数电 第1章 数字逻辑电路基础
数电-数字逻辑基础
无论数字信号还是模拟信号都有传输通路。在电 子电路中,人们将产生、变换、传送、处理模拟信 号的电子电路叫做模拟电路,将产生、存储、变换 、处理、传送数字信号的电子电路叫做数字电路。 数字电路不仅能够完成算术运算,而且能够完成逻 辑运算,具有逻辑推理和逻辑判断的能力,因此被 称为数字逻辑电路或逻辑电路。
为了区别3种不同数制,约定 数后加B表示二进制数 带D或不带字母符号表示十进制数 带H表示十六进制数
5
数制间转换
(1)二←→十六
二进制整数→十六:从右(最低位)向左将二进制数4位1组 划分,最后一组若不足4位则在其左边补0,每组用1位十六进 制数表示
如: 1111111000111B → 1 1111 1100 0111B → 0001 1111 1100 0111B = 1FC7H
14
当决定一件事情的各个条件中,只要有一个具备,这件事情就会发生, 这样的因果关系,叫做与逻辑关系。在图(b)中,只要开关A或者开关B闭 合,灯Y2就会亮所发对灯Y2这件事情来说,开关A、开关B闭合是或的逻辑 关系。非就是反,就是否定。在图(c)中,当开关A断开时,灯Y3亮,闭 合时反而会灭,所以对灯Y3亮来说,开关闭合是一种非逻辑关系。
集电极开路门简称OC门,它是将TTL与非逻辑电路输出级的倒相器V5管 的集电极有源负载V3、V4及电阻R4、R5去掉,保持V5管集电极开路而得到 的。由于V5管集电极开路,因此使用时必须通过外部上拉电阻RL接至电源 EC。EC可以是不同于UCC的另一个电源。OC门的逻辑符号如图所示。
A
&
A
F
F
B
B
(a)
≥1 Y5 A B
A B
A B
& ≥1
数字逻辑电路基础
数字逻辑电路基础数字逻辑电路是现代电子技术中的重要组成部分,它是以数字信号为基础的电路系统。
数字逻辑电路具有高可靠性、低功耗、易于集成和成本低廉等特点,因此在计算机、通讯、控制系统等领域得到了广泛应用。
数字逻辑电路由逻辑门电路组成,逻辑门是实现逻辑函数的基本电路单元。
逻辑门根据输入信号的逻辑状态输出相应的逻辑状态,它们常见的种类有与门、或门、非门、异或门等。
与门是指在所有输入信号都为逻辑“1”时,输出信号才为逻辑“1”,否则输出信号为逻辑“0”。
与门常用于多个输入信号的逻辑“与”运算,可以实现逻辑乘法的功能。
或门是指在任意一个输入信号为逻辑“1”时,输出信号就为逻辑“1”,否则输出信号为逻辑“0”。
或门常用于多个输入信号的逻辑“或”运算,可以实现逻辑加法的功能。
非门是指将输入信号的逻辑状态反转,即输入信号为逻辑“1”时,输出信号为逻辑“0”,输入信号为逻辑“0”时,输出信号为逻辑“1”。
非门常用于逻辑运算中的取反操作。
异或门是指在两个输入信号不同时输出逻辑“1”,否则输出逻辑“0”。
异或门常用于多个输入信号的逻辑“异或”运算,可以实现数字信号的加密和解密等功能。
在数字逻辑电路中,还有一种重要的逻辑器件——触发器,它可以储存和改变电路的状态。
常见的触发器有RS触发器、D触发器、JK 触发器等,它们可以实现数据存储、时序控制和状态转移等功能。
在数字逻辑电路的设计中,常用的工具有真值表、卡诺图、逻辑代数等。
真值表是用来表示逻辑函数的值域和定义域的表格,可以方便地进行逻辑分析。
卡诺图是一种图形化的逻辑函数简化方法,可以快速地找到最简化的逻辑表达式。
逻辑代数是一种用符号表示逻辑函数的方法,可以方便地进行逻辑推导和计算。
数字逻辑电路作为现代电子技术的核心之一,它的应用范围十分广泛,涉及到计算机、通讯、控制系统等多个领域,因此在电子工程师和计算机科学家的学习和研究中具有重要的地位。
数字逻辑电路基础入门 第一章
+(1 23+0 22+0 21+1 20) 160]D =(59)H
B—H:以小数点为基准,分别向左、右每 四位分为一组,转换为相应的十六进制数
(11101.011000111) B = (0001 1101 . 0110 0011 1000) B =
( 1
D .
