高中物理:第五章匀速圆周运动
高中物理《圆周运动》教学设计(优秀7篇)

高中物理《圆周运动》教学设计(优秀7篇)圆周运动教案篇一一、教学任务分析本节课的教学内容是上海市二期课改新教材,即上海科学技术出版社出版的《物理》(修订本)高中一年级第一学期第五章《A、圆周运动快慢的描述》部分,本节课是高一必修内容。
学生虽然已经初步学习了有关运动的知识,但如何研究圆周运动的特征是新的学习内容。
圆周运动的定义,及描述圆周运动的线速度、角速度的知识在本章中具有重要的地位。
本节课的教学既要着重让学生理解波速、波长、频率的关系,又要让学生对波形图有初步的认识,并在学习的过程中让学生体验观察法、比较法等在物理学习中的作用,从而培养学生多方面的能力。
二、教学目标:1、知识与技能:(1)、理解匀速圆周运动。
(2)、理解匀速圆周运动中的线速度和角速度。
(3)、能够运用匀速圆周运动的有关公式分析和解决有关问题的能力。
2、过程与方法:(1)、通过对两种运动的比较学习,使学生能运用对比方法研究问题。
(2)、通过对描述匀速圆周运动的物理量的学习,使学生了解、体会研究问题要从多个的侧面考虑。
(3)、通过对线速度、角速度的关系探究使学生体验获得知识的过程,并感悟科学探究法在物理学习中的作用。
3、情感、态度与价值观:(1)、通过录像使学生对“物理来自生活”形成深刻印象。
(2)、通过对手表指针的运动的观察、探索并得到线速度、角速度的定义式及关系使学生正确认识物理学是一门实验科学。
(3)、通过对内容的观察让学生树立学以致用的价值观,并增强对物理学的好感。
通过合作学习,加强学生之间的协作关系和团队精神。
三、教学重点和难点教学重点:1、线速度、角速度的概念和计算。
2、什么是匀速圆周运动教学难点:要学生理解从不同角度比较快慢可能得出相反的结论。
对匀速圆周运动是变速运动的理解。
四、教具准备高中物理圆周运动教案篇二(一)知识与技能1、理解线速度、角速度、转速、周期等概念,会对它们进行定量的计算。
2、知道线速度与角速度的定义,知道线速度与周期,角速度与周期的关系。
圆周运动教案 高中物理《圆周运动》教学设计(优秀5篇)

圆周运动教案高中物理《圆周运动》教学设计(优秀5篇)高中物理《圆周运动》教学设计【优秀5篇】由作者为您收集整理,希望可以在圆周运动教案方面对您有所帮助。
高一物理圆周运动教案篇一教学重点线速度、角速度的概念和它们之间的关系教学难点1、线速度、角速度的物理意义2、常见传动装置的应用。
高中物理圆周运动优秀教案及教学设计篇二做匀速圆周运动的物体依旧具有加速度,而且加速度不断改变,因其加速度方向在不断改变,其运动版轨迹是圆,所以匀速圆周运动是变加速曲线运动。
匀速圆周运动加速度方向始终指向圆心。
做变速圆周运动的物体总能分权解出一个指向圆心的加速度,我们将方向时刻指向圆心的加速度称为向心加速度。
速度(矢量,有大小有方向)改变的。
(或是大小,或是方向)(即a≠0)称为变速运动。
速度不变(即a=0)、方向不变的运动称为匀速运动。
而变速运动又分为匀变速运动(加速度不变)和变加速运动(加速度改变)。
所以变加速运动并不是针对变减速运动来说的,是相对匀变速运动讲的。
匀变速运动加速度不变(须的大小和方向都不变)的运动。
匀变速运动既可能是直线运动(匀变速直线运动),也可能是曲线运动(比如平抛运动)。
圆周运动是变速运动吗篇三高中物理《圆周运动》课件一、教材分析本节内容选自人教版物理必修2第五章第4节。
本节主要介绍了圆周运动的线速度和角速度的概念及两者的关系;学生前面已经学习了曲线运动,抛体运动以及平抛运动的规律,为本节课的学习做了很好的铺垫;而本节课作为对特殊曲线运动的进一步深入学习,也为以后继续学习向心力、向心加速度和生活中的圆周运动物理打下很好的基础,在教材中有着承上启下的作用;因此,学好本节课具有重要的意义。
本节课是从运动学的角度来研究匀速圆周运动,围绕着如何描述匀速圆周运动的快慢展开,通过探究理清各个物理量的相互关系,并使学生能在具体的问题中加以应用。
