车牌识别论文
车牌识别系统的设计与实现毕业设计论文
本科生毕业设计(论文)题目:车牌识别系统的设计与实现毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
车牌识别技术论文
车牌识别技术论文车牌识别技术问题是近年来智能交通系统技术研究的热点问题,这是店铺为大家整理的车牌识别技术论文,仅供参考!车牌识别技术论文篇一车牌识别技术研究摘要:车牌识别技术问题是近年来智能交通系统技术研究的热点问题,车牌识别技术主要包含三个部分:图像预处理、车牌定位及校正、车牌文字识别。
本文介绍了复杂背景下车牌识别系统的实现方法。
关键词:车牌识别技术;智能交通;Mean Shit算法中图分类号:TP391.41 文献标识码:A 文章编号:1007-9599 (2013) 09-0000-02随着汽车在人们的工作、生产和生活中扮演着越来越重要的角色,汽车的保有量也在急速增加。
由此带来的交通管理问题也变得越来越复杂,智能交通系统的建立是最好的解决问题的方法。
而车牌识别技术在智能交通系统中占有十分重要的地位。
停车厂、收费站、生产企业的门禁管理都有车牌识别技术的身影。
在车辆车牌识别技术中的图像提取、字符分割起、字符识别过程中,数字图像处理技术起到了重要作用。
但由于图像提取现场可能存在因时间、光线、天气的变化而造成的干扰使车牌成像效果较差的问题。
所以目前现有的车牌识别系统都存在因环境变化而产生的识别率变化的问题。
1 车牌图像预处理技术车牌图像预处理技术一般包括通过滤波技术、灰度化、图像增强、数学形态学等。
1.1 滤波技术在实际工作场景中采集到的数字图像通常会因为外界环境、摄像设备、传输线路或保存精度等方面的原因,使其在进行预处理前受到各种噪声的污染。
并且在图像处理过程中也可能会对图像产生噪声。
噪声与我们想要处理的图像没有任何关联,还会对我们的处理产生不好的影响。
所以,一般情况下我们会在进行图像处理前对图像采用滤波技术进行处理,常用的滤波方法有:中值滤波、均值滤波、高斯滤波等。
1.2 图像增强算法图像的对比度不足是图像处理的过程中经常会遇到的问题。
主要的原因是在获取车牌图像时受外界环境的影响。
对比度不足的图像会影响到图像的后续处理效果,所以,一般情况下,在进行图像处理前会使用灰度变换的方法来对图像进行对比度增强处理,以达到改善视觉效果的目的。
车牌照识别系统设计与实现毕业设计论文
车牌照识别系统设计与实现Design and Implementation of Car License Plate Recognition System毕业论文(设计)原创性声明本人所呈交的毕业论文(设计)是我在导师的指导下进行的研究工作及取得的研究成果。
据我所知,除文中已经注明引用的内容外,本论文(设计)不包含其他个人已经发表或撰写过的研究成果。
对本论文(设计)的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。
作者签名:日期:毕业论文(设计)授权使用说明本论文(设计)作者完全了解**学院有关保留、使用毕业论文(设计)的规定,学校有权保留论文(设计)并向相关部门送交论文(设计)的电子版和纸质版。
有权将论文(设计)用于非赢利目的的少量复制并允许论文(设计)进入学校图书馆被查阅。
学校可以公布论文(设计)的全部或部分内容。
保密的论文(设计)在解密后适用本规定。
作者签名:指导教师签名:日期:日期:注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。
4.文字、图表要求:1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。
图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画3)毕业论文须用A4单面打印,论文50页以上的双面打印4)图表应绘制于无格子的页面上5)软件工程类课题应有程序清单,并提供电子文档5.装订顺序1)设计(论文)2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订3)其它摘要汽车牌照自动识别系统是智能交通系统的重要组成部分,是高科技的公路交通监控管理系统的主要功能模块之一,汽车牌照识别技术的研究有重要的现实应用意义。
车牌识别毕业设计论文
车牌识别毕业设计论文车牌识别是一项实用的技术,已广泛应用于交通管理、安全监控和智能导航等领域。
本毕业设计旨在研究和实现一种高效准确的车牌识别系统,通过图像处理和模式识别的方法,实现车牌的自动检测、字符分割和识别。
在车牌识别系统中,图像处理是最关键的环节之一、首先,需要对图像进行预处理,包括二值化、滤波和去噪等操作,以提高后续处理的准确性。
然后,通过边缘检测和形态学操作,可以实现车牌的自动检测。
通过比较不同车牌的特征,可以找到最佳的车牌位置。
在车牌的字符分割过程中,一般采用基于垂直和水平投影的方法。
首先,通过垂直投影,可以得到每个字符的位置和宽度。
然后,通过水平投影,可以得到字符的高度和行间距。
通过这些信息,可以将车牌字符逐个分割出来,为后续的字符识别提供准备。
字符识别是车牌识别系统的最后一步,也是最复杂的一步。
常用的方法包括基于模板匹配和基于机器学习的方法。
在模板匹配中,需要提前准备一组字符模板,并将待识别的字符与模板进行比较,找出最佳匹配的字符。
在机器学习方法中,常用的算法包括支持向量机(SVM)和深度学习等,通过训练大量的样本数据,建立一个分类模型,实现字符的自动识别。
在实际应用中,车牌识别系统还需要考虑到诸多因素,如车牌大小的变化、光线条件的差异和图像角度的旋转等。
为了提高系统的鲁棒性,可以采用自适应阈值处理、学习算法和特征提取等技术手段。
通过本毕业设计,可以深入了解车牌识别的原理和实现方法,并通过实验验证其准确性和效率。
此外,还可以进一步优化和改进车牌识别系统,以提高其性能和适应性。
车牌识别毕业论文
摘要车牌自动识别技术是实现智能交通系统的关键技术,对我国交通事业的发展起着十分重要的作用,进而影响我国的经济发展速度及人们的生活质量。
车牌识别系统运用模式识别、人工智能技术,能够实时准确地自动识别出车牌的数字、字母及汉字字符,进而实现电脑化监控和管理车辆。
一个车牌识别系统的基本硬件配置有照明装置、摄像机、主控机、采集卡等。
而软件则是由具有车牌识别功能的图像分析和处理软件,以及能够具体满足应用需求的后台管理软件组成。
车牌自动识别系统主要分为图像预处理、车牌定位、字符分割和字符识别等主要模块,也包括后续应用程序的开发。
针对不同的模块,本文研究分析了现有的理论算法,并提出了具有实际应用意义的解决方案。
1.在图像预处理模块,因为人眼对于不同颜色分量的敏感度不同,图像灰度化采用加权平均值法;二值化过程中阈值的选取至关重要,本文采用动态自适应阈值法,效果理想;边缘提取利用了拉普拉斯算子;去噪过程采用的是中值滤波方法;2.车牌定位模块包括粗定位和细定位,本文通过分析车牌的尺寸、类型、颜色,得到不同的特征向量,即车牌的几何特征、灰度分布特征、投影特征和字符排列特征等,利用这些特征进行车牌定位;3.在车牌字符分割模块,提出了双向对比垂直投影分割法,该方法基于车牌的垂直投影,能够将字符准确的分割开,利于车牌字符识别: 4.本文对车牌数字和车牌字母及汉字提出了不同的处理方法,数字识别采用投影技术,汉字和字母识别应用BP神经网络技术,兼顾了识别准确率和识别速度;根据上述方法原理,基于MATLAB软件进行程序设计,编制了车牌自动识别软件。
