《抽样技术》习题答案

合集下载

应用抽样技术练习题答案

应用抽样技术练习题答案

应用抽样技术练习题答案一、选择题1. 抽样技术在统计分析中的主要作用是什么?A. 预测未来趋势B. 代表总体特征C. 描述个体差异D. 计算平均值答案:B2. 以下哪项不是抽样误差的来源?A. 抽样方法B. 抽样框的不完整性C. 抽样过程中的随机性D. 样本量的大小答案:D3. 简单随机抽样的特点是什么?A. 每个个体被抽中的概率相同B. 样本量必须很大C. 需要分层抽样D. 只能用于总体较小的情况答案:A4. 分层抽样的优点是什么?A. 可以减少抽样误差B. 可以增加样本量C. 可以提高总体的代表性D. 可以降低抽样成本答案:A5. 系统抽样的特点是什么?A. 抽样间隔是固定的B. 抽样间隔是随机的C. 需要分层D. 需要配额答案:A二、判断题1. 抽样调查总是比全面调查更经济。

(错误)2. 抽样调查的目的是估计总体参数。

(正确)3. 抽样调查中,样本量越大,抽样误差就越小。

(错误)4. 抽样框是抽样调查中用来记录所有个体的列表。

(正确)5. 抽样技术只能用于定量研究。

(错误)三、简答题1. 请简述分层抽样的步骤。

答案:分层抽样的步骤包括:(1)确定总体并将其分为互不重叠的子群体,即层;(2)在每个层中独立地进行抽样;(3)将各层的样本合并,形成总体的代表性样本。

2. 为什么在抽样调查中需要考虑样本的代表性?答案:样本的代表性意味着样本能够反映总体的特征。

如果样本具有代表性,那么从样本中得到的统计推断将更接近总体的真实情况,从而提高研究的准确性和可靠性。

四、计算题1. 假设一个总体有1000个个体,我们使用简单随机抽样方法抽取了50个个体作为样本。

计算样本比例的抽样误差。

答案:抽样误差可以通过以下公式计算:\( \text{抽样误差} = Z\times \sqrt{\frac{p(1-p)}{n}} \),其中\( Z \)是标准正态分布的置信水平对应的Z值(例如,95%置信水平对应的Z值为1.96),\( p \)是总体比例(由于我们不知道总体比例,这里假设为0.5,此时抽样误差最大),\( n \)是样本量。

《抽样技术》习题答案(答案参考)

《抽样技术》习题答案(答案参考)

第2章项目相同之处不同之处定义都是根据从一个总体中抽样得到的样本,然后定义样本均值为_11ni i y y n ==∑。

抽样理论中样本是从有限总体中按放回的抽样方法得到的,样本中的样本点不会重复;而数理统计中的样本是从无限总体中利用有放回的抽样方法得到的,样本点有可能是重复的。

性质(1) 样本均值的期望都等于总体均值,也就是抽样理论和数理统计中的样本均值都是无偏估计。

(2) 不论总体原来是何种分布,在样本量足够大的条件下,样本均值近似服从正态分布。

(1) 抽样理论中,各个样本之间是不独立的;而数理统计中的各个样本之间是相互独立的。

(2) 抽样理论中的样本均值的方差为()21f V y S n -=,其中2_211i S Y Y N ⎛⎫=- ⎪-⎝⎭∑。

在数理统计中,()21V y nσ=,其中2σ为总体的方差。

2.3 解:首先估计该市居民日用电量的95%的置信区间。

根据中心极限定理可知,在大样本的条件下,()()_y E y y V y V y -=近似服从标准正态分布, _Y 的195%α-=的置信区间为()()()(), 1.96, 1.96y z V y y z V y y V y y V y αα⎡⎡-+=-+⎣⎣。

而()21f V y S n-=中总体的方差2S 是未知的,用样本方差2s 来代替,置信区间为111.96, 1.96f fy s y s n n ⎡⎤---+⎢⎥⎣⎦由题意知道,_29.5,206y s ==,而且样本量为300,50000n N ==,代入可以求得_21130050000()2060.6825300f v y s n --==⨯=。

将它们代入上面的式子可得该市居民日用电量的95%置信区间为7.8808,11.1192⎡⎤⎣⎦。

下一步计算样本量。

绝对误差限d 和相对误差限r 的关系为_d rY =。

根据置信区间的求解方法可知()()______11y Y P y Y r Y P V y V y αα⎧⎫-⎪⎪⎧⎫⎪-≤≥-⇒≤≥-⎨⎬⎨⎩⎭⎪⎪根据正态分布的分位数可以知道()__1y Y P Z V y αα⎫-⎪⎪≤≥-⎬⎪⎪⎭,所以()2_2r Y V y z α⎛⎫⎪= ⎪⎝⎭。

《抽样技术》第四版习题答案

《抽样技术》第四版习题答案

第2章2.1 解:()1 这种抽样方法是等概率的。

在每次抽取样本单元时,尚未被抽中的编号为1~64的这些单元中每一个单元被抽到的概率都是1100。

()2这种抽样方法不是等概率的。

利用这种方法,在每次抽取样本单元时,尚未被抽中的编号为1~35以及编号为64的这36个单元中每个单元的入样概率都是2100,而尚未被抽中的编号为36~63的每个单元的入样概率都是1100。

()3这种抽样方法是等概率的。

在每次抽取样本单元时,尚未被抽中的编号为20 000~21 000中的每个单元的入样概率都是11000,所以这种抽样是等概率的。

2.3 解:首先估计该市居民日用电量的95%的置信区间。

根据中心极限定理可知,在大_y E y y -=近似服从标准正态分布, _Y 的195%α-=的置信区间为y z y z y y αα⎡⎡-+=-+⎣⎣。

而()21f V y S n-=中总体的方差2S 是未知的,用样本方差2s 来代替,置信区间为,y y ⎡⎤-+⎢⎥⎣⎦。

由题意知道,_29.5,206y s ==,而且样本量为300,50000n N ==,代入可以求得 _21130050000()2060.6825300f v y s n --==⨯=。