6
3
8
)H
=(1D.638)H
u
t
1. 1
1.1.2
模拟信号与数字信号
数字信号 周期性:Duty Frequency、Period、Pulse
数字信号
bit、bit time、 bit rate比 特率
Width脉宽、 Ratio占空比、Amplitude
非周期性:
正逻辑
Frequency=? Period=? Amplitude=? Pulse width (tw) =? Duty ratio (q) =? 1 0 1 0 1
二、 十、二进制数之间的转换
1. B—D:二进制数按位(权)展开相加 例: (11010.011)2 = 124 +123+022+121+020+ 021+122+123
= (26.375)10
2.D—B 整数和小数部分分别转换,最后相加
整数除二,取出余数再除二,直到商为零 小数乘二,取出整数部分再乘二,直到满足误差要求
(4E6)H= 4162+14 161+6 160 =(1254)D
2.B—H:以小数点为基准,分别向左、右每 四位分为一组,转换为相应的十六进制数
每四位2进 B—H 制数对应 一位16进 制数 (0101 1001)B= [027+1 26+0 25+1 24
数电-第一章 数字逻辑概论
几种进制数之间的对应关系
十进制数 D 二进制数 B 0 0000 1 0001 2 0010 3 0011 4 0100 5 0101 6 0110 7 0111 8 1000 9 1001 10 1010 11 1011 12 1100 13 1101 14 1110 15 1111 八进制数 O 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 十六进制数 H 0 1 2 3 4 5 6 7 8 9 A B C D E F
三,八进制
数码为: ~ ;基数是8.用字母O表示 表示. 数码为:0~7;基数是 .用字母 表示. 运算规律:逢八进一, 运算规律:逢八进一,即:7+1=10. + = . 八进制数的权展开式: 八进制数的权展开式:D=∑ki×8i 例如: (207.04)O= 例如: )
2×82 +0×81+7×80+0×8-1+4 ×8-2 × × × × =(135.0625)D
= 011 (
六,十—十六进制之间的转换
将十六进制数转换成十进制数时, 将十六进制数转换成十进制数时,按权展开再 相加即可. 相加即可.
将十进制数转换成十六进制数时,可先转换成 将十进制数转换成十六进制数时, 二进制数, 二进制数,再将得到的二进制数转换成等值的十 六进制数. 六进制数.
1.2 二进制数的算术运算
二,二进制
数码为:0,1; 数码为: , ; 基数是 .用字母 表示. 基数是2.用字母B表示 表示. 运算规律:逢二进一,即:1+1=10. 运算规律:逢二进一, + = . 二进制数的权展开式: 二进制数的权展开式:D=∑ki×2i
第1章数字电路基础知识-Read
0111 1 1 1 1 1 11 1 1 0
0 XXX X X X X 0 0 0 0 0 1
0 XXX X X X 0 1 0 0 10 1
0 XXX X X 0 1 1 0 100 1
0
大家填
0
0
以引脚 Y2 为目标,因为与或最小项数目少
输
入
ST I0 I1 I2 I3 I4 I5 I6 I7 Y2 Y2
0V
0V 0.7V
0V
3V 0.7V
3V
0V 0.7V
3V
3V 3.7V
用负逻辑
A
BF
1
11
1
01
0
11
0
00
A
用正逻辑 0
0
1
1
BF
0
0
10
00
11
A
B
F
输入、输出均取反了
正与门
A
F
B
负或门
正与门相当于负或门
与非门电路
A
B
F
0V
0V 3.7V
0V
3V 3.7V
3V
0V 3.7V
3V
3V 0.7V
以引脚 YEX 为目标,因为与或最小项数目少
YEX = ST + ST ( I7 . I6 .I5 . I4 . I3 . I2 . I1 . I0 )
ST I0 I1 I2 I3 I4 I5 I6 I7 YEX 1 XXX X X X X X 1 0111 1 1 1 1 1 1 0 XXX X X X X 0 0 0 XXX X X X 0 1 0 0 XXX X X 0 1 1 0 0 XXX X 0 1 1 1 0 0 XXX 0 1 1 1 1 0 0 XX0 1 1 1 1 1 0 0 X0 1 1 1 1 1 1 0 0011 1 1 1 1 1 0
数字电子技术教学课件-第01章 数字电路基础知识.ppt
入的数字信号进行各种算术运算和逻辑运算、逻辑
判断,故又称为数字逻辑电路。
2021/1/17
8
1.1.3 数字电路的分类和学习方法
1. 数字电路的分类
(1)按电路结构分类
组合逻辑电路:电路的输出信号只与当时 的输入信号有关,而与电路原来的状态无关。
时序逻辑电路:电路的输出信号不仅与当 时的输入信号有关,而且还与电路原来的状态 有关。
4
模拟信号: 时间上连续:任意时刻有一个相对的值。 数值上连续:可以是在一定范围内的任意值。 例如:电压、电流、温度、声音等。 真实的世界是模拟的。
缺点:很难度量; 容易受噪声的干扰; 难以保存。
优点:用精确的值表示事物。
模拟电路:处理和传输模拟信号的电路。
三极管工作在线性放大区。
2021/1/17
2021/1/17
9
(2)按集成电路规模分类
划分集成电路规模的标准
集成度:每块集成电路芯片中包含的元器件数目
