数字图像处理实验报告

合集下载

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告数字图像处理实验报告(一)实验目的1.理解数字图像处理的基本概念与原理。

2.掌握数字图像处理的基本方法。

3.掌握常用数字滤波器的性质和使用方法。

4.熟练应用数字图像处理软件进行图像处理。

实验器材计算机、MATLAB软件实验内容1.图像的读写与显示首先,我们需要在MATLAB中读入一幅图像,并进行显示。

% 导入图像文件I = imread('myimage.jpg');% 显示图像imshow(I);2.图像的分辨率与色彩空间转换数字图像处理中的一个重要概念是图像的分辨率,通常用像素数量表示。

图像的分辨率越高,代表着图像包含更多的像素,从而更具细节和清晰度。

在数字图像处理中,常常需要将一幅图像从一种色彩空间转换为另一种色彩空间。

RGB色彩空间是最常见的图像色彩空间之一,并且常常作为其他色彩空间的基础。

% 转换图像色彩空间J = rgb2gray(I);% 显示转换后的图像imshow(J);3.图像的增强与滤波图像的增强通常指的是对图像的对比度、亮度和清晰度等方面进行调整,以改善图像的质量和可读性。

数字图像处理中的滤波是一种常用的图像增强方法。

滤波器是一个能够对图像进行局部操作的矩阵,它能够提取或抑制特定的图像特征。

% 对图像进行平滑滤波K = imgaussfilt(J, 1);% 显示滤波后的图像imshow(K);4.数字图像处理在实际应用中的例子数字图像处理在很多实际应用中被广泛应用。

这些应用包括医疗成像、计算机视觉、人脸识别、安防监控等。

下面是数字图像处理在人脸识别应用中的一个简单例子。

% 导入图像文件I = imread('face.jpg');% 进行人脸检测faceDetector = vision.CascadeObjectDetector;bbox = step(faceDetector, I);% 在图像上标记人脸位置IFaces = insertObjectAnnotation(I, 'rectangle', bbox, 'Face');imshow(IFaces);实验结论通过本次实验,我已经能够理解数字图像处理的基本概念与原理,掌握数字图像处理的基本方法,熟练应用数字图像处理软件进行图像处理。

数字图像处理实验报告(图像灰度变换处理)

数字图像处理实验报告(图像灰度变换处理)

数字图像处理实验报告班级:姓名:学号:数字图像处理实验报告一.实验名称:图像灰度变换二.实验目的:1 学会使用Matlab;2 学会用Matlab软件对图像灰度进行变换,感受各种不同的灰度变换方法对最终图像效果的影响。

三.实验原理:Matlab中经常使用的一些图像处理函数:读取图像:img=imread('filename'); //支持TIFF,JPEG,GIF,BMP,PNG,XWD等文件格式。

显示图像:imshow(img,G); //G表示显示该图像的灰度级数,如省略则默认为256。

保存图片:imwrite(img,'filename'); //不支持GIF格式,其他与imread相同。

亮度变换:imadjust(img,[low_in,high_in],[low_out,high_out]); //将low_in至high_in之间的值映射到low_out至high_out之间,low_in 以下及high_in以上归零。

绘制直方图:imhist(img);直方图均衡化:histeq(img,newlevel); //newlevel表示输出图像指定的灰度级数。

像平滑与锐化(空间滤波):w=fspecial('type',parameters);imfilter(img,w); //这两个函数结合将变得十分强大,可以实现photoshop里的任意滤镜。

图像复原:deconvlucy(img,PSF); //可用于图像降噪、去模糊等处理。

四.实验步骤:1.获取实验用图像:Fig3.10(b).jpg. 使用imread函数将图像读入Matlab。

2.产生灰度变换函数T1,使得:0.3r r < 0.35s = 0.105+2.6333(r–0.35) 0.35 ≤ r ≤ 0.65 1+0.3(r–1) r > 0.65用T1对原图像Fig3.10(b).jpg进行处理,打印处理后的新图像。

数字图像处理实验报告(全部)

数字图像处理实验报告(全部)

实验1直方图一.实验目的1.熟悉matlab图像处理工具箱及直方图函数的使用;2.理解和掌握直方图原理和方法;二.实验设备:1.PC机一台;2.软件matlab。

三.程序设计在matlab环境中,程序首先读取图像,然后调用直方图函数,设置相关参数,再输出处理后的图像。

I=imread('cameraman.tif');%读取图像subplot(1,2,1),imshow(I) %输出图像title('原始图像') %在原始图像中加标题subplot(1,2,2),imhist(I) %输出原图直方图title('原始图像直方图') %在原图直方图上加标题四.实验步骤1. 启动matlab双击桌面matlab图标启动matlab环境;2. 在matlab命令窗口中输入相应程序。

书写程序时,首先读取图像,一般调用matlab自带的图像,如:cameraman图像;再调用相应的直方图函数,设置参数;最后输出处理后的图像;3.浏览源程序并理解含义;4.运行,观察显示结果;5.结束运行,退出;五.实验结果:观察图像matlab环境下的直方图分布。

(a)原始图像 (b)原始图像直方图六.实验报告要求1、给出实验原理过程及实现代码:I=imread('coins.png');%读取图像subplot(1,2,1),imshow(I) %输出图像title('原始图像') %在原始图像中加标题subplot(1,2,2),imhist(I) %输出原图直方图title('原始图像直方图') %在原图直方图上加标题2、输入一幅灰度图像,给出其灰度直方图结果,并进行灰度直方图分布原理分析。

实验2 均值滤波一.实验目的1.熟悉matlab图像处理工具箱及均值滤波函数的使用;2.理解和掌握3*3均值滤波的方法和应用;二.实验设备:1.PC机一台;2.软件matlab三.程序设计在matlab环境中,程序首先读取图像,然后调用图像增强(均值滤波)函数,设置相关参数,再输出处理后的图像。