将它们代入上面的式子可得该市居民日用电量的95%置信区间为7.8808,11.1192⎡⎤⎣⎦。

下一步计算样本量。

绝对误差限d 和相对误差限r 的关系为_d rY =。

根据置信区间的求解方法可知____11P y Y r Y P αα⎫⎪⎧⎫-≤≥-⇒≤≥-⎨⎬⎩⎭根据正态分布的分位数可以知道1P Z αα⎫⎪⎪≤≥-⎬⎪⎪⎭,所以()2_2rY V y z α⎛⎫⎪= ⎪⎝⎭。

也就是2_2_222/221111r Y r Y S n N z S n N z αα⎡⎤⎛⎫⎢⎥⎛⎫⎪⎛⎫⎝⎭⎪⎢⎥-=⇒=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥⎣⎦。

把_29.5,206,10%,50000y s r N ====代入上式可得,861.75862n =≈。

(抽样检验)抽样技术课后答案

(抽样检验)抽样技术课后答案

第二章习题2.1判断下列抽样方法是否是等概的:(1)总体编号1~64,在0~99中产生随机数r ,若r=0或r>64则舍弃重抽。

(2)总体编号1~64,在0~99中产生随机数r ,r 处以64的余数作为抽中的数,若余数为0则抽中64.(3)总体20000~21000,从1~1000中产生随机数r 。

然后用r+19999作为被抽选的数。

解析:等概抽样属于概率抽样,概率抽样具有一些几个特点:第一,按照一定的概率以随机原则抽取样本。

第二,每个单元被抽中的概率是已知的,或者是可以计算的。

第三,当用样本对总体目标进行估计时,要考虑到该样本被抽中的概率。

因此(1)中只有1~64是可能被抽中的,故不是等概的。

(2)不是等概的【原因】(3)是等概的。

2.2抽样理论和数理统计中关于样本均值y 的定义和性质有哪些不同?2.3为了合理调配电力资源,某市欲了解50000户居民的日用电量,从中简单随机抽取了300户进行,现得到其日用电平均值=y 9.5(千瓦时),=2s 206.试估计该市居民用电量的95%置信区间。

如果希望相对误差限不超过10%,则样本量至少应为多少?解:由已知可得,N=50000,n=300,5.9y =,2062=s1706366666206*300500003001500001)()ˆ(222=-=-==s nf N y N v YV 19.413081706366666(==)y v 该市居民用电量的95%置信区间为[])(y [2y V z N α±=[475000±1.96*41308.19]即为(394035.95,555964.05) 由相对误差公式y)(v u 2y α≤10%可得%10*5.9206*n50000n 1*96.1≤- 即n ≥862欲使相对误差限不超过10%,则样本量至少应为8622.4某大学10000名本科生,现欲估计爱暑假期间参加了各类英语培训的学生所占的比例。

抽样技术习题参考答案(第一章)

抽样技术习题参考答案(第一章)

第一章1.1 答:理论上,若要根据调查数据进行统计推断,则需使用概率抽样。

在实际情形中,对概率抽样与非概率抽样的选择基于对调查目的与调查条件的权衡。

按照L. Kish 的说法,适用概率抽样的场合:(1)“当随机化〖即概率抽样〗既简单又重要时,忽视它就等于轻率和无知”;(2)“只有在某一具体研究领域中由于观察到抽选偏差,发现随机性的假设系错误后〖即随机性假设不成立〗,某些研究人员才显示出对概率抽样发生兴趣……在大多数物理学和化学实验中,样本的选择看来并不需要特别注意,在生物学里,随机与不随机兼而有之。

另一个极端是社会科学,事物特征的分布往往与随机分布相去甚远,也正是在这些领域,概率抽样最为需要,也是最为发展的”;(3)“随机化的概率抽样并不是一个教条而是一种策略,特别是对抽样数目大的场合更是如此”。

〖请再次注意由个人随意写下一些数字的例子〗适用非概率抽样的场合:(1)“比较大的挑战是在很多场合实行随机化的花费很大,这时它的价值必须与它的高费用相权衡,而且常常还要与减少对测量和实验变量的控制相权衡〖指调查方法与试验方法的选择〗。

因此,在很多现场操作中作业人员在下列三种情况下,尽量避免使用概率抽样: 第一,如果元素是一致的,那抽样就不重要了,例如,所有重量为一个单位的氢原子都可以认为是一样的;第二,虽然缺乏一致性,但如果预测的变量是可以度量且能够控制的话,抽样仍然可以避免,例如,在对个人进行抽选时对性别的控制是容易的;第三,如果不能控制的变量在总体中是随机分布的,那么对于任何选样设计,都可以提供一个随机样本。

”(2)“很多卓有成就的科学(天文学、物理学和化学)的巨大进步过去和现在都没有用概率抽样,在这些科学的研究里,统计推断是根据对总体有着适当的、自动的和自然的随机化这一主观判断而作出的……科学研究里充满了根据总体天然随机化的假定而获得成功的例子。

”1.2 答(1)(2)(3)皆否。

理由:判断一抽样是否为概率抽样,乃判断其是否为一给定之(),,S P U ,即:是否有确定之有限总体U ,所有可能样本的集合{}S s =是否确定,每个样本的选取概率{}P p =是否确定。

抽样技术课后习题_参考答案_金勇进

抽样技术课后习题_参考答案_金勇进

第二章习题2.1判断下列抽样方法是否是等概的:(1)总体编号1~64,在0~99中产生随机数r ,若r=0或r>64则舍弃重抽。

(2)总体编号1~64,在0~99中产生随机数r ,r 处以64的余数作为抽中的数,若余数为0则抽中64.(3)总体20000~21000,从1~1000中产生随机数r 。

然后用r+19999作为被抽选的数。

解析:等概抽样属于概率抽样,概率抽样具有一些几个特点:第一,按照一定的概率以随机原则抽取样本。

第二,每个单元被抽中的概率是已知的,或者是可以计算的。

第三,当用样本对总体目标进行估计时,要考虑到该样本被抽中的概率。

因此(1)中只有1~64是可能被抽中的,故不是等概的。

(2)不是等概的【原因】(3)是等概的。

2.2抽样理论和数理统计中关于样本均值y 的定义和性质有哪些不同?300户进行,现得到其日用电平均值=y 9.5(千瓦时),=2s 206.试估计该市居民用电量的95%置信区间。