(过渡句)知道了教材特点,我们再来了解一下学生特点。
也就是我说课的第二部分:学情分析。
匀速圆周运动方程公式

匀速圆周运动方程公式
匀速圆周运动的基本方程公式如下:
1. 线速度公式:v = Δs/Δt = 2πr/T = ωr = 2πrn。
其中,s代表弧长,t代表时间,r代表半径,n代表转速。
2. 角速度公式:ω = Δθ/Δt = 2π/T = 2πn。
其中,θ表示角度或者弧度。
3. 周期公式:T = 2πr/v = 2π/ω = 1/n。
4. 转速公式:n = 1/T = v/2πr = ω/2π。
5. 向心力公式:Fn = mrω^2 = mv^2/r = mr4π^2/T^2 = mr4π^2n^2。
6. 向心加速度公式:an = rω^2 = v^2/r = r4π^2/T^2 = r4π^2n^2。
7. 过最高点时的线速度条件:vmin = √gr。
8. 过最高点时对杆的压力最小值:fmin = mg - (有杆支撑)。
9. 过最低点时的对杆的拉力最大值:fmax = mg + (有杆)。
这些公式可以用于描述匀速圆周运动的各种物理量之间的关系,包括线速度、角速度、周期、转速、向心力和向心加速度等。
高中高一物理教案:匀速圆周运动2篇

高中高一物理教案:匀速圆周运动高中高一物理教案:匀速圆周运动精选2篇(一)教学目标:1. 理解匀速圆周运动的基本概念与特点。
2. 掌握匀速圆周运动的相关公式与计算方法。
3. 能够解决与匀速圆周运动相关的问题。
教学重点:1. 理解匀速圆周运动的基本概念与特点。
2. 掌握匀速圆周运动的相关公式与计算方法。
教学难点:1. 掌握匀速圆周运动的相关公式与计算方法。
教学准备:1. 教学课件或教学板书。
2. 教材《物理》。
3. 实验器材:小球、细线。
4. 计时器。
教学过程:一、导入(5分钟)1. 引入匀速直线运动的概念,回顾并复习相关内容。
2. 引出匀速圆周运动的问题:小球在细线上做匀速圆周运动时,有哪些物理量与问题需要研究?二、概念讲解与实验演示(10分钟)1. 讲解匀速圆周运动的基本概念与特点:半径、周期、频率、线速度、角速度等。
2. 进行实验演示:利用小球和细线做匀速圆周运动的实验,观察小球的运动特点及相关物理量的变化。
三、问题分析与计算方法(15分钟)1. 分析小球在匀速圆周运动中的问题:速度、加速度、位移、力、功等相关计算。
2. 讲解匀速圆周运动的计算方法:利用速度与半径的关系、加速度的计算、力与功的计算等。
四、解题示范与训练(15分钟)1. 解题示范:通过示例题目,讲解如何运用所学的知识解决匀速圆周运动的问题。
2. 学生训练:布置一些练习题目,让学生运用所学的知识独立解题,并互相交流提问。
五、拓展与应用(10分钟)1. 拓展讲解:引入圆周运动的相关概念与公式,如圆周位移、圆周速度、圆周加速度等。
2. 应用分析:利用所学的知识,分析并解决实际生活中的匀速圆周运动问题。
六、总结与反思(5分钟)1. 总结匀速圆周运动的基本概念与特点。
2. 回顾所学的计算方法与解题技巧。
3. 反思并讨论学习中遇到的困难与问题,互相交流解决方法。
板书设计:高中高一物理教案:匀速圆周运动重点知识点:1. 匀速圆周运动的基本概念- 半径、周期、频率、线速度、角速度2. 匀速圆周运动的计算方法- 速度与半径的关系- 加速度的计算- 力与功的计算拓展内容:- 圆周位移、圆周速度、圆周加速度等注意事项:1. 熟悉相关公式与计算方法。
高中物理公式匀速圆周运动

高中物理公式匀速圆周运动高中物理公式1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf 向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr角速度与转速的关系ω=2πn(此处频率与转速意义相同)主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