数字图像处理实验实验报告 实验二

数字图像处理实验实验报告 实验二

数字图像处理实验实验报告(实验一)一、实验目的:1、直方图显示2、计算并绘制图像直方图3、直方图均衡化二.程序脚本clear all;RGB=imread('me.jpg');figure;imshow(RGB);title('图1 彩色图');%========================================================== I=rgb2gray(RGB);figure;imshow(I);title('图2 灰度图');%========================================================= figure;imhist(I);title('灰度直方图');%========================================================= hi=imhist(I);j=1;%为使画出的直方图更好看,在此进行了抽样for(i=1:256)if(mod(i,10)==1)h(j)=hi(i);j=j+1;endendn=0:10:255;figure;stem(n,h);axis([0 255 0 2500]);title('图3.1 stem显示直方图');figure;bar(n,h);axis([0 255 0 2500]);title('图3.2 bar显示直方图');figure;plot(n,h);axis([0 255 0 2500]);title('图3.3 plot显示直方图');%========================================================= I=rgb2gray(RGB);figure;subplot(3,2,1);imshow(I);title('图4.1 原始灰度图');subplot(3,2,2);imhist(I);title('图4.2 原始灰度直方图');%=============================J1=imadjust(I);subplot(3,2,3);imshow(J1);title('调整对比度以后的图');subplot(3,2,4);imhist(J1);title('调整对比度以后的灰度直方图');%=================================J2=histeq(I);subplot(3,2,5);imshow(J2);title('均衡化以后的的图');subplot(3,2,6);imhist(J2);title('均衡化以后的灰度直方图');三.实验结果图1 彩色图图2 灰度图010002000灰度直方图10020010020005001000150020002500图3.1 stem 显示直方图10020005001000150020002500图3.2 bar 显示直方图10020005001000150020002500图3.3 plot 显示直方图图4.1 原始灰度图10002000图4.2 原始灰度直方图0100200调整对比度以后的图010002000调整对比度以后的灰度直方图0100200均衡化以后的的图02000均衡化以后的灰度直方图100200。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告班级:学号:姓名:实验一DTF变换与余弦变换一、实验内容:用Matlab对某幅图像进行图像的离散付里叶变换、离散余弦变换二、实验目的:1. 掌握傅立叶变换2. 理解频域变换的通用公式3. 掌握离散余弦变换三、实验原理:f=imread(C:\);F=fft2(f);F=fft2(f,P,Q);S=abs(F);Fc=fftshift(F);S2=log(1+abs(Fc));F=ifftshift(Fc);F=ifft2(F);F=real(ifft2(F));dct2f()/idct2()imshow四、源程序:%傅里叶变换clear all;clc;x=imread('C:\Users\K\Desktop\matlab experiment\windows.jpg');y=imread('C:\Users\K\Desktop\matlab experiment\windows1.jpg');subplot(3,2,1);imshow(x);title('x 原图');subplot(3,2,2);imshow(y);title('y 原图');% 傅里叶变换qf=fft2(double(x));lf=fft2(double(y));%取幅度和相位qf1=abs(qf);qf2=angle(qf);lf1=abs(lf);lf2=angle(lf);%进行重建qfr=qf1.*cos(qf2)+qf1.*sin(qf2).*i;lfr=lf1.*cos(lf2)+lf1.*sin(lf2).*i;xr=uint8(abs(ifft2(qfr)));yr=uint8(abs(ifft2(lfr)));subplot(3,2,3);imshow(xr,[]);title('x幅谱与相谱重建'); subplot(3,2,4);imshow(yr,[]);title('y幅谱与相谱重建'); qfrm=qf1.*cos(lf2)+qf1.*sin(lf2).*i;lfrm=lf1.*cos(qf2)+lf1.*sin(qf2).*i;xr1=uint8(abs(ifft2(qfrm)));yr1=uint8(abs(ifft2(lfrm)));subplot(3,2,5);imshow(xr1,[]);title('x幅谱与y相谱重建'); subplot(3,2,6);imshow(yr1,[]);title('y幅谱与x相谱重建');%余弦变换x1=rgb2gray(x);y1=rgb2gray(y);figure(2);subplot(3,2,1);imshow(x1);title('x 原图');subplot(3,2,2);imshow(y1);title('y 原图');dctxchange=dct2(x1);dctychange=dct2(y1);subplot(3,2,3);imshow(log(abs(dctxchange)),[]);title('x图余弦变换幅频');subplot(3,2,4);imshow(log(abs(dctychange)),[]);title('y图余弦变换幅频');subplot(3,2,5);imshow(log(angle(dctxchange)),[]);title('x图余弦变换相频');subplot(3,2,6);imshow(log(angle(dctychange)),[]);title('y图余弦变换相频');%重建dctxchange1=abs(dctxchange);dctxchange2=angle(dctxchange);dctychange1=abs(dctychange);dctychange2=angle(dctychange);figure(2)dctxchanger=dctxchange1.*cos(dctxchange2)+dctxchange1.*sin(dctxch ange2).*i;dctychanger=dctychange1.*cos(dctychange2)+dctychange1.*sin(dctych ange2).*i;dctxchanger=uint8(abs(idct2(dctxchanger)));dctychanger=uint8(abs(idct2(dctychanger)));subplot(221);imshow(dctxchanger,[]);title('x幅谱与相谱重建');subplot(222);imshow(dctychanger,[]);title('y幅谱与相谱重建');dctxchanger=dctxchange1.*cos(dctychange2)+dctxchange1.*sin(dctych ange2).*i;dctychanger=dctychange1.*cos(dctxchange2)+dctychange1.*sin(dctxchange2).*i;dctxchanger1=uint8(abs(idct2(dctxchanger)));dctychanger1=uint8(abs(idct2(dctychanger)));subplot(223);imshow(dctxchanger1,[]);title('x幅谱与y相谱重建');subplot(224);imshow(dctychanger1,[]);title('y幅谱与x相谱重建');五、实验结果:实验二图像点操作一、实验内容:用Matlab对某幅图像进行反变换、对数变换、指数变换、分段线性变换二、实验目的:理解并掌握图像点运算处理三、实验原理:为了突出感兴趣的目标或灰度区间 相对抑制那些不感兴趣的目标或灰度区间常采用分段线性变换法。

数字图像处理图像变换实验报告

数字图像处理图像变换实验报告

实验报告实验名称:图像处理姓名:刘强班级:电信1102学号:1404110128实验一图像变换实验——图像点运算、几何变换及正交变换一、实验条件PC机数字图像处理实验教学软件大量样图二、实验目的1、学习使用“数字图像处理实验教学软件系统”,能够进行图像处理方面的简单操作;2、熟悉图像点运算、几何变换及正交变换的基本原理,了解编程实现的具体步骤;3、观察图像的灰度直方图,明确直方图的作用与意义;4、观察图像点运算与几何变换的结果,比较不同参数条件下的变换效果;5、观察图像正交变换的结果,明确图像的空间频率分布情况。

三、实验原理1、图像灰度直方图、点运算与几何变换的基本原理及编程实现步骤图像灰度直方图就是数字图像处理中一个最简单、最有用的工具,它描述了一幅图像的灰度分布情况,为图像的相关处理操作提供了基本信息。

图像点运算就是一种简单而重要的处理技术,它能让用户改变图像数据占据的灰度范围。

点运算可以瞧作就是“从象素到象素”的复制操作,而这种复制操作就是通过灰度变换函数实现的。

如果输入图像为A(x,y),输出图像为B(x,y),则点运算可以表示为:B(x,y)=f[A(x,y)]其中f(x)被称为灰度变换(Gray Scale Transformation,GST)函数,它描述了输入灰度值与输出灰度值之间的转换关系。

一旦灰度变换函数确定,该点运算就完全确定下来了。

另外,点运算处理将改变图像的灰度直方图分布。

点运算又被称为对比度增强、对比度拉伸或灰度变换。

点运算一般包括灰度的线性变换、阈值变换、窗口变换、灰度拉伸与均衡等。

图像几何变换就是图像的一种基本变换,通常包括图像镜像变换、图像转置、图像平移、图像缩放与图像旋转等,其理论基础主要就是一些矩阵运算,详细原理可以参考有关书籍。

实验系统提供了图像灰度直方图、点运算与几何变换相关内容的文字说明,用户在操作过程中可以参考。

下面以图像点运算中的阈值变换为例给出编程实现的程序流程图,如下:2、图像正交变换的基本原理及编程实现步骤数字图像的处理方法主要有空域法与频域法,点运算与几何变换属于空域法。

数字图像处理实验报告(全答案解析)..