如果希望相对误差限不超过10%,则样本量至少应为多少?解:由已知可得,N=50000,n=300,5.9y =,2062=s 该市居民用电量的95%置信区间为[])(y [2y V z N α±=[475000±1.96*41308.19]即为(394035.95,555964.05) 由相对误差公式y)(v u 2y α≤10%可得%10*5.9206*n50000n 1*96.1≤- 即n ≥862欲使相对误差限不超过10%,则样本量至少应为8622.4某大学10000名本科生,现欲估计爱暑假期间参加了各类英语培训的学生所占的比例。

随机抽取了两百名学生进行调查,得到P=0.35,是估计该大学所有本科生中暑假参加培训班的比例的95%置信区间。

解析:由已知得:10000=N 200=n 35.0=p 02.0==Nnf 又有:35.0)()(===∧p p E p E 0012.0)1(11)(=---=∧p p n fp V该大学所有本科学生中暑假参加培训班的比例95%的置信区间为:])()([2∧∧±P V Z P E α代入数据计算得:该区间为[0.2843,0.4157]2.5研究某小区家庭用于文化方面(报刊、电视、网络、书籍等)的支出,N=200,现抽取一个容量为20的样本,调查结果列于下表:编号 文化支出 编号 文化支出 1 200 11 150 2 150 12 160 3 170 13 180 4 150 14 130 5 160 15 100 6 130 16 180 7 140 17 100 8 100 18 180 9 110 19 170 1024020120估计该小区平均的文化支出Y ,并给出置信水平95%的置信区间。

《抽样技术》练习题5及答案

《抽样技术》练习题5及答案

习题一1.请列举一些你所了解的以及被接受的抽样调查。

2.抽样调查基础理论及其意义;3.抽样调查的特点。

4.样本可能数目及其意义;5.影响抽样误差的因素;6.某个总体抽取一个n=50的独立同分布样本,样本数据如下:567 601 665 732 366 937 462 619 279 287690 520 502 312 452 562 557 574 350 875834 203 593 980 172 287 753 259 276 876692 371 887 641 399 442 927 442 918 11178 416 405 210 58 797 746 153 644 4761)计算样本均值y与样本方差s2;2)若用y估计总体均值,按数理统计结果,y是否无偏,并写出它的方差表达式;3)根据上述样本数据,如何估计v(y)?4)假定y的分布是近似正态的,试分别给出总体均值μ的置信度为80%,90%,95%,99%的(近似)置信区间。

习题二一判断题1 普查是对总体的所有单元进行调查,而抽样调查仅对总体的部分单元进行调查。

2 概率抽样就是随机抽样,即要求按一定的概率以随机原则抽取样本,同时每个单元被抽中的概率是可以计算出来的。

3 抽样单元与总体单元是一致的。

4 偏倚是由于系统性因素产生的。

5 在没有偏倚的情况下,用样本统计量对目标量进行估计,要求估计量的方差越小越好。

6 偏倚与抽样误差一样都是由于抽样的随机性产生的。

7 偏倚与抽样误差一样都随样本量的增大而减小。

8 抽样单元是构成抽样框的基本要素,抽样单元只包含一个个体。

9 抽样单元可以分级,但在抽样调查中却没有与之相对应的不同级的抽样框。

10 总体目标量与样本统计量有不同的意义,但样本统计量它是样本的函数,是随机变量。

11 一个抽样设计方案比另一个抽样设计方案好,是因为它的估计量方差小。

12 抽样误差在概率抽样中可以对其进行计量并加以控制,随着样本量的增大抽样误差会越来越小,随着n越来越接近N,抽样误差几乎可以消除。

抽样技术期末试题及答案

抽样技术期末试题及答案

抽样技术期末试题及答案1. 选择题1.1. 在随机抽样中,下列哪种方法可以保证每个个体都有被选中的机会?A. 简单随机抽样B. 系统抽样C. 分层抽样D. 整群抽样答案:A. 简单随机抽样1.2. 下列哪种抽样方法适用于对城市中不同居住区的居民进行调查?A. 简单随机抽样B. 道路抽样C. 有限总体抽样D. 群集抽样答案:B. 道路抽样1.3. 在抽样调查中,误差来源主要包括以下几个方面,下列哪个不是?A. 非抽样误差B. 抽样误差C. 召回误差D. 地区误差答案:C. 召回误差2. 判断题2.1. 分层抽样是按照抽样单元的层次结构进行抽样的方法。

(×)错误2.2. 构成总体的个体是抽样的单位。

(√)正确2.3. 方便抽样是一种常用的抽样方法,可以得到客观有效的数据。

(×)错误3. 简答题3.1. 请简要解释什么是整群抽样,并说明适用的情况。

整群抽样是在调查研究中,将总体划分为若干个不相交的群组,再从中随机选取一部分群组作为样本,对所选群组中的所有个体进行调查和观察的方法。

适用情况:适用于总体中的个体具有较大的相似性,并能够通过群组进行划分的情况。

例如,在调查某个城市的居民满意度时,可以将城市的街道或社区作为群组,通过整群抽样来获取样本。

3.2. 简要介绍一种非概率抽样方法,并讨论其优缺点。

一种非概率抽样方法是方便抽样。

方便抽样是在调查过程中,选择离调查者最为便利的、容易获取的个体作为样本。

优点:方便抽样方法简单、快速,可以节省调查时间和成本。

适用于在研究设计初期或资源有限的情况下进行初步探索和观察。

缺点:方便抽样容易导致抽样偏差,样本的代表性较差,结果可能不具有普遍适用性。

调查者的主观意愿会对样本选择产生较大的影响,结果可能存在较大的偏差和误差。

4. 计算题4.1. 一个城市有5个区,每个区的居民数分别为1000、1500、2000、1200和1800人。

如果采用分层随机抽样方法,每个区的抽样比例分别为0.2、0.3、0.1、0.25和0.15,求总体的抽样比例。

《抽样技术》第四版习题答案

《抽样技术》第四版习题答案

第2章2.1 解:()1 这种抽样方法是等概率的。

在每次抽取样本单元时,尚未被抽中的编号为1~64的这些单元中每一个单元被抽到的概率都是1100。

()2这种抽样方法不是等概率的。

利用这种方法,在每次抽取样本单元时,尚未被抽中的编号为1~35以及编号为64的这36个单元中每个单元的入样概率都是2100,而尚未被抽中的编号为36~63的每个单元的入样概率都是1100。