注:向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
相关推荐加速度a=(Vt-V0)/t(以V0为正方向,a与V0同向(加速)a>0;a与V0反向(减速)则a<0)实验用推论Δs=aT2(Δs为连续相邻相等时间(T)内位移之差)主要物理量及单位:初速度(V0):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t):秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
a=(Vt-V o)/t只是测量式,不是决定式;其它相关内容:质点、位移和路程、参考系、时间与时刻、s--t 图、v--t图/速度与速率、瞬时速度。
质点的运动----曲线运动、万有引力平抛运动竖直方向位移:y=gt2/2运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)合速度Vt=(Vx2+Vy2)1/2=[V02+(gt)2]1/2合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0合位移:s=(x2+y2)1/2位移方向与水平夹角α:tgα=y/x=gt/2V0水平方向加速度:ax=0;竖直方向加速度:ay=g注:平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;运动时间由下落高度h(y)决定与水平抛出速度无关;θ与β的关系为tgβ=2tgα;在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
高中物理 圆周运动 详细讲解

思考题:
“物体做匀速圆周运动时,其速度 是恒定不变的。”
(这种说法正确吗?)
请选择: 正确
错误
弧 S 跟所用的时间 t 之比是个定
值,这个比值就是匀速圆周运动的速 率(速度的大小):
v s 单位 m/s t
(线速度的大小)
(v在数值上等于质点在单位时间内通过 的弧长)
周期:质点做匀速圆周
运动时,运动一周所用
的时间。用 T 表示。
T质点沿半径为r的Fra bibliotek周做圆周 运动,周期为T,则
v 2r
T
轨迹是圆周的运动叫圆周运动。
皮带轮 飞轮 电动机转子各部分
在我们日常生活中,最常见最简 单的圆周运动是匀速圆周运动。
匀速圆周运动:质点沿圆周运动,如 果在任何相等的时间里通过的圆弧相 等,这种运动就叫做匀速圆周运动。
砂轮上各点
电子钟指针上每 一点
速度
v
s t
s
时间 t
质点做匀速圆周运动时,它通过的圆
角速度
t
时间 t
t 角速度:半径转过的角度 跟所用的
时间 之比。用 表示。
角度的单位是rad,时间的单位是s,故角速 度的单位是rad/s.
( 在数值上等于质点在单位时间内沿
半径所转过的角度 )
质点做匀速圆周运动,周期是T
则有: 2
T
例1. 半径10cm的砂轮,每0.2秒转一周,砂 砂轮旋转的角速度多大?砂轮边沿一
点的速度大小为多少?
解:从题中知r=10cm=0.1m,T=0.2s
2 2 10 rad/s
T 0.2
v 2 2 0.10 m/s
t
0.2
高中物理-匀速圆周运动实例总结

25
向心力、向心加速度的求解公式有 哪些?它们的方向分别如何?
向心力
F mr2
方向: 始终指向圆心
m v2 r
m
2 T
2
r
m 2f
2r
向心加速度
a r 2 v2
r
方向: 始终指向圆心
.
26
讨论题:水平面上绕自身轴匀速旋转的圆盘上放置一木块,木块相对圆盘静止, 试分析木块的向心力。
木块受力: 竖直向下的重力 G 竖直向上的支持力 N 水平方向指向圆心的摩擦力 f
(4)
.
16
如图所示,长为L=0.6m的轻杆,轻杆端有一 个质量为2.0kg的小球,在竖直平面内绕O点做圆周 运动,当小球达到最高点的速度分别为3m/s,2m/s时, 求轻杆对小球的作用力的大小和方向?
.
