towards qantitative determination of the spring constant of a scanning force microscope cantilever w
HPLC-RID法测定蜂蜜中果糖、葡萄糖、蔗糖、麦芽糖及乳糖含量
分析检测HPLC-RID法测定蜂蜜中果糖、葡萄糖、蔗糖、麦芽糖及乳糖含量赵 芳(晋中市综合检验检测中心,山西晋中 030600)摘 要:建立了高效液相色谱-示差折光检测法(High Performance Liquid Chromatography Differential Refractive Detector,HPLC-RID)测定蜂蜜中果糖、葡萄糖、蔗糖、麦芽糖及乳糖5种还原糖含量的分析方法。
蜂蜜试样用水提取,摇匀过滤后,经Kromasil 100-5-NH2色谱柱分离,用示差折光检测器测定。
结果表明,果糖、葡萄糖、蔗糖、麦芽糖及乳糖在1.0~10.0 mg/mL线性关系良好,5种还原糖的方法检出限均为0.5 g/100 g,加标回收率为82.4%~109.7%,相对标准偏差RSD为0.87%~3.77%。
该方法前处理过程简单、准确度高、精密度好,适用于蜂蜜中5种还原糖的定量检测。
关键词:蜂蜜;还原糖;高效液相色谱-示差折光检测器法Determination of Fructose, Glucose, Sucrose, Maltose andLactosein Honey by HPLC-RIDZHAO Fang(Jinzhong General Inspection and Testing Centre, Jinzhong 030600, China) Abstract: The method was established for the determination of fructose, glucose, sucrose, maltose and lactose in honey by HPLC-RID. Honey samples were extracted with water, shaken and filtered, separated by Kromasil 100-5-NH2 chromatographic column and determined by differential refractive detector. The results showed that the linear relationship among fructose, glucose, sucrose, maltose and lactose was good in the concentration range of 1.0~10.0 mg/mL. The detection limits of the five reducing sugars were 0.5 g/100 g, the spiked recoveries were 82.4%~109.7%, and the relative standard deviation RSD was 0.87%~3.77%. The method has the advantages of simple pretreatment process, high accuracy and good precision. It is suitable for the quantitative determination of the above five reducing sugars in honey.Keywords: honey; reducing sugar; high performance liquid chromatography differential refractive detector蜂蜜中富含多种糖类、氨基酸、维生素等营养成分,清甜爽口、老少皆宜,饮用蜂蜜具有缓解疲劳、有益身体健康和抗菌消炎、保养皮肤的功效[1-3]。
石油词汇英语翻译(QR)
石油词汇英语翻译(QR)Q check 质量检查Q deconvolution Q反褶积Q value Q值;品质因数Q wave 勒夫波Q 第四纪q 公担Q 夸脱Q 量q 品质因数q 问题Q-band Q频带Q-joint Q 节理Q-law 品质因素定律Q-meter Q 表Q-mode cluster analysis Q型聚类分析Q-qualit 品质因数Q-RING 方形环Q. 夸德q.e. 这就是Q.I 质量指标Qa 二次淬火的QA 象限角QA 质量保证qb 速断;高速断路器Qc 快速检查QC 质量控制QD 俯角QED 证完QEF 这就是所要作的QEI 这就是所要找的qf 品质因数QFT 定量荧光分析法QISAM 队列索引顺序存取法ql. 公担;英制重量单位qlty 质Qp 更新世;更新统QPL 产品一览表qquasi-section 假剖面qr 四分之一;一刻钟QR 质量要求QRC 快速反应能力QRC 快速换装闸板型qt 夸脱QT 快速测试qt 数量QTC 鉴定试验试件QTR 检验合格报告qtr 四分之一qty 量qtz 石英qtze 石英岩quad word 四倍长字quad 四倍的;四重的;四个部分形成的quad 四边的quad 四角形quad 四路多工的;四倍的quad 象限quad. 四角形quadded cable 四线电缆quadr- 四Quadracypris 方星介属Quadraeculina 四字粉属quadrangle 四边形quadrangular 四边形的quadrant angle 象限角quadrant antenna 正方形天线quadrant depression 俯角quadrant elevation 仰角quadrant tooth 扇形轮齿quadrant valve 扇形阀quadrantal diagram 象限图quadrantal 象限的quadraphonics 四轨录音放音;四声道立体声quadrate 正方形;使成正方形;四等分quadratic approximation 二次逼近quadratic component 二次谐波quadratic criterion 二次准则quadratic curve 二次曲线quadratic damping 平方阻尼quadratic detection 平方律检波quadratic discriminant 二次方程判别式quadratic equation 二次方程quadratic expression 二次表达式quadratic form 二次型quadratic function 二次函数quadratic interpolation 二次插值quadratic mean deviation 中误差quadratic mean 均方值;有效值quadratic programming 二次规划quadratic root 平方根quadratic spline 二次样条quadratic sum 平方和quadratic surface 二次曲面quadratic transformation 二次变换quadratic variation 二次变分quadratic 二次方程式;二次项;二次的;平方的;象限的;方形的quadratin free number 无平方因子数quadratron 热阴极四极管quadrature analysis 正交分析quadrature component 正交分量quadrature filtering 90度相移滤波quadrature formula 求积公式quadrature network 无功电路quadrature spectrum 正交谱quadrature trace 正交道quadrature 求面积;求积分;正交;转象差;90度相位差quadrennial 连续四年的时间;每四年一次的事件;第四周年;连续四年的;每四年一次的quadri- 四quadric cone 二次锥面quadric stress 曲面应力quadric surface 二次曲面quadric 二次quadricorrelator 自动调节相位线路quadrilateral 四边形quadrille paper 方格纸quadrillion 1×1024quadrinomial 四项式quadripole 四极quadripolymer 四单体共聚物quadrivalence =quadrivalency 四价quadrntnt 四分之一圆;扇形体;象限仪;象限;扇形齿轮;四分仪quadrode 四极管quadru- 四quadruple block 四轮滑车quadruple board platform 二层台quadruple chain drive 四排链的传动quadruple coincidence set 四等分器quadruple completion 四层同时完成quadruple 四倍;四倍的;四重的;由四部分组成的;四路的;四工的;四倍地;成四倍;以四乘quadruple-action hand pump 四作用手摇泵quadrupler 四倍器;四频器;乘四装置;四倍乘数quadruplet 四件一套的东西quadruplex 四路多工系统;四倍的;四重的;四路多工的quadruplicate 一式四份的一份;一式四份;四倍的;四重的;四次方的;一式四份的quadruplication 放大四倍;反复四次quadrupole 四极quafric curve 二次曲线quafric of revolution 回转二次曲面quagmire 沼泽quake center 震中quake sheet 地震岩席quake 震动;颤抖qual. 定性的qual.anal. 定性分析qualia quale的复数qualification approval test 资格合格考试qualification certificate 资格证书qualification examination 资格审查qualification rate 合格率qualification test report 检验合格报告qualification test 资格考试qualification 资格qualificative 限定的qualified acceptance 有条件承兑qualified driller 合格司钻qualified part 合格零件qualified person 合格人员qualified product list 产品一览表qualified 合格的qualifier 合格的物;修饰词;限定词qualimeter X射线硬度测量仪qualitative analysis 定性分析qualitative assay 定性测定qualitative carbon steel 优质碳钢qualitative comparison 质量比较qualitative curve 定性曲线qualitative determination 定性测定qualitative examination 定性研究qualitative filter paper 定性滤纸qualitative formation evaluation 定性地层评价qualitative indication 定性指示qualitative interpretation 定性解释qualitative observation 定性观察qualitative respones data 定性响应数据qualitative scenarios 定性情景qualitative scheme 定性方法qualitative spectral scan 定性全谱扫描qualitative steel 优质钢qualitative stratigraphic corrrelation 定性地层对比qualitative tendency 特性趋势qualitative test 定性测试qualitative 定性的quality assessment 质量评价quality assurance provision 质量保证条例quality assurance 质量保证quality certificate 品质证书quality check 质量检查quality claim 品质索赔quality control by attributes 按固定指标控制quality control 质量控制quality determination 质量测定quality discrepancy record 质量不合规定的记录quality factor 品质因素quality grade 质量等级quality gravel 优质砾石quality index 质量指标quality inspection 质量检验quality leadership 质量领先quality level 质量水平quality loss 质量损耗quality management 质量管理quality matetrial 优质材料quality mind 质量意识quality monitoring 质量监测quality of balance 平衡度quality reduction 质量下降quality requirements 质量要求quality specification 质量标准quality standard 质量标准quality steel 优质钢quality supervision 质量监督quality 质量qualutative model 定性模型quan. 定量的quant. anal 定量分析quant. 定量的quant. 定量地quant. 数量quanta quantum的复数quantification 定时化;定量评价;量化quantifiter 量词;计量器quantifying risk 风险定量quantile 分位点数quantimeter 剂量计quantitative analysis 定量分析quantitative assay 定量测定quantitative assessment 定量评定quantitative change 量变quantitative check 定时检查quantitative classification 定量分类quantitative comparison 定量比较quantitative criterion 定量标准quantitative data 定量数据quantitative determination 定量测定quantitative evaluation 定量评价quantitative examination 定量研究quantitative filter paper 定量滤纸quantitative forecast 定量预报quantitative formation evaluation 定量地层评价quantitative geochemistry 定量地球化学quantitative geology 定量地质学quantitative index 数量指标quantitative interpretation 定量解释quantitative lithologic data 定量岩性资料quantitative measurement 定量测定quantitative paper chromatography 定量纸色谱法quantitative relation 数量关系quantitative reserve assessment 定时储量评定quantitative scenarios 定量情景quantitative seismic stratigraphy 定量地震地层学quantitative spectrograhic analysis 定量光谱分析quantitative spectrography 定量光谱学quantitative stratigraphy 定量地层学quantitative test 定量分析quantitative 定量的quantities uplifted 增加的数量quantity claim 数量索赔quantity control valve 油量控制阀quantity determination 数量确定法quantity discount 折扣量quantity estimate sheet 工作量估算表quantity loss 数量损耗quantity meter 总流量表quantity of heat 热量quantity of information 信息量quantity of injected water 注入水量quantity of precipitation 降水量quantity of remaining recoverable oil 剩余可采油量quantity production 大量生产quantity sheet 工程数量表quantity 量quantivalency 化合价quantivalent 多价的quantivative approach 定量方法quantization 量子化;数字化;分层quantometer 光量计quantum chemistry 量子化学quantum detector 量子探测器quantum effect 量子效应quantum efficiency 量子效率quantum energy 量子能quantum frequency standard 量子频率标准quantum mechanics 量子力学quantum of action 作用量子quantum optics 量子光学quantum theory 量子论quantum-mechanical theory 量子力学理论quanxtizer 数字转换器;量化器quaqavsal dome 圆形穹隆quaquaversal fold 穹状褶皱quaquaversal structure 穹状构造quaquaversal 穹状圆项;由中心向四方扩散的quaquavsal dip 穹倾斜quar 砂岩quarantine buoy 检疫浮标quarantine 检疫;隔离;隔离区;对…进行检疫quark 夸克学quarkonics 夸克学quarry stone 乱石;毛石quarry 石场;菱形的玻璃片;消息的来源;采;搜索;追求物quart 夸脱;一夸脱的容器quart- 四quart. 季度的;四分之一的;每季的;季刊quartation 析银法;;四分法quarter bend 90度弯管quarter deck 艉甲板quarter 四分之一;四分之一元;四等分;季度;一刻钟;方位;四个主要点中的一点;象限;方向;地区;方面;地区;住处;船的后部;相互垂直;弦;把…分为四部分;把…四等分;使与机器连接部quarter-life 四分之一寿命quarter-turn ball valve 直角回转球阀quarter-turn belt 直角回转皮带quarter-wave filter 四分之一波长滤波器quarter-wave 四分之一波长的quarterbost 宿营船quartering sea 船尾浪quartering 四等分;四分取样法;间柱;成直角的quarterline 四等分线quarterly account 季度报表quarterly report 季报quarterly 季刊;季度的;每季的;四分之一的;一季一次的;每季的quartermadter corps line 军用油管线quartern 四等分quarternary 四元的quartet 四人一组;四件一套;四重线quartic 四次的quartile 四分位数quartimax method 四次幂极大法quartimin method 四次幂极小法quarto 四开;四开本;四开的quartz anorthosite 石英斜长岩quartz crystal oscillator gauge 石英晶体振荡压力计quartz crystal 石英晶体quartz dioite 石英闪长岩quartz disoultion 石英辉长岩quartz fiber gravimeter 石英丝重力仪quartz fiber horizontal magnetometer 石英丝水平磁力仪quartz gabbro 石英辉长岩quartz gauge 石英压力计quartz knife edge 石英刀口quartz magnetometer 石英磁力仪quartz montzonite 石岩二长岩quartz monzobiorite 石英二长闪长岩quartz monzogabbro 石岩二长辉长岩quartz oscillator 石英晶体振荡器quartz sand 石英砂quartz sinter 硅华quartz spring gravimeter 石英弹簧式重力仪quartz syenite 石英正长岩quartz T variometer 石英T磁变仪quartz torsion fiber 石岩扭丝quartz 石英quartzarenite 石英砂屑岩quartzification 石英化quartzifous 石英质的quartzite 石英岩quartzitic grit 石英岩质粗砂岩quartzitic sandstone 石英岩质砂岩quartzmengwacke 石英蒙瓦克岩quartzo-feldspathic hornfels 石英长石质角岩quartzolite 硅英岩quartzose arkose 石英长石砂岩quartzose conglomerate 石英质砾岩quartzose laterite 石英质粗砂岩quartzose limestone 石英质灰岩quartzose sandstone 石英砂岩quartzose 石英质quartzwacke 石英瓦克岩quartzy sandstone 石英质砂岩quasi laminar flow 拟层状流quasi one-dimensional flow 准一维流动quasi particle 准粒子quasi shear-wave 准横波quasi steady state flow 准稳态流动quasi thixotropy 准触变性quasi- 似quasi-analog 拟quasi-analytical method 准解析法quasi-competent sands 半坚实砂层quasi-conductor 半导体quasi-coordinates 准坐标quasi-criterion 准评判准则quasi-cyclic code 准循环码quasi-dispersive wave group 准频散波群quasi-dry sample 低含水岩样quasi-elastic scattering 准弹性散射quasi-elastic 准弹性的quasi-equilibrium 准平衡quasi-ergodic principle 准各态遍历原理quasi-factor 拟因子quasi-flexural fold 拟挠曲褶皱quasi-fluid 似流体quasi-friction 准摩擦quasi-geologic joint 似地质节理quasi-gradiometer 准梯度仪quasi-gravity 准重力quasi-group 拟群quasi-homogeneous 准均质的quasi-instruction 拟指令quasi-isostatic displacement 准均衡位移quasi-linear 拟线性的quasi-linearization 拟线性化quasi-longitudinal wave 准纵波quasi-marine 准海成的quasi-Newton method 拟牛顿法quasi-optical 准光的quasi-optimal solution 准优解quasi-ordered system 拟序系统quasi-orthogonal 准正交的quasi-periodic 拟周期的quasi-periodicity 准周期quasi-plastic flow 半朵性流quasi-polynomials 准多项式quasi-random access memory 准随机存取存储器quasi-random 拟随机quasi-single phase flow 准单相流动quasi-sorted 半筛选的quasi-stability 准稳定性quasi-stagnant water 准停滞水quasi-static analysis 准静态分析quasi-static displacement 拟静态驱替quasi-static 似静定的quasi-stationary channel flow 准稳定槽流quasi-stationary oscillation 似稳振荡quasi-stationary 似稳定的quasi-steady state 准稳定态quasi-transverse wave 类横波quasi-variable 准变数quasi-viscous 准粘性的quasicraton 准克拉通quasicrystal 准晶体Quasiendothyra 似内卷虫属Quasifusulina 似纺锤NFDA3属quasimoney 准货币quasiorthogonal code 准正交码quasiperfect network 准理想网络quasiseller 准卖主quatation 行情表quater- 四分之一quaterdenary 十四进制的quatermary 四;四个一组quaternary ammonium polymer 季铵聚合物quaternary ammonium 季铵quaternary carbon atom 季碳原子quaternary gain 四进制增益Quaternary geanticline 第四纪地背斜Quaternary glaciation 第四纪冰期Quaternary ice age 第四纪冰期Quaternary period 第四纪quaternary sediment 四组分沉积物Quaternary system 第四系quaternary system 四元系统Quaternary 第四纪第四系quaternion 四个一组;四人一组;四元数;四元法quaternity 四位一体;四人一组quaver 颤音;震动;颤抖;发颤音quay 码头qucidiao 缺次调queen 王后;女王;大石板quefrency domain 同态频率域quefrency 同态频率quench aging 淬火时效quench alloy steel 淬硬合金钢quench bath 淬火浴quench condensation 急冷凝quench duct 骤冷丝室quench hardening 粹火硬化quench oil 淬火油;急冷油quench tower 急冷塔quench zone 急冷段quench 淬火;急冷quenchant 淬火剂quenched and tempered steel 调质钢quenched combustion 急冷燃烧quenched water 急冷水quencher 扑灭者;熄灭器;淬灭剂;灭火器;灭弧器;减震器;阻尼器quenching agent 淬火剂quenching bath 淬化浴quenching crack 淬火裂纹quenching effect 骤冷效应quenching medium 淬火剂quenching oil column 急冷油塔quenching stack 骤冷甬道quenching strain 淬火应变quenching system 急冷系统quenching temperature 淬火温度quenching water column 骤冷水塔quenching 淬火quenchometer 冷却速度试验器querceta quercetum的复数Quercoidites 栎粉属quernstone 含铁砾质砂岩Querwellen wave 奎威林波query language 询问语言query 质问;疑问;询价;请问;疑问号;询问quest for oil 找油quest 探索;寻找;要求;追求question 问题;难题;议题;疑问句;可能性;询问questionable productive zone 可疑生产层questionable 可疑的questionary 询问的questionnaire 调查表queue anticline 背斜尾queue discipline 排队规则queue empty 队列空queue full 队列满queue priority 队列优先权queue 发辫;行列;梳成辫子;排队queued access method 队列存取法queued indexed sequential access method 排队索引按序存取法queued sequential access method 排队按序存取法queuing network 排队网络queuing theory 排队论queuing 排队quibinary code 五-二码quick access 快速存取quick acting 快动作的quick ash 烟道尘quick bleed 快排开关quick burning fuse 速燃引信quick cement 快凝水泥quick clay 过敏性粘土quick closing safety valve 快闭安全阀quick connector 快速连接器quick cooling 快速冷却quick coupler 快速连接器quick coupling 快速管箍quick current assets 速动资产quick depletion 速递减quick disconnection 速断开quick exhaust valve 快速放空阀quick freezing 速冻quick ground 流砂土quick hardening 快硬的quick lock 速关锁装置quick look scaler 快速直观解释比例尺quick open cover 快速开启盖quick opening shock valve 快开冲击阀quick ratio 速动比quick relealse 快松quick return motion 速回运动quick run 快速的quick setting cement 快凝水泥quick setting mortar 快凝灰浆quick solder 速熔焊料quick start 快启动quick talking cement 快凝水泥quick test 快速试验quick turn 急转弯quick union 快接接头quick 快的quick-acting coupling 快速接头quick-acting fuse 速燃引信quick-acting valve 快动作启闭阀quick-adjustsing 快速调整的quick-break switch 急断开关quick-break 速断quick-breaking emulsion 易破坏乳状液quick-change plug container 快卸式水泥头quick-change 快速调换的quick-closing lock 快关闭装置quick-closing valve 快关阀quick-detach 速拆卸quick-disconnect 速折卸的quick-drying lacquer 快干漆quick-drying oil 快干油quick-opening flow characteristic 快开流动特性quick-opening valve 快开阀quick-operating 快动的quick-reading flow sheet 简化流程quick-release coupling 快卸接头quick-release valve 快泄阀quick-replaceable 快速更换的quick-setting 快凝quick-speed 快速quick-stick test 快粘试验quick-wear part 易损零件quick-wearing 快磨损quicklime 生石灰quicklook interpretation 快速直观解释quicklook playback 快速直观回放quicklook 快速直观quicksand type formation 流砂型地层quicksand 流砂;动荡和捉摸不定的事物quicksilver 水银;汞;涂水银于QUICKTRAN 快速翻译程序quiddity 本质;遁辞quiescence 静止;沉寂quiescent condition 静止状态quiescent current 静态电流quiescent interval 间歇时间quiescent layer 静止层quiescent load 静负荷quiescent point 静态工作点quiescent tank 静水沉降池quiescent 静止的quiet day 无磁扰日quiet magnetic zone 地磁平静区quiet well 安静井quieter 消音装置quietus 偿清;解除;静止状态quilitative method 定性方法quill 羽毛;钻轴;衬套;导火线;做管状的褶子;卷在线轴上quilt 用垫料填塞;被;被状物;缝quin- 五quinary digit 五进制数字quinary notation 十五进制的quinary 五个一套;五的;五个的;五个一套的;第五位的;五进制的quindenary 奎宁;金鸡纳碱Quinguerhabdus 五角棒石quinine 奎诺酊quinoidine 喹啉quinoline 喹啉quinolinic acid 喹啉酸quinone 醌quinqu 五quint 五件一套;五度quintal 公担quintessence 精髓;典型;本位quintete 五人一组;五件一套;五重线quintic 五次的quintuple 五倍量;五个一套;成五倍;五的;五倍的quintupler 五倍器quintuplet 五人一组quintuplicate 五倍的数;使成五倍;作成一式五份;五倍的;五重的quintuplication 五倍quintupling 五倍quioning 外角构件;挤紧;楔紧quire 一刀;对折的一叠纸quirk 突然弯曲;遁辞;弯曲quisqueite 高硫钒沥青;硫沥青quit flowing pressure 停喷压力quit 离开;退出;放弃;解除;偿清;停止quiver 颤声;一闪;颤动;摇动quiverful 大量的quiz 知识测验;难题quizzes quiz的复数Qujionlepis 曲靖鱼属qun 群qunatum 量;量子;和quoin 外角;角落;隅石;楔形支持物;夹紧quorum 法律顾问quot 引用的;开价的quot 引用语;行市;估价单quota agreement 生产限额协议quota allocation of production 生产配额quota cost 定额成本quota of budget 预算定额quota of budgetary estimate 概率定额quota of capital construction 基本建设定额quota system 限额进出口制quota 份额quotation of prices 报价quotation 引证quote 引号;引文;引用;把…放在引号内;报quoteworthy 有引用价值的quotient convergence factor 比值收敛因子quotient group 商群quotient of difference 增量比quotient 商数;份额quotient-difference algorithm 商差算法quotient-multiplier register 乘数商数寄存器quotiety 率quotoent system 限额进出口制qv 见qwasi-time domain method 伪时域法QWERTY keyboard QWERTY盘R a T 抽油杆和油管R and M 修理与维护r c 橡胶包裹的r c 遥控R wave R波R 半径R 比r 残余的R 第三纪R 电阻率R 范围r 竿r 河流R 基R 接收器R 兰金度数R 雷诺数R 列氏温度r 伦琴R 逆动r 稀有的R 右R 原始的R 阻力R&D 研究与发展R' 圆半径弧分数R'' 雷氏秒数R'' 圆半径弧秒数R-C coupling 阻容耦合R-C 阻容的r-equivalent 伦琴当量R-M spread 研究法-马达法辛烷值差R-mode factor analysis R-型因子分析R-mode space R-型空间R-mode statistical method R-型统计法r-number r值R-signal 电阻性信号r-strategist 特化种R-unit 伦琴单位R. 半径R. 比R. 后R. 江R. 铁道R. 已注册的R. 右r.a.l 左右R.A.S 英国皇家航空协会R.C 旋转变流机R.C 研究中心R.C 阻容R.C.E.E.A. 无线电通信及电子学工程协会R.F.U. 随时可使用的R.H. 相对湿度R.H. 右r.h.s. 右方R.I. 保留指数R.I. 放射性同位素R.I. 放射性同位素指示剂R.I. 复现指数R.M.T. 读取磁带R.N. 雷诺数R.P.C. 遥控台R.T. 放射性同位素指示剂R.T. 射线探伤访验R.T.C. 自记式温度控制器RA 放射性RA 辐射RA 记录准确度Ra 镭RA 洛氏硬度A级RA 实数加RA 随机存取RA 作用半径raabsite 钠闪云煌岩RAB tool 钻头处电阻率测井仪rabbet 插孔rabbit 清管器rabble 搅拌棒rabbler 刮九Rabinowinwitsch model 拉宾诺维奇模race knife 划线刀race rotation 空转race 赛跑RACE 随机存取计算机设备raceme 外消旋体racemization 外消旋作用raceway 电缆管道racheting device 棘轮装置racing 空转;急转rack and gear drive 齿条-齿轮传动rack and gear jack 齿条-齿轮式千斤rack and pinion jack 齿条-小齿轮千斤顶rack and pinion 齿条-小齿轮rack back 在井架中排立钻杆rack bar sluice valve 齿条式闸门阀rack circle 圆齿条rack earth 机壳地线rack jack 齿条式千斤顶rack mechanism 齿条机构rack of barrels 桶堆rack pipe 排管rack pricing 离炼厂定价rack rail 齿轨rack rent 高额地租rack tooth 齿条齿rack up 排放完rack wheel 棘轮rack 架racker 排管器racking arm 系管臂racking back 在井架中排立钻杆racking board 二层台racking capacity 排立根量racking cone 钻杆排置锥座racking of drill pipe 钻杆排放racking of drum 堆桶racking pipe 排管racking platform 二层台racking 架;震动racon 雷达信标Rad 放射的RAD 快速存取磁盘rad 拉德rad. 