()3这种抽样方法是等概率的。

在每次抽取样本单元时,尚未被抽中的编号为20 000~21 000中的每个单元的入样概率都是11000,所以这种抽样是等概率的。

2.3 解:首先估计该市居民日用电量的95%的置信区间。

根据中心极限定理可知,在大_y E y y -=近似服从标准正态分布, _Y 的195%α-=的置信区间为2y z y z y y αα⎡⎡-+=-+⎣⎣。

而()21f V y S n-=中总体的方差2S 是未知的,用样本方差2s 来代替,置信区间为,y y ⎡⎤-+⎢⎥⎣⎦。

由题意知道,_29.5,206y s ==,而且样本量为300,50000n N ==,代入可以求得 _21130050000()2060.6825300f v y s n --==⨯=。

将它们代入上面的式子可得该市居民日用电量的95%置信区间为7.8808,11.1192⎡⎤⎣⎦。

下一步计算样本量。

绝对误差限d 和相对误差限r 的关系为_d rY =。

根据置信区间的求解方法可知____11P y Y r Y P αα⎫⎪⎧⎫-≤≥-⇒≤≥-⎨⎬⎩⎭根据正态分布的分位数可以知道1P Z αα⎫⎪⎪≤≥-⎬⎪⎪⎭,所以()2_2r Y V y z α⎛⎫⎪= ⎪⎝⎭。

也就是2_2_222/221111r Y r Y S n N z S n N z αα⎡⎤⎛⎫⎢⎥⎛⎫⎪⎛⎫⎝⎭⎪⎢⎥-=⇒=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥⎣⎦。

把_29.5,206,10%,50000y s r N ====代入上式可得,861.75862n =≈。

《抽样技术》第四版习题答案

《抽样技术》第四版习题答案

第2章2.1解:()1这种抽样方法是等概率的。

在每次抽取样本单元时,尚未被抽中的编号为1~64的这些单元中每一个单元被抽到的概率都是1 100。

()2这种抽样方法不是等概率的。

利用这种方法,在每次抽取样本单元时,尚未被抽中的编号为1~35以及编号为64的这36个单元中每个单元的入样概率都是2100,而尚未被抽中的编号为36~63的每个单元的入样概率都是1 100。

()3这种抽样方法是等概率的。

在每次抽取样本单元时,尚未被抽中的编号为20 000~21 000中的每个单元的入样概率都是11000,所以这种抽样是等概率的。

2.2解:2.3 解:首先估计该市居民日用电量的95%的置信区间。

根据中心极限定理可知,在大样本的条件下_y E yy -=近似服从标准正态分布, _Y 的195%α-=的置信区间为2y z y z y y αα⎡⎡-+=-+⎣⎣。

而()21f V y S n-=中总体的方差2S 是未知的,用样本方差2s 来代替,置信区间为,y y ⎡⎤-+⎢⎥⎣⎦。

由题意知道,_29.5,206y s ==,而且样本量为300,50000n N ==,代入可以求得 _21130050000()2060.6825300f v y s n --==⨯=。

将它们代入上面的式子可得该市居民日用电量的95%置信区间为7.8808,11.1192⎡⎤⎣⎦。

下一步计算样本量。

绝对误差限d 和相对误差限r的关系为_d rY =。

根据置信区间的求解方法可知____11P y Y r Y P αα⎫⎪⎧⎫-≤≥-⇒≤≥-⎨⎬⎩⎭根据正态分布的分位数可以知道1P Z αα⎫⎪⎪≤≥-⎬⎪⎪⎭,所以()2_r Y V y z α⎛⎫⎪= ⎪⎝⎭。

也就是2_2_222/21111r Y r Y S n N z S n N z αα⎡⎤⎛⎫⎢⎥⎛⎫ ⎪⎛⎫⎝⎭ ⎪⎢⎥-=⇒=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥⎣⎦。

把_29.5,206,10%,50000y s r N ====代入上式可得,861.75862n =≈。

《抽样技术》练习题及标准答案

《抽样技术》练习题及标准答案

《抽样技术》练习题及答案————————————————————————————————作者:————————————————————————————————日期:习题一1.请列举一些你所了解的以及被接受的抽样调查。

2.抽样调查基础理论及其意义;3.抽样调查的特点。

4.样本可能数目及其意义;5.影响抽样误差的因素;6.某个总体抽取一个n=50的独立同分布样本,样本数据如下:567 601 665 732 366 937 462 619 279 287690 520 502 312 452 562 557 574 350 875834 203 593 980 172 287 753 259 276 876692 371 887 641 399 442 927 442 918 11178 416 405 210 58 797 746 153 644 4761)计算样本均值y与样本方差s2;2)若用y估计总体均值,按数理统计结果,y是否无偏,并写出它的方差表达式;3)根据上述样本数据,如何估计v(y)?4)假定y的分布是近似正态的,试分别给出总体均值μ的置信度为80%,90%,95%,99%的(近似)置信区间。

