(C3H7)4NS2PF2的XPS谱图
PPT文档演模板
XPS电子能谱分析法
注意
p 定性分析时,必须注意识别伴峰和杂质、污染峰 (如样品被CO2、水分和尘埃等沾污,谱图中出现 C、O、Si等的特征峰)。
p 定性分析时一般利用元素的主峰(该元素最强最尖 锐的特征峰)。
p 显然,自旋-轨道分裂形成的双峰结构情况有助于 识别元素。特别是当样品中含量少的元素的主峰 与含量多的另一元素非主峰相重叠时,双峰结构 是识别元素的重要依据。
•图:俄歇电子能谱示 例(银原子的俄歇能谱)
PPT文档演模板
XPS电子能谱分析法
3.化学位移与伴峰
p 原子“化学环境”变化,不仅可能引起俄歇峰的位移(称 化学位移),也可能引起其强度的变化,这两种变化的交 叠,则将引起俄歇峰(图)形状的改变。
p 原子“化学环境”指原子的价态或在形成化合物时,与该 (元素)原子相结合的其它(元素)原子的电负性等情况
•图13-9 (X射线)光电子能谱仪方框图
PPT文档演模板
XPS电子能谱分析法
三、X射线光电子能谱分析与应用
p 1.元素(及其化学状态)定性分析 p 方法:以实测光电子谱图与标准谱图相对照,根据元素特
征峰位置(及其化学位移)确定样品(固态样品表面)中存在 哪些元素(及这些元素存在于何种化合物中)。 p 常用Perkin-Elmer公司的X射线光电子谱手册 p 定性分析原则上可以鉴定除氢、氦以外的所有元素。 p 分析时首先通过对样品(在整个光电子能量范围)进行全扫 描,以确定样品中存在的元素;然后再对所选择的谱峰进 行窄扫描,以确定化学状态。
p 如:原子发生电荷转移(如价态变化)引起内层能级变化, 从而改变俄歇跃迁能量,导致俄歇峰位移;
X射线光电子能谱分析(XPS)注意事项
X射线光电子能谱分析(XPS)注意事项
1.检测元素:3-92号元素。
2.样品要求:
样品状态:固态样品,一般可测块状、粉末及薄膜样品。
预处理尺寸要求:
a) 块状样品:面积小于5mm×8 mm,高度小于2 mm(表面要平整);
b) 粉末样品:粒度小于200目;特殊样品除外;
c) 薄膜样品:面积小于5mm×8 mm(测试面要做好标记)。
物理及化学性质等要求:
a) 无磁性、放射性以及毒性;
b) 样品不吸水,在超高真空中及X光照射下不分解,无挥发性物质(如单质Na, K, S, P, Zn, Se, As, I, Te, Hg或者有机挥发物),避免对高真空系统造成污染;不大量放气(尤其腐蚀性气体);若含有高挥发性分子或者coating,请务必先自行烘烤抽除;高分子样品在送样前须进行干燥处理。
3.其他注意事项:
a) 样品分析面确保不受污染,可使用异丙醇,丙酮,正己烷,或三氯甲烷溶液(均为分析纯)清洗以达到清洁要求;
b) 使用玻璃制品(如表面皿、称量瓶等)或者铝箔盛放样品,禁止直接使用塑料容器、塑料袋或纸袋,以免硅树脂或纤维污染样品表面;
c) 制备或处理样品时使用聚乙烯手套,禁止使用塑料手套和工具以免硅树脂污染样品表面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
KE1s = ( 1253.6 - 1072 ) = 182 eV KE2s = ( 1253.6 - 64 ) = 1190 eV KE2p = ( 1253.6 - 31 ) = 1223 eV
五俄歇电子能谱 AES(Auger electron Spectrocopy)
Conduction Band Valence Band
Free Electron Level
Fermi Level
2p
L2,L3
2s
L1
1s
K
1电磁波使内层电子激发,并逸出表面成为光电子,测量被 激发的电子能量就得到XPS, 不同元素种类、不同元素 价态、不同电子层(1s, 2s, 2p等)所产生的XPS不同。
X-ray excitation area ~1x1 cm2. Electrons are emitted from this entire area
三 光电效应 (Photoelectric Process)
光:Incident X-ray
发射出的光电子Ejected Photoelectron
1. 价带 (4d,5s) 出现在 0 - 8 eV 。 2 4p 、 4s 能级出现在 54 、88 eV 。 3. 335 eV 的最强峰由 3d 能级引起。 4 3p 和3s 能级出现在 534/561 eV 和 673 eV 。 5. 其余峰非 XPS 峰, 而是Auger 电子峰。