关键字:车牌图像;图像处理;字符分割;BP神经网络AbstractLicense plate recognition technology is to realize the key technology of intelligent transportation system of our country, the development of the cause of traffic plays a very important role, then affects the economic development of our country and speed and people's quality of life. License plate recognition system with pattern recognition, artificial intelligence technology, to real-time accurately recognize the license plate number of automatic, letters and Chinese characters, and achieve computerized monitoring and management vehicles. A license plate recognition system of basic hardware configuration have lighting devices, video camera, master control machine, acquisition card, etc. And software is with license plate identification function by the image analysis and processing software, and can meet the demand of the specific application background management software component. License plate recognition system mainly divided into the image preprocessing, license plate location, character segment and character recognition and other major modules, including the follow-up application development.In view of the different module, this paper analyzed the existing algorithm theory, and puts forward the practical significance of the solution. 1. In the image preprocessing module, for the human eye to different color the sensitivity of the component is different, the image intensity by weighted average method; In the process of binary of the threshold is very important to select is adopted in this paper, dynamic adaptive threshold value method, the effect ideal; Using the Laplace operator edge extraction; Denoising the process is the median filtering method; 2. The license plate localization module contains coarse position and fine positioning, the paper analyzes the license plate size, type, color, get different characteristic vector, namely the geometrical characteristics of the license plate, gray distribution, projection characteristics and characters arrangement characteristics, use these characteristics of the license plate location; 3. In the license plate character segmentation module, and put forward the two-way contrast vertical projection segmentation method, this method is based on the license plate vertical projection, can make the character of accurate separated, beneficial to the license plate character recognition: 4. This article on license plate Numbers and letters and characters put forward different processing methods, number recognition by projection technology, Chinese characters and letters recognition application BP neural network technology, and taking account of the identification accuracy and recognition rate; According to the above method, based on the MATLAB software program design, compiled the license plate recognition software.Keywords License plate image, image processing, character segment, the BP neural network目录摘要............................................. 错误!未定义书签。
车牌识别设计与实现(毕业论文)
目录摘要 (Ⅰ)Abstract (II)1 绪论 (1)1。
1 课题的来源及意义 (1)1.2 课题主要研究的问题 (2)1。
3 系统设计的目标及基本思路 (2)1.3.1 设计目标 (2)1.3。
2 基本思路 (3)2 图像预处理 (4)2.1 汽车牌照的特征 (4)2。
2 灰度变换 (5)2.3 图像增强 (6)2.4 图像边缘提取及二值化 (7)2。
4。
1 图像边缘提取 (7)2。
4.2 灰度图像二值化 (14)2。
5 形态学滤波 (15)3 车牌定位方法研究 (19)3.1 车牌定位常用方法介绍 (19)3.1.1 基于纹理特征分析的定位方法 (19)3。
1。
2 基于数学形态学的定位方法 (19)3.1。
3 基于边缘检测的定位方法 (19)3.1。
4 基于小波分析的定位方法 (19)3.1。
5 基于图像彩色信息的定位方法 (20)3。
2 基于行扫描灰度跳变分析的车牌定位方法 (20)4 车牌识别方法研究 (22)4。
1 牌照区域的分割和图像进一步处理 (22)4.1.1牌照区域的分割 (22)4。
1.2车牌进一步处理 (22)4.2 字符的分割与归一化 (23)4.2。
1字符分割 (23)4。
2。
2字符归一化 (24)4.3 字符的识别 (24)5 总结与展望 (27)5。
1 总结 (27)5.2心得体会 (27)5。
3展望 (28)致谢 (29)参考文献 (30)附录一 (31)摘要车牌识别系统作为智能交通系统的一个重要组成部分,在交通监控中占有很重要的地位.车牌识别系统可分为图像预处理、车牌定位和字符识别3个部分,其中车牌定位作为获得车辆牌照图像的重要步骤,是后续的字符识别部分能否正确识别车牌字符的关键环节。
车牌定位系统实现对车辆牌照进行定位的功能,即从包含整个车辆的图像中找到车牌区域的位置,并对该车牌区域进行定位显示,将定位信息提供给字符识别部分。
针对车牌本身固有的特征,本文首先介绍了在车牌定位过程中常用的几种数字图像处理技术:图像的二值化处理、边缘检测和图像增强等。
车牌识别论文开题报告
车牌识别论文开题报告车牌识别论文开题报告一、研究背景与意义车牌识别技术是计算机视觉领域的研究热点之一,其在交通管理、智能交通系统、车辆追踪等方面具有广泛的应用价值。
随着城市化进程的加快和车辆数量的急剧增长,传统的人工车牌识别方式已经无法满足实际需求。