习题二一判断题1 普查是对总体的所有单元进行调查,而抽样调查仅对总体的部分单元进行调查。

2 概率抽样就是随机抽样,即要求按一定的概率以随机原则抽取样本,同时每个单元被抽中的概率是可以计算出来的。

3 抽样单元与总体单元是一致的。

4 偏倚是由于系统性因素产生的。

5 在没有偏倚的情况下,用样本统计量对目标量进行估计,要求估计量的方差越小越好。

6 偏倚与抽样误差一样都是由于抽样的随机性产生的。

7 偏倚与抽样误差一样都随样本量的增大而减小。

8 抽样单元是构成抽样框的基本要素,抽样单元只包含一个个体。

9 抽样单元可以分级,但在抽样调查中却没有与之相对应的不同级的抽样框。

10 总体目标量与样本统计量有不同的意义,但样本统计量它是样本的函数,是随机变量。

抽样技术试题及答案

抽样技术试题及答案

抽样技术试题及答案一、单选题(每题2分,共10分)1. 抽样调查中,样本容量的确定主要取决于()。

A. 总体数量B. 抽样误差C. 总体的变异程度D. 抽样方法答案:C2. 简单随机抽样的特点不包括()。

A. 每个样本单位被抽中的概率相同B. 样本容量较小时,代表性较好C. 样本容量较大时,代表性较差D. 抽样误差较小答案:C3. 在分层抽样中,分层的依据是()。

A. 总体的分布情况B. 总体的数量C. 总体的变异程度D. 总体的地理位置答案:C4. 系统抽样中,抽样间隔的确定主要依据()。

A. 总体数量B. 样本容量C. 总体的分布情况D. 抽样误差答案:B5. 抽样调查中,样本的代表性是指()。

A. 样本容量的大小B. 样本的分布情况C. 样本能否代表总体D. 样本的变异程度答案:C二、多选题(每题3分,共15分)1. 抽样调查的优点包括()。

A. 节省人力物力B. 调查速度快C. 调查结果准确D. 调查结果可靠答案:ABD2. 抽样误差的来源包括()。

A. 抽样方法B. 抽样框的不完善C. 抽样过程中的随机性D. 样本容量的大小答案:ABCD3. 在抽样调查中,下列哪些因素会影响样本的代表性()。

A. 抽样方法B. 抽样框的完整性C. 样本容量D. 抽样过程中的随机性答案:ABCD4. 非概率抽样方法包括()。

A. 简单随机抽样B. 系统抽样C. 便利抽样D. 配额抽样答案:CD5. 抽样调查中,样本容量的确定需要考虑的因素包括()。

A. 总体的数量B. 总体的变异程度C. 允许的抽样误差D. 置信水平答案:BCD三、判断题(每题1分,共5分)1. 抽样调查是一种非全面调查方法。

()答案:正确2. 抽样调查的结果可以完全代表总体。

()答案:错误3. 抽样误差的大小与样本容量成反比。

()答案:正确4. 系统抽样是一种概率抽样方法。

()答案:正确5. 抽样框的不完善会导致抽样误差的增加。

()答案:正确四、简答题(每题5分,共10分)1. 简述分层抽样的步骤。

抽样技术_第三版_全部课后答案

抽样技术_第三版_全部课后答案

第二章习题2.1判断下列抽样方法是否是等概的:(1)总体编号1~64,在0~99中产生随机数r ,若r=0或r>64则舍弃重抽。

(2)总体编号1~64,在0~99中产生随机数r ,r 处以64的余数作为抽中的数,若余数为0则抽中64.(3)总体20000~21000,从1~1000中产生随机数r 。

然后用r+19999作为被抽选的数。

解析:等概抽样属于概率抽样,概率抽样具有一些几个特点:第一,按照一定的概率以随机原则抽取样本。

第二,每个单元被抽中的概率是已知的,或者是可以计算的。

第三,当用样本对总体目标进行估计时,要考虑到该样本被抽中的概率。

因此(1)中只有1~64是可能被抽中的,故不是等概的。

(2)不是等概的【原因】(3)是等概的。

2.2抽样理论和数理统计中关于样本均值y 的定义和性质有哪些不同?2.3为了合理调配电力资源,某市欲了解50000户居民的日用电量,从中简单随机抽取了300户进行,现得到其日用电平均值=y 9.5(千瓦时),=2s 206.试估计该市居民用电量的95%置信区间。

如果希望相对误差限不超过10%,则样本量至少应为多少?解:由已知可得,N=50000,n=300,5.9y =,2062=s1706366666206*300500003001500001)()ˆ(222=-=-==s nf N y N v YV 19.413081706366666(==)y v 该市居民用电量的95%置信区间为[])(y [2y V z N α±=[475000±1.96*41308.19]即为(394035.95,555964.05) 由相对误差公式y)(v u 2y α≤10%可得%10*5.9206*n50000n 1*96.1≤- 即n ≥862欲使相对误差限不超过10%,则样本量至少应为8622.4某大学10000名本科生,现欲估计爱暑假期间参加了各类英语培训的学生所占的比例。

抽样技术练习题及答案word精品

抽样技术练习题及答案word精品

习题一1. 请列举一些你所了解的以及被接受的抽样调查。

2. 抽样调查基础理论及其意义;3. 抽样调查的特点。

4. 样本可能数目及其意义;5. 影响抽样误差的因素;6. 某个总体抽取一个n=50 的独立同分布样本,样本数据如下:567 601 665 732 366 937 462 619 279 287690 520 502 312 452 562 557 574 350 875834 203 593 980 172 287 753 259 276 876692 371 887 641 399 442 927 442 918 11178 416 405 210 58 797 746 153 644 4761)计算样本均值y 与样本方差s2;2)若用y估计总体均值,按数理统计结果,y是否无偏,并写出它的方差表达式;3)根据上述样本数据,如何估计v(y)?4)假定y的分布是近似正态的,试分别给出总体均值卩的置信度为80%, 90%, 95%, 99% 的(近似)置信区间。