17
有一水平放置的圆盘,
上面放一劲度系数为K的弹簧, 弹簧的一端固定于转轴O上,
OA
另一端拴一质量为m的物体A,
由牛顿第二定律: F合 m a m 2 r
即:m g tan m 2l sin
cos
g
l 2
.
O rF
mg
g
l cos
50
由此可见,缆绳与中心轴的夹角跟“旋转秋千”的 角速度和绳长有关,而与所乘坐人的体重无关,在绳长 一定的情况下,角速度越大则缆绳与中心轴的夹角也越 大。想一想,怎么样求出它的运动周期?
水还有远离圆心r的趋势,水当然不会流出,此
时杯底是有压力,即
FN
mg
m
v2 r
由此可知,v越大,水对
杯子的压力越大。
FN G
表演“水流星”节目的演员,只要保持杯子
匀速圆周运动知识归纳

匀速圆周运动知识归纳圆周运动是高中物体中一种常见的运动,也是高中物理的一个重要知识点.以下就这部分内容需要重点掌握的知识进行归纳.一.知识整理1.匀速圆周运动的定义:质点沿圆周运动,如果在相等的时间里通过的圆弧长度相等,这种运动就叫做匀速圆周运动.2.描述匀速圆周运动的物理量(1)线速度:v s t=(s 是物体在时间t 内通过的圆弧长),方向沿圆弧上该点处的切线方向,它是描述物体做匀速圆周运动快慢的物理量.(2)角速度:ωθθ=t(是物体在时间t 内绕圆心转过的角度),单位是弧度每秒,符号是rad/s ,它是描述物体做匀速圆周运动快慢的物理量.(3)周期T 和频率f :做匀速圆周运动的物体运动一周所用的时间叫周期,周期的倒数叫频率.转速是指做匀速圆周运动的物体每秒转过的圈数,用n 表示,单位是转每秒,符号是r/s .它们都是描述物体做匀速圆周运动快慢的物理量.(4)线速度、角速度、周期和频率以及转速间的关系:①v r r Trf rn ====ωπππ222②ωπππ===222T f n ③T f n ==11.(5)向心加速度:描述线速度方向变化快慢的物理量.大小:a v r r r Tf r n r n =====22222222444ωπππ方向:总是沿着半径指向圆心,所以方向时刻在变化,是一个变的加速度.(6)向心力大小:F ma mv r m r rm Tf rm n rm n n ======22222222444ωπππ方向:总是沿着半径指向圆心,所以时刻在变化,向心力是一个变力.3.匀速圆周运动的特点:线速度大小恒定,角速度、周期和频率及转速都是恒定不变的,向心力和向心加速度的大小也都是恒定不变的,但线速度、向心力和向心加速度的方向都时刻在变化.所以匀速圆周运动是一种变加速曲线运动.4.物体做匀速圆周运动的条件:合外力的大小不变,方向始终与速度方向垂直且指向圆心.即合外力提供向心力,且时刻等于向心力时,物体就做匀速圆周运动.做圆周运动的物体,若实际提供的向心力小于它所需的向心力时,物体将逐渐远离圆心,做离心运动.做圆周运动的物体,若实际提供的向心力大于它所需的向心力时,物体将逐渐向圆心运动,做逐渐靠近圆心的运动.5.向心力的来源:在匀速圆周运动中,向心力是由物体受到的合外力来提供,且与合外力相等.在非匀速圆周运动中,向心力是由物体受到的合外力在指向圆心方向的分力来提供,且与合外力的这个分力相等,而这个分力只改变物体的速度方向;合外力在切线方向上的另一个分力改变了物体的速度大小.二.典型例题赏析例:如图所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,两个质量相同的小球A 和B 紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则()A.球A 的线速度必定大于球B 的线速度B.球A 的角速度必定小于球B 的角速度C.球A 的运动周期必定小于球B 的运动周期D.