Hale Waihona Puke 例:试作出在Mg Ka ( hn = 1253.6 eV ) 作用下Na的XPS示意谱图, Na的能级 分布如右图。
谱学功函数极小,可略去, 得到 KE = hv - BE :
3 元素不同,其特征的电子键能不同。测量电子动能KE ,就得到对应每种元素的一系列BE-光电子能谱,就得 到电子键能数据。
4 谱峰强度代表含量,谱峰位置的偏移代表价态与环境的 变化-化学位移。
四 XPS的仪器Instrumentation for XPS
六 XPS(AES)的应用:
1元素定性 2 定量分析 3 元素价态、结合态的研究。
2 离子谱学 Ion Spectroscopies
二次离子质谱SIMS: Secondary Ion Mass Spectrometry
溅射中性质谱SNMS: Sputtered Neutral Mass Spectrometry
离子扫描能谱ISS: Ion Scattering Spectroscopy
光子作用下: K层电离; L层补充跃迁;能量使另一层L电子激发成AuE。 即双级电离过程: A*+=A 2++e-。
AES特点:
1 受价态影响; 2 受结合态影响; 3 受表面势垒影响。
与XPS相比, 优点如下: 1 可用电子激发, 并形成聚焦(XPS只能用X、UV); 2可扫描得到AuE象, 直观反映表面; 3电子束流可调小, 使空间分辨率提高。
第五章 X-射线光电子能谱(X-ray Photoelectron Spectroscopy
(XPS) ESCA)
一 概述
表面分析技术 (Surface Analysis)是对材料外层(the Outer-Most Layers of Materials (<100 ))的研究的 技术。包括:
1激发光源——X射线(软X射线;Mg Kα : hv = 1253.6 eV ;Al Kα : hv = 1486.6 eV)或UV;
2电子能量分析器-对应上述能量的分析器,只可能是表 面分析;
3高真空系统:超高真空腔室super-high vacuum chamber( UHV避免光电子与气体分子碰撞的干扰。
1 电子谱学(Electron Spectroscopies)
X-射线光电子能谱 XPS: X-ray Photoelectron Spectroscopy
俄歇能谱 AES: Auger Electron Spectroscopy
电子能量损失谱 EELS: Electron Energy Loss Spectroscopy
二 XPS的概念
XPS也叫ESCA( Electron Spectroscopy for Chemical Analysis),是研究表面成分的重要手段。 原理是光电效应(photoelectric effect)。1960’s 由 University of Uppsala, Sweden 的Kai Siegbahn等发 展。 EMPA中X射线穿透大,造成分析区太深。而由于电 子穿透小,深层所产生的电子不出现干扰,所以可对 表面几个原子层进行分析。 (吸附、催化、镀膜、离子交换等领域)
2被激发的电子能量可用下式表示:
KE = hv - BE - spec 式中
hv=入射光子(X射线或UV)能量
h=Planck constant ( 6.62 x 10-34 J s ),
v - frequency (Hz) BE=电子键能或结合能、电离能(Electron Binding Energy) KE=电子动能 (Electron Kinetic Energy) spec= 谱学功函数或电子反冲能 (Spectrometer Work Function)
XPS的仪器Instrumentation for XPS
XPS的仪器Instrumentation for XPS
钯的XPS(XPS spectrum obtained from a Pd metal
sample using Mg Ka radiation) ; 主峰在330, 690, 720, 910 and 920 eV。将KE转换为BE, 得到下页图-注意坐标左右颠倒。
X-ray Beam
X-ray penetration depth ~1mm. Electrons can be excited in this entire volume.
Electrons are extracted only from a narrow solid angle.
10 nm 1 mm2