习题二一判断题1 普查是对总体的所有单元进行调查,而抽样调查仅对总体的部分单元进行调查。

2 概率抽样就是随机抽样,即要求按一定的概率以随机原则抽取样本,同时每个单元被抽中的概率是可以计算出来的。

3 抽样单元与总体单元是一致的。

4 偏倚是由于系统性因素产生的。

5 在没有偏倚的情况下,用样本统计量对目标量进行估计,要求估计量的方差越小越好。

6 偏倚与抽样误差一样都是由于抽样的随机性产生的。

7 偏倚与抽样误差一样都随样本量的增大而减小。

8 抽样单元是构成抽样框的基本要素,抽样单元只包含一个个体。

9 抽样单元可以分级,但在抽样调查中却没有与之相对应的不同级的抽样框。

10 总体目标量与样本统计量有不同的意义,但样本统计量它是样本的函数,是随机变量。

11 一个抽样设计方案比另一个抽样设计方案好,是因为它的估计量方差小。

12 抽样误差在概率抽样中可以对其进行计量并加以控制,随着样本量的增大抽样误差会越来越小,随着n越来越接近N,抽样误差几乎可以消除。

《抽样技术(第二版)金勇进等编著》习题解答

《抽样技术(第二版)金勇进等编著》习题解答

《抽样技术(第二版)金勇进等编著》习题解答第二章2.22.3 解:已知2ˆ9.5,206,50000,300500009.5475000y s N n Y Ny ====∴==⨯=, 222211300/50000ˆ()50000206500000.6825170636666730041308.19128,80964.05491f v YN s n --∴==⨯⨯=⨯===所以居民日用电量的95%的置信区间为 ˆˆ[[47500080964.05491,47500080964.05491] [394035.9451,555964.0549]YY -+=-+=相对误差为ˆd Y Y r Y-=2.4 解:ˆ0.35Pp == , 11200/1000010000()(1)0.35(10.35)0.0011512009999f N V p P P n N --=-=⨯⨯⨯-=-0.03339=∴P 的95%置信区间为:[[0.35 1.960.03339,0.35 1.960.03339][0.2846,0.4154]p p -+=-⨯+⨯=2.5 解:已知200,20N n ==,根据已知数据计算得:2144.5,826.0526,() 6.096915y s v y ==∴== ∴Y 的95%置信区间为:[[144.5 1.96 6.096915,144.5 1.96 6.096915][132.55,156.45]y y -+=-⨯+⨯=2.6 解:已知2ˆ1120,25600,350,503501120392000y S N n Y Ny ====∴==⨯=,2221150/350ˆ()350256003840000506196.773,12145.68f V YN S n --∴==⨯⨯===∴ˆY的95%置信区间为:ˆˆ[[379854.3,404145.7]Y Y -+= 2.7 解:已知21000,2,68,10.95N d S α===-=,222022221000 1.966861.3010002 1.9668Nt S n Nd t S ⨯⨯∴===+⨯+⨯0161.387.571430.7n n r === 样本量最终为88个家庭。

抽样技术习题答案

抽样技术习题答案

抽样技术习题答案抽样技术习题答案在统计学中,抽样技术是一种重要的数据收集方法,通过从总体中选择一部分样本来进行研究和分析。

抽样技术的正确应用对于得出准确的结论和推断至关重要。

本文将通过一些抽样技术的习题来探讨相关答案,并解释其背后的原理。

1. 简单随机抽样假设有一个总体包含1000个元素,我们希望从中抽取一个简单随机样本,样本容量为100。

那么,我们可以使用随机数表或随机数生成器来选择100个随机数,然后根据这些随机数在总体中选择相应的元素。

2. 系统抽样假设我们有一个总体包含10000个元素,我们希望从中抽取一个系统样本,样本容量为200。

首先,我们计算出总体的抽样框架,即总体中每隔多少个元素抽取一个样本元素。

在这个例子中,总体容量除以样本容量得到的商为50,所以我们每隔50个元素抽取一个样本元素。

3. 分层抽样假设我们有一个总体分为三个层次,每个层次的容量分别为1000、2000和3000。

我们希望从每个层次中抽取相应的样本容量进行研究。

首先,我们计算每个层次的抽样比例,即样本容量除以总体容量。

然后,根据这些比例从每个层次中抽取相应的样本。

4. 整群抽样假设我们有一个总体包含50个群组,每个群组包含100个元素。

我们希望从每个群组中抽取一个样本,样本容量为20。

首先,我们计算每个群组的抽样比例,即样本容量除以群组容量。

然后,根据这些比例从每个群组中抽取相应的样本。

5. 效应量抽样效应量抽样是一种根据总体中的变异程度和所需的抽样误差来确定样本容量的方法。

假设我们想要研究某个总体的均值,我们需要根据总体的标准差、显著性水平和抽样误差来确定样本容量。

以上是一些常见的抽样技术及其应用。

通过正确选择和应用适当的抽样技术,我们可以获得可靠的数据,并进行准确的统计分析和推断。

然而,需要注意的是,抽样技术并不是万能的,它们都有自己的限制和假设条件。

因此,在使用抽样技术时,我们需要仔细考虑样本的代表性、样本容量和抽样误差等因素,以确保研究结果的可靠性和有效性。

《抽样技术》第四版习题答案

《抽样技术》第四版习题答案

第2章2.1 解:()1 这种抽样方法是等概率的。

在每次抽取样本单元时,尚未被抽中的编号为1~64的这些单元中每一个单元被抽到的概率都是1100。

()2这种抽样方法不是等概率的。

利用这种方法,在每次抽取样本单元时,尚未被抽中的编号为1~35以及编号为64的这36个单元中每个单元的入样概率都是2100,而尚未被抽中的编号为36~63的每个单元的入样概率都是1100。

()3这种抽样方法是等概率的。

在每次抽取样本单元时,尚未被抽中的编号为20 000~21 000中的每个单元的入样概率都是11000,所以这种抽样是等概率的。

2.3 解:首先估计该市居民日用电量的95%的置信区间。

根据中心极限定理可知,在大_y E y y -=近似服从标准正态分布, _Y 的195%α-=的置信区间为2y z y z y y αα⎡⎡-+=-+⎣⎣。

而()21f V y S n-=中总体的方差2S 是未知的,用样本方差2s 来代替,置信区间为,y y ⎡⎤-+⎢⎥⎣⎦。

由题意知道,_29.5,206y s ==,而且样本量为300,50000n N ==,代入可以求得 _21130050000()2060.6825300f v y s n --==⨯=。

将它们代入上面的式子可得该市居民日用电量的95%置信区间为7.8808,11.1192⎡⎤⎣⎦。

下一步计算样本量。

绝对误差限d 和相对误差限r 的关系为_d rY =。

根据置信区间的求解方法可知____11P y Y r Y P αα⎫⎪⎧⎫-≤≥-⇒≤≥-⎨⎬⎩⎭根据正态分布的分位数可以知道1P Z αα⎫⎪⎪≤≥-⎬⎪⎪⎭,所以()2_2r Y V y z α⎛⎫⎪= ⎪⎝⎭。

也就是2_2_222/221111r Y r Y S n N z S n N z αα⎡⎤⎛⎫⎢⎥⎛⎫⎪⎛⎫⎝⎭⎪⎢⎥-=⇒=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥⎣⎦。