半径rad. 根数rad. 弧度rad. 无线电rad. 无线电报rad. 无线电员radac 快速数字自动计算radan 多普勒雷达自动导航radar altimeter 雷达测高仪radar antenna 雷达天线radar band 雷达波段radar base map 雷达导航图radar beacon 雷达信标radar beam 雷达波束radar buoy 雷达浮标radar coverage 雷达覆盖范围radar depression angle 雷达俯角radar doppler 多普勒雷达radar imaginary 雷达成象radar indicated face 雷达显示表面radar interaction 雷达干扰radar jamming 雷达干扰radar map 雷达地图radar mapping 雷达地形显示图radar mast 雷达天线杆radar microwave technique 雷达微波技术radar mosaic 雷达综合图radar navigation 雷达导航radar performance figure 雷达性能指标radar photography 雷达摄影术radar pilotage 雷达领航radar presentation 雷达显示radar range finder 雷达测距仪radar reflection interval 雷达反射时间间隔radar reflection 雷达反射radar reflectivity 雷达反射率radar remote sensing 雷达遥感radar resolution 雷达分辨率radar responder 雷达应答器radar return 雷达回波radar scanning 雷达扫描radar shadow 雷达盲区radar surveying 雷达测量radar target 雷达目标radar 雷达radar-probing system 雷达探测系统radar-rock units 雷达岩石单位radar-transparency 雷达透视radargrammetry 雷达测量radarman 雷达员radarphototheodolite 雷达摄影经纬仪radarscope photography 雷达摄影学radarscope 雷达示波器RADD 列地址radechon 雷得康管radiac 放射性检测仪radiacmeter 核辐射剂量计radiagraph 活动焰切机radial adaptive multiple suppression 径向自适应压制多次波radial advance 径向推进radial air-cooled engine 星型气冷式发动机radial angle 径向角radial arm bearing 横力臂支承radial arm 旋臂radial array 径向排列radial bearing disk 止推轴承盘radial bearing lower drive sub 下部径向轴承传动接头radial bearing upper drive sub 上部径向轴承传动接头radial bearing 径向轴承radial bore length 水平井眼长度radial characteristic 径向特性radial circular flow 径向环流radial clearance 径向间隙radial component 径向部分radial conductive heat transfer 径向热导传热radial coning 径向锥进radial coordinates 径向坐标radial crack 放射状裂隙radial crushing strength 中心破碎强度radial davit 转动式吊艇杆radial differential temperature log 径向微差井温测井radial displacement 径向驱替radial drilling machine 旋臂钻床radial engine 星型发动机radial feed 径向给进radial flow tray 径流塔板radial flow 径向流radial fluid flow 平面径向流radial force 径向力radial gradient 径向梯度radial groove 径向沟槽radial height 径向高度radial histogram 径向直方图radial impeller pump 径向叶轮泵radial inward flow 径向向内流radial load 径向载荷radial migration 辐射迁移radial multiple-suppression method 径向多次压制法radial node 径向结点radial outward flow 径向向外流radial packing 径向盘根radial piston motor 径向活塞马达radial play 径向间隙radial plunger pump 径向柱塞泵radial reactor 径向反应器radial refraction 径向折射radial resolution 径向分辨率radial response 径向响应radial rift 放射断陷radial shaft seal ring 径向轴密封环radial shooting 径向激反radial shrinkage 径向收缩radial slot 沿径槽radial steady-state flow equation 径向稳定流动方程radial steam-front advance 径向蒸汽前缘推进radial strain 径向应变radial stress 径向应力radial support bearing 径向支承轴承radial survey 径向观测radial symmetry 径向对称radial thrust bearing 径向止推轴承radial tolerance 径向容许偏差radial trace 径向记录道radial turbine 径流式涡轮radial velocity 径向速度radial vibration 径向振动radial waterflooding 环状注水radial wire cord tire 钢丝子午线轮胎radial wobble 径向震摆radial 辐向的radial-inlet impeller 径向进口式叶轮radialization 辐射;放射radian frequency 角频率radian measure 弧度radian 弧度radiance contour map 辐射外形图;发光度外形图radiance 光亮度;辐射率;辐射性能radiancy =radianceradiant coil 辐射段炉管radiant energy 辐射能radiant flux density 辐射能量密度radiant heat sensor 辐射热传感器radiant heat zone 辐射热带radiant heat 辐射热radiant heater 辐射式加热炉radiant intensity 辐射强度radiant matter 辐射物radiant power 辐射功率radiant quantity 辐射量radiant rays 辐射线radiant section 辐射段radiant surface absorptivity 辐射表面吸收率radiant temperature sensitivity 辐射热感温灵敏度radiant tube 辐射管radiant type fiber 辐射型纤维radiant wall tubes 辐射壁管radiant 辐射源radiant-type furnace 辐射炉radiaoctive family 放射系Radiastarte 射华蛤属radiate 放射radiated noise 辐射噪声radiated solar energy 辐射太阳能radiated structure 射状构造radiated wave 辐射波radiating body 辐射体radiating heat 辐射热radiating matter 放射物质radiation absorber 辐射吸收剂radiation balance 辐射平衡radiation belt 辐射带radiation characteristic 辐射特性radiation chemistry 放射化学radiation counter 辐射计数器radiation crosslinking 辐射交联radiation damage 辐射线损伤radiation degradation 辐射降解radiation detector 辐射探测器radiation dosimetry 辐射剂量测定法radiation ecology 辐射生态学radiation effect 辐射效应radiation efficiency 辐射效率radiation energy 辐射能radiation estimator 辐射剂量计radiation grafting 辐射接枝radiation heat transfer 辐射热传递radiation heat 辐射热radiation heater 辐射加热器radiation induced crosslinking 辐射诱导交联radiation induced grafting 辐射诱导接枝radiation initiation 辐射引发radiation intensity 辐射强度radiation ionization 辐射电离radiation level 辐射强度radiation logging 放射性测井radiation loss 辐射损失radiation method 辐射法radiation pattern 辐射模式;辐射特性图radiation peak 辐射最大值;辐射峰值radiation polymerization 放射聚合radiation pyrometer 辐射高温计radiation resistance 抗辐射性radiation resistant finish 防辐射整理radiation section 辐射段radiation sensitizer 辐射敏化剂radiation shield 辐射屏蔽radiation source 辐射源radiation temperature 辐射温度radiation wall thinkness measure device 辐射测壁厚仪radiation 辐射radiation-free zone 无辐照区域radiation-generating machine 辐射发生器radiation-initiated crosslinking 辐射诱导交联radiation-initiated polymerization 辐射引发聚合radiationless transition 无辐射跃迁radiationmeter 放射线计Radiatisporites 辐毛大孢属radiator shutter 散热器风门片radiator 辐射体radiator-type cooling unit 散热器式冷却装置radical catalyst 游离基催化剂radical copolymerization 游离基共聚合radical expression 根式radical four-spot patern 基本四点井网radical polymerization 游离基聚合radical scavenger 游离基清除剂radical sedimentation basin 辐流式沉淀池radical sign 根号radical 基radical-anion initiator 游离基-阴离子引发剂radicand 被开方数radication 开方radices radix的复数radicle 基;根radii radius 的复数radio detection 无线电检测radio direction finder 无线电测向仪radio direction finding 无线电测向radio distance-measuring 无线电测距radio echo sounding 无线电回波探测radio electronics 无线电电子学radio emission 无线电发射radio engineering 无线电工程radio examination X射线透视法radio facsimile 无线电传真radio finder 无线电测向仪radio frequency 射频radio indicator 放射性同位素指示剂radio interference 无线电干扰radio interferometry 无线电干涉测量radio modulation 无线电调制radio modulator 无线电调制器radio navigation aids 无线电导航设备radio navigation transmitter 无线电导航发射机radio navigation 无线电导航radio pager unit 无线电呼唤装置radio position fixing 无线电定位radio positioning 无线电定位radio prospecting 放射性勘探radio reception 无线电接收radio relay station 无线电中继站radio research ship 无线电通信试验船radio responder 无线电应答器radio scanner 无线电扫描仪radio scattering 射电散射radio sonobuoy 无线电声呐浮标radio spectrum 射频频谱radio station 无线电台radio survey 无线电测量radio telemetering 无线电遥测;无线电遥测的radio telemetry buoy 无线电遥测浮标radio telemetry seismic data acquisition system 无线电遥测地震数字采集系统radio teletype 电传打字机radio thin-layer chromatography 放射薄层色谱法radio tick 无线电报时信号radio tower 无线电天线塔radio transceiver system 无线电收发系统radio transmission 无线电发射radio transmitter 无线电发射机radio wave propagation 无线电波传播radio 无线电radio- 放射radio-altimeter 无线电测高计radio-apparatus 无线电台radio-controlled pump station 无线电控制泵站radio-direction-finder method 无线电测定方位法radio-fixing 无线电定位radio-frequency amplifier 高频放大器radio-frequency choke 射频扼流圈radio-frequency coil 高频线圈radio-frequency drying 高频干燥radio-frequency field 射频场radio-frequency formation heating 地层射频加热radio-frequency interference 射频干扰radio-frequency location system 射频定位系统radio-frequency oscillator 射频振荡器radio-frequency reading 用高频扫描快速读出radio-frequency signal 高频率信号radio-halo 放射晕radio-label 放射性同位素示踪radio-link 无线电通信联络radio-micrometer 高灵敏度辐射计radio-microwave telemetering system 无线电-微波遥测系统radio-positioning navigation 无线电定位导航radio-positioning network 无线电定位网格radio-positioning station 无线电定位台radioacoustics 无线电声学radioactinium 放射性锕radioactivation analysis 活化分析;放射活化分析radioactive age determination 放射性年龄测定radioactive anomaly 放射性异常radioactive ash 放射性尘埃radioactive bullet 放射性子弹radioactive bulletlocator 放射性子弹定位器radioactive carbon dating 放射性碳年代测定法radioactive cement 放射性水泥radioactive chain 放射性衰变链radioactive concentration 放射性浓度radioactive constant 放射常数radioactive contamination 放射性污染radioactive decay 放射性衰变radioactive density meter 放射性密度计radioactive detector 放射性检测器radioactive disintegration 放射性衰变radioactive drug 放射性制剂radioactive element 放射性元素radioactive foil 放射性金属薄片radioactive heat 放射性热radioactive indicator 放射性指示剂radioactive isotope equipped go-devil 放射性同位素刮管器radioactive isotope 放射性同位素radioactive leak 放射性泄漏radioactive logging 放射性测井radioactive mineral 放射性矿物radioactive nucleus 放射性核radioactive nuclide 放射性核素radioactive occurrence 放射性矿床radioactive pollutant 放射性污染物radioactive prospecting 放射性勘探radioactive source 放射性源radioactive standardization 放射性标准化radioactive static eliminator 放射性静电消除器radioactive tracer log 放射性示踪剂测井radioactive tracer survey 放射性示踪物测量法radioactive tracer 放射性指示剂;放射性示踪剂radioactive transformation 放射性转化;放射性蜕变radioactive waste 放射性废物radioactive well logging 放射性测井radioactive 放射性的radioactive-tracer method 放射性示踪法radioactive-tracer-fibre 放射性示踪纤维radioactivity anomaly 放射性异常radioactivity background 放射性本底radioactivity decay 放射性衰变radioactivity equilibrium 放射性平衡radioactivity indicator 放射性强度指示器radioactivity level 放射性能级radioactivity log 放射性测井radioactivity prospecting 放射性勘探radioactivity standard 放射性标准radioactivity survey 放射性勘探radioactivity well logging 放射性测井radioactivity 放射性;放射radioalarm equipment 无线电报警器radioamplifier 高频放大器radioanalysis 放射性分析radioanalytical chemistry 放射分析化学radioassay 放射性检验radioastronomy 射电天文学radioautocontrol 无线电自动控制器radioautogram 无线电传真radioautograph 放射自显影radioautography 放射自显影术radiobeacon buoy 无线电浮航标radiobeacon 无线电信标radiobeam 无线电电波radiobearing 无线电方位radiobiochemistry 放射生物地球化学radiobiology 放射生物学radiobroadcast 无线电广播;用无线电广播radiocall sign 无线电呼号radiocarbon age 放射性碳年龄radiocarbon C14 放射性碳radiocarbon chronology 放射性碳测定年代法radiocarbon dating 放射性碳测定年龄radiocarbon stratigraphy 放射性碳地层学radiocarbon tracer 放射性碳示踪物radioceramic 高频瓷radiocesium 放射性铯radiochannel 波道radiochemicak analysis 放射化学分析radiochemistry 放射化学radiochromatogram 放射性色谱图radiochromatograph 辐射色层分离谱。
高效液相色谱法测定茶饮料中的咖啡因含量
高效液相色谱法测定茶饮料中的咖啡因含量作者:宁炜来源:《食品安全导刊》2022年第08期摘要:建立了高效液相色谱法测定茶饮料中咖啡因含量的分析方法。
试样经预处理后,过0.45 μm微孔水相滤膜,经Promosil C18色谱柱分离,以甲醇和纯水为流动相,等度洗脱,二极管阵列检测器检测。
结果表明,咖啡因在0.059~1.960 μg/mL与4.91~196.30 μg/mL时线性关系良好,线性系数均大于0.999,加标回收率为96.43%~103.31%,方法的重复性RSD为1.56%,检出限为0.059 mg/kg,定量限为0.2 mg/kg。
该方法前处理简便,定性定量准确,可用于茶饮料中咖啡因含量的批量快速检测。
关键词:咖啡因;茶饮料;高效液相色谱法Determination of Caffeine in Tea Drinks by HPLCNING Wei(Shanxi Inspection and Testing Center Shanxi Institute of Standard Measurement Technology, Taiyuan 030012, China)Abstract: The method for the determination of caffeine in tea beverage by high performance liquid chromatography was established. After pretreatment, t he sample passes 0.45 μm microporous aqueous phase filter membrane, separated by Promosil C18 chromatographic column, eluted with pure water and methanol as mobile phase, and detected by diode array detector. The results showed that caffeine ranged from 0.059~1.960 μg/mL and 4.91~196.30 μg/mL, the linear relationship within was good, the linear coefficients were greater than 0.999, the recovery was 96.43%~103.31%, the repeatability RSD of the method was 1.56%, the detection limit was0.059 mg/kg, and the quantitative limit was 0.2 mg/kg. The method is simple in pretreatment,accurate in qualitative and quantitative analysis, and can be used for rapid batch determination of caffeine in tea drinks.Keywords: caffeine; tea drinks; high-performance liquid chromatography咖啡因,又稱咖啡碱,是一种从咖啡或茶叶中提取的黄嘌呤生物碱化合物,具有使人体中枢神经系统兴奋的作用,适度使用可以祛除疲劳、振奋精神,然而长期或超剂量摄入会对人体肝肾功能造成损害,而且其具有成瘾性,停用后会出现身体疲乏、精神不振等症状[1-4]。
参考文献——精选推荐
参考⽂献[1] Meng W., Wei J., Luo X., et al. Separation of β-agonists in pork on a weak cation exchange column by HPLC with fluorescence detection. Analytical Methods,2012, 4(4): 1163.[2] 聂建荣, 朱铭⽴, 连槿, 等. ⾼效液相⾊谱-串联质谱法检测动物尿液中的15 种β-受体激动剂. ⾊谱,2010, 28(8): 759-764.[3] Traynor I., Crooks S., Bowers J., et al. Detection of multi-β-agonist residues in liver matrix by use of a surface plasma resonance biosensor. Analytica Chimica Acta,2003, 483(1): 187-191. [4] Kuiper H., Noordam M., van Dooren-Flipsen M., et al. Illegal use of beta-adrenergic agonists: European Community. Journal of Animal Science,1998, 76(1): 195-207.[5] Watkins L., Jones D., Mowrey D., et al. The effect of various levels of ractopamine hydrochloride on the performance and carcass characteristics of finishing swine. Journal of Animal Science,1990, 68(11): 3588-3595.[6] Parr M. K., Opfermann G., Sch?nzer W. Analytical methods for the detection of clenbuterol. Bioanalysis,2009, 1(2): 437-450.[7] López-Mu?oz F., Alamo C., Rubio G., et al. Half a century since the clinical introduction of chlorpromazine and the birth of modern psychopharmacology. Prog Neuropsychopharmacol Biol Psychiatry,2004, 28(1): 205-208.[8] Goodman L., Gilman A. The pharmacological basis of therapeutics, 7th edn Macmillan. New York,1980: 1054-1105.[9] 王春燕. ⽑细管电泳—电化学发光检测吩噻嗪类药物的研究. 长春理⼯⼤学, 2006.[10] 孙雷, 张骊, 徐倩, et al. 超⾼效液相⾊谱-串联质谱法检测猪⾁和猪肾中残留的10 种镇静剂类药物. ⾊谱,2010, 28(1): 38-42.[11] 顾华兵, 谢洁, 彭涛, et al. 鸡⾁组织中氯丙嗪残留的HPLC-MS/MS 检测⽅法的建⽴. 中国家禽,2014, 36(15): 33-36.[12] Mitchell G., Dunnavan G. Illegal use of beta-adrenergic agonists in the United States. Journal of Animal Science,1998, 76(1): 208-211.[13] Directive C. Council Directive 96/23/EC of 29 April 1996 on measures to monitor certain substances and residues thereof in live animals and animal products and repealing Directives 85/358/EEC and 86/469/EEC and Decisions89/187/EEC and 91/664/EEC. Official Journal L125,1996, 23(5): 10-32.[14] 农业部, 卫⽣部. 禁⽌在饲料和动物饮⽤⽔中使⽤的药物品种⽬录[Z] 农业部公告[2002] 176 号. 2002.[15] Damasceno L., Ventura R., Cardoso J., et al. Diagnostic evidence for the presence of β-agonists using two consecutive derivatization procedures and gas chromatography–mass spectrometric analysis. Journal of Chromatography B,2002,780(1): 61-71.[16] 王培龙. β-受体激动剂及其检测技术研究. 农产品质量与安全,2014, 1): 44-52.[17] Wang L.-Q., Zeng Z.-L., Su Y.-J., et al. Matrix effects in analysis of β-agonists with LC-MS/MS: influence of analyte concentration, sample source, and SPE type. Journal of Agricultural and Food Chemistry,2012, 60(25): 6359-6363.[18] Shao B., Jia X., Zhang J., et al. Multi-residual analysis of 16 β-agonists in pig liver, kidney and muscle by ultra performance liquid chromatography tandem mass spectrometry. Food Chemistry,2009, 114(3): 1115-1121.[19] Josefsson M., Sabanovic A. Sample preparation on polymeric solid phase extraction sorbents for liquid chromatographic-tandem mass spectrometric analysis of human whole blood--a study on a number of beta-agonists and beta-antagonists. Journal of Chromatography A 2006, 1120(1-2):1-12.[20] Zhang Z., Yan H., Cui F., et al. Analysis of Multiple β-Agonist and β-Blocker Residues in Porcine Muscle Using Improved QuEChERS Method and UHPLC-LTQ Orbitrap Mass Spectrometry. Food Analytical Methods,2015: 1-10. [21] Wang P., Liu X., Su X., et al. Sensitive detection of β-agonists in pork tissue with novel molecularly imprinted polymer extraction followed liquid chromatography coupled tandem mass spectrometry detection. Food chemistry,2015, 184(72-79.[22] Li T., Cao J., Li Z., et al. Broad screening and identification of beta-agonists in feed and animal body fluid and tissues using ultra-high performance liquid chromatography-quadrupole-orbitrap high resolution mass spectrometry combined with spectra library search. Food Chem,2016, 192(188-196.[23] Xiong L., Gao Y.-Q., Li W.-H., et al. A method for multiple identification of four β2-Agonists in goat muscle and beefmuscle meats using LC-MS/MS based on deproteinization by adjusting pH and SPE for sample cleanup. Food Science and Biotechnology,2015, 24(5): 1629-1635.[24] Zhang Y., Zhang Z., Sun Y., et al. Development of an Analytical Method for the Determination of β2-Agonist Residues in Animal Tissues by High-Performance Liquid Chromatography with On-line Electrogenerated [Cu (HIO6) 2] 5--Luminol Chemiluminescence Detection. Journal of Agricultural and Food chemistry,2007, 55(13): 4949-4956.[25] Liu W., Zhang L., Wei Z., et al. Analysis of beta-agonists and beta-blockers in urine using hollow fibre-protected liquid-phase microextraction with in situ derivatization followed by gas chromatography/mass spectrometry. Journal of Chromatography A 2009, 1216(28): 5340-5346. [26] Caban M., Mioduszewska K., Stepnowski P., et al. Dimethyl(3,3,3-trifluoropropyl)silyldiethylamine--a new silylating agent for the derivatization of beta-blockers and beta-agonists in environmental samples. Analytica Chimica Acta,2013, 782(75-88.[27] Caban M., Stepnowski P., Kwiatkowski M., et al. Comparison of the Usefulness of SPE Cartridges for the Determination of β-Blockers and β-Agonists (Basic Drugs) in Environmental Aqueous Samples. Journal of Chemistry,2015, 2015([28] Zhang Y., Wang F., Fang L., et al. Rapid determination of ractopamine residues in edible animal products by enzyme-linked immunosorbent assay: development and investigation of matrix effects. J Biomed Biotechnol,2009, 2009(579175.[29] Roda A., Manetta A. C., Piazza F., et al. A rapid and sensitive 384-microtiter wells format chemiluminescent enzyme immunoassay for clenbuterol. Talanta,2000, 52(2): 311-318.