因此,开发一种高效准确的车牌识别系统对于提高交通管理效率和智能交通系统的发展具有重要意义。
二、研究目标本论文旨在设计和实现一种基于深度学习的车牌识别系统,通过对车牌图像进行自动识别和分析,实现对车辆的快速准确识别,以提高交通管理和智能交通系统的效率。
三、研究内容1. 车牌图像预处理在车牌识别系统中,车牌图像的预处理是非常重要的一步。
本论文将探索不同的图像处理算法,如图像增强、去噪和图像分割等,以提高车牌图像的质量和准确性。
2. 车牌定位与分割车牌定位与分割是车牌识别系统的核心环节。
本论文将研究和设计一种基于深度学习的车牌定位与分割算法,以实现对车牌区域的准确提取和分割。
3. 车牌字符识别车牌字符识别是车牌识别系统中的关键环节。
本论文将探索不同的字符识别算法,如卷积神经网络(CNN)、循环神经网络(RNN)等,以实现对车牌字符的准确识别和分类。
4. 系统性能评估与优化本论文将通过大量的实验和测试,对设计的车牌识别系统进行性能评估,并针对性能较差的地方进行优化,以提高系统的准确性和鲁棒性。
四、研究方法本论文将采用深度学习算法作为主要的研究方法,结合图像处理和模式识别的技术,设计和实现一个高效准确的车牌识别系统。
具体方法包括但不限于:卷积神经网络、循环神经网络、图像增强、图像分割等。
五、研究预期结果1. 设计和实现一种基于深度学习的车牌识别系统;2. 提高车牌图像的质量和准确性;3. 实现对车牌区域的准确提取和分割;4. 实现对车牌字符的准确识别和分类;5. 提高系统的准确性和鲁棒性。
六、研究意义本论文的研究成果将具有以下意义:1. 提高交通管理的效率:通过快速准确地识别车辆的车牌信息,可以实现对交通违法行为的及时处理和管理,提高交通管理的效率。
汽车车牌识别系统毕业论文(带外文翻译)解析
汽车车牌识别系统---车牌定位子系统的设计与实现摘要汽车车牌识别系统是近几年发展起来的计算机视觉和模式识别技术在智能交通领域应用的重要研究课题之一。
在车牌自动识别系统中,首先要将车牌从所获取的图像中分割出来实现车牌定位,这是进行车牌字符识别的重要步骤,定位的准确与否直接影响车牌识别率。
本次毕业设计首先对车牌识别系统的现状和已有的技术进行了深入的研究,在此基础上设计并开发了一个基于MATLAB的车牌定位系统,通过编写MATLAB文件,对各种车辆图像处理方法进行分析、比较,最终确定了车牌预处理、车牌粗定位和精定位的方法。
本次设计采取的是基于微分的边缘检测,先从经过边缘提取后的车辆图像中提取车牌特征,进行分析处理,从而初步定出车牌的区域,再利用车牌的先验知识和分布特征对车牌区域二值化图像进行处理,从而得到车牌的精确区域,并且取得了较好的定位结果。
关键词:图像采集,图像预处理,边缘检测,二值化,车牌定位ENGLISH SUBJECTABSTRACTThe subject of the automatic recognition of license plate is one of the most significant subjects that are improved from the connection of computer vision and pattern recognition. In LPSR, the first step is for locating the license plate in the captured image which is very important for character recognition. The recognition correction rate of license plate is governed by accurate degree of license plate location.Firstly, the paper gives a deep research on the status and technique of the plate license recognition system. On the basis of research, a solution of plate license recognition system is proposed through the software MATLAB,by the M-files several of methods in image manipulation are compared and analyzed. The methods based on edge map and das differential analysis is used in the process of the localization of the license plate,extracting the characteristics of the license plate in the car images after being checked up for the edge, and then analyzing and processing until the probably area of license plate is extracted,then come out the resolutions for localization of the car plate.KEY WORDS:imageacquisition,image preprocessing,edge detection,binarization,licence,license plate location目录前言 (1)第1章绪论 (2)§1.1 课题研究的背景 (2)§1.2 车牌的特征 (2)§1.3 国内外车辆牌照识别技术现状 (3)§1.4车牌识别技术的应用情况 (4)§1.5 车牌识别技术的发展趋势 (5)§1.6车牌定位的意义 (6)第2章MATLAB简介 (7)§2.1 MATLAB发展历史 (7)§2.2 MATLAB的语言特点 (7)第3章图像预处理 (10)§3.1 灰度变换 (10)§3.2 图像增强 (11)§3. 3 图像边缘提取及二值化 (13)§3. 4 形态学滤波 (18)第4章车牌定位 (21)§4.1 车牌定位的主要方法 (21)§4.1.1基于直线检测的方法 (22)§4.1.2 基于阈值化的方法 (22)§4.1.3 基于灰度边缘检测方法 (22)§4.1.4 基于彩色图像的车牌定位方法 (25)§4.2 车牌提取 (26)结论 (30)参考文献 (31)致谢 (33)前言随着交通问题的日益严重,智能交通系统应运而生。
车牌识别系统算法的研究与实现(小论文).doc
基于图像处理的汽车牌照的识别作者:陈秋菊指导老师:李方洲(温州师范学院物理与电子信息学院 325027)摘要:以一幅汽车牌照的识别为例,具体介绍了车牌自动识别的原理。
整个处理过程分为预处理、边缘提取、车牌定位、字符分割、字符识别五大模块,用MATLAB软件编程来实现每一个部分,最后识别出汽车牌照。
在研究的同时对其中出现的问题进行了具体分析,处理。
寻找出对于具体的汽车牌照识别过程的最好的方法。
关键词:汽车牌照车牌提取字符分割字符识别The vehicle license recognition based on the image processingAuthor:Chen QiujuTutor:Li Fangzhou(School of Physics and Electronic Information Wen Zhou Normal College 325027) Abstract:With one vehicle license recognition, the principle of the automobile License recognition is introduced .This process was divided into pre-process,edge extraction, vehicle license location, character division and character recognition, which is implemented separated by using MATLAB. The license is recognized at last. At the same time, the problems are also analyzed And solved in the process. The best method of recognition to the very vehicle license is found.Keywords: vehicle license vehicle license location character segmentationCharacter recognition1.引言1.1 选题意义汽车牌照自动识别系统是以汽车牌照为特定目标的专用计算机视觉系统,是计算机视觉和模式识别技术在智能交通领域应用的重要研究课题之一,是实现交通管理智能化的重要环节,它可广泛应用于交通流量检测,交通控制与诱导,机场、港口、小区的车辆管理,不停车自动收费,闯红灯等违章车辆监控以及车辆安全防盗等领域,具有广阔的应用前景。