数字图像处理实验报告(全答案解析)..

数字图像处理实验报告(全答案解析)..实验⼀常⽤MATLAB图像处理命令⼀、实验⽬的1、熟悉并掌握MATLAB⼯具的使⽤;2、实现图像的读取、显⽰、代数运算和简单变换。

⼆、实验环境MATLAB 6.5以上版本、WIN XP或WIN2000计算机三、常⽤函数●读写图像⽂件1 imreadimread函数⽤于读⼊各种图像⽂件,如:a=imread('e:\w01.tif')2 imwriteimwrite函数⽤于写⼊图像⽂件,如:imwrite(a,'e:\w02.tif',’tif’)3 imfinfoimfinfo函数⽤于读取图像⽂件的有关信息,如:imfinfo('e:\w01.tif') ●图像的显⽰1imageimage函数是MATLAB提供的最原始的图像显⽰函数,如: a=[1,2,3,4;4,5,6,7;8,9,10,11,12]; image(a);2 imshowimshow函数⽤于图像⽂件的显⽰,如:i=imread('e:\w01.tif');imshow(i);title(‘原图像’)%加上图像标题3 colorbarcolorbar函数⽤显⽰图像的颜⾊条,如:i=imread('e:\w01.tif');imshow(i);colorbar;4 figurefigure函数⽤于设定图像显⽰窗⼝,如:figure(1); /figure(2);5 subplot把图形窗⼝分成多个矩形部分,每个部分可以分别⽤来进⾏显⽰。

Subplot(m,n,p)分成m*n个⼩窗⼝,在第p个窗⼝中创建坐标轴为当前坐标轴,⽤于显⽰图形。

6 plot绘制⼆维图形plot(y)Plot(x,y)xy可以是向量、矩阵。

图像类型转换1 rgb2gray//灰⾊把真彩图像转换为灰度图像i=rgb2gray(j)2 im2bw//⿊⽩通过阈值化⽅法把图像转换为⼆值图像I=im2bw(j,level)Level表⽰灰度阈值,取值范围0~1(即0.n),表⽰阈值取⾃原图像灰度范围的n%3 imresize改变图像的⼤⼩I=imresize(j,[m n])将图像j⼤⼩调整为m⾏n列图像运算1 imadd两幅图像相加,要求同样⼤⼩,同种数据类型Z=imadd(x,y)表⽰图像x+y2 imsubstract两幅图像相减,要求同样⼤⼩,同种数据类型Z=imsubtract(x,y)表⽰图像x-y3 immultiplyZ=immultiply(x,y)表⽰图像x*y4 imdivideZ=imdivide(x,y)表⽰图像x/y5:m = imadjust(a,[,],[0.5;1]) ;%图像变亮n = imadjust(a,[,],[0;0.5]) ;%图像变暗g=255-a;%负⽚效果四、实验内容(请将实验程序填写在下⽅合适的位置,实验图像结果拷屏粘贴)1、读⼊⼀幅RGB图像,变换为灰度图像和⼆值图像,并在同⼀个窗⼝内分成三个⼦窗⼝来分别显⽰RGB图像和灰度图像,注上⽂字标题。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告数字图像处理实验报告1一. 实验内容:主要是图像的几何变换的编程实现,具体包括图像的读取、改写,图像平移,图像的镜像,图像的转置,比例缩放,旋转变换等.具体要求如下:1.编程实现图像平移,要求平移后的图像大小不变;2.编程实现图像的镜像;3.编程实现图像的转置;4.编程实现图像的比例缩放,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的缩放效果;5.编程实现以任意角度对图像进行旋转变换,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的旋转效果.二.实验目的和意义:本实验的目的是使学生熟悉并掌握图像处理编程环境,掌握图像平移、镜像、转置和旋转等几何变换的方法,并能通过程序设计实现图像文件的读、写操作,及图像平移、镜像、转置和旋转等几何变换的程序实现.三.实验原理与主要框架:3.1 实验所用编程环境:Visual C++(简称VC)是微软公司提供的基于C/C++的应用程序集成开发工具.VC拥有丰富的功能和大量的扩展库,使用它能有效的创建高性能的Windows应用程序和Web应用程序.VC除了提供高效的C/C++编译器外,还提供了大量的可重用类和组件,包括著名的微软基础类库(MFC)和活动模板类库(ATL),因此它是软件开发人员不可多得的开发工具.VC丰富的功能和大量的扩展库,类的重用特性以及它对函数库、DLL库的支持能使程序更好的模块化,并且通过向导程序大大简化了库资源的使用和应用程序的开发,正由于VC具有明显的优势,因而我选择了它来作为数字图像几何变换的开发工具.在本程序的开发过程中,VC的核心知识、消息映射机制、对话框控件编程等都得到了生动的体现和灵活的应用.3.2 实验处理的对象:256色的BMP(BIT MAP )格式图像BMP(BIT MAP )位图的文件结构:具体组成图: BITMAPFILEHEADER位图文件头(只用于BMP文件) bfType=BM bfSize bfReserved1bfReserved2bfOffBitsbiSizebiWidthbiHeightbiPlanesbiBitCountbiCompressionbiSizeImagebi_PelsPerMeterbiYPelsPerMeterbiClrUsedbiClrImportant单色DIB有2个表项16色DIB有16个表项或更少256色DIB有256个表项或更少真彩色DIB没有调色板每个表项长度为4字节(32位)像素按照每行每列的顺序排列每一行的字节数必须是4的整数倍BITMAPINFOHEADER 位图信息头 Palette 调色板 DIB Pi_els DIB图像数据1. BMP文件组成BMP文件由文件头、位图信息头、颜色信息和图形数据四部分组成.2. BMP文件头BMP文件头数据结构含有BMP文件的类型(必须为BMP)、文件大小(以字节为单位)、位图文件保留字(必须为0)和位图起始位置(以相对于位图文件头的偏移量表示)等信息.3. 位图信息头BMP位图信息头数据用于说明位图的尺寸(宽度,高度等都是以像素为单位,大小以字节为单位, 水平和垂直分辨率以每米像素数为单位) ,目标设备的级别,每个像素所需的位数, 位图压缩类型(必须是 0)等信息.4. 颜色表颜色表用于说明位图中的颜色,它有若干个表项,每一个表项是一个RGBQUAD类型的结构,定义一种颜色.具体包含蓝色、红色、绿色的亮度(值范围为0-255)位图信息头和颜色表组成位图信息5. 位图数据位图数据记录了位图的每一个像素值,记录顺序是在扫描行内是从左到右,扫描行之间是从下到上.Windows规定一个扫描行所占的字节数必须是 4的倍数(即以long为单位),不足的以0填充.3.3 BMP(BIT MAP )位图的显示:①一般显示方法:1. 申请内存空间用于存放位图文件2. 位图文件读入所申请内存空间中3. 在函数中用创建显示用位图, 用函数创建兼容DC,用函数选择显示删除位图但以上方法的缺点是: 1)显示速度慢; 2) 内存占用大; 3) 位图在缩小显示时图形失真大,(可通过安装字体平滑软件来解决); 4) 在低颜色位数的设备上(如256显示模式)显示高颜色位数的图形(如真彩色)图形失真严重.②BMP位图缩放显示 :用视频函数来显示位图,内存占用少,速度快,而且还可以对图形进行淡化(Dithering )处理.淡化处理是一种图形算法,可以用来在一个支持比图像所用颜色要少的设备上显示彩色图像.BMP位图显示方法如下:1. 打开视频函数,一般放在在构造函数中2. 申请内存空间用于存放位图文件3. 位图文件读入所申请内存空间中4. 在函数中显示位图5. 关闭视频函数 ,一般放在在析构函数中以上方法的优点是: 1)显示速度快; 2) 内存占用少; 3) 缩放显示时图形失真小,4) 在低颜色位数的设备上显示高颜色位数的图形图形时失真小; 5) 通过直接处理位图数据,可以制作简单动画.3.4 程序中用到的访问函数Windows支持一些重要的DIB访问函数,但是这些函数都还没有被封装到MFC中,这些函数主要有:1. SetDIBitsToDevice函数:该函数可以直接在显示器或打印机上显示DIB. 在显示时不进行缩放处理.2. StretchDIBits函数:该函数可以缩放显示DIB于显示器和打印机上.3. GetDIBits函数:还函数利用申请到的内存,由GDI位图来构造DIB.通过该函数,可以对DIB的格式进行控制,可以指定每个像素颜色的位数,而且可以指定是否进行压缩.4. CreateDIBitmap函数:利用该函数可以从DIB出发来创建GDI位图.5. CreateDIBSection函数:该函数能创建一种特殊的DIB,称为DIB项,然后返回一个GDI位图句柄.6. LoadImage函数:该函数可以直接从磁盘文件中读入一个位图,并返回一个DIB句柄.7. DrawDibDraw函数:Windows提供了窗口视频(VFW)组件,Visual C++支持该组件.VFW中的DrawDibDraw函数是一个可以替代StretchDIBits的函数.它的最主要的优点是可以使用抖动颜色,并且提高显示DIB的速度,缺点是必须将VFW代码连接到进程中.3.5 图像的几何变换图像的几何变换,通常包括图像的平移、图像的镜像变换、图像的转置、图像的缩放和图像的旋转等.一、实验的目的和意义实验目的:本实验内容旨在让学生通过用VC等高级语言编写数字图像处理的一些基本算法程序,来巩固和掌握图像处理技术的基本技能,提高实际动手能力,并通过实际编程了解图像处理软件的实现的基本原理。