[30] Bacigalupo M., Meroni G., Secundo F., et al. Antibodies conjugated with new highly luminescent Eu 3+ and Tb 3+ chelates as markers for time resolved immunoassays. Application to simultaneous determination of clenbuterol and free cortisol in horse urine. Talanta,2009, 80(2): 954-958.[31] He Y., Li X., Tong P., et al. An online field-amplification sample stacking method for the determination of β 2-agonists in human urine by CE-ESI/MS. Talanta,2013, 104(97-102.[32] Li Y., Niu W., Lu J. Sensitive determination of phenothiazines in pharmaceutical preparation and biological fluid by flow injection chemiluminescence method using luminol–KMnO 4 system. Talanta,2007, 71(3): 1124-1129.[33] Saar E., Beyer J., Gerostamoulos D., et al. The analysis of antipsychotic drugs in humanmatrices using LC‐MS (/MS). Drug testing and analysis,2012, 4(6): 376-394.[34] Mallet E., Bounoure F., Skiba M., et al. Pharmacokinetic study of metopimazine by oral route in children. Pharmacol Res Perspect,2015, 3(3): e00130.[35] Thakkar R., Saravaia H., Shah A. Determination of Antipsychotic Drugs Known for Narcotic Action by Ultra Performance Liquid Chromatography. Analytical Chemistry Letters,2015, 5(1): 1-11.[36] Kumazawa T., Hasegawa C., Uchigasaki S., et al. Quantitative determination of phenothiazine derivatives in human plasma using monolithic silica solid-phase extraction tips and gas chromatography–mass spectrometry. Journal of Chromatography A,2011, 1218(18): 2521-2527.[37] Flieger J., Swieboda R. Application of chaotropic effect in reversed-phase liquid chromatography of structurally related phenothiazine and thioxanthene derivatives. J Chromatogr A,2008, 1192(2): 218-224.[38] Tu Y. Y., Hsieh M. M., Chang S. Y. Sensitive detection of piperazinyl phenothiazine drugs by field‐amplified sample stacking in capillary electrophoresis with dispersive liquid–liquid microextraction. Electrophoresis,2015, 36(21-22): 2828-2836.[39] Geiser L., Veuthey J. L. Nonaqueous capillary electrophoresis in pharmaceutical analysis. Electrophoresis,2007, 28(1‐2): 45-57.[40] Lara F. J., García‐Campa?a A. M., Gámiz‐Gracia L., et al. Determination of phenothiazines in pharmaceutical formulations and human urine using capillary electrophoresis with chemiluminescence detection. Electrophoresis,2006,27(12): 2348-2359.[41] Lee H. B., Sarafin K., Peart T. E. Determination of beta-blockers and beta2-agonists in sewage by solid-phase extraction and liquid chromatography-tandem mass spectrometry. J Chromatogr A,2007, 1148(2): 158-167.[42] Meng W., Wei J., Luo X., et al. Separation of β-agonists in pork on a weak cation exchange column by HPLC with fluorescence detection. Analytical Methods,2012, 4(4): 1163-1167. [43] Yang F., Liu Z., Lin Y., et al. Development an UHPLC-MS/MS Method for Detection of β-Agonist Residues in Milk. Food Analytical Methods,2011, 5(1): 138-147.[44] Quintana M., Blanco M., Lacal J., et al. Analysis of promazines in bovine livers by high performance liquid chromatography with ultraviolet and fluorimetric detection. Talanta,2003, 59(2): 417-422.[45] Tanaka E., Nakamura T., Terada M., et al. Simple and simultaneous determination for 12 phenothiazines in human serum by reversed-phase high-performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci,2007, 854(1-2): 116-120.[46] Kumazawa T., Hasegawa C., Uchigasaki S., et al. Quantitative determination of phenothiazine derivatives in human plasma using monolithic silica solid-phase extraction tips and gas chromatography-mass spectrometry. J ChromatogrA,2011, 1218(18): 2521-2527.[47] Qian J. X., Chen Z. G. A novel electromagnetic induction detector with a coaxial coil for capillary electrophoresis. Chinese Chemical Letters,2012, 23(2): 201-204.[48] Baciu T., Botello I., Borrull F., et al. Capillary electrophoresis and related techniques in the determination of drugs of abuse and their metabolites. TrAC Trends in Analytical Chemistry,2015, 74(89-108.[49] Sirichai S., Khanatharana P. Rapid analysis of clenbuterol, salbutamol, procaterol, and fenoterol in pharmaceuticals and human urine by capillary electrophoresis. Talanta,2008, 76(5):1194-1198.[50] Toussaint B., Palmer M., Chiap P., et al. On‐line coupling of partial filling‐capillary zone electrophoresis with mass spectrometry for the separation of clenbuterol enantiomers. Electrophoresis,2001, 22(7): 1363-1372.[51] Redman E. A., Mellors J. S., Starkey J. A., et al. Characterization of Intact Antibody Drug Conjugate Variants using Microfluidic CE-MS. Analytical chemistry,2016.[52] Ji X., He Z., Ai X., et al. Determination of clenbuterol by capillary electrophoresis immunoassay with chemiluminescence detection. Talanta,2006, 70(2): 353-357.[53] Li L., Du H., Yu H., et al. Application of ionic liquid as additive in determination of three beta-agonists by capillary electrophoresis with amperometric detection. Electrophoresis,2013, 34(2): 277-283.[54] 张维冰. ⽑细管电⾊谱理论基础. 北京:科学出版社,2006.[55] Anurukvorakun O., Suntornsuk W., Suntornsuk L. Factorial design applied to a non-aqueous capillary electrophoresis method for the separation of beta-agonists. J Chromatogr A,2006, 1134(1-2): 326-332.[56] Shi Y., Huang Y., Duan J., et al. Field-amplified on-line sample stacking for separation and determination of cimaterol, clenbuterol and salbutamol using capillary electrophoresis. J Chromatogr A,2006, 1125(1): 124-128.[57] Chevolleau S., Tulliez J. Optimization of the separation of β-agonists by capillary electrophoresis on untreated and C 18 bonded silica capillaries. Journal of Chromatography A,1995, 715(2): 345-354.[58] Wang W., Zhang Y., Wang J., et al. Determination of beta-agonists in pig feed, pig urine and pig liver using capillary electrophoresis with electrochemical detection. Meat Sci,2010, 85(2): 302-305.[59] Lin C. E., Liao W. S., Chen K. H., et al. Influence of pH on electrophoretic behavior of phenothiazines and determination of pKa values by capillary zone electrophoresis. Electrophoresis,2003, 24(18): 3154-3159.[60] Muijselaar P., Claessens H., Cramers C. Determination of structurally related phenothiazines by capillary zone electrophoresis and micellar electrokinetic chromatography. Journal of Chromatography A,1996, 735(1): 395-402.[61] Wang R., Lu X., Xin H., et al. Separation of phenothiazines in aqueous and non-aqueous capillary electrophoresis. Chromatographia,2000, 51(1-2): 29-36.[62] Chen K.-H., Lin C.-E., Liao W.-S., et al. Separation and migration behavior of structurally related phenothiazines in cyclodextrin-modified capillary zone electrophoresis. Journal of Chromatography A,2002, 979(1): 399-408.[63] Lara F. J., Garcia-Campana A. M., Ales-Barrero F., et al. Development and validation of a capillary electrophoresis method for the determination of phenothiazines in human urine in the low nanogram per milliliter concentration range using field-amplified sample injection. Electrophoresis,2005, 26(12): 2418-2429.[64] Lara F. J., Garcia-Campana A. M., Gamiz-Gracia L., et al. Determination of phenothiazines in pharmaceutical formulations and human urine using capillary electrophoresis with chemiluminescence detection. Electrophoresis,2006,27(12): 2348-2359.[65] Yu P. L., Tu Y. Y., Hsieh M. M. Combination of poly(diallyldimethylammonium chloride) and hydroxypropyl-gamma-cyclodextrin for high-speed enantioseparation of phenothiazines bycapillary electrophoresis. Talanta,2015, 131(330-334.[66] Kakiuchi T. Mutual solubility of hydrophobic ionic liquids and water in liquid-liquid two-phase systems for analytical chemistry. Analytical Sciences,2008, 24(10): 1221-1230.[67] 陈志涛. 基于离⼦液体相互作⽤⽑细管电泳新⽅法. 万⽅数据资源系统, 2011.[68] Liu J.-f., Jiang G.-b., J?nsson J. ?. Application of ionic liquids in analytical chemistry. TrAC Trends in Analytical Chemistry,2005, 24(1): 20-27.[69] YauáLi S. F. Electrophoresis of DNA in ionic liquid coated capillary. Analyst,2003, 128(1): 37-41.[70] Kaljurand M. Ionic liquids as electrolytes for nonaqueous capillary electrophoresis. Electrophoresis,2002, 23(426-430.[71] Xu Y., Gao Y., Li T., et al. Highly Efficient Electrochemiluminescence of Functionalized Tris (2, 2′‐bipyridyl) ruthenium (II) and Selective Concentration Enrichment of Its Coreactants. Advanced Functional Materials,2007, 17(6): 1003-1009.[72] Pandey S. Analytical applications of room-temperature ionic liquids: a review of recent efforts. Anal Chim Acta,2006, 556(1): 38-45.[73] Koel M. Ionic Liquids in Chemical Analysis. Critical Reviews in Analytical Chemistry,2005, 35(3): 177-192.[74] Yanes E. G., Gratz S. R., Baldwin M. J., et al. Capillary electrophoretic application of 1-alkyl-3-methylimidazolium-based ionic liquids. Analytical chemistry,2001, 73(16): 3838-3844.[75] Qi S., Cui S., Chen X., et al. Rapid and sensitive determination of anthraquinones in Chinese herb using 1-butyl-3-methylimidazolium-based ionic liquid with β-cyclodextrin as modifier in capillary zone electrophoresis. Journal of Chromatography A,2004, 1059(1-2): 191-198.[76] Jiang T.-F., Gu Y.-L., Liang B., et al. Dynamically coating the capillary with 1-alkyl-3-methylimidazolium-based ionic liquids for separation of basic proteins by capillary electrophoresis. Analytica Chimica Acta,2003, 479(2): 249-254.[77] Jiang T. F., Wang Y. H., Lv Z. H. Dynamic coating of a capillary with room-temperature ionic liquids for the separation of amino acids and acid drugs by capillary electrophoresis. Journal of Analytical Chemistry,2006, 61(11): 1108-1112.[78] Qi S., Cui S., Cheng Y., et al. Rapid separation and determination of aconitine alkaloids in traditional Chinese herbs by capillary electrophoresis using 1-butyl-3-methylimidazoium-based ionic liquid as running electrolyte. Biomed Chromatogr,2006, 20(3): 294-300.[79] Wu X., Wei W., Su Q., et al. Simultaneous separation of basic and acidic proteins using 1-butyl-3-methylimidazolium-based ion liquid as dynamic coating and background electrolyte in capillary electrophoresis. Electrophoresis,2008, 29(11): 2356-2362.[80] Guo X. F., Chen H. Y., Zhou X. H., et al. N-methyl-2-pyrrolidonium methyl sulfonate acidic ionic liquid as a new dynamic coating for separation of basic proteins by capillary electrophoresis. Electrophoresis,2013, 34(24): 3287-3292.[81] Mo H., Zhu L., Xu W. Use of 1-alkyl-3-methylimidazolium-based ionic liquids as background electrolytes in capillary electrophoresis for the analysis of inorganic anions. J Sep Sci,2008, 31(13): 2470-2475.[82] Yu L., Qin W., Li S. F. Y. Ionic liquids as additives for separation of benzoic acid and chlorophenoxy acid herbicides by capillary electrophoresis. Analytica Chimica Acta,2005, 547(2): 165-171.[83] Marszall M. P., Markuszewski M. J., Kaliszan R. Separation of nicotinic acid and itsstructural isomers using 1-ethyl-3-methylimidazolium ionic liquid as a buffer additive by capillary electrophoresis. J Pharm Biomed Anal,2006, 41(1): 329-332.[84] Gao Y., Xu Y., Han B., et al. Sensitive determination of verticine and verticinone in Bulbus Fritillariae by ionic liquid assisted capillary electrophoresis-electrochemiluminescence system. Talanta,2009, 80(2): 448-453.[85] Li J., Han H., Wang Q., et al. Polymeric ionic liquid as a dynamic coating additive for separation of basic proteins by capillary electrophoresis. Anal Chim Acta,2010, 674(2): 243-248.[86] Su H. L., Kao W. C., Lin K. W., et al. 1-Butyl-3-methylimidazolium-based ionic liquids and an anionic surfactant: excellentbackground electrolyte modifiers for the analysis of benzodiazepines through capillary electrophoresis. J ChromatogrA,2010, 1217(17): 2973-2979.[87] Huang L., Lin J. M., Yu L., et al. Improved simultaneous enantioseparation of beta-agonists in CE using beta-CD and ionic liquids. Electrophoresis,2009, 30(6): 1030-1036.[88] Laamanen P. L., Busi S., Lahtinen M., et al. A new ionic liquid dimethyldinonylammonium bromide as a flow modifier for the simultaneous determination of eight carboxylates by capillary electrophoresis. J Chromatogr A,2005, 1095(1-2): 164-171.[89] Yue M.-E., Shi Y.-P. Application of 1-alkyl-3-methylimidazolium-based ionic liquids in separation of bioactive flavonoids by capillary zone electrophoresis. Journal of Separation Science,2006, 29(2): 272-276.[90] Liu C.-Y., Ho Y.-W., Pai Y.-F. Preparation and evaluation of an imidazole-coated capillary column for the electrophoretic separation of aromatic acids. Journal of Chromatography A,2000, 897(1): 383-392.[91] Qin W., Li S. F. An ionic liquid coating for determination of sildenafil and UK‐103,320 in human serum by capillary zone electrophoresis‐ion trap mass spectrometry. Electrophoresis,2002, 23(24): 4110-4116.[92] Qin W., Li S. F. Y. Determination of ammonium and metal ions by capillary electrophoresis–potential gradient detection using ionic liquid as background electrolyte and covalent coating reagent. Journal of Chromatography A,2004, 1048(2): 253-256.[93] Borissova M., Vaher M., Koel M., et al. Capillary zone electrophoresis on chemically bonded imidazolium based salts. J Chromatogr A,2007, 1160(1-2): 320-325.[94] Vaher M., Koel M., Kaljurand M. Non-aqueous capillary electrophoresis in acetonitrile using lonic-liquid buffer electrolytes. Chromatographia,2000, 53(1): S302-S306.[95] Vaher M., Koel M., Kaljurand M. Ionic liquids as electrolytes for nonaqueous capillary electrophoresis. Electrophoresis,2002, 23(3): 426.[96] Vaher M., Koel M. Separation of polyphenolic compounds extracted from plant matrices using capillary electrophoresis. Journal of Chromatography A,2003, 990(1-2): 225-230.[97] Francois Y., Varenne A., Juillerat E., et al. Nonaqueous capillary electrophoretic behavior of 2-aryl propionic acids in the presence of an achiral ionic liquid. A chemometric approach. J Chromatogr A,2007, 1138(1-2): 268-275.[98] Lamoree M., Reinhoud N., Tjaden U., et al. On‐capillary isotachophoresis for loadability enhancement in capillary zone electrophoresis/mass spectrometry of β‐agonists. Biological mass spectrometry,1994, 23(6): 339-345.[99] Huang P., Jin X., Chen Y., et al. Use of a mixed-mode packing and voltage tuning for peptide mixture separation in pressurized capillary electrochromatography with an ion trap storage/reflectron time-of-flight mass spectrometer detector. Analytical chemistry,1999, 71(9):1786-1791.[100] Le D. C., Morin C. J., Beljean M., et al. Electrophoretic separations of twelve phenothiazines and N-demethyl derivatives by using capillary zone electrophoresis and micellar electrokinetic chromatography with non ionic surfactant. Journal of Chromatography A,2005, 1063(1-2): 235-240.。
检出限与检出下限
整理课件
7
整理课件
8
在没有或消除了系统误差的前提下受精密度要求的限制对特定的分析方法来说精密度要求越高测定下限高于检出限越多
整理课件
1
1.检出限(Detection Limit)
检出限为某特定分析方法在给定的置信度内可从 式样中检出待测物质的最小浓度或最小量。
所谓“检出”是指定性检出,即判定式样中存有浓度高于 空白的待测物质。检出限除了与分析中所用试剂和水的 空白有关外,还与仪器的稳定性及噪声水平有关。
倍所对应的浓度 (或质量)。 当待测物的含量≥LQD,才可准确测定,所得分析
结果才有可靠性。
检出限只能粗略地表征体系性能,仅是一种定性的判断依 据,通常不能用于真实分析。测定下限则是痕量或微量分析定量 测定的特征指标。仪器的测定下限表示仪器进行定量分析时所 能达到的最低界限,是指在高置信度下测定物质的最低浓度或量。
整理课件
2
(1)检出限的定义:信号为空白测量值(至少20次) 的标准偏差的3倍所对应的浓度(或质量)。即置信度
为99.7%时被检出的待测物的最小浓度(或最小量)。
(2)检出限的确定 ① 配制1份浓度为c,接近于空白值的标准溶液,测量
20次以上,得到平均信号( X ),求出测量信号的标 准偏差()。
整理课件
6
当以检出限作为分析方法和分析仪器比较标准时,应约定统 一的检出限计算方法。
检测下限反映出分析方法能准确地定量测定低浓度水平待测物 质的极限值。在没有(或消除了)系统误差的前提下,受精密度要 求的限制,对特定的分析方法来说,精密度要求越高,测定下限高 于检出限越多。
工作场所空气中甲硫醇和乙硫醇便携式气相色谱
【摘要】目的建立便携式GC-MS测定工作场所空气中甲硫醇和乙硫醇的方法。
方法采用静态配气法,以高纯氮气为稀释气配制不同浓度的甲硫醇、乙硫醇混合标准气体,便携式GC-MS手持探头直接采集进样,便携式GC-MS检测,以保留时间和特征离子定性,选择离子峰面积定量。
并对方法的准确度、精密度进行了评价。
结果本方法甲硫醇和乙硫醇的测定范围分别为0.996~19.9mg/m3、0.967~19.34mg/m3,相关系数r均>0.999,检出限分别为0.1mg/m3、0.2 mg/m3。
批内、批间精密度均≤10%,平均加标回收率为92%~109%。
结论本研究建立了便携式GC-MS测定工作场所空气中甲硫醇和乙硫醇的方法,本方法操作简便,精密度好,准确度高,适用于工作场所空气中甲硫醇和乙硫醇的日常及应急检测。
【关键词】甲硫醇乙硫醇便携式气相色谱-质谱Method for determination of methyl mercaptan, ethyl mercaptan in workplace atmospheres using portable gas chromatography-mass spectrometry .【Abstract】Objectives To establish methods for detection of methyl mercaptan, ethyl mercaptan in workplace atmospheres using portable gas chromatography-mass spectrometry (GC/MS).Methods Static gas distribution act and field experimental methods were used to optimize the determination parameters of the portable GC-MS. The target compounds were qualitatively detected by the NIST library search and quantified with internal standard calibration curve of concentration and peak area ratios of target compounds and internal standard. The precision, accuracy of this method were also assessed. Results The measurement ranges of this method were respectively as 0.996~19.9mg/m3,0.967~19.34mg/m3, and the two chemical compoundshad good linearity in their determination range, with the correlation coefficients>0.999.Experimental results showed that the LOD and LOQ for the twochemical compounds were 0.1mg/m3, 0.2mg/m3and 0.2mg/m3,0.4mg/m3. The results showed that the recovery of standard addition were 92%~109%. Conclusions Rapid field determination methods of methyl mercaptan, ethyl mercaptan, using portable GC-MS were established in this research. The methodshavehigh sensitivity and accuracy for the rapid qualitative and quantitative determination of methyl mercaptan, ethyl mercaptan in the chemical poisoning field.【Keywords】Methyl mercaptan; Ethyl ercaptan; Portable GC-MS;甲硫醇和乙硫醇均属硫醇类化合物,是石油中硫醇类化合物主要成分。