车牌识别论文
《车牌识别系统》车牌识别系统摘要:文章从车牌定位、车牌字符分割和车牌字符识别3个阶段对车牌识别技术进行了深入研究,并用MATLAB进行了仿真。
关键词:车牌识别,车牌定位,车牌字符分割1 引言车牌是一辆汽车独一无二的信息,因此,对车辆牌照的识别技术可以作为辨识一辆车最为有效的方法。
随着ITS(智能交通系统)的高速发展,对车牌识别技术的研究也随之发展。
从根本上讲,牌照识别应用了先进的图像处理,模式识别,人工智能技术来获取,处理,解释,记录拍照的图像。
目前,牌照识别技术已经广泛而成功的应用于高速公路的监测,电子收费,交通违规管理,安全停车管理,偷盗车辆辨识等重要领域。
车牌识别系统一般包括以下几个部分,见图1。
图1 车牌识别系统主要研究内容如下:1.车牌的定位研究。
先进行图像的预处理,包括:RGB彩色图像的灰度化、图像灰度拉伸、图像边缘检测、灰度图的二值化等;车牌定位采用基于水平和垂直投影分布特征的方法。
2.字符分割的研究。
先对定位后的车牌图像进行预处理,然后按照车牌的先验信息,用区域增长算法来确定候选车牌的字符区域。
3.字符识别的研究。
对于提取出的单个字符,先进行归一化操作,再与给定的模板做对比,识别出字符。
2. 图像的定位2.1 图像的预处理一般情况下,由CCD采集到的图像会有不理想的情况,如光线过强,或者偏弱,这些都会对后续的图像处理产生一向。
而且车牌位于车身下部,靠近散热片,对比度较差,此时若直接对灰度图像进行定位会有不小的困难,为了获得较好处理的灰度图像,在对CCD采集的原始图像进行灰度化后,要对其灰度转换。
首先对图像灰度拉伸,使灰度级占据0--255整个区域,这样做的目的是为了减少光线过强,或者偏弱时造成的灰度级过少.本文直接采用直方图均衡化,这样处理简单,运算量小,效果也较理想。
2.2 边缘提取对图像进行边缘提取,边缘提取的最大好处就是能够突出边缘区域,同时使背景图像中无关的部分暗淡。
由于车牌部分是边缘相对集中的区域,在对其边缘分割后,可以看到车牌部分很明显的突现出来。
车牌识别系统论文
摘要车牌识别系统(LPRS)是智能交通系统的重要组成部分。
随着机动车辆数量的大幅度增加以及计算机技术的发展,人们对交通控制系统的要求显著提高。
因而智能交通系统被广泛地应用于交通控制系统当中,比如高速公路收费、停车场车辆管理、违章车辆监控、交通诱导控制等场合。
这使得车牌识别系统也得到了更广泛的关注。
与传统的车辆管理方法比较,车牌识别系统可以大大提高交通管理的效率和水平,帮助实现车辆管理的规范化。
本文主要介绍了基于MFC开发的有关数字图像处理的车牌数字识别系统。
系统是利用单张包含车牌的静态图片进行识别的,整个识别过程主要分为车牌定位和字符分割和字符识别三个大的模块。
而其中的字符识别是系统的核心部分。
字符识别目前运用的最多的就是神经网络和模板匹配的方法,本文所介绍的就是基于模板匹配的方法来实现车牌数字的识别。
过程中也相应结合了特征提取、直方图统计等一系列方法。
从实验得知,这种模板匹配的方法实现简单,且容易理解,在确保识别准确率的前提下,可以提高识别的效率,使得系统在比较准确地定位了车牌及分割出字符后,能更准确地实现字符的识别。
关键字:车牌识别;MFC;模板匹配;特征提取AbstractLicense Plate Recognition System (LPRS) is the important part of Intelligent Transportation System. With the increase in the number of motor vehicles and the development of computer technology, the requirements for traffic control systems are significantly increased to people. Because Intelligent Transportation System is widely used in traffic control systems, such as highway tolling, parking vehicles’ management, Illegal vehicles monitoring, traffic guidance and control and so on. So it makes the license Plate Recognition System has also been a more widespread concern. Compared to the traditional methods of vehicle management, license Plate Recognition System can greatly improve the efficiency and level of traffic management to help achieve the standardization of vehicle management.This paper mainly introduces the license Plate Number Recognition System which based on MFC and digital image processing. The system uses static images which contains a plate to recognize the numbers of the plates, the entire recognition process consists of three major modules, license plate location and character segmentation and character recognition. Character recognition is the core of the system. Neural network and template matching are mostly used in Character recognition currently, The Character recognition process introduced in this paper is based on template matching method, it also uses the feature extraction, Histogram statistics and a series of methods. From the experimental results, this method is simple and easy to understand, it can improve the efficiency of recognition , and ensure the accuracy of the recognition at the same time. When the system accurately locates the license plate and segments the characters, the method can recognize the characters accurately.Key word: License Plate