把_29.5,206,10%,50000y s r N ====代入上式可得,861.75862n =≈。

《抽样技术》练习题5及答案

《抽样技术》练习题5及答案

习题一1.请列举一些你所了解的以及被接受的抽样调查。

2.抽样调查基础理论及其意义;3.抽样调查的特点。

4.样本可能数目及其意义;5.影响抽样误差的因素;6.某个总体抽取一个n=50的独立同分布样本,样本数据如下:567 601 665 732 366 937 462 619 279 287690 520 502 312 452 562 557 574 350 875834 203 593 980 172 287 753 259 276 876692 371 887 641 399 442 927 442 918 11178 416 405 210 58 797 746 153 644 4761)计算样本均值y与样本方差s2;2)若用y估计总体均值,按数理统计结果,y是否无偏,并写出它的方差表达式;3)根据上述样本数据,如何估计v(y)?4)假定y的分布是近似正态的,试分别给出总体均值μ的置信度为80%,90%,95%,99%的(近似)置信区间。

习题二一判断题1 普查是对总体的所有单元进行调查,而抽样调查仅对总体的部分单元进行调查。

2 概率抽样就是随机抽样,即要求按一定的概率以随机原则抽取样本,同时每个单元被抽中的概率是可以计算出来的。

3 抽样单元与总体单元是一致的。

4 偏倚是由于系统性因素产生的。

5 在没有偏倚的情况下,用样本统计量对目标量进行估计,要求估计量的方差越小越好。

6 偏倚与抽样误差一样都是由于抽样的随机性产生的。

7 偏倚与抽样误差一样都随样本量的增大而减小。

8 抽样单元是构成抽样框的基本要素,抽样单元只包含一个个体。

9 抽样单元可以分级,但在抽样调查中却没有与之相对应的不同级的抽样框。

10 总体目标量与样本统计量有不同的意义,但样本统计量它是样本的函数,是随机变量。

11 一个抽样设计方案比另一个抽样设计方案好,是因为它的估计量方差小。

12 抽样误差在概率抽样中可以对其进行计量并加以控制,随着样本量的增大抽样误差会越来越小,随着n越来越接近N,抽样误差几乎可以消除。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章2.3 解:首先估计该市居民日用电量的95%的置信区间。

根据中心极限定理可知,在大_y E y y -=近似服从标准正态分布, _Y 的195%α-=的置信区间为y z y z y y αα⎡⎡-+=-+⎣⎣。

而()21f V y S n-=中总体的方差2S 是未知的,用样本方差2s 来代替,置信区间为,y y ⎡⎤-+⎢⎥⎣⎦由题意知道,_29.5,206y s ==,而且样本量为300,50000n N ==,代入可以求得_21130050000()2060.6825300f v y s n --==⨯=。

将它们代入上面的式子可得该市居民日用电量的95%置信区间为7.8808,11.1192⎡⎤⎣⎦。

下一步计算样本量。

绝对误差限d 和相对误差限r 的关系为_d rY =。

根据置信区间的求解方法可知____11P y Y r Y P αα⎫⎪⎧⎫-≤≥-⇒≤≥-⎨⎬⎩⎭根据正态分布的分位数可以知道21P Z αα⎫⎪⎪≤≥-⎬⎪⎪⎭,所以()2_r Y V y z α⎛⎫⎪= ⎪⎝⎭。

也就是2_2_222/221111r Y r Y S n N z S n N z αα⎡⎤⎛⎫⎢⎥⎛⎫⎪⎛⎫⎝⎭⎪⎢⎥-=⇒=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥⎣⎦。

把_29.5,206,10%,50000y s r N ====代入上式可得,861.75862n =≈。

所以样本量至少为862。

2.4 解:总体中参加培训班的比例为P ,那么这次简单随机抽样得到的P 的估计值p 的方差()()111f N V p P P n N -=--,在大样本的条件下近似服从标准正态分布。

在本题中,样本量足够大,从而可得P 的195%α-=的置信区间为p z p z αα⎡-+⎣。

而这里的()V p 是未知的,我们使用它的估计值()()()^5119.652101fV p v p p p n --==-=⨯-。

所以总体比例P 的195%α-=的置信区间可以写为p z p z αα⎡-+⎣,将0.35,200,10000p n N ===代入可得置信区间为0.2844,0.4156⎡⎤⎣⎦。

2.5 解:利用得到的样本,计算得到样本均值为2890/20144.5y ==,从而估计小区的平均文化支出为144.5元。

总体均值_Y 的195%α-=的置信区间为2y z y z αα⎡-+⎣,用()21f v y s n-=来估计样本均值的方差()V y 。

计算得到2826.0256s =,则()2110.1826.025637.17220f v y s n --==⨯=,1.9611.95zα==,代入数值后计算可得总体均值的95%的置信区间为[]132.55,156.45。

2.6解:根据样本信息估计可得每个乡的平均产量为1 120吨,该地区今年的粮食总产量Y的估计值为_^53503501120 3.9210Y y==⨯=⨯(吨)。

总体总值估计值的方差为()2^21N fV Y Sn-⎛⎫=⎪⎝⎭,总体总值的195%α-=的置信区间为^^Y z Y zαα⎡-+⎢⎢⎣,把^523.9210,25600,50,350,Y S n N=⨯=== , 1.96nf zNα==代入,可得粮食总产量的195%α-=的置信区间为377629,406371⎡⎤⎣⎦。

2.7解:首先计算简单随机抽样条件下所需要的样本量,把21000,2,195%,68N d Sα==-==带入公式2022/211dnN z Sα⎛⎫=+⎪⎝⎭,最后可得061.362n=≈。

如果考虑到有效回答率的问题,在有效回答率为70%时,样本量应该最终确定为070%88.5789n n==≈。

2.8解:去年的化肥总产量和今年的总产量之间存在较强的相关性,而且这种相关关系较为稳定,所以引入去年的化肥产量作为辅助变量。

于是我们采用比率估计量的形式来估计今年的化肥总产量。

去年化肥总产量为2135X=。

利用去年的化肥总产量,今年的化肥总产量的估计值为_^^_2426.14RyY R X Xx===吨。

2.9解:本题中,简单估计量的方差的估计值为()21fv y sn-==37.17。

利用比率估计量进行估计时,我们引入了家庭的总支出作为辅助变量,记为X。

文化支出属于总支出的一部分,这个主要变量与辅助变量之间存在较强的相关关系,而且它们之间的关系是比较稳定的,且全部家庭的总支出是已知的量。

文化支出的比率估计量为_____^_Ryy R X Xx==,通过计算得到2890/20144.5y==,而_1580x=,则_^_144.50.09151580yRx===,文化支出的比率估计量的值为_146.3Ry=(元)。