GCMS测定聚合物中双酚A
GC/MS测定聚合物中双酚A徐卫佳(东莞中鼎检测技术有限公司)[摘要]:建立一种测定玩具与食品接触材料中2,2-2(4-羟苯基)丙烷(双酚A)的定量测试方法。
通过索氏萃取的方法富积样品中的双酚A,将双酚A衍生之后用高分辨率的气质联用仪选择合适的色谱柱进行定量测定。
在本方法中对同一样品7次分析的相对标准偏差小于5%,对相关塑胶样品的加标回收率在80%~110%之间,方法检出限为0.05μg/g 。
[关键词]:双酚A,衍生,气质联用Determination of 2,2-Bis(4-Hydroxyphenyl)Propaneby GCMS [Abstract]:A routine method is described for quantitative determination of 2,2-Bis(4-Hydroxyphenyl) Propane (Bisphenol A) (BPA) in toy and food contact articles. A Soxtec extraction procedure was used to enrich compounds from the sample.Quantitative determinations were performed by high speed gas chromatography /mass spectrometry using a apolar column.Derivitization allows BPA to be analyzed by gas chromatography.The relative standard deviation was close to 5% for one sample analyzed seven time.Recoveries were determined for a plastic reference material and were 80%~110%. The method limits of quantification were 0.05μg/g for BPA.[Key words]:Bisphenol A,Derivitization,gas chromatography /mass spectrometry.双酚A(BPA)一种主要用于生产聚碳酸酯和环氧树脂的化学物质。
【原创】USP-_921_水分测定法的翻译-专业英语-基础知识专区-仪器社区.pdf
仪器社区 »基础知识专区 » 专业英语 »【原创】USP-<921>水分测定法的翻译
查看完整版本
共有29条记录 第1页,共3页 跳页:1 2 3 末页 qingtian1210 【原创】USP-<921>水分测定法的翻译 gg 本文据楼主所说乃是他本人所翻译的,为原创,我大致看了下,翻译的很专业,不过还是公示几天,如果没有异议再加精。 redanqi Many Pharmacopeial articles either are hydrates or contain water in adsorbed form. As a result, the determination of the water content is important in demonstrating compliance with the Pharmacopeial standards. Generally one of the methods given below is called for in the individual monograph, depending upon the nature of the article. In rare cases, a choice is allowed between two methods. When the article contains water of hydration, the Method I (Titrimetric), the Method II (Azeotropic), or the Method III (Gravimetric) is employed, as directed in the individual monograph, and the requirement is given under the heading Water. The heading Loss on drying (see Loss on Drying 731 ) is used in those cases where the loss sustained on heating may be not entirely water. 药典中的某些物质可能是水合化合物也可能包含着吸附水。因此,水分含量的测定对于验证样品与药典标准的一致性是很重要的。通常 在各论中所使用的下面所给出的方法是由样品的本质所决定的。某些特殊情况下,允许选择两个方法。当样品含有结晶水时,如各论 所示,方法1(滴定分析法),方法11(共沸法),或者方法111(重量分析法)常被使用,在标题下给出了必要的条件。 干燥失重(参见干燥失重<731>)用于以下情况,当持续加热时失去的不完全是水。 redanqi METHOD I (TITRIMETRIC) Determine the water by Method Ia, unless otherwise specified in the individual monograph. Method Ia (Direct Titration) Principle— The titrimetric determination of water is based upon the quantitative reaction of water with an anhydrous solution of sulfur dioxide and iodine in the presence of a buffer that reacts with hydrogen ions. 方法I(滴定分析法) 除另有规定外,使用方法Ia检测水分。 方法Ia(直接滴定法) 原理---水分滴定测定法是基于水与二氧化硫和碘的无水溶液,在能与氢离子反应的缓冲溶液下发生的定量反应。 redanqi 2008-10-21 10:16:16 2008-10-21 10:15:45 2008-10-21 10:15:18 2008-10-21 10:13:06
FTIR技术结合区间偏最小二乘法快速测定油脂中反式脂肪酸
FTIR技术结合区间偏最小二乘法快速测定油脂中反式脂肪酸叶沁;潘丹杰;栗磊;杨志成;孟祥河【摘要】研究了傅里叶红外光谱技术结合区间偏最小二乘法(iPLS)快速分析食用油中低含量(0.1%~5%)反式脂肪酸的分析方法.通过系统地比较衰减全反射红外光谱法(ATR-FTIR)及衰减透射红外光谱法(TR-FTIR)光谱的模型效果,优化建模区间.研究结果表明,ATR-FHR、TR-FTIR-PLS回归模型均能有效测定油脂中低浓度反式脂肪酸的含量,但TR-FTIR法灵敏度优于ATR-FTIR法.iPLS区间选择结果显示,以1 000~ 940 cm-1波段透射光谱建模,相关系数R2为0.998 8,标准集的RMSEC 0.016 6,验证集RMSEP为0.008 75,预测相对标准偏差2.92%,预测值与实际值高度相关,Y预测=1.00X实际-0.003 44,R2=0.998 7.12组外部验证试验相对标准偏差为4.80%,说明预测精确度较高、模型稳定性好,有潜力替代传统气相色谱法用于油脂中低含量反式脂肪酸快速定量测定.【期刊名称】《中国粮油学报》【年(卷),期】2016(031)010【总页数】5页(P137-141)【关键词】FTIR;iPLS;反式脂肪酸;油脂【作者】叶沁;潘丹杰;栗磊;杨志成;孟祥河【作者单位】浙江工业大学海洋学院,杭州310014;杭州市粮油中心检验监测站,杭州310009;浙江工业大学海洋学院,杭州310014;杭州市粮油中心检验监测站,杭州310009;浙江工业大学海洋学院,杭州310014【正文语种】中文【中图分类】TQ646.4反式脂肪酸(TFAs)是一类分子结构中含有非共轭反式双键的不饱和脂肪酸[1]。
研究表明,TFAs与血脂代谢,血管炎症和心脑血管疾病的发展变化之间有很强的相关性[2]。
传统的油和脂肪中反式脂肪酸的分析一般采用气相色谱(GC)技术。
该方法准确度高,但需要脂类衍生化处理,耗时长,需要昂贵的标品及良好的试验技能。
化妆品及其原料中禁限用物质检测方法验证技术规范
化妆品及其原料中禁限用物质检测方法验证技术规范(征求意见稿)为加强化妆品及其原料中禁限用物质检测方法研究技术,指导化妆品及其原料中禁限用物质检测方法研究和验证工作,规范检测方法验证内容和评价标准,进一步提高检测方法的先进性和切实可行性,制定本规范。
本规范规定了适用范围、检测方法验证技术参数、检测方法验证接受标准。
1 适用范围本规范适用于化妆品及其原料中禁用和限用物质标准检测方法的研究;已经经过预研,由相关单位提出,经化妆品标准技术委员会审议通过立项,委托相关部门和化妆品标准技术委员会进行研究的化妆品中禁用和限用物质标准检测方法项目。
2 依据ISO 5725: 1994 Accuracy (trueness and precision) of measurement methods and results — Part 1: General principles and definitions; ISO 5725-2 Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method; Part 4: Basic methods for the determination of the trueness of a standard measurement method.ISO 17025: 1999 General requirement for the competence of calibration and testing laboratories.ISO Guide 43-1: 1997 Proficiency testing by interlaboratory comparisons — Part 1: Development and operation of proficiency testing schemes.ISO Guide 43-2: 1997 Proficiency testing by interlaboratory comparisons — Part 2: Selection and use of proficiency testing schemes by laboratory accreditation bodies. Directive 96/23/EC and Decision 2002/657/ECGB/T 6379.1-2004 测量方法与结果的准确度(正确度与精密度) 第1部分:总则与定义GB/T 6379.2-2004 测量方法与结果的准确度(正确度与精密度) 第2部分:确定标准测量方法重复性与再现性的基本方法GB/T 6379.4-2006 测量方法与结果的准确度(正确度与精密度) 第4部分:确定标准测量方法正确度的基本方法GB/T 6379.5-2006 测量方法与结果的准确度(正确度与精密度) 第5部分:确定标准测量方法精密度的可替代方法GB/T 6379.6-2009 测量方法与结果的准确度(正确度与精密度)第6部分:准确度值的实际应用《化妆品卫生规范》2007年版L. Dencausse etal, Validation of HPLC Method for Quantitative Determination of Tinosorb S and Three Other Sunscreens in A High Protection CosmeticProduct,International Journal of Cosmetic Science, 2008, 30:373-382.Ursula Vincent etal, Validation of An Analytical Procedure for the Determination of Oxidative Hair Dyes in Cosmetic Formulations, J. Cosmet. Sci., 2002,53:43-58.3 释义本规范中所指化妆品及其原料中禁用和限用物质同《化妆品卫生规范》2007版。
激光剥蚀-电感耦合等离子体质谱(ICP-MS)法测定纯钌中19种杂质元素
Vol. 11, No. 251 〜56第11卷第2期2 0 21年4月中国无机分析化学ChineseJournalofInorganicAnalyticalChemistrydoi :10. 3969". iisn. 2095-1035. 2021. 02. 011激光剥蚀-电感耦合等离子体质谱 (ICP-MS)法测定纯钉中19种杂质元素贾贵发1李秋莹12"甘建壮12马媛1杨辉1(1•贵研钳业股份有限公司,稀贵金属综合利用新技术国家重点实验室,昆明65 0 1 0 6;2.贵研检测科技(云南)有限公司,昆明650106)摘要建立了激光剥蚀-电感耦合等离子体质谱(LA-ICP-MS )法测定纯钉中Mg 、Al 、Fe 、Ni 、Cu 、Zn 、 Rb 、Rh 、Pd 、Mo 、Ag 、Cd 、Sn 、Ba 、Ir 、Pt 、Au 、Pb 和Si 等19种杂质元素的分析方法。
优化了仪器参数,给出了激光能量为60%,剥蚀孔径为110 %m,扫描速率为50 %m/s,脉冲频率为10 Hz,载气流量为0. 74 L/min条件下,信号强度和稳定性最佳。
由于钉标准样品难以获得,因此选择用纯钉粉样品,高温高压溶解后,采用ICP-MS 法定值所测元素(除硅外)根据钉粉样品的ICP-MS 法定值结果确定了测定元素的相对灵敏度因子(RSF),采用相对灵敏度因子(RSF)对所测结果进行校正,方法准确、快速,检出限为 0. 007〜12. 8 %g/g,相对标准偏差(RSD )为10%〜30%。
测定纯钉中杂质元素,结果与ICP-MS 法测定的结果吻合$关键词激光剥蚀;电感耦合等离子体质谱法(ICP-MS ) *纯钉;杂质元素;相对灵敏度因子 中图分类号:O657. 63;TH843文献标志码:A 文章编号= 20951035(2021)02-0051-06Determination of 19 Impurity Elements in Pure Ruthenium by LaserDenudation-Inductively Coupled Plasma Mass SpectrometryJIA Guifa 1 ,LI Qiuyingi ," ,GAN Jianzhuang ,,MA Yuan 1 ,YANG Hui 1(1. State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals ,Sino~P l atinum Metals Co. , Ltd , Kunming , Yunnan 650106 , China ;2. Guiyan Detection Technology (Yunnan) Co. , Ltd , Kunming , Yunnan 650106 , China)Abstract A methodforthedeterminationofnineteenimpurityelements Mg Al Fe Ni Cu Zn Rb RhPd Mo Ag Cd Sn Ba Ir Pt Au PbandSiinpureruthenium by Laser AblationInductively CoupledPlasma-Mass Spectrometry(LA-ICP-MS)was developed. The instrument parameters have been optimized : G'v'ngalaserenergyof60% denudat'onpores'ze110 %m thescanrate50 %m /spulserateof10 Hzandthecarr'er gasflow rate of0.74 L /m'n s'gnalstrength and stablty's opt'mum.Becauseruthen'um收稿日期:20200817修回日期:20200925基金项目:国家重点研发计划项目(2017YFB0305405)作者简介:贾贵发,男,助理工程师,主要从事贵金属化学分析研究$ E-mail :1648143310@qq. com"通信作者:李秋莹,女,正高级工程师,主要从事贵金属化学分析研究。
3种酶联免疫分析法在蓖麻毒素定量测定中的比较
3种酶联免疫分析法在蓖麻毒素定量测定中的比较马小溪;刘合珠;唐吉军;郭磊;谢剑炜【摘要】Three determination methods in enzyme-linked immunosorbent assay, namely optical absorption, fluorescent and chemiluminescent immunoassay, were established for quantitation of biotoxins protein ricin in various matrices. The detection conditions were systematically optimized.The results showed the best signal-to-noise (SNR) could be obtained for CLIA when dilution factor was 1:8000; and the chemiluminescence signal was stable at around 3 minutes after horseradish peroxidase reacted with its substrate. Whereafter, the three methods were compared for determination of ricin under individually optimized conditions. The comparative results indicated that chemiluminescent immunoassay could provide wider linear range (from 0.02 μg/L to 5.5 μg/L with correlation coefficient of 0.999), higher sensitivity (limit of detection was 0.005 μg/L), and could be adopted as a simple, rapid and robust approach. The CLIA method was applied to measure the spiked ricin in water, carbonated beverage, milk powder, coffee and human serum samples. The limits of detection and the recoveries were from 0.005 to 0.08 μg/L and from 89.6% to 108.8%, respectively.The method was quite suitable for quantitative determination of trace amounts of ricin in contaminated or poisoned samples.%建立了蓖麻毒素的3种酶联免疫定量分析法,即光吸收、荧光和化学发光免疫分析法,并系统优化了各项实验条件.结果显示:对于化学发光检测法,当酶标抗体HRP-4C13稀释倍数为1:8000时可获得最佳的信噪比,且酶与底物反应3 min后信号趋于稳定.随后在各自优化的条件下将3种方法用于毒素的检测.比较结果表明:化学发光酶联免疫分析法除具有线性范围宽(0.02~5.5 μg/L,r(2)=0.999)、灵敏度高(检出限为5 ng/L)的特点外,还具有简单、快速、体系稳定性好等优点.将本方法用于不同实际样品基质,如饮用水、碳酸饮料、奶粉、咖啡和血清中添加的蓖麻毒素的检测,其检出限为0.005~0.08 μg/L,回收率为89.6%~108.8%,适于污染及中毒样品中痕量蓖麻毒素的定量分析.【期刊名称】《分析化学》【年(卷),期】2011(039)005【总页数】5页(P685-689)【关键词】蓖麻毒素;酶联免疫分析;化学发光【作者】马小溪;刘合珠;唐吉军;郭磊;谢剑炜【作者单位】军事医学科学院毒物药物研究所,北京,100850;军事医学科学院毒物药物研究所,北京,100850;军事医学科学院毒物药物研究所,北京,100850;军事医学科学院毒物药物研究所,北京,100850;军事医学科学院毒物药物研究所,北京,100850【正文语种】中文蓖麻毒素(Ricin)是从大戟科植物蓖麻籽(Ricinu communis)中分离出来的一种II型核糖体失活蛋白,其相对分子量约为66 kDa,由A链(约32 kDa)和B链(约34 kDa)通过二硫键联接而成。
使用TCID50法测定病毒滴度
半数组织培养感染剂量法测定淋巴细胞脉络丛脑膜炎病毒优势分析连亨宁成都军区总医院呼吸内科,成都610083摘要:目的寻找简便的淋巴细胞脉络丛脑膜炎病毒LCMV病毒滴度测定方法。
方法采用半数组织培养感染剂量(TCID50)法检测LCMV病毒滴度,记录期间细胞形态变化。
结果实验后第5天获得与空斑实验一致的病毒滴度结果,但实验流程更为简单。
结论TCID50法测定LCMV病毒滴度相对于空斑实验更为简便。
关键词:半数组织感染剂量;空斑实验;淋巴细胞脉络丛脑膜炎病毒;病毒滴度中图分类号:Q939.47 文献标识码:AThe advantage of Lymphocytic Choriomeningitis Virus quantification by 50% Tissue culture infective doseLian Hengning(Department of Respiratory Medicine ,Chengdu Military General Hospital ,Chengdu 610083)Abstract:To determine a convenient method to quantify Lymphocytic Choriomeningitis Virus (LCMV) ,LCMV titer was measured by the 50% Tissue culture infective dose (TCID50) method . The result was got 5 days post-infection , similar with plaque assay ,but the protocol is easier than plaque assay .This experiment showd that TCID50 is more convenient than plaques assay .Key words:50% Tissue culture infective dose(TCID50);Plaques assay;Lymphocytic Choriomeningitis Virus (LCMV); Virus titer空斑实验是检测病毒滴度最为经典的方法[1]。
TLC测定冬凌草叶中冬凌草甲_乙素的含量
T LC 测定冬凌草叶中冬凌草甲、乙素的含量3袁珂 胡润淮 杨怡 孙伟 张晓明(郑州450003河南中医学院中药系)摘要 目的:研究冬凌草叶中冬凌草甲、乙素的含量测定。
方法:采用薄层扫描法进行测定。
结果:冬凌草甲素浓度在9.50μg ~47.50μg 之间线性关系良好,相关系数r =0.999,回收率为98.54%,测定的RSD =1.41%。
冬凌草乙素浓度在9.98μg ~49.90μg 之间线性关系良好,相关系数r =0.999,回收率为98.07%,测定的RSD =1.35%。
结论:本法简便、准确、灵敏,重现性好,可用于冬凌草的质量控制。
由本法测定结果表明,生长在济源太行山区8月份的冬凌草叶中冬凌草甲、乙素的含量最高。
关键词 冬凌草;冬凌草甲素;冬凌草乙素;薄层扫描法3 河南省自然科学基金资助课题第971901300号T LC in quantitative determination of oridonin and ponicidin in the leaves of Rabdosia rubescens Yuan K e (Yuan K ),Hu Runhuai (Hu RH ),Yang Y i (Yang Y ),et al (He ’nan College of T raditionalChinese Medicine ,Zhengz hou 450003)ABSTRACT OB JECTIVE :To study the method for quantitative determination of oridonin and ponicidin in the leaves of Rabdosia rubescens .METH ODS :TLCS method was selected to determine the content.RESU LTS :For oridonin thelinear range was 9.50μg ~47.50μg with r =0.999,the average recovery was 98.54%with RSD 1.41%.For ponicidin the linear range was 9.98μg ~49.90μg with r =0.999,the average recovery was 98.07%with RSD 1.35%.CONC L USION :The method was proved to be simple ,precise sensitive and reproduciable.It can be used for the quality control of Rabdosia rubescens .The results showed that the content of oridonin and ponicidin in the leaves of Rabdosia rubescens ,which grows in August in Ji Yuan county area ,is relatively the highest.KE Y WOR DS Rabdosia rubescens ,oridonin ,ponicidin ,TLC 2scanning 冬凌草(Rabdosia rubescens Hemsl.)为唇形科香茶菜属植物,广泛分布于我国黄河流域及其以南广大地区。
美国药典USP31(921)翻译版(上)
921 WATER DETERMINATION水分测定很多药典物品要么是水合物,要么含有处于吸附状态的水。
因此,测定水分含量对于证实与药典标准的符合性是很重要的。
通常,在具体的各论中会根据该物品的性质,要求使用下面若干方法中的一个。
偶尔,会允许在2个方法中任选一个。
当该物品含有水合状态的水,按照具体各论中的规定,使用方法I (滴定测量法)、方法II(恒沸测量法)、或方法III(重量分析法),这个要求在标题水分项下给出。
The heading Loss on drying (see ) is used in those cases where the loss sustained on heating may be not entirely water.在加热时的持续失重可能不全是水分的情况下,使用标题干燥失重(见干燥失重<731>)。
METHOD I (TITRIMETRIC) 方法I(滴定测量法)Determine the water by , unless otherwise specified in the individual monograph.除非具体各论中另有规定,使用方法Ia来测定水分。
Method Ia (Direct Titration) 方法Ia(直接滴定)Principle— The titrimetric determination of water is based upon the quantitative reaction of water with an anhydrous solution of sulfur dioxide and iodine in the presence of a buffer that reacts with hydrogen ions.原理:水分的滴定法检测是基于水与二氧化硫的无水溶液以及存在于缓冲液中与氢离子反应的碘之间的定量反应。
Quantikine:Quantikine酶
Quantikine®ELISAHuman VEGF-D ImmunoassayCatalog Number DVED00For the quantitative determination of human Vascular Endothelial Growth Factor D (VEGF-D) concentrations in cell culture supernates, serum, and plasma.This package insert must be read in its entirety before using this product.For research use only. Not for use in diagnostic procedures.MANUFACTURED AND DISTRIBUTED BY:USA & Canada | R&D Systems, Inc.614 McKinley Place NE, Minneapolis, MN 55413, USATEL: (800) 343-7475 (612) 379-2956 FAX: (612) 656-4400E-MAIL:*******************DISTRIBUTED BY:UK & Europe | R&D Systems Europe, Ltd.19 Barton Lane, Abingdon Science Park, Abingdon OX14 3NB, UK TEL: +44 (0)1235 529449 FAX: +44 (0)1235 533420E-MAIL:******************.ukChina | R&D Systems China Co., Ltd.24A1 Hua Min Empire Plaza, 726 West Yan An Road, Shanghai PRC 200050TEL: +86 (21) 52380373 FAX: +86 (21) 52371001E-MAIL:************************.cnTABLE OF CONTENTSSECTIONPAGEINTRODUCTION ....................................................................................................................................................................1PRINCIPLE OF THE ASSAY ..................................................................................................................................................2LIMITATIONS OF THE PROCEDURE ................................................................................................................................2TECHNICAL HINTS ................................................................................................................................................................2MATERIALS PROVIDED & STORAGE CONDITIONS ..................................................................................................3OTHER SUPPLIES REQUIRED ............................................................................................................................................3PRECAUTIONS ........................................................................................................................................................................4SAMPLE COLLECTION & STORAGE ................................................................................................................................4REAGENT PREPARATION ....................................................................................................................................................5ASSAY PROCEDURE ............................................................................................................................................................6CALCULATION OF RESULTS ..............................................................................................................................................7TYPICAL DATA ........................................................................................................................................................................7PRECISION ...............................................................................................................................................................................8RECOVERY................................................................................................................................................................................8LINEARITY ................................................................................................................................................................................9SENSITIVITY ............................................................................................................................................................................9CALIBRATION .........................................................................................................................................................................9SAMPLE VALUES ....................................................................................................................................................................9SPECIFICITY ..........................................................................................................................................................................10REFERENCES (10)INTRODUCTIONThe vascular endothelial growth factor (VEGF) family of proteins is important for the development of blood vessels during embryogenesis and in pathological conditions such as tumorigenesis (see reference 1 for a review). VEGF (VEGF-A) is a homodimeric, heparin-binding glycoprotein with potent angiogenic, mitogenic and vascular permeability-enhancing activities specific for endothelial cells. In addition to splice variants of VEGF-A, several other members of the VEGF family have been cloned, including VEGF-B, -C and -D (see references 2 and 3 for reviews). Placenta growth factor (PlGF) is also closely related to VEGF-A. VEGF-A, -B, -C, -D and PlGF exhibit limited amino acid (aa) sequence homology with the A and B chains of platelet-derived growth factor (PDGF). Eight cysteine aa residues involved in intra- and inter-chain disulfide bonds are conserved among these growth factors.VEGF-D (also known as c-fos-induced growth factor or FIGF (4)) is most closely related to VEGF-C (5, 6). It shares structural homology and receptor specificity with VEGF-C, thus suggesting that VEGF-C and VEGF-D represent a subfamily of the VEGFs. VEGF-D is initially synthesized as a precursor protein containing unique N- and C-terminal propeptides in addition to a central receptor-binding VEGF homology domain (VHD) (6). The N- and C-terminal propeptides are not found within other VEGF family members. These propeptides are proteolytically cleaved during biosynthesis to generate a mature, secreted form consisting of noncovalent dimers of the VHD (7).Like VEGF-C, VEGF-D binds the cell surface receptor tyrosine kinases VEGF receptor 2 (VEGF R2/ Flk-1/KDR) and VEGF R3 (Flt-4) (6). VEGF R2 (8, 9) and VEGF R3 (10, 11) are localized on vascular and lymphatic endothelial cells and signal for angiogenesis and lymphangiogenesis. The mature, secreted form of VEGF-D binds to both VEGF R2 and VEGF R3 with much higher affinity than unprocessed VEGF-D (7). Monoclonal antibodies generated against VEGF-D block its interactions with both VEGF R2 and VEGF R3, thus suggesting that the regions of VEGF-D that interact with these two receptors may be very similar (12). VEGF-D binding and activating of VEGF R2 has no vascular permeability activity, indicating that VEGF R2 binding does not necessarily correlate with permeability activity for all VEGF family members (7).The gene for VEGF-D maps to the X chromosome in both mouse and human (5, 13). VEGF-D gene expression occurs at many sites within the developing embryo, particularly lung mesenchyme (7, 14, 15). VEGF-D is also localized in tumor cells (16, 17). In adult human tissues, VEGF-D mRNA is expressed in the heart, lung, skeletal muscle, colon, and small intestine (6). The Quantikine Human VEGF-D Immunoassay is a 4.5 hour solid phase ELISA designedto measure VEGF-D levels in cell culture supernates, serum, and plasma. It containsSf 21-expressed, recombinant human VEGF-D and antibodies raised against the recombinant protein. Results obtained for naturally occurring human VEGF-D showed linear curves that were parallel to the standard curves obtained using the kit standards. These results indicate that this kit can be used to determine relative mass values for natural human VEGF-D.PRINCIPLE OF THE ASSAYThis assay employs the quantitative sandwich enzyme immunoassay technique. A monoclonal antibody specific for human VEGF-D has been pre-coated onto a microplate. Standards and samples are pipetted into the wells and any VEGF-D present is bound by the immobilized antibody. After washing away any unbound substances, an enzyme-linked monoclonal antibody specific for human VEGF-D is added to the wells. Following a wash to remove any unbound antibody-enzyme reagent, a substrate solution is added to the wells and color develops in proportion to the amount of VEGF-D bound in the initial step. The color development is stopped and the intensity of the color is measured.LIMITATIONS OF THE PROCEDURE• FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES.• The kit should not be used beyond the expiration date on the kit label.• Do not mix or substitute reagents with those from other lots or sources.• It is important that the Calibrator Diluent selected for the standard curve be consistent with the samples being assayed.• If samples generate values higher than the highest standard, dilute the samples with the appropriate Calibrator Diluent and repeat the assay.• Any variation in standard diluent, operator, pipetting technique, washing technique, incubation time or temperature, and kit age can cause variation in binding.• Variations in sample collection, processing, and storage may cause sample value differences.• This assay is designed to eliminate interference by other factors present in biological samples. Until all factors have been tested in the Quantikine Immunoassay, the possibility of interference cannot be excluded.TECHNICAL HINTS• When mixing or reconstituting protein solutions, always avoid foaming.• To avoid cross-contamination, change pipette tips between additions of each standard level, between sample additions, and between reagent additions. Also, use separate reservoirs for each reagent.• To ensure accurate results, proper adhesion of plate sealers during incubation steps is necessary.• When using an automated plate washer, adding a 30 second soak period following the addition of Wash Buffer, and/or rotating the plate 180 degrees between wash steps may improve assay precision.• Substrate Solution should remain colorless until added to the plate. Keep Substrate Solution protected from light. Substrate Solution should change from colorless to gradations of blue.• Stop Solution should be added to the plate in the same order as the Substrate Solution. The color developed in the wells will turn from blue to yellow upon addition of the Stop Solution. Wells that are green in color indicate that the Stop Solution has not mixed thoroughly with the Substrate Solution.MATERIALS PROVIDED & STORAGE CONDITIONSStore the unopened kit at 2-8 °C. Do not use past kit expiration date.OTHER SUPPLIES REQUIRED• Microplate reader capable of measuring absorbance at 450 nm, with the correction wavelength set at 540 nm or 570 nm.• Pipettes and pipette tips.• Deionized or distilled water.• Squirt bottle, manifold dispenser, or automated microplate washer.• 500 mL graduated cylinder.• Test tubes for dilution of standards.• Human VEGF-D Controls (optional; available from R&D Systems).PRECAUTIONSThe Stop Solution provided with this kit is an acid solution.Some components in this kit contain ProClin® which may cause an allergic skin reaction. Avoid breathing mist.Color Reagent B may cause skin, eye, and respiratory irritation. Avoid breathing fumes.Wear protective gloves, clothing, eye, and face protection. Wash hands thoroughly after handling. Please refer to the MSDS on our website prior to use.SAMPLE COLLECTION & STORAGEThe sample collection and storage conditions listed below are intended as general guidelines. Sample stability has not been evaluated.Cell Culture Supernates - Remove particulates by centrifugation and assay immediately or aliquot and store samples at ≤ -20 °C. Avoid repeated freeze-thaw cycles.Serum - Use a serum separator tube (SST) and allow samples to clot for 30 minutes at room temperature before centrifugation for 15 minutes at 1000 x g. Remove serum and assay immediately or aliquot and store samples at ≤ -20 °C. Avoid repeated freeze-thaw cycles. Plasma - Collect plasma using EDTA or heparin as an anticoagulant. Centrifuge for 15 minutes at 1000 x g within 30 minutes of collection. Assay immediately or aliquot and store samples at ≤ -20 °C. Avoid repeated freeze-thaw cycles.Note:Citrate plasma has not been validated for use in this assay.Grossly hemolyzed samples are not suitable for use in this assay.All trademarks and registered trademarks are the property of their respective owners.REAGENT PREPARATIONBring all reagents to room temperature before use.Wash Buffer - If crystals have formed in the concentrate, warm to room temperature and mix gently until the crystals have completely dissolved. Add 20 mL of Wash Buffer Concentrate to deionized or distilled water to prepare 500 mL of Wash Buffer.Substrate Solution - Color Reagents A and B should be mixed together in equal volumeswithin 15 minutes of use. Protect from light. 200 μL of the resultant mixture is required per well.VEGF-D Standard - Reconstitute the VEGF-D Standard with 1 mL of deionized or distilled water. This reconstitution produces a stock solution of 40,000 pg/mL. Allow the standard to sit for a minimum of 15 minutes with gentle agitation prior to making dilutions.Pipette 900 μL of Calibrator Diluent RD5R (for cell culture supernate samples ) or Calibrator Diluent RD6P (for serum/plasma samples ) into the 4000 pg/mL tube. Pipette 500 μL of the appropriate Calibrator Diluent into the remaining tubes. Use the stock solution to produce a dilution series (below). Mix each tube thoroughly before the next transfer. The 4000 pg/mL dilution serves as the high standard. The appropriate Calibrator Diluent serves as the zerostandard (0 pg/mL).40,000 pg/mL 4000 pg/mL 2000 pg/mL 1000 pg/mL 500 pg/mL 250 pg/mL 125 pg/mLASSAY PROCEDUREBring all reagents and samples to room temperature before use. It is recommended that all standards, samples, and controls be assayed in duplicate.1. Prepare all reagents and working standards as directed in the previous sections.2. Remove excess microplate strips from the plate frame, return them to the foil pouchcontaining the desiccant pack, and reseal.3. Add 100 μL of Assay Diluent RD1X to each well. May contain crystals. Warm to roomtemperature and mix well to dissolve.4. Add 50 μL of Standard, sample, or control per well. Cover with the adhesive strip providedand incubate for 2 hours at room temperature.5. Aspirate each well and wash, repeating the process three times for a total of four washes.Wash by filling each well with Wash Buffer (400 μL) using a squirt bottle, manifolddispenser, or autowasher. Complete removal of liquid at each step is essential to good performance. After the last wash, remove any remaining Wash Buffer by aspirating ordecanting. Invert the plate and blot it against clean paper towels.6. Add 200 μL of VEGF-D Conjugate to each well. Cover with a new adhesive strip. Incubate for2 hours at room temperature.7. Repeat the aspiration/wash as in step 5.8. Add 200 μL of Substrate Solution to each well. Incubate for 30 minutes at roomtemperature. Protect from light.9. Add 50 μL of Stop Solution to each well. The color in the wells should change from blueto yellow. If the color in the wells is green or the color change does not appear uniform, gently tap the plate to ensure thorough mixing.10. Determine the optical density of each well within 30 minutes, using a microplate readerset to 450 nm. If wavelength correction is available, set to 540 nm or 570 nm. If wavelength correction is not available, subtract readings at 540 nm or 570 nm from the readings at 450 nm. This subtraction will correct for optical imperfections in the plate. Readings made directly at 450 nm without correction may be higher and less accurate.CALCULATION OF RESULTSAverage the duplicate readings for each standard, control, and sample and subtract the average zero standard optical density (O.D.).Create a standard curve by reducing the data using computer software capable of generating a log/log curve-fit. As an alternative, construct a standard curve by plotting the meanabsorbance for each standard on the y-axis against the concentration on the x-axis and draw a best fit curve through the points on a log/log graph. The data may be linearized by plotting the log of the human VEGF-D concentrations versus the log of the O.D. on a linear scale, and the best fit line can be determined by regression analysis.If samples have been diluted, the concentration read from the standard curve must be multiplied by the dilution factor.TYPICAL DATAThese standard curves are provided for demonstration only. A standard curve should be generated for each set of samples assayed.(pg/mL)O.D.Average Corrected 00.0070.007—0.0071250.0380.0380.0310.0382500.0740.0730.0660.0715000.1650.1570.1500.14910000.4040.3890.3820.37320000.9180.8980.8910.87740002.201 2.1602.1532.119(pg/mL)O.D.Average Corrected 00.0110.012—0.0121250.0470.0460.0340.0452500.0880.0870.0750.0865000.1830.1860.1740.18810000.4210.4100.3980.39920000.8830.8650.8530.84740002.254 2.1632.1512.072CELL CULTURE SUPERNATE ASSAYSERUM/PLASMA ASSAYPRECISIONIntra-assay Precision (Precision within an assay)Three samples of known concentration were tested twenty times on one plate to assess intra-assay precision.Inter-assay Precision (Precision between assays)Three samples of known concentration were tested in forty separate assays to assess inter-assay precision. Assays were performed by at least three technicians using two lots of components.CELL CULTURE SUPERNATE ASSAYSERUM/PLASMA ASSAYRECOVERYThe recovery of human VEGF-D spiked to three different levels throughout the range of the assay in various matrices was evaluated.LINEARITYTo assess the linearity of the assay, samples spiked with high concentrations of human VEGF-D were serially diluted with the appropriate Calibrator Diluent to produce samples with values within the dynamic range of the assay.SENSITIVITYThirty-four assays were evaluated and the minimum detectable dose (MDD) of human VEGF-D ranged from 4.7-31.3 pg/mL. The mean MDD was 11.4 pg/mL.The MDD was determined by adding two standard deviations to the mean optical density value of twenty zero standard replicates and calculating the corresponding concentration. CALIBRATIONThis immunoassay is calibrated against a highly purified Sf 21-expressed recombinant human VEGF-D produced at R&D Systems.SAMPLE VALUESSerum/Plasma - Samples from apparently healthy volunteers were evaluated for the presence of human VEGF-D in this assay. No medical histories were available for the donors used in this study.Cell Culture Supernates - Human peripheral blood mononuclear cells (1 x 106 cells/mL) were cultured in RPMI supplemented with 5% fetal calf serum, 50 μM β-mercaptoethanol, 2 mML-glutamine, 100 U/mL penicillin, and 100 μg/mL streptomycin sulfate. Cells were cultured unstimulated or stimulated with 10 μg/mL PHA for 1 and 5 days. Aliquots of the cell culture supernates were removed and assay for levels of natural human VEGF-D. All samples measured less than the lowest VEGF-D standard, 125 pg/mL.For research use only. Not for use in diagnostic procedures.9SPECIFICITYThis assay recognizes natural and recombinant human VEGF-D.The factors listed below were prepared at 50 ng/mL in Calibrator Diluent and assayed for cross-reactivity. Preparations of the following factors at 50 ng/mL in a mid-range VEGF-D control were assayed for interference. No significant cross-reactivity or interference was observed.Recombinant human:EGFFGF acidic FGF basic HB-EGF HGFIGF IIGF IIKGFLAP (TGF-β1)β-NGF PD-ECGFPDGF-AAPDGF-ABPDGF-BBPlGFVEGFVEGF-CVEGF R2VEGF R3/Flt-4Recombinant mouse:VEGF-DVEGF R3/Flt-4REFERENCES1. Achen, M.G. and S.A. Stacker (1998) Int. J. Exp. Path. 79:255.2. Eriksson, U. and K. Alitalo (1999) Curr. Top. Microbiol. Immunol. 237:97.3. Carmeliet, P. and D. Collen (1999) Curr. Top. Microbiol. Immunol. 237:133.4. Orlandini, M. et al. (1996) Proc. Natl. Acad. Sci. USA 93:11675.5. Yamada, Y. et al. (1997) Genomics 42:483.6. Achen, M.G. et al. (1998) Proc. Natl. Acad. Sci. USA 95:548.7. Stacker, S.A. et al. (1999) J. Biol. Chem. 274:321237.8. Millauer, B. et al. (1993) Cell 72:835.9. Quinn, T.P. et al. (1993) Proc. Natl. Acad. Sci. USA 90:7533.10. Taipale, J. et al. (1999) Curr. Top. Microbiol. Immunol. 237:85.11. Kaipainen, A. et al. (1995) Proc. Natl. Acad. Sci. USA 92:3566.12. Achen, M.G. et al. (2000) Eur. J. Biochem. 267:2505.13. Jenkins, N.A. et al. (1997) Chromosome Res. 5:502.14. Avantaggiato, V. et al. (1998) Mech. Dev. 73:221.15. Farnebo, F. et al. (1999) Biochem. Biophys. Res. Commun. 257:891.16. Kurebayashi, J. et al. (1999) Jpn. J. Cancer Res. 90:977.17. Ruohola, J.K. et al. (1999) Mol. Cell. Endocrinol. 149:29.08.00 750556.5 7/14©2014 R&D Systems, Inc.10。
相对定量实验设计及条件优化
for qPCR with hydrolysis probes, incl. endpoint genotyping
LightCycler® 480 Genotyping Master
for melting curve-based genotyping
using HybProbe or SimpleProbe probes
What is it?