Recognition; MFC; Template matching; Feature extraction目录1 绪论 (1)1.1研究的意义及目的 (1)1.2研究的现状及内容 (1)2 相关知识与技术 (3)2.1数字图像处理概述 (3)2.1.1 数字图像的存储和显示 (3)2.1.2 数字图像的处理 (3)2.2图像预处理相关技术 (3)2.2.1 图像灰度化技术 (3)2.2.2 边缘检测技术 (4)2.2.3 图像二值化技术 (7)2.3特征提取技术 (7)2.3.1 纹理特征提取技术 (7)2.3.2 形状和结构特征提取技术 (8)2.4图像分割技术 (8)2.5字符识别技术 (8)2.5.1 字符归一化技术 (8)2.5.2 改进的OPTA细化算法 (9)2.5.3 模板匹配 (10)2.6本章小结 (11)3 车牌数字识别系统的设计与实现 (12)3.1设计目标 (12)3.2系统分析 (12)3.3系统数据结构的设计 (12)3.4系统功能设计 (14)3.4.1 图片预处理功能 (14)3.4.2 车牌搜索与定位的实现 (14)3.4.3 字符分割算法设计 (15)3.4.4 字符归一化思想 (15)3.4.5 字符细化 (16)3.4.6 字符识别过程设计 (16)3.5本章小结 (16)4 系统实现与测试 (17)4.1系统开发环境与工具 (17)4.2实验结果 (17)4.2.1 打开车牌图片 (17)4.2.2 图片预处理 (17)4.2.3 车牌定位 (20)4.2.4 字符分割 (21)4.2.5 字符归一化和细化 (22)4.2.6 字符识别 (23)4.2.7 一键识别 (23)4.3本章小结 (24)5 结论 (25)5.1总结 (25)5.2展望 (25)参考文献 (26)致谢 ........................................................................................................... 错误!未定义书签。
车牌识别毕业设计论文
本科毕业设计(论文)( 2010 届)题目:车牌号码识别仿真分院:电子信息分院专业:电子信息工程班级:06电子本1姓名:余俊杰学号:0651035226指导老师:孙跃完成时间:2010年4月摘要车牌识别系统在交通的智能监视和管理中有着重要的应用,近几年发展非常迅速。
基于图像和字符识别技术的车牌字符识别系统也是目前国内外模式识别应用研究领域的一个热点。
尽管车牌的先验知识比较丰富,但是在复杂的背景下,车牌中的字符识别仍然比较困难。
目前的车牌识别系统大多是针对简单场景、单一车牌。
车牌字符识别系统的关键技术包括数字图像处理、车牌定位、车牌字符分割和字符识别技术。
本文对已定位好的车牌进行图像位图读取、图像二值化、字符分割、提取字符特征、BP神经网络设计等模块进行了初步的研究。
在字符分割方面,分析了牌照图像二值化与标准归一化以及几何校正的各种算法。
借助牌照字符固定宽度、间距的固定比例关系等先验知识实现字符的分割。
在特征提取方面,将字符归一化,再采用13特征法进行字符特征提取。
在字符识别方面,分析比较了常用的字符识别方法。
在此基础上详细分析基于BP神经网络的识别方法。
实验结果证明,所采用的BP神经网络具有良好的性能满足在复杂环境下实时识别车牌的要求,具有一定的理论和实际意义。
关键词:车牌字符识别;特征提取;BP神经网络;MATLABABSTRACTLicense plate recognition system has important applications in the intelligent traffic monitoring and management developed rapidly in recent years. Based on image and character recognition technology license plate recognition system pattern recognition at home and abroad is also a hot field of applied research. Although the license plate of the prior knowledge rich, but in a complex background, the license plate of the character recognition is still more difficult. Most of the current license plate recognition system is a simple scenario for a single plate.The key technologies of license plate recognition system include digital image processing, license plate location, license plate character segmentation technology. This article has been positioning for a good license plate reads the bitmap image, image binarization, character segmentation, feature extraction of characters, BP neural network design module for a more detailed study.In the character segmentation area. Analyze of the license plate image binarization with the standard normalization and geometric correction algorithms. With fixed-width character license, a fixed proportion of the relationship between the pitch prior knowledge to achieve segmentation of characters.In feature extraction. The character normalization, again using 13 features of character feature extraction method.In character recognition, analyze and compared of the common character recognition. On the basis of this detailed analysis based on BP neural networks recognition. The results show that BP neural network used good performance in a complex environment to meet real-time identification license plate requirements, with some theoretical and practical significance.Keywords:License plate character recognition;Feature Extraction;BP neural network; MATLAB.目录摘要 (I)ABSTRACT (II)1 绪论 (1)1.1 课题背景 (1)1.2 国内外研究现状 (2)2 图像的预处理 (4)2.1 图像的二值化 (4)2.2 牌照上下边框和铆钉的去除 (5)2.3 车牌字符细化 (5)2.4本章小结 (6)3 车牌字符分割 (6)4 车牌字符特征提取 (8)4.1字符常用的特征提取方法 (9)4.2十三点网格特征提取方法 (9)5 车牌字符的识别 (10)5.1 字符识别简介 (10)5.2 基于BP神经网络的字符识别 (11)5.3BP神经网络的设计 (12)5.3.1 输入层神经元个数 (13)5.3.2 隐含层神经元数目 (13)5.3.3 输出层神经元个数 (13)5.3.4 传递函数的选择 (14)5.3.5 BP网络的参数设置 (14)5.3.6 BP神经网络的创建 (14)5.4 BP神经网络的运用 (18)6 结论 (19)致谢 (20)参考文献 (21)1 绪论1.1 课题背景近几年,我国道路交通迅猛发展.随之也带来了对交通管理自动化的迫切需求。