数字图像处理实验报告(五个实验全)

数字图像处理实验报告(五个实验全)

数字图像处理实验报告(五个实验全)实验⼀ Matlab图像⼯具的使⽤1、读图I=imread('lena.jpg');imshow(I);2、读⼊⼀幅RGB图像,变换为灰度图像和⼆值图像,并在同⼀个窗⼝内分成三个⼦窗⼝来分别显⽰RGB图像和灰度图像。

a=imread('lena.jpg')i = rgb2gray(a)I = im2bw(a,0.5)subplot(3,1,1);imshow(a);subplot(3,1,2);imshow(i);subplot(3,1,3);imshow(I);原图像灰度图像⼆值图像实验⼆图像变换1、对⼀幅图像进⾏平移,显⽰原始图像与处理后图像,分别对其进⾏傅⾥叶变换,显⽰变换后结果,分析原图的傅⾥叶谱与平移后傅⾥叶频谱的对应关系。

s=imread('beauty.jpg');i=rgb2gray(s)i=double(i)j=fft2(i);k=fftshift(j); 原图像原图的傅⾥叶频谱l=log(abs(k));m=fftshift(j);RR=real(m);II=imag(m);A=sqrt(RR.^2+II.^2);A=(A-min(min(A)))/(max(max(A)))*255;b=circshift(s,[800 450]);b=rgb2gray(b)b=double(b) 平移后的图像平移后的傅⾥叶频谱c=fft2(b);e=fftshift(c);l=log(abs(e));f=fftshift(c);WW=real(f);ZZ=imag(f);B=sqrt(WW.^2+ZZ.^2);B=(B-min(min(B)))/(max(max(B)))*255;subplot(2,2,1);imshow(s);subplot(2,2,2);imshow(uint8(b));subplot(2,2,3);imshow(A);subplot(2,2,4);imshow(B);2、对⼀幅图像进⾏旋转,显⽰原始图像与处理后图像,分别对其进⾏傅⾥叶变换,显⽰变换后结果,分析原图的傅⾥叶谱与旋转后傅⾥叶频谱的对应关系。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告目录1.数字图像处理简介2.实验目的3.实验内容4.实验结果及代码展示5.算法综述6.M atlab优势7.总结8.存在问题一、数字图像处理简介图像处理,是对图像进行分析、加工、和处理,使其满足视觉、心理以及其他要求的技术。

图像处理是信号处理在图像域上的一个应用。

目前大多数的图像是以数字形式存储,因而图像处理很多情况下指数字图像处理。

此外,基于光学理论的处理方法依然占有重要的地位。

图像处理是信号处理的子类,另外与计算机科学、人工智能等领域也有密切的关系。

传统的一维信号处理的方法和概念很多仍然可以直接应用在图像处理上,比如降噪、量化等。

然而,图像属于二维信号,和一维信号相比,它有自己特殊的一面,处理的方式和角度也有所不同。

二、实验目的巩固所学知识,提高所学能力三、实验内容利用matlab的GUI程序设计一个简单的图像处理程序,并含有如下基本功能:1. 读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题2. 对给定图像进行旋转3.对给定的图像添加噪声(椒盐噪声、高斯噪声)四、实验结果及代码展示1.软件设计界面2.各模块功能展示以及程序代码(1)读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题效果展示:代码:a = imread('C:\Documents and Settings\Administrator\桌面\数字图像\舞美.JPG');i = rgb2gray(a);I = im2bw(a,0.5);subplot(3,1,1);imshow(a);title('源图像')subplot(3,1,2);imshow(i);title('灰度图像')subplot(3,1,3);imshow(I);title('二值图像')(2)图像旋转原图效果展示:代码:clc;clear all;close all;Img=imread('D:\My Documents\My Pictures\5.JPG'); Img=double(Img);[h w]=size(Img);alpha=pi/4;wnew=w*cos(alpha)+h*sin(alpha);hnew=w*sin(alpha)+h*cos(alpha);wnew=ceil(wnew);hnew=ceil(hnew); u0=w*sin(alpha);T=[cos(alpha),sin(alpha);-sin(alpha),cos(alpha)]; Imgnew2=zeros(hnew,wnew);Imgnew1=zeros(hnew,wnew); for u=1:hnewfor v=1:wnewtem=T*([u;v]-[u0;0]);x=tem(1);y=tem(2);if x>=1&&x<=h&&y>=1&&y<=wx_low=floor(x);x_up=ceil(x);y_low=floor(y);y_up=ceil(y);if (x-x_low)<=(x_up-x)x=x_low;elsex=x_up;endif (y-y_low)<=(y_up-y)y=y_low;elsey=y_up;endp1=Img(x_low,y_low);p2=Img(x_up,y_low);p3=Img(x_low,y_low);p4=Img(x_up,y_up);s=x-x_low;t=y-y_low;Imgnew1(u,v)=Img(x,y);Imgnew2(u,v)=(1-s)*(1-t)*p1+(1-s)*t*p3+(1-t)*s*p2+s*t*p4;endendendfigure;imshow(Imgnew2,[]);B=imrotate(Img,alpha/pi*180);figure;imshow(B,[]);(3)对给定的图像添加噪声(斑点噪声、高斯噪声)效果展示:代码:I= imread('D:\My Documents\My Pictures\5.JPG');figure,subplot(211);imshow(I);title('原图');J1=imnoise(I,'gaussian',0,0.02);subplot(223);imshow(J);title('添加高斯噪声');J=imnoise(I,'speckle',0.04);subplot(224);imshow(J);title('添加斑点噪声');五、算法综述灰度图像:一幅完整的图像,是由红色、绿色、蓝色三个通道组成的。

matlab 数字图像处理实验报告(五份)

matlab 数字图像处理实验报告(五份)