Universal ProbeLibrary (UPL) — a unique combination of prevalidated hydrolysis probes and free online assay design that allows you to design custom gene expression assays to quantify virtually any transcript in any genome.
> 898 500
> 630 000 > 193 000 > 42 000
98%
98% 98% 95%
总数
> 5 000 000
13
Roche Applied Science
主要内容
检测模式及应用
对照的设置
相对定量
如何选取看家基因 相对定量实验设置
实验评判标准
Roche Applied Science
as a control for the sample preparation if added during NA isolation, and/or as a control for the amplification reaction (PCR inhibition)
心梗检测仪(罗氏Roche Cobas h 232 System)
cobas h 232systemWhen on the spot cardiac decisionsneed on the spot results in Primary Carecobas cardioIs there a better pathway?Without Point of Care (POC) testingWith POC testingPatient presentsAppropriate action takenPOC test in only 12 minutesThe path of least resistanceBy providing rapid, accurate results near the patient, POC testing speeds up diagnosisand treatment, improving clinical outcomes and ensuring patients are managedefficiently and more cost-effectively.“Practices should put in place models of care so that theyuse a systematic approach for…identifying people at highrisk of CHD…(and) offering regular review to people athigh risk of CHD.”National Service Framework– Coronary Heart DiseasePractice managementResults are available within minutes, helping to improve efficiencyAppropriate treatment can be given without delayHospital referrals can be reserved for patients who really need it1–3Patient outcomesRapid diagnosis allows appropriate treatment to be initiated by GP’sEarly diagnosis and treatment reassures patients and reduces anxiety associatedwith uncertaintyCost-effectivenessEarly therapeutic initiation and regular monitoring can help reduce complicationsand improve cost-efficiency4Avoiding unnecessary referrals to Secondary Care will save the practice moneycobas cardioIntroducing thenew cobas h 232systemDesigned for on the spot cardiac decisionsEase of use•Insert strip, apply sample, read result•Intuitive touch-screen •No maintenance •Easy to cleanConnectivity•Results transmitted via IR to printer or Base Unit•In combination with cobas IT 1000 data management solution, reduces effort for documentation and fulfilment of quality assurance requirementsSpeed•Results available in 8–12minutes•Rapid, on-the-spot decision support for treatment, referral, or discharge of cardiovascular patientsReliability•On board QC•External QC through the provision of EQA ampoules •Results comparable to Roche laboratory methods 5–8•Quality assurance via patient identification and QC operator lock-outPortability•Portable device which is suitable for use in the GP’s surgery, one stop clinics orcommunity hospitalscobas cardio04877802190048778451900487777219004877799 19004877900 190cobas h 232– when you need to be sure3 simple steps to quick resultsSlide in test stripApply sample (150 µL heparinized whole blood)Result appears on screen within minutes123* At the 99th percentile of a reference population**Roche CARDIAC M for use on the cobas h 232system will be available in the course of Q3/2007D-dimerD-dimer is a specific fragment of cross-linked fibrin that circulates in the blood stream for several days following a thrombotic event, such as DVT. Patients at high risk of DVT include those receiving high dose oestrogen therapy, those who have previous history of DVT, post surgical and limited mobility.9D-dimer is produced naturally as part of the wound healing process, but can be found in higher quantities in the blood in abnormal clotting processes, as with thrombosis or embolism. When clots are formed at the wrong time and place as a result ofunderlying diseases, the presence of D-dimer indicates the occurrence of unwanted thrombotic events.Diagnostic value of D-dimer:D-dimer is a valuable marker to rule out suspected DVT and PE10,11Used as first diagnostic step, the determination of D-dimer helps to avoid unnecessaryand expensive examinations and therapeutic interventions–D-dimer based protocols can reduce treatment costs by avoiding the use of expensive imaging techniques12NT-proBNPBNP is synthesized as the prohormone proBNP and is released from the myocardiuminto the circulation upon myocardial stress. After stimulation of heart muscle cells,proBNP is cleaved by a protease into N-terminal proBNP(NT-proBNP) and thebiologically active hormone BNP. The biological half-life of NT-proBNP is60–120 minutes (BNP is only 20 minutes).Diagnostic value of NT-proBNP:High negative predictive value (> 97%) enables exclusion of heart failure in symptomaticpatients, allowing appropriate action to be taken13Helps to confirm the presence of heart failure, giving confidence to begin appropriatetreatment soonerAn alternative assessment to Echo, reducing pressure on waiting lists14,15Sensitive test enables diagnosis of systolic and diastolic ventricular dysfunction,even in mild and asymptomatic cases of heart failure16Allows for risk stratification and assessment of prognosis across a wide rangeof cardiovascular diseases17Cost savings by optimising resources18and decreasing the need for other diagnostic tests19 Diagnostic value of NT-proBNP:cobas cardioTroponin TCardiac troponin T is the most specific, and sensitive, biochemical marker of myocardial necrosis. A positive test result clearly establishes the diagnosis of myocardial infarction, even if symptoms or electrographic changes are ambiguous or not present.Diagnostic value of troponin T:Most appropriate cardiac marker and criterion to define acute myocardial infarction,according to the ESC/ACC recommendations21,22Can detect non-ST segment infarctions in patients presenting with acute coronary syndromeLarge window of detection (2hours up to 14 days) – an infarction can be confirmed in patientsthat report complaints only, after one or two weeksMyoglobinMyoglobin, a non cardiac specific protein in the cytoplasm of striated muscles,is rapidly released from the cells after muscle damage. Determination of myoglobincovers the early phase of myocardial infarction diagnosis since it is the first and themost sensitive biochemical marker that can be detected in the blood.Myoglobin increases as early as 1to 2hours after the onset of chest pain. However,since elevated myoglobin is not specific for damage of the heart muscle, a troponin T test must be performed to confirm the diagnosis of myocardial infarction. Myocardial infarction is ruled out if myoglobin is not detected within 6 hoursafter onset of symptoms.23Diagnostic value of myoglobin:Earliest marker to appear< 2hours post-infarctionUseful when the patient presents to physician very soon after onset of symptoms24CK-MBCreatine kinase (CK) is an enzyme that mainly occurs in muscles, heart and brain.It is divided into three different forms: CK-MM (muscle type), CK-MB (heart-type)and CK-BB (brain-type). Total CK thus only offers limited specificity. In myocardialdamage, such as in acute myocardial infarction, cardiac specific CK-MB is releasedfrom destroyed myocardial cells.An increase of CK-MB activity in the blood can be detected as early as 2–3 hoursafter the infarction. CK-MB activity reaches its peak after12–24 hours and returnsto the reference range usually after2–3 days.Diagnostic value of CK-MB:Diagnosis of ACS and myocardial infarctionCK-MB and troponin T have identical intended uses except that, dueto the different kinetics with a shorter half-life (peak within 24 hours),CK-MB can be used for reinfarction assessment–CK-MB is indicative for reinfarction if level does not return to normalwithin approx. 2–3 days from peak, whereas troponin T is still elevated1Can be used in combination with myoglobin and troponin T–for a complete assessment of cardiac markers–to allow alignment with existing protocols–when specifically indicated by the patient's circumstancescobas cardioUseful informationWebsitesNICE – National Institute for Clinical Excellence/SIGN – Scottish Intercollegiate Guidelines Network/DoH Publications and Statistics/PublicationsAndStatistics/Publications/Publications PolicyAndGuidance/DH 4094275Cardiology Pathway/public/Practice Based Commissioning/assetRoot/04/13/13/97/04131397.pdfHealth Improvement Programme/Health Improvement ProgrammeMaterial order numbers:References1.Wu A, et al. National Academy of Clinical Biochemistry Standards of Laboratory Practice: Recommendations for theUse of Cardiac Markers in Coronary Artery Diseases. Clin Chem1999; 45: 1104–1121.2.Oudega R, Moons KG, Hoes AW. Ruling out deep venous thrombosis in primary care. A simple diagnostic algorithmincluding D-dimer testing. Thromb Haemost2005; 94: 200–205.3.Campbell PM, Radensky PW, Denham CR. Economic analysis of systematic anticoagulation management vs. routinemedical care for patients on oral warfarin therapy. Dis Manag Clin Outcomes2000; 2: 1–8.4.Horstkotte D, Piper C, Wiemer M. Optimal Frequency of Patient Monitoring and Intensity of Oral Anticoagulation Therapyin Valvular Heart Disease. J Thromb Thrombolysis1998; 5 Suppl 1: 19–24.5.Zugck C et al. Multicentre evaluation of a new point-of-care test for the determination of NT-proBNP in whole blood.Clin Chem Lab Med2006; 44(10): 1269–1277.6.Dempfle CE et al on behalf of the CARDIM study group. Sensitivity and specificity of a quantitative point of careD-dimer assay using heparinised whole blood, in patients with clinically suspected deep vein thrombosis.Thromb Haemost2006; 95: 79–83.7.Derhaschnig U et al for the CARMYT Multicentre Study Group. Diagnostic efficiency of a point-of-care system forquantitative determination of troponin T and myoglobin in the coronary care unit. Point of Care2004; 3(4): 162–164.8.Schwab M et al. "Evaluation Report: System Performance of the cobas h 232system" (/cobas-h232.html].9.Thromboembolic Risk Factors (THRIFT) Consensus Group. Risk of and prophylaxis for venous thromboembolism inhospital patients. BMJ1992; 305: 567–574.10.Brown M, et al. An emergency department guideline for the diagnosis of pulmonary embolism: an outcome study.Acad Emerg Med2005; 12: 20–25.11.Diamond S, et al. Use of D-dimer to aid in excluding deep venous thrombosis in ambulatory patients.Am J Surg2005; 189: 23–26.12.Perrier A, et al. Cost-effectiveness analysis of diagnostic strategies for suspected pulmonary embolism including helicalcomputed tomography. Am J Respir Crit Care Med2003; 167: 39–44.13.Hobbs FO, et al. Reliability of N-terminal pro-brain natriuretic peptide assay in diagnosis of heart failure:cohort study in representative and high risk community populations. BMJ2002; 324: 1498.14.Quality and Outcomes Framework(QOF). /assetRoot/04/07/86/59/04078659.pdf15.SIGN. Scottish Intercollegiate Guidelines Network. /guidelines/published/index.html16.Hobbs FO, et al. Reliability of N-terminal proBNP assay in diagnosis of left ventricular systolic dysfunction withinrepresentative and high risk populations. Heart2004; 90: 866–870.17.Mockel M, et al. Role of N-terminal pro-B-type natriuretic peptide in risk stratification in patients presentingin the emergency room. Clin Chem2005; 51: 1624–1631.18.Siebert U, et al. Cost-effectiveness of using N-terminal pro-brain natriuretic peptide to guide the diagnostic assessmentand management of dyspneic patients in the emergency department. Am J Cardiol2006; 98: 800–805.19.Nielsen LS, et al. N-terminal pro-brain natriuretic peptide for discriminating between cardiac and non cardiac dyspnea.Eur J Heart Fail2004; 6: 63–70.20.BNP Experience in southern Derbyshire, Martin Cassidy. /content/showcontent.aspx?contentid=884.21.Alpert J, et al. Myocardial infarction redefined-a consensus document of The Joint European Societyof Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction.J Am Coll Cardiol2000; 36: 959–969.22.Pollack C, et al. 2002update to the ACC/AHA guidelines for the management of patients with unstable anginaand non-ST-segment elevation myocardial infarction: implications for emergency department practice.Ann Emerg Med2003; 41: 355–369.23.de Winter R, et al. Value of myoglobin, troponin T, and CK-MBmass in ruling out an acute myocardial infarctionin the emergency room. Circulation1995; 92: 3401–3407.24.Mockel M, et al. Validation of NACB and IFCC guidelines for the use of cardiac markers for early diagnosisand risk assessment in patients with acute coronary syndromes. Clin Chim Acta2001; 303: 167–179.cobas cardioCOBAS, LIFE NEEDS ANSWERS, COBAS H, ROCHE CARDIAC are trademarks of Roche.© 2007Roche Diagnostics Roche Diagnostics Limited Charles AvneueBurgess Hill, RH15 9RY cobas cardio P M 1 9 1 0。
IMMUNOASSAY FOR QUANTITATIVE DETERMINATION OF THE
专利名称:IMMUNOASSAY FOR QUANTITATIVEDETERMINATION OF THE COMPLEXBETWEEN PROSTATE SPECIFIC ANTIGEN(PSA) AND ALPHA2-MACROGLOBULIN(A2M) IN A SAMPLE发明人:STENMAN, Ulf-Håkan申请号:FI1999000363申请日:19990503公开号:WO99/061915P1公开日:19991202专利内容由知识产权出版社提供摘要:This invention concerns an immunoassay for quantitative determination of the amount of the complex (PSA-A2M) between prostate specific antigen (PSA) and α2-macroglobulin (A2M) in a sample. The assay comprises the steps of removing the immunoreactive PSA from said sample, treating the PSA-A2M complex in the remaining supernatant so as to make the PSA thereof immunoreactive, determining the immunoreactive PSA derived from the PSA-A2M complex by exposing it to an antibody which binds said immunoreactive PSA, and detecting said PSA. The invention concerns also a method for differentiating patients with cancer of the prostate (PCa) from patients with benign prostatic hyperplasia (BPH) or healthy male subjects without PCa, wherein the individual's body fluid concentration of prostate specific antigen (PSA) has been determined as free PSA and as total PSA. The method is characterized in that PSA complexed with A2M (PSA-A2M) in the individual's serum sample has been determined, and that the ratio between PSA-A2M and other form of PSA is calculated, or that thediagnostic value is calculated by logistic regression, neural networks, fuzzy logic, or similar mathematical and statistical methods, using PSA-A2M and other forms of PSA, such as total PSA, free PSA and PSA-ACT as input variables.申请人:STENMAN, Ulf-Håkan地址:FI国籍:FI代理机构:TURUN PATENTTITOIMISTO OY更多信息请下载全文后查看。
药物分析常用英语词汇
药物分析专业英语词汇表Aabsorbance吸收度absorbanceratio吸收度比值absorption吸收absorptioncurve吸收曲线absorptioncoefficient吸收系数accuratevalue准确值Acid—dyecolormcty酸性染料比色法acidimcty酸量法acidity酸度activity活度adjustedretentiontime调整保留时间absorbent吸收剂absorption吸附alkalinity碱度alumina氧化铝,矾土ambienttemperature室温ammoniumthiocyanate硫氰酸铵analyticalqualitycontrol分析质量控制anhydroussubstance 干燥品antioxidant抗氧剂applicationofsample点样areanormalizationmethod面积归一法arsenic砷arsenicsport砷斑assay含量测定assaytolerance含量限度attenuation衰减acidburette酸式滴定管alkaliburette碱式滴定管amortar研钵Bbackextraction反萃取bandabsorption谱带吸收batch批batchnumber批号Benttendorlfmethod白田道夫法betweendayprecision日间密度精biotransformation生物转化blanktest空白试验boilingrange沸程BritishPharmacopeia英国药典bromatetitration溴酸盐滴定法brominemethod溴量法bromothymolblue溴麝香酚蓝bulkdrug原料药by—product副产物breaker烧杯buretteglassbeadnozzle滴定管brownacidburette棕色酸式滴定管Ccalibrationcurve校正曲线calomelelectrode甘汞电极calorimetry量热分析capacityfactor容量因子capillarygaschromatography毛细管气相色谱法carriergas载气characteristicsdescription性状chelatecompound螯合物chemicalequivalent化学当量Chinesepharmacopeia中国药典Chinesematerialmedicine中成药Chinesematerialmidicalpreparation中药制剂chiral手性的chiralcarbonatom手性碳原子chromatogram色谱图chromatography色谱法chromatographiccolumn色谱柱chromatographiccondition色谱条件clarity澄清度coefficientofdistribution分配系数coefficientofvariation变异系数colorchangeinterval变色范围colorreaction显色反应colormetry比色法columnefficiency柱效columntemperature柱温comparativetest比较试验completenessofsolution溶液的澄清度conjugate缀合物concentration—timecurve浓度时间曲线confidenceinterval置信区间confidencelevel置信水平controlledtrial对照试验correlationcoefficient相关系数contrasttest对照试验congealingpoint凝点contentunifarmity装量差异controlledtrial对照试验correlationcoefficient相关系数contrasttest对照试验counterion反离子cresalred甲酚红cuvettecell比色池cyanide氰化物casserolesmall勺皿Ddead—stoptitration永定滴定法deadtime死时间deflection偏差deflectionpoint拐点degassing脱气deionizedwater去离子水deliquescence潮解depressorsubstancestest降压物质检查法desiccant干燥剂detection检查developingreagent展开剂developingchamber展开室deviation偏差dextrose右旋糖diastereoisomer非对映异构体diazotization重氮化differentialthermalanalysis差示热分析法differentialscanningcalorimetry差示扫描热法Gutzeit古蔡daytodayprecision日间精密度dissolution溶出度directinjection直接进样2,6-dichlorindophenoltitration2,6-二氯靛酚滴定法digestion消化diphastictitration双向滴定disintegrationtest崩解试验dispersion分散度dissolubility溶解度dissolutiontest溶解度检查distillingrange滴程distributionchromatography分配色谱dose剂量drugqualitycontrol药品质量控制dryingtoconstantweight干燥至恒重duplicatetest重复试验diskmethodwatermethod压片法Eeffectiveconstituent有效成分effectiveplatenumber有效板数effectiveofcolumn柱效electrophoresis电泳elimination消除eluate洗脱液elution洗脱enamtiomer对映体endabsorption末端吸收endogenoussubstances内源性物质enzymedrug酶类药物enzymeinduction酶诱导enzymeinhibition酶抑制epimer差向异构体equilibriumconstant平衡常数errorinvolumetricanalysis容量分析误差exclusionchromatography排阻色谱法expirationdate失效期externalstandardmethod外标法extract提取物extrationgravimetry提取重量法extractiontitration提取容量法extrapolatedmethod外插法Erlenmeyerflask锥形瓶evaporatingdishsmall蒸发皿elongatedbulb胖肚electronicbalanceMettlerAL204MettlerAL204电子天平Ffactor系数fehling’sreaction斐林实验filter过滤finenessoftheparticles颗粒细度flowrate流速fluorescentagent荧光剂fluorescencespectrophotometry荧光分光光度法fluorescencedetection荧光检测器fluorescenceanalysis荧光分析法foreignpigment有色杂质formulary处方集free游离freezingtest冻结试验fusedsilica熔融石英filterpaper滤纸Ggaschromatography气相色谱法gas-liquidchromatography气液色谱法gaspurifier气体净化器Generalidentificationtest一般鉴别试验generalnotices凡例Generalrequirements(药典)通则goodclinicalpractices药品临床管理规范goodlaboratorypractices药品实验室管理规范goodmanufacturingpractices(GMP)药品生产质量管理规范goodsupplypractices(GSP)药品供应管理规范gradientelution梯度洗脱grating光栅gravimetricmethod重量法Gutzeittest古蔡(检砷)法glassfunnellongstem玻璃漏斗gradcylinder量筒glassrod玻棒graduatedpipettes刻度吸管GC气相色谱Hheavymetal重金属halfpeakwidth平峰宽heatconductivity热导率heightequivalenttoatheoreticalplate理论塔板高度heightofaneffectiveplate有效塔板高度high-performanceliquidchromatography(HPLC)高效液相色谱法high-performancethin-layerchromatography(HPTLC)高效薄层色谱法hydrate水合物hydrolysis水解hydrophilicity亲水性hydrophobicity疏水性hydroxylvalue羟值hyperchromiceffect浓色效应hypochromiceffect淡色效应HHS-typeconstanttemperaturewaterbathHHS型恒温水锅HPLC高效液相色谱法Iidentification鉴别ignitiontoconstantweight灼烧至恒重immobilephase固定相immunoassay免疫测定impurity杂质inactivation失活index索引indicatorelectrode指示电极indicator指示剂inhibitor抑制剂injectingseptum进样隔膜胶垫instrumentalanalysis仪器分析injectionvalue进样阀insulinassay胰岛素生物检测法integrator积分仪intercept截距interface接口internalstandardsubstance内标物质Internationalunit国际单位invitro体外invivo体内iodide碘化物iodoformreation碘仿反应iodometry碘量法ionpairchromatography离子对色谱ionsuppression离子抑制ionsuppression离子抑制ionicstrength离子强度ion-pairingagent离子对试剂ionization电离isoabsorptivepoint等吸收点isocraticelution等溶剂组成洗脱isoelectricpoint等电点isoosmoticsolution等渗溶液irreversibleindicator不可逆指示剂irreversiblepotential不可逆电位KKarlFischertitration卡尔-费舍尔滴定Kjeldahlmethodfornitrogen凯氏定氮法Koberreagent 