车牌识别系统论文
安康学院学年论文(设计)华北水利水电大学研究生结课论文姓名高阳学号9专业计算机技术性质国家统招(√)单考()工程硕士()同等学力()科目计算机视觉与模式识别任课老师杨阳蕊成绩第1 页共5 页一种简易车牌识别算法及其探究【摘要】:本文介绍了一种标准车牌中简易的识别算法。
与传统的数字识别方法相比较,其效率较高。
该算法利用对字符二值化后的图像作特征向量,并用最近邻法实现字母的识别。
利用该方法时,由于图像是不规则的,则需对识别字符进行规整提取处理,减少了因图片不规则而引起的误识,降低了(对字符作特征向量时)算法复杂度。
经试验验证,效果良好。
【关键字】:字符识别;二值化;特征向量;最近邻;欧氏距离1引言随着人们生活水平的不断提高,机动车辆数量大幅度增加,与之相配套的高速公路,城市路网及停车场越来越多,显著提高了人们对交通控制方面的要求。
由于计算机技术的发展,信息处理水平的提高使智能交通系统成为世界交通领域研究的重要课题。
其中车牌识别是智能交通系统的重要组成部分。
本文主要探究车牌中非汉字的字符识别。
在有关字符识别的大型系统中,通常采用的是神经网络算法,但这种算法计算量比较大,实现起来较复杂。
而车牌中,非汉字字符个数有限,利用神经网络算法识别车牌中非汉字字符则显得大材小用,而很多字符识别算法又需要大量的预处理运算,包含图片二值化、去噪、规整、细化、轮廓提取、模板匹配等,使得识别的运算量大大增加。
本文主要使用相应字符形状特点来构建字符的特征向量,通过对待识别对象进行特征提取,利用最近邻法,通过比对模板特征向量和待选字符特征向量之间的距离,即可对车牌非汉字字符快速准确的识别,并降低了算法复杂度。
2实现方法2.1 设计思想在车牌识别中,由于图像本身受到各种自然因素或设备因素的影响,图像的清晰度往往不是很理想,有时还会带有较明显的图像噪声,使真实信号与理想信号之间存在偏差,若不对图像进行预处理,这将给后续的识别模块带来严重影响,最终可能造成识别错误。
《2024年基于深度学习的车牌检测识别系统研究》范文
《基于深度学习的车牌检测识别系统研究》篇一一、引言随着智能交通系统的快速发展,车牌检测识别技术在智能交通、安防监控、自动驾驶等领域具有广泛的应用前景。
传统的车牌检测识别方法主要依赖于人工设计的特征提取和简单的图像处理技术,但这些方法在复杂环境下往往难以取得理想的检测和识别效果。
近年来,深度学习技术的快速发展为车牌检测识别提供了新的解决方案。
本文旨在研究基于深度学习的车牌检测识别系统,提高车牌检测和识别的准确性和效率。
二、相关工作车牌检测识别系统主要包括车牌定位、字符分割和字符识别三个主要部分。
传统的方法主要依靠颜色、形状、纹理等特征进行车牌定位,然后通过图像处理技术进行字符分割和识别。
然而,这些方法在复杂环境下,如光照变化、遮挡、模糊等情况下,往往难以取得理想的检测和识别效果。
近年来,深度学习技术在图像处理领域取得了显著的成果。
卷积神经网络(CNN)在特征提取方面具有强大的能力,可以自动学习图像中的深层特征。
因此,基于深度学习的车牌检测识别系统逐渐成为研究热点。
该系统通过训练大量的车牌图像数据,学习到车牌的外观特征和布局规律,从而提高车牌检测和识别的准确性和鲁棒性。
三、系统设计基于深度学习的车牌检测识别系统主要包括以下三个部分:1. 车牌定位:采用深度学习算法对输入的图像进行车牌定位。
通过训练大量的车牌图像数据,学习到车牌的外观特征和布局规律,从而准确地定位出车牌的位置。
2. 字符分割:将定位出的车牌图像进行字符分割。
通过训练卷积神经网络模型,学习到字符的形状特征和排列规律,将车牌图像中的每个字符准确地分割出来。
3. 字符识别:对分割出的字符进行识别。
可以采用深度学习算法对每个字符进行分类,将字符的图像数据映射到对应的字符类别上,从而实现字符的识别。
四、实验与分析为了验证基于深度学习的车牌检测识别系统的性能,我们进行了大量的实验。
实验数据集包括多种不同环境下的车牌图像,如光照变化、遮挡、模糊等。
车牌识别论文
车牌识别论文车牌识别是一项涉及到计算机视觉和模式识别技术的研究领域,具有广泛的应用和研究价值。
随着计算机和图像识别技术的不断进步,车牌识别技术也得到了迅速发展,越来越被广泛应用于城市交通管理、公安安防、智能车辆等领域。
在这篇文章中,我们将深入探讨车牌识别论文的相关内容。
一、车牌识别的研究意义车牌识别是一项涉及到计算机视觉、机器学习和模式识别等多个学科的复杂研究题目。
这项技术的发展对于城市交通管理、公安安防、智能车辆等领域都具有重要的研究和应用价值。
首先,对于城市交通管理而言,车牌识别技术的应用可以提高其管理的效率和精度。
如可以通过车牌识别系统对车辆进入或通过的时间、地点等信息进行监控和管理,从而实现道路通行信息的实时收集和处理,为城市交通拥堵状况的分析和优化提供数据支持。
其次,对于公安安防领域而言,车牌识别技术的应用可以帮助提高交通安全和社会治安水平。
如可以通过车牌识别系统对车辆布控、追踪等工作进行处理和分析,从而辅助公安机关对违法犯罪行为进行快速识别和打击。
最后,对于智能车辆等应用领域而言,车牌识别技术的应用可以实现智能车辆的自主导航和路线规划等功能,从而为智慧城市的建设和发展提供支持。
二、车牌识别的技术研究车牌识别技术是一项综合性较强的技术研究项目,其中涉及到图像处理、增广现实技术、机器学习、深度学习等多个学科领域。
根据技术特点,车牌识别技术主要包括以下几个方面的研究:1、车牌图像预处理技术车牌图像预处理技术是车牌识别技术的重要组成部分,其作用是对车牌图像进行预处理,使识别算法能够更好地识别车牌图片中的车牌字符。
预处理技术主要包括图像二值化、滤波去噪、边缘检测、字符分割等。
2、车牌字符识别技术车牌字符识别技术是车牌识别技术的核心部分,其作用是对车牌图像中的字符进行分析识别。
字符识别技术可以分为基于传统机器学习和基于深度学习的两种方法。
目前,基于深度学习的车牌字符识别技术已经广泛应用于车牌识别领域。
《2024年基于深度学习的车牌检测识别系统研究》范文
《基于深度学习的车牌检测识别系统研究》篇一一、引言随着人工智能和深度学习技术的快速发展,车牌检测识别系统在智能交通、安防监控、自动驾驶等领域得到了广泛应用。
本文旨在研究基于深度学习的车牌检测识别系统,通过分析其原理、方法及实现过程,为相关领域的研究和应用提供参考。
二、车牌检测识别系统的基本原理车牌检测识别系统主要基于计算机视觉和深度学习技术,通过对图像或视频进行处理和分析,实现车牌的准确检测和识别。
该系统主要包括车牌检测、车牌定位、字符分割和字符识别等几个步骤。
1. 车牌检测:通过图像处理技术,从大量图像中筛选出包含车牌的图像。
2. 车牌定位:在检测到的图像中,通过颜色、形状、纹理等特征,定位出车牌的具体位置。
3. 字符分割:将车牌图像中的字符进行分割,以便进行后续的字符识别。
4. 字符识别:通过深度学习算法对分割后的字符进行识别,最终得到车牌号码。
三、深度学习在车牌检测识别中的应用深度学习在车牌检测识别系统中发挥着重要作用,主要包括卷积神经网络(CNN)和循环神经网络(RNN)的应用。
1. 卷积神经网络(CNN):CNN具有强大的特征提取能力,可以自动学习图像中的特征,从而提高车牌检测和识别的准确率。
在车牌检测和定位阶段,CNN可以提取车牌的形状、颜色等特征,实现准确的车牌定位。
2. 循环神经网络(RNN):RNN在字符分割和字符识别方面具有优势。
通过训练RNN模型,可以实现对字符的精确分割和高效识别。
此外,RNN还可以处理序列数据,因此在处理车牌号码这种具有时序特性的数据时具有较好的效果。
四、车牌检测识别系统的实现方法基于深度学习的车牌检测识别系统实现过程主要包括数据集准备、模型训练和系统测试三个阶段。
1. 数据集准备:收集包含各种场景、光照条件、车牌类型等多样化的图像数据,并进行标注,以便用于模型训练。
2. 模型训练:使用卷积神经网络和循环神经网络构建车牌检测识别模型,通过大量训练数据对模型进行训练,提高模型的准确率和鲁棒性。
毕业设计论文_车牌识别系统的设计与实现参考
毕业设计论文_车牌识别系统的设计与实现参考摘要:车牌识别系统是基于计算机视觉和图像处理技术的智能化交通系统的重要组成部分。