《数字图像处理实验报告》实验一图像的增强一.实验目的1.熟悉图像在MATLAB下的读写、输出;2.熟悉直方图;3.熟悉图像的线性指数等;4.熟悉图像的算术运算和几何变换。

二.实验仪器计算机、MATLAB软件三.实验原理图像增强是指根据特定的需要突出图像中的重要信息,同时减弱或去除不需要的信息。

从不同的途径获取的图像,通过进行适当的增强处理,可以将原本模糊不清甚至根本无法分辨的原始图像处理成清晰的富含大量有用信息的可使用图像。

其基本原理是:对一幅图像的灰度直方图,经过一定的变换之后,使其成为均匀或基本均匀的,即使得分布在每一个灰度等级上的像素个数.f=H等或基本相等。

此方法是典刑的图像空间域技术处理,但是由于灰度直方图只是近似的概率密度函数,因此,当用离散的灰度等级做变换时,很难得到完全平坦均匀的结果。

频率域增强技术频率域增强是首先将图像从空间与变换到频域,然后进行各种各样的处理,再将所得到的结果进行反变换,从而达到图像处理的目的。

常用的变换方法有傅里叶变换、DCT变换、沃尔什-哈达玛变换、小波变换等。

假定原图像为f(x,y),经傅立叶变换为F(u,v)。

频率域增强就是选择合适的滤波器H(u,v)对F(u,v)的频谱成分进行处理,然后经逆傅立叶变换得到增强的图像。

四.实验内容及步骤1.图像在MATLAB下的读写、输出;实验过程:>> I = imread('F:\image\624baf9dbcc4910a.jpg');figure;imshow(I);title('Original Image');text(size(I,2),size(I,1)+15, ...'IMG_20170929_130307.jpg', ...'FontSize',7,'HorizontalAlignment','right');Warning: Image is too big to fit on screen; displaying at 25% > In imuitools\private\initSize at 86In imshow at 196Original Image2.给定函数的累积直方图。

数字图像处理实验报告2

数字图像处理实验报告2

实验二: 数字图像的空间域滤波——平滑滤波1. 1. 实验目的2.掌握图像滤波的基本定义及目的。

3.理解空间域滤波的基本原理及方法。

4.掌握进行图像的空域滤波的方法。

1. 2. 实验基本原理2.空间域增强空间域滤波是在图像空间中借助模板对图像进行领域操作, 处理图像每一个像素的取值都是根据模板对输入像素相应领域内的像素值进行计算得到的。

空域滤波基本上是让图像在频域空间内某个范围的分量受到抑制, 同时保证其他分量不变, 达到增强图像的目的。

空域滤波一般分为线性滤波和非线性滤波两类。

各种空域滤波器根据功能主要分为平滑滤波器和锐化滤波器。

平滑的目的可分为两类: 一类是模糊, 目的是在提取较大的目标前去除太小的细节或将目标内的小肩端连接起来;另一类是消除噪声。

锐化的目的是为了增强被模糊的细节。

结合这两种分类方法, 可将空间滤波增强分为四类:线性平滑滤波器(低通)非线性平滑滤波器(低通)线性锐化滤波器(高通)非线性锐化滤波器(高通)1)空间滤波器都是基于模板卷积, 其主要工作步骤是:2)将模板在图中移动, 并将模板中心与图中某个像素位置重合;3)将模板上的系数与模板下对应的像素相乘;4)将所有乘积相加;5)将和(模板的输出响应)赋给图中对应模板中心位置的像素。

3.平滑滤波器1)线性平滑滤波器线性低通平滑滤波器也称为均值滤波器, 这种滤波器的所有系数都是正数, 对3×3的模板来说, 最简单的是取所有系数为1, 为了保持输出图像任然在原来图像的灰度值范围内, 模板与象素邻域的乘积都要除以9。

MATLAB 提供了fspecial 函数生成滤波时所用的模板, 并提供filter2和imfilter 函数用指定的滤波器模板对图像进行运算。

函数fspecial 的语法格式为:h=fspecial(type);h=fspecial(type,parameters);其中参数type 指定滤波器的种类, parameters 是与滤波器种类有关的具体参数。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告实验一数字图像的获取一、实验目的1、了解图像的实际获取过程。

2、巩固图像空间分辨率和灰度级分辨率、邻域等重要概念。

3、熟练掌握图像读、写、显示、类型转换等matlab函数的用法。

二、实验内容1、读取一幅彩色图像,将该彩色图像转化为灰度图像,再将灰度图像转化为索引图像并显示所有图像。

2、编程实现空间分辨率变化的效果。

三、实验原理1、图像读、写、显示I=imread(‘image.jpg’)Imview(I)Imshow(I)Imwrite(I,’wodeimage.jpg’)2、图像类型转换I=mat2gray(A,[amin,amax]);按指定的取值区间[amin,amax]将数据矩阵A转化为灰度图像I,amin对应灰度0,amax对应1,也可以不指定该区间。

[x,map]=gray2ind(I,n);按指定的灰度级n将灰度图像转化为索引图像,n默认为64I=ind2gray(x,map);索引图像转化为灰度图像I=grb2gray(RGB);真彩色图像转化为灰度图像[x,map]=rgb2ind(RGB);真彩色图像转化为索引图像RGB=ind2rgb(x,map);索引图像转化为真彩色图像BW=im2bw(I,level);将灰度图像转化为二值图像,level取值在[0,1]之间BW=im2bw(x,map,level);将索引图像转化为二值图像,level取值在[0,1]之间BW=im2bw(RGB,level);将真彩色图像转化为二值图像,level取值在[0,1]之间四、实验代码及结果1、in=imread('peppers.png');i=rgb2gray(in);[x,map]=gray2ind(i,128);subplot(131),imshow(in)subplot(132),imshow(i)subplot(133),imshow(x),colormap(map)2、%空间分辨率变化的效果clc,close all,cleari=imread('cameraman.tif');i=imresize(i,[256,256]);i1=i(1:2:end,1:2:end);[m1,n1]=size(i)i2=i1(1:2:end,1:2:end);[m2,n2]=size(i2)i3=i2(1:2:end,1:2:end);[m3,n3]=size(i3)subplot(221),imshow(i),xlabel('256x256')subplot(222),imshow(i1),xlabel('128x128')subplot(223),imshow(i2),xlabel('64x64')subplot(224),imshow(i3),xlabel('32x32')256 x 256128 x 12864 x 6432 x 32实验二图像的几何变换一、实验目的掌握图像的基本几何变换的方法1、图像的平移2、图像的旋转二、实验内容练习用matalb 命令实现图像的平移、旋转操作1、.编写实现图像平移的函数2、用imread 命令从你的硬盘读取一幅256×256灰度图;3、调用平移函数,将256×256灰度图平移100行200列,在同一个窗口中显示平移前和平移后的图像。