现在考虑比率估计量的方差,在样本量较大的条件下,()()()22212R R x x f V y MSE y S R S S R S nρ-≈≈-⋅+,通过计算可以得到两个变量的样本方差为224826,9.95810xs s ==⨯,Y X 和之间的相关系数的估计值为^0.974ρ=,代入上面的公式,可以得到比率估计量的方差的估计值为_ 1.94R v y ⎛⎫= ⎪⎝⎭。

这个数值比简单估计量的方差估计值要小很多。

全部家庭的平均文化支出的195%α-=的置信区间为R R R R y z y z y y αα⎡⎡-+=-+⎣⎣,把具体的数值代入可得置信区间为[]143.57,149.03。

接下来比较比估计和简单估计的效率,()()__ 1.940.05237.17R R V y v y V y v y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭≈==,这是比估计的设计效应值,从这里可以看出比估计量比简单估计量的效率更高。

2.10 解:利用简单估计量可得1630/10163i y y n ===∑,样本方差为2212.222s =,120N =,样本均值的方差估计值为()21110/120212.22219.453710f v y s n --==⨯=。

利用回归估计的方法,在这里选取肉牛的原重量为辅助变量。

选择原重量为辅助变量是合理的,因为肉牛的原重量在很大程度上影响着肉牛的现在的重量,二者之间存在较强的相关性,相关系数的估计值为^0.971ρ=,而且这种相关关系是稳定的,这里肉牛的原重量的数值已经得到,所以选择肉牛的原重量为辅助变量。

回归估计量的精度最高的回归系数β的估计值为^^14.5680.971 1.36810.341x s s βρ==⨯=。

现在可以得到肉牛现重量的回归估计量为___^lr y y X x β⎛⎫=+- ⎪⎝⎭,代入数值可以得到_159.44lr y =。

回归估计量_lr y 的方差为()__2211lr lr f V y MSE y S n ρ-⎛⎫⎛⎫≈≈- ⎪ ⎪⎝⎭⎝⎭,方差的估计值为2_^211lr f v y s n ρ⎛⎫-⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,代入相应的数值,2_^211 1.112lr f v y s n ρ⎛⎫-⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,显然有()_lr v y v y ⎛⎫< ⎪⎝⎭。

在本题中,因为存在肉牛原重量这个较好的辅助变量,所以回归估计量的精度要好于简单估计量。

第3章3.3 解:(1) 首先计算出每层的简单估计量,分别为___12311.2,25.5,20y y y ===,其中,123256,420,168,844N N N N ====,则每个层的层权分别为;值可以得到__20.07hh st y Wy ==∑。

此方差的估计值 22212194.4,302.5,355.556s s s ===其中12310n n n ===,代入数值可以求得方差的估计值为_9.4731st v y ⎛⎫= ⎪⎝⎭,则估计的标(2)由区间估计可知相对误差限满足___11st P y Y rY P αα⎫⎪⎧⎫-≤≥-⇒≤≥-⎨⎬⎩⎭_2z α=,()2_st r Y V y z α⎛⎫ ⎪= ⎪⎝⎭。

(提1/n 出去)从而可以得到在置信度为α,相对误差限为r 条件下的样本量为①对于比例分配而言,有h h W ω=的估计值和数值195%,10%r α-==代入后可以计算得到样本量为186n =,相应的在各层的样本量分别为1231256.457,92.693,18636n n n n n =≈=≈=--=。

②按照内曼分配时,样本量在各层的分配满足h h h h hW S W Sω=∑,这时样本量的计175n =,在各层中的分配情况如下:1231233,87,18666n n n n n ===--=。

3.5 解:总体总共分为10个层,每个层中的样本均值已经知道,层权也得到,从而可下一步计算平均支出的95%的置信区间,首先计算购买冷冻食品的平均支出的估计值的方差,其中10_2211h st hh h h f V y W S n =-⎛⎫= ⎪⎝⎭∑,但是每层的方差是未知,则样本平均支出的方差的估计值为10_2211h st hh h h f v y W s n =-⎛⎫= ⎪⎝⎭∑,每个层的样本标准差已知,题目中已经注明各层的抽样比可以忽略,计算可以得到10_221159.8254h hh st h h f v y W s n =-⎛⎫=≈ ⎪⎝⎭∑。

则这个开发区的居民购买冷冻食品的平均支出195%α-=置信区间为y z y z αα⎡-+=⎢⎢⎣y y ⎡-+⎢⎢⎣代入数值后,可得最终的置信区间为[]60.63,90,95。

3.6 解:首先计算简单随机抽样的方差,根据各层的层权和各层的总体比例可以得到总体的比例为310.28h hh P W P===∑,则样本量为100的简单随机样本的样本比例的方差为()21f V p S n -=,不考虑有限总体校正系数,()21V p S n ≈,其中()211NS P P N =--, 在1N N -≈的条件下,通过简单随机抽样得到的样本比例的方差为()()23111 2.01610f V p S P P n n --=≈-=⨯通过分层抽样得到的样本比例的方差为()221h st h h hf V p W S n -=∑,但是因为不考虑有 限总体校正系数,而且抽样方式是比例抽样,所以有h h h h N nW N nω===成立,样本比例的方差近似为()221h h st h h W S V p W S n n==∑∑。

对于每一层,分别有()211h h h h h N S P P N =--,在1h h N N -≈的条件下,近似的有()21h h h S P P =-成立,有2221230.09,0.16,0.24S S S ===样本量应该满足()2hhst W Sn V p =∑,同时这里要求分层随机抽样得到的估计的方差和简单抽样的方差是相同的,()()st V p V p =,层权分别为1230.2,0.3,0.5W W W ===,代入数值,可以计算得到最终的样本量为()230.18692.26932.01610hhst W S n V p -===≈⨯∑。

相关文档
最新文档