本文基于深度学习算法,结合图像处理技术,设计并实现了一套车牌识别系统。
该系统主要包括图像预处理、车牌定位、字符分割和字符识别四个模块。
经过大量实验和测试,验证了该系统具有较高的准确性和实用性。
本文的研究成果对于智能交通系统的发展和优化有着重要的意义。
关键词:车牌识别系统;深度学习算法;图像预处理;车牌定位;字符分割;字符识别1.引言车牌识别系统是智能交通系统中的一个重要组成部分,具有广泛的应用前景。
但是由于车牌图像的复杂性和多样性,传统的车牌识别方法存在一些问题,如准确率低、鲁棒性差等。
因此,本文基于深度学习算法,结合图像处理技术,设计并实现了一套车牌识别系统。
2.系统设计车牌识别系统主要由图像预处理、车牌定位、字符分割和字符识别四个模块组成。
图像预处理主要包括灰度化、二值化和图像增强等处理,旨在提高车牌图像的质量和清晰度。
车牌定位利用图像处理技术定位出图像中的车牌区域,为后续字符分割和字符识别提供基础。
字符分割将车牌图像中的字符进行分割,以便进行后续的字符识别。
最后,字符识别利用深度学习算法对分割好的字符进行识别。
3.系统实现本文使用Python编程语言和OpenCV、TensorFlow等开发工具实现了车牌识别系统。
首先,对原始图像进行灰度化处理,并使用图像增强技术提高图像的质量。
然后,利用二值化处理将图像转换为二值图像。
接下来,利用图像处理技术对二值图像进行车牌定位,找到车牌区域。
然后,对车牌区域进行字符分割,得到分割好的字符。
最后,利用TensorFlow实现的深度学习模型对字符进行识别。
4.实验结果通过大量实验和测试,本文的车牌识别系统在车牌图像的识别准确率和鲁棒性方面取得了较好的效果。
实验结果表明,该系统在光照条件不同、车牌类型不同等复杂环境下仍能实现较高的识别准确率。
《2024年基于深度学习的车牌检测识别系统研究》范文
《基于深度学习的车牌检测识别系统研究》篇一一、引言随着智能化交通管理系统的不断发展,车牌检测识别技术已经成为现代交通管理系统不可或缺的一部分。
基于深度学习的车牌检测识别系统能够实现对车辆信息的快速、准确捕捉和识别,对维护交通秩序、保障交通安全具有重要的作用。
本文将重点探讨基于深度学习的车牌检测识别系统的研究。
二、背景与意义车牌检测识别系统是一种用于识别车辆信息的智能系统,它可以有效地对交通进行管理。
然而,传统的车牌检测识别方法存在识别率低、效率差等问题。
基于深度学习的车牌检测识别系统利用深度学习算法对图像进行特征提取和识别,可以大大提高车牌检测的准确性和效率。
因此,研究基于深度学习的车牌检测识别系统具有重要的理论意义和实际应用价值。
三、相关技术概述3.1 深度学习技术深度学习是一种基于神经网络的机器学习方法,其核心思想是通过构建多层神经网络来模拟人脑的神经网络结构,从而实现对复杂数据的分析和处理。
在车牌检测识别中,深度学习可以用于图像特征提取、目标检测、车牌字符识别等任务。
3.2 车牌检测技术车牌检测是车牌识别系统中的重要环节,其任务是在图像中快速准确地检测出车牌的位置。
常用的车牌检测方法包括基于颜色特征的方法、基于形状特征的方法和基于深度学习的方法等。
四、基于深度学习的车牌检测识别系统设计4.1 系统架构设计基于深度学习的车牌检测识别系统主要由图像预处理、特征提取、车牌检测和车牌字符识别等模块组成。
其中,图像预处理模块主要用于对输入的图像进行灰度化、二值化等处理;特征提取模块利用深度学习算法对图像进行特征提取;车牌检测模块通过训练的模型对图像中的车牌进行检测;车牌字符识别模块则对检测到的车牌进行字符识别。
4.2 特征提取与模型训练在特征提取方面,可以利用卷积神经网络(CNN)等深度学习算法对图像进行特征提取。
在模型训练方面,可以通过大量的车牌图像数据对模型进行训练,使模型能够更好地适应不同的环境和场景。
毕业设计 车牌识别
毕业设计车牌识别车牌识别技术在近年来得到了广泛的应用和研究,它不仅在交通管理、安全监控等领域发挥着重要作用,还在智能驾驶、智慧城市建设等方面展现出巨大的潜力。
本文将从车牌识别技术的原理、应用场景和未来发展等方面进行探讨。
一、车牌识别技术的原理车牌识别技术主要基于计算机视觉和模式识别的理论和方法,通过对车牌图像进行处理和分析,提取出车牌上的字符信息,从而实现对车牌的自动识别。
其主要包括图像采集、图像预处理、特征提取和字符识别等步骤。
在图像采集方面,目前常用的方式是通过摄像头对车辆进行拍摄,获取车牌图像。
而随着摄像头技术的不断进步,高清晰度的图像可以更好地提供给后续处理算法使用。
在图像预处理方面,主要是对车牌图像进行灰度化、二值化、去噪等操作,以便更好地提取和分析车牌上的字符信息。
这一步骤的准确性和效率对于后续的识别结果有着重要的影响。
特征提取是车牌识别技术的核心部分,它通过对车牌图像进行形态学处理、边缘检测和轮廓提取等操作,提取出车牌上的字符特征。
这些特征可以是字符的形状、颜色、纹理等信息,通过对这些特征的分析和匹配,可以实现对车牌上的字符进行识别。
字符识别是车牌识别技术的最后一步,它主要利用机器学习和模式识别的方法,将车牌上的字符与已知的字符模板进行比对和匹配,从而得到最终的识别结果。
目前常用的字符识别算法包括基于模板匹配的方法、基于神经网络的方法和基于深度学习的方法等。
二、车牌识别技术的应用场景车牌识别技术在交通管理、安全监控等领域具有广泛的应用。
在交通管理方面,它可以实现对违章车辆的自动识别和记录,提高交通违法的查处效率;在安全监控方面,它可以用于对车辆的出入口进行监控和管理,提高安全防范的能力。
此外,车牌识别技术还可以应用于智能驾驶和智慧城市建设等领域。
在智能驾驶方面,它可以实现对车辆的自动跟踪和识别,提高自动驾驶系统的安全性和可靠性;在智慧城市建设方面,它可以用于停车场管理、道路拥堵监测等方面,提高城市交通的效率和便利性。
车牌识别毕业论文
车牌识别毕业论文车牌识别毕业论文近年来,随着智能交通系统的迅猛发展,车牌识别技术成为了一个备受关注的研究领域。
车牌识别技术的应用范围广泛,不仅可以用于交通管理,还可以应用于停车场管理、车辆追踪等领域。
本篇文章将探讨车牌识别技术的原理、应用以及未来的发展趋势。
一、车牌识别技术的原理车牌识别技术主要依靠计算机视觉和模式识别的方法,通过对车牌图像的处理和分析,将车牌上的字符信息提取出来。
车牌识别的过程可以分为图像获取、预处理、字符分割和字符识别四个步骤。
首先,图像获取是车牌识别的第一步,可以通过摄像头、监控摄像头等设备获取车辆的图像。
然后,对获取到的图像进行预处理,包括灰度化、二值化、噪声去除等操作,以提高后续处理的效果。
接下来,进行字符分割,将车牌上的字符分离出来。
字符分割是车牌识别中的一个关键步骤,需要克服车牌上字符之间的相互干扰和字符形状的多样性等问题。
最后,对分割出的字符进行识别,可以使用模板匹配、神经网络等方法进行字符识别,以得到最终的车牌号码。
二、车牌识别技术的应用车牌识别技术在交通管理中有着广泛的应用。
首先,它可以用于交通违法监控,通过对车辆的车牌进行识别,可以实现对违法车辆的自动抓拍和追踪,提高交通管理的效率。
其次,车牌识别技术还可以应用于停车场管理,实现对车辆的自动进出和停车费的自动结算,方便了车主的停车体验。
此外,车牌识别技术还可以用于车辆追踪。
通过对车辆的车牌进行识别,可以实现对车辆的实时追踪和监控,有助于提高车辆的安全性和防盗能力。
三、车牌识别技术的未来发展趋势随着科技的不断进步,车牌识别技术也在不断发展。
未来,车牌识别技术将朝着以下几个方向进行发展。
首先,车牌识别技术将更加智能化。
随着人工智能技术的发展,车牌识别系统将具备更强的自学习和自适应能力,可以实现对不同类型车牌的自动识别,提高识别的准确性和稳定性。
其次,车牌识别技术将更加高效化。
未来的车牌识别系统将采用更快速、更高效的算法,实现对车牌的实时识别和处理,提高交通管理的效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《车牌识别系统》
车牌识别系统
摘要:文章从车牌定位、车牌字符分割和车牌字符识别3个阶段对车牌识别技术进行了深入研究,并用MATLAB进行了仿真。
关键词:车牌识别,车牌定位,车牌字符分割
1 引言
车牌是一辆汽车独一无二的信息,因此,对车辆牌照的识别技术可以作为辨识一辆车最为有效的方法。
随着ITS(智能交通系统)的高速发展,对车牌识别技术的研究也随之发展。