数字图像处理 实验报告(完整版).doc

数字图像处理 实验报告(完整版).doc

数字图像处理实验一 MATLAB数字图像处理初步一、显示图像1.利用imread( )函数读取一幅图像,假设其名为lily.tif,存入一个数组中;2.利用whos 命令提取该读入图像flower.tif的基本信息;3.利用imshow()函数来显示这幅图像;实验结果如下图:源代码:>>I=imread('lily.tif')>> whos I>> imshow(I)二、压缩图像4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为lily.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。

6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flily.bmp。

7.用imread()读入图像Sunset.jpg和Winter.jpg;8.用imfinfo()获取图像Sunset.jpg和Winter.jpg的大小;9.用figure,imshow()分别将Sunset.jpg和Winter.jpg显示出来,观察两幅图像的质量。

其中9的实验结果如下图:源代码:4~6(接上面两个) >>I=imread('lily.tif')>> imfinfo 'lily.tif';>> imwrite(I,'lily.jpg','quality',20);>> imwrite(I,'lily.bmp');7~9 >>I=imread('Sunset.jpg');>>J=imread('Winter.jpg')>>imfinfo 'Sunset.jpg'>> imfinfo 'Winter.jpg'>>figure(1),imshow('Sunset.jpg')>>figure(2),imshow('Winter.jpg')三、二值化图像10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow显示出来观察图像的特征。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告图像处理课程的目标是培养学生的试验综合素质与能力。

使学生通过实践,理解相关理论学问,将各类学问信息进行新的组合,制造出新的方法和新的思路,提高学生的科学试验与实际动手操作能力[1]。

从影像科筛选有价值的图像,建成影像学数字化试验教育平台,系统运行正常;具备图像上传、图像管理、图像检索与扫瞄、试验报告提交、老师批阅等功能;能满意使用要求[2]。

1.试验内容设计思路1.1项目建设内容和方法数字图像处理的内容:完整的数字图像处理大体上分为图像信息的猎取,存储,传送,处理,输出,和显示几个方面。

数字图像信息的猎取主要是把一幅图像转换成适合输入计算机和数字设备的数字信号,包括摄取图像,光、电转换及数字化。

数字图像信息的存储,数字图像信息的突出特点是数据量巨大,为了解决海量存储问题,数字图像的存储主要研究图像压缩,图像格式及图像数据库技术。

数字图像信息的传送数字图像信息的传送可分为系统内部传送与远距离传送[4]数字图像信息处理包括图像变换,图像增加,图像复原,彩色与多光谱处理图像重建,小波变换,图像编码,形态学,目标表示与描述。

数字图像输出和显示,最终目的是为人和机器供应一幅便于解释和识别的图像,数字图像的输出和显示也是数字图像处理的重要内容之一。

1.2数字图像处理的方法大致可以分为两大类,既空域法和频域法空域法:是把图像看做平面中各个像素组成的集合,然后直接对一维和二维函数进行相应处理,依据新图像生成方法的不同,空域处理法可为点处理法,区处理法,叠代处理法,跟踪处理法,位移不变与位移可变处理法。

点处理法的优点,点处理的典型用途a)灰度处理b)图像二值处理点处理方法的优点a)可用LUT方法快速实现b)节省存储空间。

区处理法,邻域处理法。

它依据输入图像的小邻域的像素值,按某些函数得到输出像素。

区处理法主要用于图象平滑和图像的锐化。

叠代处理法:叠代就是反复进行某些处理运算,图像叠代处理也是如此,拉普拉斯算子或平滑处理的结果是物体轮廓,该图像轮廓边缘太宽或粗细不一,要经过多次叠代把它处理成单像素轮廓——图像细化。

数字图像处理 实验报告(完整版)

数字图像处理 实验报告(完整版)

数字图像处理(一)实验一 MATLAB数字图像处理初步一、显示图像1.利用imread( )函数读取一幅图像,假设其名为lily.tif,存入一个数组中;2.利用whos 命令提取该读入图像flower.tif的基本信息;3.利用imshow()函数来显示这幅图像;实验结果如下图:源代码:>>I=imread('lily.tif')>> whos I>> imshow(I)二、压缩图像4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为lily.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。

6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flily.bmp。

7.用imread()读入图像Sunset.jpg和Winter.jpg;8.用imfinfo()获取图像Sunset.jpg和Winter.jpg的大小;9.用figure,imshow()分别将Sunset.jpg和Winter.jpg显示出来,观察两幅图像的质量。

其中9的实验结果如下图:源代码:4~6(接上面两个) >>I=imread('lily.tif')>> imfinfo 'lily.tif';>> imwrite(I,'lily.jpg','quality',20);>> imwrite(I,'lily.bmp');7~9 >>I=imread('Sunset.jpg');>>J=imread('Winter.jpg')>>imfinfo 'Sunset.jpg'>> imfinfo 'Winter.jpg'>>figure(1),imshow('Sunset.jpg')>>figure(2),imshow('Winter.jpg')三、二值化图像10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow显示出来观察图像的特征。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告DIGITAL IMAGE PROCESSING目录目录 0实验一数字图像基本操作及灰度调整 (1)一、实验目的 (1)二、实验内容与要求 (1)三、实验原理与算法分析 (2)四、实验步骤 (4)五、实验结果分析与讨论 (5)六、参考文献 (9)实验二数字图像的空间域滤波和频域滤波 (10)一、实验目的 (10)二、实验内容与要求 (10)三、实验原理与算法分析 (11)四、实验步骤 (15)五、实验结果分析与讨论 (21)六、参考文献 (36)实验一数字图像基本操作及灰度调整一、实验目的1)掌握读、写图像的基本方法。

2)掌握MATLAB语言中图像数据与信息的读取方法。

3)理解图像灰度变换处理在图像增强的作用。

4)掌握绘制灰度直方图的方法,理解灰度直方图的灰度变换及均衡化的方法。

二、实验内容与要求复制若干图形文件(如forest.tif和b747.jpg)至MATLAB目录下work文件夹中。

1.熟悉MATLAB语言中对图像数据读取,显示等基本函数特别需要熟悉下列命令:熟悉imread()函数、imwrite()函数、size()函数、Subplot ()函数、Figure()函数。

1)将MA TLAB目录下work文件夹中的forest.tif图像文件读出.用到imread,imfinfo等文件,观察一下图像数据,了解一下数字图像在MATLAB中的处理就是处理一个矩阵。

