关于亚稳态

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

亚稳态是指触发器无法在某个规定时间段内达到一个可确认的状态。当一个触发器进入亚稳态时,既无法预测该单元的输出电平,也无法预测何时输出才能稳定在某个正确的电平上。在这个稳定期间,触发器输出一些中间级电平,或者可能处于振荡状态,并且这种无用的输出电平可以沿信号通道上的各个触发器级联式传播下去。

1.亚稳态发生的原因

在同步系统中,如果触发器的setup time / hold time不满足,就可能产生亚稳态,此时触发器输出端Q在有效时钟沿之后比较长的一段时间处于不确定的状态,在这段时间里Q端毛刺、振荡、固定的某一电压值,而不是等于数据输入端D的值。这段之间成为决断时间(resolution time)。经过resolution time之后Q端将稳定到0或1上,但是究竟是0还是1,这是随机的,与输入没有必然的关系。

2.亚稳态的危害

由于输出在稳定下来之前可能是毛刺、振荡、固定的某一电压值,因此亚稳态除了导致逻辑误判之外,输出0~1之间的中间电压值还会使下一级产生亚稳态(即导致亚稳态的传播)。逻辑误判有可能通过电路的特殊设计减轻危害(如异步FIFO中Gray码计数器的作用),而亚稳态的传播则扩大了故障面,难以处理。

3.亚稳态的解决办法

只要系统中有异步元件,亚稳态就是无法避免的,因此设计的电路首先要减少亚稳态导致错误的发生,其次要使系统对产生的错误不敏感。前者要*同步来实现,而后者根据不同的设计应用有不同的处理办法。用同步来减少亚稳态发生机会的典型电路如图1所

示。

左边为异步输入端,经过两级触发器同步,在右边的输出将是同步的,而且该输出基本不存在亚稳态。其原理是即使第一个触发器的输出端存在亚稳态,经过一个CLK周期后,第二个触发器D端的电平仍未稳定的概率非常小,因此第二个触发器Q端基本不会产生亚稳态。注意,这里说的是―基本‖,也就是无法―根除‖,那么如果第二个触发器Q出现了亚稳态会有什么后果呢?后果的严重程度是有你的设计决定的,如果系统对产生的错误不敏感,那么系统可能正常工作,或者经过短暂的异常之后可以恢复正常工作,例如设计异步FIFO时使用格雷码计数器当读写地址的指针就是处于这方面的考虑。如果设计上没有考虑如何降低系统对亚稳态的敏感程度,那么一旦出现亚稳态,系统可能就崩溃了。

4 亚稳态与系统可靠性

使用同步电路以后,亚稳态仍然有发生的可能,与此相连的是平均故障间隔时间MTBF(mean time between failure),亚稳态的发生概率与时钟频率无关,但是MTBF与时钟有密切关系。有文章提供了一个例子,某一系统在20MHz 时钟下工作时,MTBF约为50年,但是时钟频率提高到40MHz 时,MTBF 只有1 分钟!可见降低时钟频率可以大大减小亚稳态导致系统错误的出现,其原因在于,时钟周期如果尽可能的大于resolution time 可减小亚稳态传递到下一级的机会,可提高系统的MTBF,

如图 2 所示。

5. 总结

亚稳态与设计可靠性有非常密切的关系,当前对很多设计来说,实现需要的功能并不困难,难的是提高系统的稳定性、可靠性,较小亚稳态发生的概率,并降低系统对亚稳态错误的敏感程度可以提高系统的可靠性。

6. Cures for metastability(摘自johnson 所书)

∙用反应更快的Flip-Flop,减少metastability window。(所需要的建立时间和保持时间较小)

∙如图一,引入由同一时钟驱动的串接DFF。(两级触发器使信号同步)

∙降低采样频率,给DFF 更多的时间避开metastability window(亚稳态时间)。(增加时钟周期,减小mtbf)

∙使用边沿变化快速的时钟信号。(这是对器件设计和工艺的要求)

减少亚稳态出现的关键是器件使用比较好的工艺和时钟周期的余量大一些。好器件工艺的resolution time会比较短,例如传统的TTL 电路中,高速的74F系列就比74LS好;时钟频率低一些,出现亚稳态时提供给输出稳定的时间也会多一些,这样可以减小亚稳态传播的机会。同步系统也存在亚稳态,但是相比异步系统来说,比较容易控制,只要setup/hold time满足就可以,而对异步系统,这个简单的要求也不容易满足,这也是同步系统的优点之一。

亚稳态

这是跨时钟设计中最基础的一个问题(宏观的问题是FIFO),按照我的观察,上论坛问问题多的一般不明白这个,请一定要注意了。

什么是亚稳态?

数字电路中的简单双稳态电路就是两个反相器(与非门或或非门)首尾相连组成(加一些控制逻辑变成了锁存器,触发器),然而并不像名字显示的,这种电路其实还有第三种半稳定态——就是当两个反相器都处于中间值得情况——这称之为亚稳态。我们知道反相器在非逻辑值范围的反馈系数是相当大的,一旦因为干扰或者噪音离开了这个中心点,就会很快地进入逻辑值范围(稳态)。数学分析,从亚稳态进入稳态,正如放射元素的衰变,是一个指数的规律(为什么是指数的规律?你要是想不明白,说明你还没有搞明白亚稳态)。???

那么,亚稳态的危害到底是什么呢?消耗功率;),其实不是(虽然亚稳态消耗很大的功率),亚稳态的问题在于其电平并不处于有效逻辑电平范围内,而且在变化。这就导致与其相连其他数字部件将其作出不同的判断(注意,不同),有的作为'1',有的作为'0',有的也进入了亚稳态,数字部件就会逻辑混乱。

那么究竟如何避免(或者减小)亚稳态的危险呢?注意到亚稳态的触发器继续停留在亚稳态的几率按照指数减少,那么办法就是等——等足够长的时间,直到这个几率变得小的实际上不会发生。到底需要有多长呢?有的厂商有一个数据,有的没有,按照普通的做法,至少等一个时钟周期——这也就是所谓的异步数据要用两个触发器打一下。这一段有点糊涂,不容易说明白,你看了要是觉得云里雾里,不知所云,那们你只有找一本书学习了;要是觉得作者表达不清,那么恭喜你,面试通过了的几率增加了。关于这个问题有很多糊涂的认识,要是你的主考官和你争论,你就顺着他的意思,毕竟没有人想找一个管教不了的手下。

异步FIFO

异步FIFO是跨时钟域设计方法的集中体现,体现了很多的方法。不过,其中最重要的有两点,一个就是亚稳态,一个就是和亚稳态类似但不相同的——多个控制/状态信号的跨时钟传递。具体地说,就是当你把一组信号传递到另外一个时钟域的话,这一组信号可能因为延迟不同,这样到达新时钟域之后,得到的数据相差一个老时钟域的时钟周期。幸好,对于FIFO,需要传递的是一个计数器,这个计数器可以编码成格雷码(gray code),这样的编码每次只变化一个位,正好解决了上面的问题(要是没有画过图,最好画一个图看一下)。真不清楚这是怎么发明的!注意,这里其实还对格雷码的相对延迟和相关的时钟周期有一个要求。这就是异步FIFO中最关键的一点,至于指针如何控制,稍微考虑一下都很容易清楚。需要注意的事,这些东西不是用嘴能说清楚的,最好画一个示意图,不要因为没有说清楚,让主考官觉得你没有清楚。

同步与异步复位,以及相关的亚稳态状况与设计可靠性

时间:2007-04-05 来源: 作者:潘登点击:1088 字体大小:【大中小】

异步复位相比同步复位:

相关文档
最新文档