科伯试剂Kovatsretentionindex科瓦茨保留指数Llabelledamount标示量leadingpeak前延峰levelingeffect均化效应licensedpharmacist执业药师limitcontrol限量控制limitofdetection检测限limitofquantitation定量限limittest杂质限度试验lossondrying干燥失重lowpressuregradientpump氧压梯度泵linearityandrange线性及范围linearityscanning线性扫描luminescence发光litmuspaper石蕊试纸lyophilization冷冻干燥Mmainconstituent主成分make-upgas尾吹气maltolreaction麦芽酚试验Marquistest马奎斯试验massanalyzerdetector质量分析检测器massspectrometricanalysis质谱分析massspectrum质谱图meandeviation平均偏差meltingpoint熔点meltingrange熔距metabolite代谢物metastableion亚稳离子micellarchromatography胶束色谱法microanalysis微量分析microcrystal微晶microdialysis微透析migrationtime迁移时间Milliporefiltration微孔过滤mobilephase流动相molecularformula分子式monitor检测monochromator单色器monographs正文Nnaturalproduct天然产物Nessler’sreagent碱性碘化汞试液neutralization中和nitrogencontent总氮量nonaqueousacid-basetitration非水酸碱滴定nonprescriptiondrug,overthecounterdrugs非处方药nonspecificimpurity一般杂质non-volatilematter不挥发物normalphase正相normalization归一化法Nesslercolorcomparisontube纳氏比色管Onotice凡例octadecylsilanebondedsilicagel十八烷基硅烷键合硅胶odorless辛基硅烷odorless无臭officialname法定名officialtest法定试验on-columndetector柱上检测器on-columninjection柱头进样onthedriedbasis按干燥品计opalescence乳浊opticalactivity光学活性opticalisomerism旋光异构opticalpurity光学纯度organicvolatileimpurities有机挥发性杂质orthogonaltest正交试验orthophenanthroline邻二氮菲outlier可疑数据overtones倍频封oxidation-reductiontitration氧化还原滴定oxygenflaskcombustion氧瓶燃烧Ppackedcolumn填充柱packingmaterial色谱柱填料palladiumioncolorimetry钯离子比色法parention母离子particulatematter不溶性微粒partitioncoefficient分配系数patternrecognition(ppm)百万分之几peaksymmetry峰不对称性peakvalley峰谷peakwidthathalfheight半峰宽percenttransmittance透光百分率pHindicatorabsorbanceratiomethodpH指示剂吸光度比值法pharmaceuticalanalysis药物分析pharmacopeia药典pharmacy药学photometer光度计polarimetry旋光测定法polarity极性polydextrangel葡聚糖凝胶potentiometer电位计potentiometrictitration电位滴定法precipitationform沉淀形式precision精密度preparation制剂prescriptiondrug处方药pretreatment预处理primarystandard基准物质principalcomponentanalysis主成分分析prototypedrug原型药物purification纯化purity纯度pyrogen热原pycnometermethod比重瓶法plasticwashbottle洗瓶platformbalance天平pipette移液管pyknowmeterflasks容量瓶Qqualitycontrol质量控制qualityevaluation质量评价qualitystandard质量标准quantitativedetermination定量测定quantitativeanalysis定量分析quasi-molecularion准分子离子Rracemization消旋化randomsampling随机抽样rationaluseofdrug合理用药readilycarbonizablesubstance易炭化物质reagentsprayer试剂喷雾剂recovery回收率referenceelectrode参比电极relatedsubstance相关物质relativedensity相对密度relativeintensity相对强度repeatability重复性replicatedetermination平行测定reproducibility重现性residualbasichydrolysismethod剩余碱水解法residualliquidjunctionpotential残余液接电位residualtitration剩余滴定residuceonignition炽灼残渣resolution分辨率responsetime响应时间retention保留reversedphasechromatography反相色谱法reverseosmosis反渗透rinse淋洗robustness可靠性round修约reagentbottles试剂瓶roundbottomflask圆底烧瓶rubbersuctionbulb洗耳球Ssafety安全性Sakaguchitest坂口试验saltbridge盐桥saltingout盐析sampleapplicator点样器sampleapplication点样sampling取样saponificationvalue皂化值saturatedcalomelelectrode饱和甘汞电极selectivity选择性significantdifference显着性水平significanttesting显着性检验silicaget硅胶silverchlorideelectrode氯化银电极similarity相似性sodiumdodecylsulfate十二基酸钠solid-phaseextraction固相萃取solubility溶解度specificabsorbance吸收系数specification规格specificity专属性specificrotation比旋度specificweight比重spiked加入标准的splitinjection分流进样sprayreagent显色剂stability稳定性standardcolorsolution标准比色液standarddeviation标准差standardization标定standardsubstance标准品statisticalerror统计误差sterilitytest无菌试验stocksolution储备液stoichiometricpoint化学计量点storage贮藏straylight杂散光substrate底物substituent取代基sulfate硫酸盐sulphatedash硫酸盐灰分support载体suspension旋浊度swellingdegree膨胀度symmetryfactor对称因子systematicerror系统误差separatingfunnel分液漏斗stopcock玻璃活塞scissors剪刀spiritlamp酒精灯silicagelGthinlayer硅胶G薄层板Ttable片剂tailingfactor拖尾因子tailingpeak拖尾峰testsolution试液thermalanalysis热分析法thermalconductivitydetector热导检测器thermogravimetricanalysis热重分析法TheUnitedStatesPharmacopoeia美国药典ThePharmacopoeiaofJapan日本药局方thinlayerchromatography薄层色谱thiochromereaction硫色素反应thymol百里酚thymolphthalein百里酚酞titer滴定度three-dimensionalchromatogram三维色谱图titrant滴定剂titrationerror滴定误差titrimetricanalysis滴定分析法tolerance容许限totalash总灰分totalqualitycontrol全面质量控制traditionaldrugs传统药traditionalChinesemedicine中药turbidance浑浊turbidimetricassay浊度测定法turbidimetry比浊度turbidity浊度Uultracentrifugation超速离心ultravioletirradiation紫外线照射unduetoxicity异常毒性uniformdesign均匀设计uniformityofdosageunits含量均匀度uniformityofvolume装量均匀性uniformityofweight重量均匀性Vvalidity可靠性variance方差viscosity粘度volatileoildeterminationapparatus挥发油测定器volatilization挥发性volumetricanalysis容量分析volumetricsolution滴定液volumetricflasks比重瓶Wwavelength波长wavenumber波数weighingbottle称量瓶weighingform称量形式well-closedcontainer密闭容器whiteboard白瓷板XxylenecyanolblueFF二甲苯蓝FFxylenolorange二甲酚橙ZZigzagscanning锯齿扫描zwitterions两性离子Zymolysis酶解作用zoneelectrophoresis区带电泳。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
IOP P UBLISHING M EASUREMENT S CIENCE AND T ECHNOLOGY Meas.Sci.Technol.21(2010)015103(8pp)doi:10.1088/0957-0233/21/1/015103Towards quantitative determination of the spring constant of a scanning force microscope cantilever with a microelectromechanical nano-force actuatorSai Gao1,Zhikai Zhang2,Yong Wu3and Konrad Herrmann11Physikalisch-Technische Bundesanstalt,Berlin,Germany2Fachhochschule Braunschweig/Wolfenb¨u ttel,Wolfenb¨u ttel,Germany3Tianjin University,Tianjin,People’s Republic of ChinaE-mail:Sai.Gao@ptb.deReceived7May2009,infinal form5October2009Published16November2009Online at /MST/21/015103AbstractThe calibration of the performance of an SFM(scanning force microscope)cantilever hasgained more and more interest in the past years,particularly due to increasing applications ofSFMs for the determination of the mechanical properties of materials,such as biologicalstructures and organic molecules.In this paper,a MEMS-based nano-force actuator with aforce resolution up to nN(10−9N)is presented to quantitatively determine the stiffness of anSFM cantilever.The principle,structure design and realization of the nano-force actuator aredetailed.Preliminary experiments demonstrate that the long-term self-calibration stability ofthe actuator is better than3.7×10−3N m−1(1σ)over1h.With careful calibration of thestiffness of the actuator,the MEMS actuator has the capability to determine the stiffness ofvarious types of cantilevers(from100N m−1down to0.1N m−1)with high accuracy.Inaddition,thanks to the large displacement and force range(up to8μm and1mN,respectively)of the actuator,the calibration procedure with our MEMS nano-force actuator features simpleand active operation,and therefore applicability for different types of quantitative SFMs.Keywords:scanning force microscope,cantilever,spring constant,microelectromechanicalnanoforce actuator,calibration(Somefigures in this article are in colour only in the electronic version)1.IntroductionScanning force microscopes,including atomic force microscopes(AFM),have become indispensable tools in the field of nano-technology,due to their outstanding spatial resolution,especially in lateral aspects.Although in most cases AFMs have been applied for the determination of the (geometrical)topography of an object under test,it is worth noting that the demands for further applications of AFM, such as quantitative determination of small forces in the range from micronewton(10−6N)down to several tens of piconewton(10−12N),are essential for many research tasks. These applications of low force actuation/sensing range from determination of the mechanical properties of nano-materials, biological structures and organic molecules,e.g.thinfilms [1],polymer[2,3],micro-organisms[4],living cells[5],to the force spectroscopy in thefield of biology[6]and pulling molecules and proteins[7].All these applications of an AFM depend,to a great extent,on the mechanical performance of the used cantilevers.U(a)(b)Figure1.Basic actuation mechanism of the nano-force actuator.(a)Fundamental principle of the lateral comb drive and(b)electrical potential around one pair of combfingers.The calibration of the mechanical performance of an AFMcantilever has therefore gained more and more interest inthe past years,yielding several types of methods.Mainlythese methods can be classified as dimensional methods,staticexperimental methods and dynamic experimental methods.Indimensional methods[8],either using a equation or usingfinite element analysis,the accurate material and geometricalproperties of the cantilever are essential to determine thespring constant.Dynamic experimental methods determinethe spring constant via measuring the resonant frequency.Forexample,Cleveland et al[9]have measured the resonantfrequencies after adding small end masses to an AFMcantilever.Sader et al[10–12]immersed an AFM cantileverinto a liquid medium with known viscosity and densityand obtained the corresponding resonant frequency of thecantilever.Hutter et al[13]developed a thermal method todetermine the spring constant of an AFM cantilever.Staticexperimental methods are direct methods,which measure thedeflection upon static loading of the cantilever.For example,Torii[15]has developed a large-scale cantilever as referencespring and introduced a laser interferometer for displacementmeasurement to calibrate the AFM cantilever;Gates[16]has developed a reference cantilever array of known springconstants to calibrate the working cantilever;A nano-indenterwas used to load force to the cantilever tip by Holberyet al[17].Recently a cantilever on cantilever technique[18–20]was reported,in which a set of calibrated micro-fabricated reference springs,potentially traceable to the SIunit system with a relative uncertainty of5%,can be usedas reference springs.A comparison of the above-mentionedmethods has reported that each method has its own meritsand disadvantages,but the uncertainties in the methods rangefrom5%to25%[8].Moreover,none of the above-mentionedstatic methods have their own force loading and/or positionsensing system.They need a force loading system,either acalibrated piezo-stage or commercial instrument such as nano-indenter,and also a position sensing system for displacementmeasurement of the cantilever.Therefore,an easy andaccurate method,with its own force loading and sensingsystem,suitable for on-site cantilever calibration is urgentlyneeded.In this paper,a MEMS nano-force actuator is presented tocalibrate the quasi-static mechanical properties of an AFMcantilever of any type,i.e.rectangular or triangular form,with/without reflective coating.The active operation nano-force actuator,working as a reference spring,has its own forceloading and position sensing system.The spring constant ofthis force actuator was traceably calibrated using a nano-forcecalibration device based on a high-resolution compensationbalance at Physikalisch-Technische Bundesanstalt(PTB),Germany.The nano-force actuator,which can generate upto1mN output force with nanonewton resolution,can beused to calibrate a cantilever with a normal stiffness from0.01N m−1to100N m−1.For cantilevers with stiffnesshigher than0.1N m−1,the measurement uncertainty is betterthan5%.2.A MEMS-based nano-force actuator2.1.Actuation mechanism of the nano-force actuatorThe nano-force actuator is developed based on the principle ofa lateral electrostatic comb drive[21].As shown infigure1,the comb-drive actuator consists of two interdigitatedfingerstructures,in which one isfixed and the other is movable.Inthe case of micro-structures having high aspect ratio,i.e.thevertical height of the combfingers h is far larger than thefingergaps d,a two-dimensional model(as shown infigure1(b))canbe well employed to predict the performance of the actuator.Then the force generated by each comb pair during electricalactuation can be analytically expressed as follows[22]:F act=ε0hd(U2−U1)2(1)in whichε0=8.854×10−12F m−1is the permittivity constant,U1and U2are the bias and drive signals applied to the movableandfixedfingers,respectively.2.2.Structural designA multi-functional nano-force actuator based on theaforementioned comb-drive actuation mechanism is to bedeveloped with the expected maximum force range up to1mN(1×10−3N)and the force sensitivity up to1nN(1×10−9N).Furthermore,it is expected that the nano-force actuator wouldwork mainly for one-dimensional applications,e.g.calibrationof various force sensors,determination of the mechanicalxy zEn g a g ement/Scanarea(b )Figure 2.Practical design of the nano-force actuator.(a )Basic structure of the nano-force actuator and (b )V-shaped test head for cantilever calibration.xF o r c e , m NDisplacement, µm(b )(a )Figure 3.Suspending system design of the force actuator.(a )Inner stress within the springs and (b )comparison of the spring constant of the actuator along x and y axes,respectively.properties of small volumes of materials by means of nano-indentation or the nano-tensile testing method.As shown in figure 2,the actuator has a left–right symmetric structure,in which the movable part is suspended by a folded spring system.All the movable fingers are mounted on the beams coming from the main trunk and electrically connected to the electrode U 1,through which a bias voltage is applied.The fixed fingers are connected to the electrode U 2.With those widely applied bulk micro-machining processes,especially the bonding-DRIE (deep reactive ion etching)technology [23]in the Chemnitz University of Technology (Germany),the typical parameters in figure 1can be h =50μm,d =3μm,t =3μm and x 0=5μm.The total output force is F act =N ·f act ,in which N is number of finger pairs within the actuator.In order to meet the desired specifications,i.e.F act 1mN,in the case that the maximum differential-driven voltage is limited to |U 2−U 1|max 70V ,here the number of finger pairs of the actuator is chosen to be 1500.Therefore,the electrostatic force generated by the actuator will reach 1.08mN in the case of U 2−U 1=70V .A well-designed actuator should feature not only outstanding specifications,but also adequate convenience for practical application.Here,a V-shaped test head is designed for the stiffness calibration of the cantilever:a tipped cantilever can be engaged on the top surface of either of the prongs of the fork,and the other prong can be used for in situ monitoring of the spatial relationship between the cantilever to be calibrated and the actuator with an optical method(e.g.microscopes).Furthermore,this specially designed test fork helps to minimize the potential influence of a parasitic capacitance between the cantilever to be tested and the electrostatic actuator,as mentioned in [24].With the help of commercial finite element analysissoftware (ANSYS R),the mechanical structure of the actuator has been carefully designed.Obviously,smaller stiffness of the actuator along the sensing direction means,in general,a higher force sensitivity of the actuator.However,when the dynamic performance of the actuator has to be considered,the actuator’s stiffness could not be chosen freely.The spring constant of the actuator along the x -axis was finally determined to 12.8N m −1,resulting in a resonant frequency of the actuator of 1.74kHz.Figure 3(a )shows the inner stress distribution of the spring within the actuator during the maximum in-plane one-axis movement of the trunk,in which the maximum stress is smaller than the allowable stress of the silicon.Figure 3(b )demonstrates the stiffness of the spring system along x and y directions,respectively.It can be seen that the spring constant of the y -axis is more than 80times larger than that of x ,which ensures that the whole structure moves along the x -axis symmetrically.In addition,the potential influence of the lateral offset of the test force in the order of 1μN is negligible which is proved by FEA simulation.Figure 4shows the dynamic performance of the force actuator when the damping ratios are 0and 0.05,respectively.The damping ratio of this force actuator in air,which can be roughly estimated [25],is smaller than 0.05.Freq u ency, Hz10002000300040005000A r b i t r a r y un i t s25002000150010005000(a ) damping ratio =0.Freq u ency, Hz10002000300040005000A r b i t r a r y u n i t s8006404803201600(b ) damping ratio =0.05.Figure 4.Simulation of the dynamic performance of the force actuator.(a ) Photograph of the force actuator. (b ) Testing fork for cantilever calibration.Figure 5.Micro-machined prototype of the nano-force actuator.