将这个图像显示出来(用imshow)。

尝试修改map颜色矩阵的值,再将图像显示出来,观察图像颜色的变化。

2)将MA TLAB目录下work文件夹中的b747.jpg图像文件读出,用rgb2gray()将其转化为灰度图像,记为变量B。

2.图像灰度变换处理在图像增强的作用读入不同情况的图像,请自己编程和调用Matlab函数用常用灰度变换函数对输入图像进行灰度变换,比较相应的处理效果。

3.绘制图像灰度直方图的方法,对图像进行均衡化处理请自己编程和调用Matlab函数完成如下实验。

数字图像处理实验报告

数字图像处理实验报告

目录实验一:数字图像的基本处理操作 (2)1。

1:实验目的 (2)1。

2:实验任务和要求 (2)1.3:实验步骤和结果 (2)1。

4:结果分析 (6)实验二:图像的灰度变换和直方图变换 (7)2.1:实验目的 (7)2.2:实验任务和要求 (7)2。

3:实验步骤和结果 (7)2。

4:结果分析 (11)实验三:图像的平滑处理 (12)3.1:实验目的 (12)3。

2:实验任务和要求 (12)3。

3:实验步骤和结果 (12)3。

4:结果分析 (16)实验四:图像的锐化处理 (17)4.1:实验目的 (17)4.2:实验任务和要求 (17)4。

3:实验步骤和结果 (17)4.4:结果分析 (19)实验一:数字图像的基本处理操作1.1:实验目的1、熟悉并掌握MATLAB、PHOTOSHOP等工具的使用;2、实现图像的读取、显示、代数运算和简单变换。

3、熟悉及掌握图像的傅里叶变换原理及性质,实现图像的傅里叶变换。

1。

2:实验任务和要求1.读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题。

2.对两幅不同图像执行加、减、乘、除操作,在同一个窗口内分成五个子窗口来分别显示,注上文字标题.3.对一幅图像进行平移,显示原始图像与处理后图像,分别对其进行傅里叶变换,显示变换后结果,分析原图的傅里叶谱与平移后傅里叶频谱的对应关系。

4.对一幅图像进行旋转,显示原始图像与处理后图像,分别对其进行傅里叶变换,显示变换后结果,分析原图的傅里叶谱与旋转后傅里叶频谱的对应关系。

1.3:实验步骤和结果1.对实验任务1的实现代码如下:a=imread(’d:\tp.jpg’);i=rgb2gray(a);I=im2bw(a,0。

5);subplot(1,3,1);imshow(a);title('原图像');subplot(1,3,2);imshow(i);title(’灰度图像’);subplot(1,3,3);imshow(I);title('二值图像’);subplot(1,3,1);imshow(a);title('原图像');结果如图1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017 年春季学期研究生课程考核(实验报告)考核科目:现代光电子技术实验实验题目:光学图像数字化处理学生所在院(系):航天学院21系学生所在学科:物理电子学学生姓名:X X学号:16S0210X X学生类别:非委培考核结果阅卷人1. 实验目的通过实验教学进一步加深研究生对光学图像产生的基本理论和技术的理解,培养学生的创新意识和创新能力。

掌握视景仿真和图像处理软件的操作,奠定研究生实际工作中分析问题和解决问题的能力。

2. 实验设备(软件)实验仪器设备主要有:计算机、视景仿真软件和Matlab 图像处理软件。

3. 实验原理(1)视景仿真技术视景仿真技术作为一种新技术,已应用于航空航天、现代制造业、产品展示、医疗、城市规划、工艺模拟、水利等领域, 具有科学直观、可视性强、及时更新、互动性等特点。

景象系统的制作过程可以简单概括为两个部分,模型生成部分使用三维建模软件Multi Creator ,生成含干扰、目标、背景等多个开放式文件的模型库;图像生成部分使用仿真平台Vega 和编程语言Visual C++ 6.0,由Vega 界面软件配置仿真场景信息,如环境、窗口、运动方式、通道、视场角等;最后使用编程语言编写视景驱动程序,载入模型,生成实时红外图像。

(2)噪声分析噪声一般简单可划分为加性噪声和乘性噪声,人们研究最早、最广、也最成熟的是加性噪声,加性噪声较乘性噪声易于抑制。

散斑(speckle )噪声是一种乘性噪声。

相干激光雷达强度像主要受散斑噪声影响,其概率密度函数服从指数分布。

一些重要噪声的概率密度函数(PDF ):① 高斯噪声Gaussian noise222/)(21)(σμσπφ--=z e z ② 瑞利噪声Rayleigh noise a z a z e a z b z b a z <≥⎪⎩⎪⎨⎧-=--0)(2)(/)(2φ③ 爱尔兰(伽马)噪声Erlang (Gamman )noise000)!1()(1<≥⎪⎩⎪⎨⎧-=--z z e b z a z az b b φ④ 指数分布噪声exponetial noise00)(<≥⎩⎨⎧=-z z ae z az φ ⑤ 均匀分布噪声uniform noise其他b z a a b z ≤≤⎪⎩⎪⎨⎧-=01)(φ ⑥脉冲噪声(椒盐噪声)impulse (salt-and-pepper ) noise其他b z a z P P z b a ==⎪⎩⎪⎨⎧=0)(φ(3)噪声抑制一般方法噪声抑制主要有空域处理和频域处理两类。

一般空域滤波直接针对图像分辨率不高的图像。

主要有均值滤波、中值滤波、加权均值滤波、多级中值滤波等。

其中模板大小和形状的选择对去噪效果有较大影响。

频域滤波主要有通过衰减指定图像傅立叶变换或小波变换等变换中高频成分的范围实现的。

典型的利用傅立叶变换的低通滤波器有:理想低通滤波器(ideal lowpass filter )、巴特沃思低通滤波器(Butterworth lowpass filter )和高斯低通滤波器。

均值滤波是一种直接在空域上进行平滑去噪的技术。

它认为图像是由许多灰度恒定的小块组成,相邻像素间有很高的空间相关性,而噪声则是统计独立的。

因此,可用滤波器模板(或称窗口)确定的像素邻域内各像素灰度平均值代替该中心像素原来的灰度值。

设图像中某一个中心像素的灰度值是),(y x f ,滤波器模板S 大小为n n ⨯,则平滑后这点的灰度值为:∑∈++=S j i j y i x f n y x f ,2),(1),( (3-9)中值滤波把数字图像中某一像素的灰度值用该点的一个邻域中各个点的中值代替。

滤波窗口为A 的二维中值滤波可定义为:}),(,),(,{}{2)(),(,I j i A s r x Med x Med y s j r i ij j i ∈∈==++图像分析中常用到直方图。

灰度级为[0,L-1]范围的数字图像处理的直方图是离散函数k k n r h =)(,r k 是第k 级灰度,n k 第k 级灰度的像素个数。

它描述的是图像中该灰度级的像素数。

即:横坐标表示灰度级,纵坐标表示图像中该灰度级出现的个数。

(4)图像分割基本思想图像分割主要根据图像在各个区域的不同特性,对其进行边缘或区域上的分割,从中提取出所关心的目标。

图像分割算法必须符合:分割产生的所有区域之和包括了原始图像中的所有像素;分割后的结果互不重叠;分割后的各个区域有其独立的特性;分割后的区域是一个连通集。

图像分割是依据亮度值的两个基本特性:不连续性和相似性。

基于亮度的不连续性分割图像,如图像的边缘检测等。

依据事先制定的准则将图像分割为相似的区域,如门限处理、区域生长、区域分离和聚合等。

Sobel 算子:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=101202101x G ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=121000121y G 4. 实验步骤(1)通过视景仿真软件观察视场不同时的红外和可见光图像,获得图像数据。