球A 对筒壁的压力必定大于球B 对筒壁的压力解析:对A 、B 球进行受力分析可知,A 、B 两球受力一样,它们均受重力mg 和支持力N ,则重力和支持力的合力提供向心力,受力图如图3所示.则可知筒壁对小球的弹力N mg =sin θ,而重力和弹力的合力F mgctg =θ,由牛顿第二定律可得:mgctg mr m v r m r T θωπ===22224.则可得:ωθθπθθ====gctg r v grctg T r gctg N mg ,,,2sin 由于A 球运动的半径大于B 球运动的半径,由ωθ=gctg r 可知球A 的角速度必定小于球B 的角速度;由v grctg =θ可知球A 的线速度必定大于球B 的线速度;由T r gctg =2πθ可知球A 的运动周期必定大于球B 的运动周期;由N mg =sin θ可知球A 对筒壁的压力一定等于球B 对筒壁的压力.故正确的答案为A 、B .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章匀速圆周运动本章学习提要1.理解物体做圆周运动的原因;理解向心加速度和向心力的概念;知道向心力和哪些因素有关,能计算向心加速度和向心力,从而加深对力和运动状态变化关系的理解。
2.知道圆周运动在解释月球运动、测量分子速度、解决车辆转弯问题等方面的广泛应用。
3.知道离心现象及其应用。
本章由基础型课程中圆周运动的运动学规律,拓展到圆周运动的动力学原因,进一步加深对牛顿运动定律这一普遍规律的理解。
同时,通过对圆周运动的探究,感受“以直代曲”的思想方法,通过学习圆周运动的应用,体验物理知识与生产生活的联系,在学习离心力的过程中感悟生活语言和科学概念的区别,学习用科学知识来认识和描述自然现象。
A 向心加速度向心力一、学习要求理解向心力,能够计算向心力。
理解向心加速度,能用相关公式计算向心加速度,能分析质点在竖直平面内做圆周运动时,恰能经过最高点的受力情况。
通过探究向心力与哪些因素有关的实验过程感受科学探究的基本方法,并培养细致严谨的科学作风。
二、要点辨析1.向心力是变力向心力是一个矢量,既有大小,也有方向。
物体做圆周运动,必须要有向心力不断改变物体的速度方向,而向心力本身也总是指向圆心不断改变方向,因此向心力是变力,而且无论物体做圆周运动的速度大小是否改变,向心力都是变力,只不过当物体做匀速圆周运动时,向心力的大小保持不变。
2.向心力有来源首先要明白,向心力是以作用效果来命名的,它不是和重力、弹力、摩擦力并列的某种特殊性质的力。
因此,任何实际存在的力都可以作为向心力,也就是说重力、弹力、摩擦力都可以作为向心力。
提供向心力的物体可以在圆心,例如链球的圆周运动靠位于圆心的运动员以手的控制来实现;也可以不在圆心,例如圆轨道对小车提供向心力,向心力的来源就不在圆心上。
还有一个问题,向心力是合力还是分力,这要看具体情况。
向心力可以是合力也可以是某个力的分力,在基础型教材中我们只讨论一个为提供向心力的情况,其实多个力提供向心力的例子也很多,例如物体在竖直平面内做网周运动,就涉及一个以上的力提供向心力。
当物体做匀速圆周运动时,向心力就是合力;当物体做一般圆周运动时,如果速度大小也发生变化,向心力仅仅是合力的一个分力,另一个分力沿着圆周切线方向,使速度的大小发生变化。
3.向心力不做功因为向心力指向圆心,与做圆周运动的物体的速度方向总是垂直,它只改变速度的方向,不改变速度的大小,因此,向心力总是不做功。
当然,如果做圆周运动的物体的速度大小发生变化,这是沿着圆周切线方向的力作用的结果,这个切向力显然是做功的,不过它不是向心力。