(a )Photograph of the force actuator and (b )testing fork for cantilever calibration.3.Prototyping3.1.FabricationThe designed MEMS-based nano-force actuator is fabricated using the bonding and deep RIE (B-DRIE)process [23]developed at TU Chemnitz,in which two wafers (one for the structure layer and the other for the substrate)are first bonded together,and then the structure layer is processed by the deep RIE technology.One of the outstanding features of this process is that the structural layer is purely composed of single crystalline pared with other bulk micromachining technologies,such as SCREAM technique [26],in which the functional structures consist of at least three layers of materials (i.e.single crystalline silicon +silicon oxide +metallic coating),this feature of B-DRIE technology greatly simplifies the numerical simulation of the MEMS actuator,and therefore provides a quite good possibility for precise estimation of the mechanicalspecifications of the designed structure.The overall size of the actuator chip is about 2.5mm ×5mm.The typical structural thickness of the prototype is 50μm,the fixed and movable fingers have a width of 3μm,and the finger gap is 3μm.Figure 5(a )shows an SEM image of the wired prototype of the device,in which the testing forkFigure 6.Prototype of the nano-force actuator with a PCB package in comparison to Euro cent coin.protrudes about 500μm from the edge of the substrate,and figure 5(b )shows the test head in detail.Figure 6shows the final prototype of the nano-force actuator with a PCB package.The package size along the detecting axis is about 2mm,ensuring that the testing fork ofEquation: y = a*x +b Experimental data Linear regression4 05 1 2 3 Slope: 12.86843 Standard deviation: 0.00362Sum of square error: 0.01451 10502070304060Deflection, µmF o r c e , µN6Figure 7.Typical calibration curve of the force actuator’s stiffness.the actuator is fully accessible.In addition,due to its compact packaging,the MEMS actuator can be applied directly with most commercially-available AFMs.3.2.Stiffness calibration of the force actuatorBefore the MEMS-based nanoforce actuator could be used for the calibration of other objects,the stiffness of the actuator itself has to be carefully calibrated.The stiffness of the force actuator has been calibrated with an experimental setup developed at PTB and detailed in [27],one of whose key components is a precise compensation balance (Sartorius SC2),which has a measuring range of 20mN with 1nN resolution, 2.5nN reproducibility,9nN linearity deviation and an uncertainty of 0.1μN.A piezo-stage with capacitive feedback (PIFOC,Physik Instrumente)is employed to engage the MEMS actuator to the balance.Figure 7shows one typical calibration curve of the measured force by the balance when the actuator is pushed linearly to the balance after engagement.Under the condition that the temperature was set to 20.5◦C and the relativeUU sUTime, sS e n s o r o u t p u t , V(b )(a )Figure 8.The control and sensing system for the force actuator and its performance.(a )Schematic of the control and sensing system and (b )sensor output when the main shaft of the actuator realizes 1nm in-plane displacement.humidity was adjusted to 32.0%,18measurements have been done to calibrate the stiffness of the actuator.Taking into account the uncertainty contributors to the calibration,such as thermal drift,the stiffness of the experimental setup,the uncertainty of the balance and so on,finally,the force actuator has a stiffness of (12.909±0.054N m −1),which coincides quite well with our simulation result in section 2.2.3.3.Control and sensing s y stemThe performance of the control and sensing system for the MEMS electrostatic actuator would,to a great extent,determine the actual metrological capabilities of the actuator.Figure 8(a )shows the control and sensing system designed for the force actuator.A dc driving signal U d added with a 60kHz sinusoidal signal U s is amplified,and then applied to the MEMS actuator.The output current from the actuator is converted to the detecting voltage by an I/U converter,and finally demodulated with the help of a lock-in amplifier (SR830,Standford Research Systems,Inc.)to determine the capacitance variation due to the in-plane displacement of the main shaft of the actuator.Since the test head (and the movable structures)of the MEMS actuator is virtually grounded by the converter,the potential influences of the parasitic capacitance induced by the cantilever to be measured or other sources can then be well eliminated,ensuring the actuator has high sensitivity for in-plane displacement whilst being robust to the measurement circumstances.Figure 8(b )shows the output signal of the sensing system when the in-plane displacement is 1nm.The actual resolution of the electrostatic force generated by the actuator is,in principle,determined by the stability of the differential driving voltage U 2−U 1applied to the actuator,i.e.δF act =N ·c f ·εhd·[δ(U 2−U 1)]2,(2)where c f is a correction coefficient due to the fabrication errors.It was determined that the final differential driving voltage in our electrical system has a stability of 3mV over the whole range (70V).Suppose that c f =1.0,then the resolution of the actuator’s electrostatic force amounts to F act =0.002nN.Time, sSelfCalibrationDeviation,N/mFigure9.Long-term self-calibration stability of the nano-force actuator(σ=0.0037N m−1).PSISAFM headForceact u atorP ositionin gsystemzyx(a)ator(b)Figure10.Experimental setup of the cantilever calibration systemand the equivalent model.(a)Experimental setup of the calibrationsystem and(b)simplified mechanical model for the cantilever andactuator after engagement.However,the actual resolution of the output forceδF bythe actuator is defined byδF=N·c f·εhd·[δ(U2−U1)]2−k x·δx,(3)in which x is the displacement of the main shaft of the actuator,and k x is the spring constant along the x-axis.As showninfigure8(b),with our currently designed electronics thedisplacement of the trunk could be sensed with a resolutionof0.2nm(1σ),therefore the actual resolution of the MEMSactuator can reach2.6nN.With this control and sensing system,the long-termstability of the nano-force actuator has been investigated.Alow-frequency(e.g.0.1Hz)dc signal is applied to the actuatorto carry out self-calibration.Figure9shows the long-term self-calibration results.It can be seen that within1h the standarddeviation of the self-calibration amounts to3.7×10−3N m−1,which corresponds to a relative uncertainty of3×10−4(1σ).4.Preliminary experimental results of the stiffnesscalibration of AFM cantilevers4.1.Preliminar y experimental resultsAn experimental setup has been built for the determination ofthe stiffness of an AFM cantilever with a prototype of the nano-force actuator.As shown infigure10(a),the force actuatoris mounted on an x–y–z stage,which is used for alignment ofthe AFM tip and the force actuator.The Z-axis of the stageis driven by a stepper motor.The cantilever to be calibratedis mounted on an AFM head from Surface Imaging SystemsGmbH(Germany)[29],which employs afibre interferometerto monitor the cantilever’s deflection.Figure10(b)shows the equivalent static mechanicalmodel of the calibration system after engagement,in whichthe electrostatic force generated by the actuator F is balancedby the cantilever(with stiffness k cantilever)and the suspendingsystem of the actuator(with stiffness k actuator),i.e.F−k actuator· z=k cantilever· z,(4)where z is the relative deflection/displacement of thecantilever–actuator system.Finally,we getk total=k actuator+k cantilever.(5)Here the dimension and the strength of the fork are carefullydesigned to ensure that the influence of the deviation from thecentral axis and the deformation of the fork could be omitted[28].The calibration procedure was realized as follows:first,the force actuator is coarsely adjusted under the AFM tipby the x–y–z micro-stage,especially until the distance betweenthe force actuator and the cantilever is small enough to get intothe measurement range of the actuator.The force actuatoris then linearly driven to approach the cantilever and to testthe cantilever.During the whole test procedure,the drivingvoltage U driven,the sensor output signal U sensor of the forceactuator and the interferometer output signal from the AFMhead are acquired simultaneously.Two kinds of cantilevers,i.e.a non-contact modecantilever(SSS-NCLR-20,Nanosensors TM,nominal forceconstant48N m−1,specified range:21–98N m−1)anda contact mode cantilever(PPPZEILR-50,Nanosensors TM,nominal force constant 1.6N m−1,specified range:0.6–3.9N m−1)[30],have been measured with the newlydeveloped force actuator.Calibration results are shown infigure11,in which the blue curves(which are marked withk1and k2)and the green ones are the sensor output signal andthe interferometer output signal versus driving voltage of theactuator,respectively.Here k1and k2are defined as the inverse slope of theU2driven–U sensor curve(i.e. U2driven/ U sensor)measured by theS e n s o r o u t p u t , VDriven Volta g e, V 2I n t e r f e r o m e t e r o u t p u t , VDrivin g volta g e, U 2A c t u a t o r S e n s o r O u t p u t , U A F M I n t e r f e r o m e t e r O u t p u t , UA c t u a t o r S e n s o r o u t p u t , VDriven Volta g e,V 2-0.35-0.25-0.15-0.05A F M I t f t t t V Drivin g volta g e, U2A c t u a t o r S e n s o r O u t p u t , U A F M I n t e r f e r o m e t e r O u t p u t , UFigure 11.Calibration results of different AFM cantilevers.(a )Typical result when k cantilever >k actuator and (b )typical result when k cantilever <k actuator .force actuator before and after the engagement,respectively.Here the slopes are determined outside the regions of ‘jump-in’and ‘jump-out’.This will reduce the influence of the interaction between the cantilever tip and the force actuator on the measurement result.Therefore we havek cantilever =(k 2/k 1−1)×k actuator .(6)In figure 11(a ),k 2k 1=4.566(k 1=5.718,k 2=26.110),and in figure 11(b ),k 2k 1=1.110(k 1=5.634,k 2=6.254).It can be seen from figure 11that in the case of the cantilever stiffness being far larger than that of the force actuator,i.e.k cantilever k actuator ,the interaction between the cantilever and the force actuator could be clearly observed from the sensor output signal within the jump-in and jump-out region,while when the stiffness of the cantilever is much smaller than that of the force actuator,i.e.k cantilever k actuator ,this phenomenon is no longer observed so obviously from the sensor output signal,but from the SIS AFM interferometer output.The calibration results also show that the fibre interferometer output signal and the sensor output signal coincide with each other very well.4.2.Measurement uncertaint y estimationFrom equation (6),the uncertainty for measuring the stiffness of the cantilever can be deduced as follows:u 2c (k cantilever )= k 2k 1−1 2·u 2(k actuator )+k 2actuator k 1u 2(k 2)+k 2actuator ·k 22k 1u 2(k 1),(7)and the relative measurement uncertainty is expressed asfollows:u 2c (k cantilever )k 2cantilever =u 2(k actuator )k 2actuator+11−k 1k 2 2·u 2(k 2)k 22+1 1−k 1k 2 2·u 2(k 1)k 21.(8)For simplification,the relative uncertainties for the determination of k 1and k 2can be considered to be thesame,and equal to the relative stability of the self-calibrationprocedure,i.e.U(k 1)k 1=U(k 2)k 2=3×10−4.When the cantilever’s stiffness is far larger than that ofthe actuator (i.e.k 1/k 2 1),since U(k actuator )k actuator=4.2×10−3and U(k 1)k 1=U(k 2)k 2=3×10−4,from equation (8)one can estimate that the relative uncertainty for determining the stiffness of a cantilever is close to that of the actuator’s stiffness,i.e.U(k actuator )/k actuator =4.2×10−3.In this case,the stiffness uncertainty of the force actuator is the main contributor to the calibration result.For a cantilever with a stiffness of 100N m −1,for example,the calibration uncertainty amounts to 0.42N m −1.When the cantilever to be calibrated tends to be quite weak,i.e.k 1/k 2→1,the last two terms in equation (8)would increase quickly,thus the corresponding measurement uncertainty would increase quickly.As an example,for a cantilever with a spring constant of 0.1N m −1,the relative measurement uncertainty will amount to about 5%.For the cantilevers calibrated in figure 11,the spring constants are found to be (46.10±0.20)N m −1and (1.425±0.014)N m −1,respectively,and the corresponding relative uncertainties are 0.4%and 0.9%,respectively.5.SummaryIn this paper,a MEMS-based nano-force actuator for thecalibration of the AFM cantilever stiffness has been developed,which can generate a test force up to 1mN with a force resolution in the order of nanonewton.Due to its small size,the nano-force actuator is especially suitable for the on-site calibration of the spring constant of an AFM cantilever.This calibration method does not need any pre-knowledge of the cantilever.Preliminary experimental results verified that the force actuator can be used to calibrate different AFM cantilevers,such as contact mode or non-contact mode cantilevers,with a stiffness varying from 100N m −1to about 0.01N m −1.For hard cantilevers with a stiffness higher than that of the force actuator (12.9N m −1),the measurement uncertainty would be about 0.42N m −1(the relative uncertainty is better than 3.3%),For weak cantilevers with a stiffness higher than 0.1N m −1,the calibrationuncertainty would be better than5%.The relative calibration uncertainty for cantilevers with0.01N m−1stiffness will amount to about20%.AcknowledgmentsThis research was supported by DFG project HE2235/5-1. Dr K Hiller in TU Chemnitz is thanked for sharing her MEMS fabrication experience with the authors.The stiffness of the nano-force actuator was calibrated by Dr L D¨o ring and Dr U Brand,and the SEM images were taken by T Klein in PTB.References[1]Chowdhury S and Laugier M T2004Non-contact AFM with ananoindentation technique for measuring the mechanicalproperties of thinfilms Nanotechnolog y151017–22[2]Vanlandingham M R et al1997Relating elastic modulus toindentation response using atomic force microscopyJ.Mater.Sci.Lett.16117–9[3]Clifford C A et al2005Quantification issues in theidentification of nanoscale regions of homopolymers usingmodulus measurement via AFM nanoindentation Appl.Surf.Sci.2521915–33[4]Wang J et al2004Probing nanomechanical properties ofnickel coated bacteria by nanoindentation Mater.Lett.61917–20[5]Ho M S,Kuo F J,Lee Y S and Cheng C M2007Atomic forcemicroscopic observation of surface-supported humanerythrocytes Appl.Ph y s.Lett.91023901[6]Rief M et al1997Single molecule force spectroscopy onpolysaccharides by atomic force microscopy Science2751295–7[7]Rief M et al1997Reversible unfolding of individual titinimmunoglobulin domains by AFM Science2761109–12 [8]Clifford C A et al2005The determination of atomic forcemicroscope cantilever spring constants via dimensionalmethods for nanomechanical analysis Nanotechnolog y161666–80[9]Cleveland J P and Manne S1993A non-destructive methodfor determining the spring constant of cantilevers forscanning force miccroscopy Rev.Sci.Instrum.64403–5 [10]Sader J E et al1995Method for the calibration of atomic forcemicroscope cantilevers Rev.Sci.Instrum.663789–98 [11]Sader J E1998Frequency response of cantilever beamsimmersed in viscousfluids with applications to the atomicforce microsope J.Appl.Ph y s.8464–76[12]Sader J E,Chon J W M and Mulvaney P1999Calibration ofrectangular atomic force microscope cantilevers Rev.Sci.Instrum.703967–9[13]Hutter J L and Bechhoefer J1993Calibration of atomic-forcemicroscope tips Rev.Sci.Instrum.641868–73[14]Butt H J and Jaschke M1995Calculation of thermalnoise in atomic force microscopy Nanotechnolog y61–7[15]Torii A et al1996A method for determining the springconstant of cantilevers for atomic force microscopy Meas.Sci.Technol.7179–84[16]Gates R S et al2007Precise atomic force microscopecantilever spring constant calibration using a referencecantilever array Rev.Sci.Instrum.78086101[17]Holbery J D,Sarikaya M and Fisher R M2000Experimentaldetermination of scanning probe microscope cantileverspring constants utilizing a nanoindentation apparatus Rev.Sci.Instrum.713769[18]Cumpson P J and Hedley J2003Accurate force measurementin the atomic force microscope:a microfabricated array ofreference springs for easy cantilever calibrationNanotechnolog y14918–24[19]Cumpson P J and Hedley J2003Accurate analyticalmeasurements in the atomic force microscope:amicrofabricated spring constant standard potentiallytraceable to the SI Nanotechnolog y141279–88[20]Cumpson P J et al2004Quantitative analytical atomic forcemicroscopy:a cantilever reference device for easy andaccurate AFM spring-constant calibration Meas.Sci.Technol.151337–46[21]Tang W C,Nguyen C H and Howe R T1989Laterally drivenpolysilicon resonant microstructures Sensors Actuators A2025–32[22]Tang W C,Nguyen T-C H,Judy M W and Howe R T1990Electrostatic-comb drive of lateral polysilicon resonatorsSensors Actuators A21–23328–31[23]Hiller K et al2005Bonding and deep RIE—a powerfulcombination of high aspect ratio sensors and actuators Proc.SPIE571580–91[24]Fumagalli L et al2006Nanoscale capacitance imaging withattofarad resolution using ac current sensing atomic forcemicroscopy Nanotechnolog y174581–7[25]Borovic B et al2006The lateral instability problem inelectrostatic comb drive actuators:modeling and feedbackcontrol J.Micromech.Microeng.161233–41[26]Fr¨o mel J,Wiemer M and Gener T2005Packaging of MEMSstructures in SCREAM technology using anodic bondingProc.Micro S y stem Technologies(M¨u nchen,5–6October)pp99–104[27]Doering L,Peiner E,Behrens I and Brand U2003Calibrationof micro force setting standards using a new nano forcecalibration device Proc.MST(Micro S y stem Technologies)(M¨u nchen)pp492–4[28]Li Z,Gao S and Herrmann K2007Development of amicro-miniature nanoindentation instrument Proc.Conf.onHARDMEKO pp13–6[29]UltraObjective Operating Manual,Surface Imaging SystemsGmbH1996[30]NANOSENSORS Rue Jaquet-Droz1Case Postale216CH-2002Neuchatel Switzerland(/products catalog.html)。