要求掌握视景仿真软件获得所需图像数据的方法。

(2)利用Matlab 软件,对获得的图像数据进行添加高斯、椒盐、指数分布等噪声实验,观察加入噪声前后的图像及其直方图。

要求了解噪声特性,尤其掌握高斯噪声中方差和均值对图像的作用。

(3)采用中值滤波和均值滤波进行图像去噪实验,观察两种方法的去噪效果。

要求掌握两种算法的应用特性。

(4)采用Sobel 和LOG 算子进行边缘检测实验,观察两种方法的边缘检测效果。

要求了解二阶微分算子和一阶微分算子对噪声的适应性。

(5)独立应用Matlab 软件,进行图像处理练习,获得除上面(1)-(4)提及算法的处理结果。

要求了解图像与图像处理方法的依赖关系。

5. 实验原始数据、处理结果与分析进入图形5-1的视景仿真软件,选择目标为坦克红外图像。

1.图像生成在软件中选择生成坦克红外图像,设置距离为15米,观察高度为2米。

视角为35°。

得到的图像如图1所示。

图1 原始图像(左)和原图直方图(右)2.加入噪声加入高斯噪声。

首先设置均值为0,方差为0.01,得到的带噪声图像如图2(a)所示;然后改变均值为0不变,方差为0.05,得到的噪声图像如图2(b)所示;然后改变均值为0.05,方差为0.01,得到的带有高斯噪声的图像如图2(c)所示。

观察三幅高斯噪声图像。

(a) 加入均值为0、方差为0.01的高斯噪声 (b) 加入均值为0、方差为0.05的高斯噪声(c) 加入均值为0、方差为0.05的高斯噪声图2 加入不同均值和方差的高斯噪声由图像可以看出图2(a)和图2(c)中图像比较清晰,能分辨出坦克的部分细节,如主炮和履带轮。

但是增大方差会使噪声增多,明显看出图像变粗糙,坦克履带轮变得模糊了。

分析是由于高斯噪声增大,使图像变得模糊,细节不明显。

再来比较三幅图像的灰度直方图。

如图3所示,观察比较三个直方图。

(a) 均值为0,方差为0.01 (b) 均值为0,方差为0.05(c) 均值为0.05,方差为0.01图3 加入不同均值方差的高斯噪声的灰度直方图由图3可以看出,由于均值为0,所以(a),(b)两图的在灰度值上呈对称分布,而(c)图的中心偏右侧的个数要多于左侧,这是因为其均值为0.05。

再看图(b)相对于其(a)、(c)两图而言其形状相对平缓,这是因为其方差为0.05,大于其它两图的0.01。

可见高斯均值和方差的变化会直接引起像素点个数的分布情况,均值越大,灰度值分布就越不对称;方差越大,灰度分布直方图就越平缓,灰度分布就越分散。

接下来在图像上加入椒盐噪声。

加入椒盐噪声的图像及其灰度直方图如图4所示。

从图4(a)可以看出,椒盐噪声并不影响图像的整体辨识度,只是图像加了一些噪点,就像撒了一层椒盐。

在灰度直方图中,加入椒盐噪声与原图相比差别不大。

仅仅添加了一些灰度值为0和255的像素,说明椒盐噪声是在图像上均匀添加的一些白点和黑点。

(a) 加入椒盐噪声(b) 加入椒盐噪声的灰度直方图图4 加入椒盐噪声的图像及灰度直方图3.中值滤波和均值滤波先用中值滤波对均值为0,方差为0.05的高斯噪声和椒盐噪声的图片进行处理。

再用中值滤波对这两幅图片进行处理。

高斯噪声下的图像采用中值滤波后,并未能很好的从噪声中提取出坦克的轮廓,跟含有噪声的图像相比没有很大的变化。

只不过3*3模板的中值滤波结果比5*5模板的结果更加锐利。

(a) 高斯噪声3*3中值滤波处理后 (b) 高斯噪声5*5中值滤波处理后图5 高斯噪声中值滤波(a) 椒盐噪声3*3中值滤波处理后 (b) 椒盐噪声5*5中值滤波处理后图6 椒盐噪声中值滤波而椒盐噪声采用中值滤波处理后,发现图像中的噪点被很好地清除。

图像变得很清晰,并且3*3模板比5*5模板处理后的坦克细节表现更好。

(a) 高斯噪声3*3中值滤波直方图 (b) 高斯噪声5*5中值滤波直方图图7 高斯噪声中值滤波直方图(a) 椒盐噪声3*3中值滤波直方图 (b) 椒盐噪声5*5中值滤波直方图图8 椒盐噪声中值滤波直方图观察灰度直方图发现:高斯噪声图像经过中值滤波,直方图出现两个峰,而且5*5模板的峰比3*3的更高,5*5模板的谷比3*3的更低;椒盐噪声图像经过中值滤波,直方图中灰度值为0和255的像素点数没有了。

说明经过中值滤波,黑白的椒盐噪声减弱,整体噪声减弱了。

由以上处理可以发现:中值滤波抑制效果较好,画面的清晰度基本保持;缺点是对高斯噪声的抑制效果不是很好。

再用均值滤波进行处理。

从图9的(a)、(b)可见,均值滤波对高斯噪声有一定的去除能力,因为高斯噪声具有随机性,周围像素点的取平均值会有效的抑制高斯噪声,从而提取出图像。

而由图10则可以看出椒盐噪声被处理成了小气泡,同时图像变得模糊了。

通过以上分析可以看出均值滤波在降低噪声的同时使图像产生模糊,特别是景物的边缘和细节部分。

(a) 高斯噪声3*3均值滤波 (b) 高斯噪声5*5均值滤波图9 高斯噪声均值滤波(a) 椒盐噪声3*3均值滤波 (b) 椒盐噪声5*5均值滤波图10 椒盐噪声均值滤波(a) 高斯噪声3*3均值滤波直方图 (b) 高斯噪声5*5均值滤波直方图图11 高斯噪声均值滤波直方图(a) 椒盐噪声3*3均值滤波直方图 (b) 椒盐噪声5*5均值滤波直方图图12 椒盐噪声均值滤波直方图从均值处理后的直方图可以看出,高斯噪声处理后灰度图依然出现两个峰,椒盐噪声灰度直方图中灰度分布发生了变化,这些都是经过均值处理的结果。

4.边缘检测对原始图像进行边缘检测。

可见这两个算子下都可以有效的将坦克的轮廓提取出来。

对于坦克履带轮和主炮的细节提取,log算子表现更好一些,它对坦克的内在轮廓有着更清晰的提取;而使用sobel算子进行边缘检测,坦克的主炮轮廓比较模糊,是不连续的点,坦克的履带轮细节也不够好,总体来说sobel算子对坦克背景下的线条轮廓检测稍微有点弱。

相关文档
最新文档