三、例题分析【示例1】如图5-1所示,一个大轮A 通过皮带带动小轮B 一起转动,小轮B 与另一大轮C 为同轴轮轴,假设皮带和A 轮、B 轮之间没有滑动,R A =R C =3R B =3R ,a 、b 、c 分别为A 、B 、C 三个轮边缘上的点,C 轮上的d 点离转轴Oʹ的距离为R d =2R ,A 轮上的e 点离转轴O 的距离为R e =1.5R 。
求a 、b 、c 、d 、e 五点的:(1)线速度之比;(2)角速度之比;(3)向心加速度之比。
【分析】在传动装置中,与皮带接触的各点具有相同的线速度,可知v a =v b ,而同轴轮上的各点具有相同的角速度可知ωa =ωc ,ωb =ωc =ωd ,利用这些特点,即可求解。
【解答】(1)由v a ∶v e =ωA ·3R ∶ωA ·1.5R =2∶1;由v b ∶v c ∶v d =ωB R ∶ωB ·3R ∶ωB ·2R =1∶3∶2,因为v a =v b ,可知v a ∶v b =1∶1; 最后可得v a ∶v b ∶v c ∶v d ∶v e =2∶2∶6∶4∶1。
(2)由v a =v b ,得ωa ·3R =ωb ·R ,ωa ∶ωb =1∶3,因为ωa =ωe 以及ωb =ωc =ωd , 可得ωa ∶ωb ∶ωc ∶ωd ∶ωe =1∶3∶3∶3∶1。
(3)a a ∶a b ∶a c ∶a d ∶a e =ωA 2·3R ∶ωB 2·R ∶ωB 2·3R ∶ωB 2·2R ∶ωA 2·1.5R =2∶6∶18∶12∶1。
【示例2】光滑水平板中央有一个无摩擦小孔,用一轻细绳一端拴一小球,另一端穿过小孔被力F 拉着,使小球在板上做匀速圆周运动,轨道半径为R ,如图所示。
逐渐加大拉力,使球运动的半径逐渐减小,当拉力逐渐增大到8F ,球运动的轨道半径逐渐减少到R /2,此过程中对小球运动的正确描述是( )(A )线速度大小不变,角速度增大(B )线速度、角速度都不变(C )线速度、角速度都增大(D )线速度增大,角速度大小不变【分析】本题中绳的拉力就是小球的向心力,向心力增大,小球质量不变,所以向心加速度也增大,由向心加速度公式a =ω2r =v 2r可知,当a 增大,r 减小时ω必然增大,而且a 增大到8倍,r 减小到1/2,v 也应该增大。
【解答】正确答案应该选(C )。
【讨论】我们知道向心力是不能改变速度大小的,为什么本题中小球速度会增大呢?原来在小球运动半径不断减小的过程中,小球的运动轨迹不是一个圆,而是沿所谓“螺线”运动,绳的拉力在“螺线”的切线方向有一个分力,使小球速度不断增加。
四、基本训练 1.物体做匀速圆周运动时,以下说法中正确的是( )(A )必须受到恒力的作用 (B )物体所受合力必须等于零(C )物体所受合力大小可能变化 (D )物体所受合力大小不变,方向不断改变2.一个做匀速圆周运动的质点,如果它的轨道半径不变,周期增大,则它的( )(A )速度增大,加速度增大 (B )速度增大,加速度减小(C )速度减小,加速度增大 (D )速度减小,加速度减小3.质量为6×102 kg 的汽车,以10 m/s 的速度驶过半径为80 m 的圆环形车道,求汽车的向心加速度和所需的向心力。
4.甲、乙两质点都做匀速圆周运动,甲的质量是乙的质量的13 ,甲的圆周半径是乙的34,当甲转动60圈时,乙转动45圈,则甲、乙运动周期之比为________,甲、乙两质点的向心加速度之比为______,向心力之比为_________。
5.从式a =ω2r 看好像a 跟r 成正比,从式a =v 2r看好像a 跟r 成反比。
如果有人问你:“向心加速度的大小跟半径成正比还是成反比”,应该怎样回答?6.一个被细绳拉住的小球m ,在光滑水平面上做匀速圆周运动,圆心为O 。
在运动过程中,细绳被固定在光滑平面上的一枚铁钉P 挡住,如图所示。
这时小球的线速度________,角速度______,加速度________,细绳的拉力_____(填变大、变小、不变)。