从根本上讲,牌照识别应用了先进的图像处理,模式识别,人工智能技术来获取,处理,解释,记录拍照的图像。
目前,牌照识别技术已经广泛而成功的应用于高速公路的监测,电子收费,交通违规管理,安全停车管理,偷盗车辆辨识等重要领域。
车牌识别系统一般包括以下几个部分,见图1。
图1 车牌识别系统
主要研究内容如下:
1.车牌的定位研究。
先进行图像的预处理,包括:RGB彩色图像的灰度化、图像灰度拉伸、图像边缘检测、灰度图的二值化等;车牌定位采用基于水平和垂直投影分布特征的方法。
2.字符分割的研究。
先对定位后的车牌图像进行预处理,然后按照车牌的先验信息,用区域增长算法来确定候选车牌的字符区域。
3.字符识别的研究。
对于提取出的单个字符,先进行归一化操作,再与给定的模板做对比,识别出字符。
2. 图像的定位
2.1 图像的预处理
一般情况下,由CCD采集到的图像会有不理想的情况,如光线过强,或者偏弱,这些都会对后续的图像处理产生一向。
而且车牌位于车身下部,靠近散热片,对比度较差,
此时若直接对灰度图像进行定位会有不小的困难,为了获得较好处理的灰度图像,在对CCD采集的原始图像进行灰度化后,要对其灰度转换。
首先对图像灰度拉伸,使灰度级占据0--255整个区域,这样做的目的是为了减少光线过强,或者偏弱时造成的灰度级过少.本文直接采用直方图均衡化,这样处理简单,运算量小,效果也较理想。
2.2 边缘提取
对图像进行边缘提取,边缘提取的最大好处就是能够突出边缘区域,同时使背景图像中无关的部分暗淡。
由于车牌部分是边缘相对集中的区域,在对其边缘分割后,可以看到车牌部分很明显的突现出来。
实现方法中,我们采用了水平差分算法,它利用图像后一列像素减去前一列像素,从而得到边缘图像。
再对所得的图像二值化处理。
实验结果如图1所示
图1 边缘提取后的图像
由图可见,图像经过差分二值后,车牌区域明显可见。
2.2 车牌边界的确定
由于车牌一般是由字符、背景和边框组成,提取图像的边缘图像后,在字符与背景处就形成了较强的边缘。
再考虑汽车本身的特点,通常车牌位于汽车缓冲器上或附近,靠近整幅图像的下部,在往下便是路面,路面一般是比较光滑,因此可以在边缘提取时就很有效的将这部分杂质滤除掉,而使干扰图像的噪声处于车牌之上,如车灯,或散热片。
由此,我们采用由下而上的扫描的方法。
首先,对边缘图像的象素沿水平方向累加产生一个投影图,如图2所示。
图2 粗略定位的水平投影图
由投影图可以看出有车牌字符的地方,灰度值较高,而且处于图像的下部。
故此,先进行粗略定位,找寻水平投影图大于3分之2最大值的点,找到改点对应的横坐标的最大值,记录坐标。
该点记为车牌的下边界。
根据车牌的几何特征(在初始处对图像进行归一化处理统一成1000×800的大小),车牌高度大约占100个像素,考虑到噪声
等因素的影响,粗略将上下边界分别定义为最大值-120,最大值+50。
在上下界粗定位的基础上进行精细定位,即对图像再进行水平投影,找寻大于3分之2最大值的点,记录改点所对应的横坐标的最大值和最小值,那么此两点为车牌的上下边界点。
如图3所示
5
10
15
20
25
30
图3 精细定位的水平投影图
在定位出上下边界后,再对特征图像进行垂直投影, 得到投影图后,对投影图进行处理,重复水平定位的理念,找寻大于3分之2最大值的点所对应的横坐标的最大值和最小值,即为车牌的左右边界点,完成定位。
为了之后字符识别的更好处理,在这里,本人根据找寻的边界点,对该灰度增强后图进行定位。
如图4所示
0100200300400500600700800
图4 垂直投影图
3 字符分割
区域增长的基本思想是将具有相似性质的象素集合起来构成区域。
首先在待分割的每个区域中选择一个种子点作为增长的起始点,然后在种子点的领域中搜索那些与种子点的相似特征度满足指定增长准则的象素,并与种子点所在区域合并。
此时将新合并的象素作为新的种子点,继续以上搜索和合并过程,直到没有可以合并的象素为止。
本文的算法中采用区域增长算法来确定候选车牌的字符区域。
首先要确定起始的种子点。
字符的像素值最大为255,基于这个信息,选定像素值为255的点为起始点。
然后选择下面的增长标准:假定一个像素属于一个区域,则这个像素和这个区域里至少有八个像素点是相连的。
如果一个像素同时又和其他区域相连了,则这些区域合并在一起。
由于光照或者背景噪声等的影响,区域增长算法可能生错误的字符区域,就需要根据前文所述的车牌先验信息来删除错误的区域,从而准确定位字符区域。
按照车牌的先验信息字符的尺寸为45mm* 90mm,字符间隔为12mm,间隔符宽10mm,那么第二个和第三个字符的间隔为34mm,车牌的左边界和第一个字符的间隔以
及车牌右边界和最后一个字符的间隔为25mm,字符到上下边界的间隔也为25mm。
假定字符宽度为cw,字符高度为ch。
则字符间隔为(12/45)*cw =0.27*cw,第二个和第三个字符的间隔为(34/45)*cw=0.76*cw,而车牌的左边界和第一个字符的间隔以及车牌右边界和最后一个字符的间隔就为(25/45)*cw=0.56*cw,字符到上下边界的间隔为(25/45)*ch=0.56*ch。
其中cw=(45/440)*a,ch=(90/140)*b (a,b为分割车牌的宽度和高度)。
根据以上的信息就可以对车牌的字符进行准确的定位。
如图5所示
图5 字符分割
4 字符识别
4.1 归一化
因为扫描得到的图像的字符大小存在较大的差异,统一尺寸有助于字符识别的准确性,提高识别率,从而与模板进行匹配。
归一化主要包括位置归一化、大小归一化及笔划粗细归一化(常用细化算法)。
在这里本人对大小归一化。
对不同大小的字符进行变换,使之成为同一尺寸大小的字符,这个过程称为字符大小归一化。
通过字符大小归一化,许多特征就可以用于识别不同字号混排的字符。
具体实现方法,首先对图像二值化处
理,这里的阈值根据大津法得到,然后将字符的外边框按比例线性放大或缩小成为规定尺寸的字符。
为了之后模板匹配的处理,在这里,本人对二值化的图像进行反二值化处理。
如图6所示
图6 图像归一化
4.2 匹配识别字符
对分割出来的字符进行识别的方法很多,主要有以下几种方法:
(1)利用字符的结构特征和变换(如Fourier 变换、Karhunen-Loeve 变换等)进行特征提取。
该方法对字符的倾斜、变形都有很高的适应性,但运算量大,对计算机性能的要求较高。
(2)利用字符统计特征进行特征提取。
如提取字符的投影特征、网格特征和轮廓特征组成字符特征矢量进行匹配的方法,识别率较高。
(3)基于字符结构分析的识别方法。
该方法可以识别有较大旋转、变形、缩放的字符图像,但需要进行复杂的字符笔划分析和抽取,对字符图像质量要求较高。
(4)模板匹配法。
由于车辆牌照字符中只有26 个大写英文字母、10 个阿拉伯数字和约50 个汉字,所以字符集合较小,该方法对于有一定变形、污损或笔画缺损的字符图像有较好的识别效果,总体识别率较高,同时也能满足实时性的要求。
经过实验,本文采用的是第四种模板匹配算法。
将分割出来的字符图像与模板图像相减,差值最小的便是与之匹配的模板,从而识别出字符。
总结与展望
车牌识别系统是智能交通领域研究中的重要组成部分,随着经济的不断发展,车辆在人们工作生活中占据着越来越重要的地位,车辆数目的增多给车辆管理提出了更高的要求,因此车牌识别系统有着广泛的应用前景。
本文对车牌识别系统的三大模块----车牌定位、字符分割和字符识别都进行了研究工作。
下面将本文的主要工作及创新研究作如下的总结。
1. 车牌定位:读入图像,然后是进行图像的灰度化、灰度拉伸。
接着分析了边缘算子的检测及图像差分的边缘检测后选择了图像差分的边缘检测。
二值化车牌图像后,采用改进的投影法对图像进行水平定位,然后在粗定位的基础上进行了车牌精确定位。
最后采用投影法对图像进行垂直定位,定位车牌区域。
2. 字符分割:利用车牌的先验知识对字符进行分割
3. 字符识别:归一化字符图像为48×24的字符图像,比较模板图像与字符图像,找到与之匹配的模板,识别出字符。
本文虽然在车牌自动识别系统的算法技术和实现方法上进行了一些探索,并做了大量工作,取得了一些阶段性的成果,但由于客观条件及时间的限制,在很多方面还存在不足,有待于进一步的研究和探讨,主要有以下几点:
1.车牌定位中垂直定位容易受到噪声的影响,进而无法精确定位。
2. 字符分割直接采用的先验知识分割虽然运算量小,但对定位要求高,这样通用性较弱。
3. 模板匹配法虽然识别率高,但运算量较大。