7.在某传动装置中有A 、B 两轮,它们以皮带相连,如图所示。
若A 、B 两轮的半径之比为3∶1,则A 、B 两轮边缘质点的向心加速度的比多大?8.线的一端系一个重物,手执线的另一端使重物在光滑水平桌面上做匀速圆周运动,当转速相同时,线长易断,还是线短易断?为什么?如果重物运动时系线被桌上的一个钉子挡住,随后重物以不变的速率在系线的牵引下绕钉子做圆周运动,系线碰钉子时钉子离重物越远线易断还是越近线易断?为什么?9.如图所示,有一个质量为m的木块,从内壁粗糙的半球形碗边下滑,在下滑过程中,如果由于摩擦作用,木块的速率恰能保持不变,下列说法中正确的是()(A)因木块的速率不变,说明它的加速度为零,合外力也为零(B)木块下滑的过程中,所受到的合外力越来越大(C)木块下滑的过程中,摩擦力的数值不变(D)木块下滑的过程中,加速度数值恒定,方向不断改变,始终沿着半径指向圆心10.质量为m的小球用长为l的线悬挂在O点,在O点正下方l2处有一光滑的钉子d,把小球拉到与d在同一水平面的位置,摆线被钉子拦住,如图所示,再将小球从静止释放。
当球第一次通过最低点P时()(A)小球速率突然减小(B)小球角速度突然减小(C)小球的向心加速度突然减小(D)摆线上的张力突然减小11.如图所示,两个半径不同而内壁光滑的半圆轨道固定在地面,一个小球先后从与球心在同一高度的A、B两点由静止开始自由下滑,通过两轨道最低点时()(A)小球对两轨道的压力相同(B)小球对两轨道的压力不同(C)小球的向心加速度不相等(D)小球的向心加速度相等12.一小球做半径为r的匀速圆周运动,线速度大小为v,若该小球速度矢量变化的大小也是v,所需的最短时间是____。
13.如图所示,在光滑的水平面上钉两个钉子A和B,相距20 cm,用一根1 m长的细绳,一端系一质量为0.4 kg的小球,另一端固定在钉子A上,开始时小球与A、B两钉在同一直线上,如图所示,然后使小球以2 m/s的速率在水平面上做匀速圆周运动,如果绳所能承受的拉力为4 N,问从小球开始运动到绳被拉断经历了多长时间?14.一根长为L的均匀细杆可以绕通过其一端的水平轴O在竖直平面内转动,杆最初处于水平位置,杆上离轴O距离为a处放有一可视为质点的小物体,杆与其上小物体最初均处于静止状态,如图所示,若此杆突然以匀角速度ω顺时针绕O轴转动,问当ω取什么值时,小物体与杆可能相碰?15.除了根据牛顿第二定律,由向心力公式推出向心加速度公式外,我们还可以直接用运动学知识推出向心加速度公式,请阅读以下推导过程,并说出其中体现了什么重要的思想。
如图(a )所示,质点沿半径为r 的圆周做匀速圆周运动,在某时刻处于A 点,速度是v A ,经过很短的时间Δt 后,运动到B 点,速度是v B 。
在图(b )中,按照矢量相加的运算法则,质点从A 点运动到B 点时速度的变化量为Δv ,A 、B 两点的速度和速度的变化量构成一个矢量三角形,质点在Δt 时间内的平均加速度a =Δv Δt,平均加速度的方向就是矢量Δv 的方向。
当Δt 趋近于零时,B 点无限靠近A 点,平均加速度的极限就是质点在A 点的瞬时加速度。
在图(b )中,v A 和v B 的大小相等,当Δt 趋近于零时,v A 和v B 的夹角也趋近于零,这时Δv 的方向就垂直于v A ,即沿着半径指向圆心,因此,质点做匀速圆周运动时,它在任一点的瞬时加速度都是沿着半径指向圆心的,我们就把匀速圆周运动的加速度叫做向心加速度,向心加速度反映了速度方向的变化快慢。
那么向心加速度的大小是多少呢?推导过程如下,由加速度的定义可知,a =Δv Δt,当Δt 趋近于零时,图(b )中的Δθ角也趋近于零,此时Δθ角所对的弧长和弦长Δv 的差异可以忽略,即Δv =v Δθ。
因此,a =Δv Δt =v ΔθΔt =vω=v 2r。