数字集成电路
类别
➢小规模集成电路MO(SSmaIlCl
Sca双le极IICC,SS模I拟) 集成电路
➢中规模S集SI成电路<(M1e0d2ium Sc<al1e00IC,MSI)<30
➢大规模M集SI成电路10(2L~a1r0g3e Sc1a0l0e~5I0C0,LSI)30~100
2021/1/17
7
2. 数字电路特点(与模拟电路相比)
(1)数字电路的基本工作信号是用1和0表示的 二进制的数字信号,反映在电路上就是高电平和低 电平。
(2)晶体管处于开关工作状态,抗干扰能力强、 精度高。
(3)通用性强。结构简单、容易制造,便于集 成及系列化生产。
(4)具有“逻辑思维”能力。数字电路能对输
数字电子技术基础第一章
二、逻辑函数的最小项表达式
A
B
A
R
A B
电源
(1)与逻辑关系
电源
(2)或逻辑关系
电源
(3)非逻辑关系
2、真值表
完整表达所有可能的逻辑关系表格——称为真值表。
与、或、非三种电路的基本逻辑关系真值表
A
B 与输出 或输出 非输出
0
0
0
0
1
0
1
0
1
1
0
0
1
0
1
1
1
1
3、三种基本逻辑关系
(1)与逻辑关系运算—— Y1 A B (2)或逻辑关系运算—— Y2 A B (3)非逻辑关系运算—— Y3 A
二、逻辑变量与逻辑函数及基本逻辑运算
(一)逻辑变量 和普通代数相同:用英文字母表示; 和普通代数不同:取值范围只有“1”和“0”,没有数值大小,只表示事物 的两个对立面。
(二)逻辑函数 原变量:字母上无反号; 反变量:字母上有反号。
Y =F( A, B,......) Y是A,B,….的逻辑函数
书中图1.1.2列出了7种运算逻辑符号,分别用国标符号、曾用符号及美国 符号列出。
十进制转换成二进制
整数的转换:
例如: 将十进制数23转换 成二进制数。 解: 用“ 除2取余 ”法转 换:
则(23)D =(10111)B
2 23 ………余1 b0 2 11 ………余1 b1 2 5 ………余1 b2 2 2 ………余0 b3 2 1 ………余1 b4
0 除到0为止
低位
读 取 次 序
4、00H~20H为各文字符的ASCII码 5、其余为各符号的ASCII码。
第1章 数字逻辑电路基础
同学们好!1906年,福雷斯特等发明了电子管;电子管体 积大、重量重、耗电大、寿命短。
世界上第一 台计算机用了1.8万只电子管,占地170平方米, 重30吨,耗电150KW 。
目前在一些大功率发射 装置中使用。
集成电路 电子器件的发展电子管 晶体管 分立元件 (( SSI (100元件以下) MSI (〈10 3 ) LSI (〈10 5 ) 超大规模 VLSI (10 5 以上) 1948年,肖克利等发明了晶体管,其 性能在体积、重量方面明显优于电子 管,但器件较多时由分立元件组成的 分立电路体积大、焊点多、电路的可 靠性差。
1960年集成电路出现,成 千上万个器件集成在一块 芯片,大大促进了电子学 的发展,尤其促进数字电 路和微型计算机的飞速发 展。
芯片中集成上万个 等效门,目前高的 已达上百万门。
课 程 简 介本课程为《数字逻辑电路》,以数字电路为主,脉冲 电路的内容较少.课程为4个学分,包括实验.属专业基础 课.本课程具有较强的实践性,有广泛的应用领域.学好本课程的要点: 听懂每一堂课的内容、培养逻辑 思维方法、勤于思考.课 程内 容逻辑门电路 组合逻辑电路 常用组合逻辑功能器件 常用时序逻辑功能器件 半导体存储器和可编程逻辑器件 脉冲信号的产生与整形 数字逻辑基础 第1章第2章第3章第4章第6章第7章第8章时序逻辑电路 第5章数模和模数转换 第9章绪 论一、模拟量和数字量模拟量:模拟量就是连续变化的量。
自然界中可 测试的物理量一般都是模拟量,例如温度,压力,距离,时间等。
数字量:数字量是离散的量。
数字量一般是将模 拟量经过抽样、量化和编码后而得到的。
1 2 3 4 5 7 6 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 1218202224262830323436温度( C)时间(小时) A.M P.M 温度和时间关系图(用模拟量表示)1 2 3 4 5 7 6 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 1218 202224262830323436温度( C)时间(小时) A.M P.M 温度和时间关系图(用采样值表示)量化曲线1 2 3 4 5 7 6 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12时间(小时) A.M P.M 温度和时间关系图(用数字形式表示)1 0 0 1 1 1 0 1 0 0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 0 1 0 1 0 0 1 0 0 1 1 1 0 0 1 030292827262524232221201918 ( oc)二、模拟和数字系统的几个实例 1) 音频有线扩音系统音频有线扩音系统为纯模拟系统。
(复旦数字电子课件)第1章 数字逻辑基础
2020/3/5
模拟电子学基础
3
复旦大学电子工程系 陈光梦
集成电路的分类与数字集成电路的特点
➢ 集成电路分类
➢ 模拟集成电路,处理的信号是连续的(模拟信号) ➢ 数字集成电路,处理的信号是离散的(数字信号)
➢ 数字集成电路分类
➢ 逻辑集成电路、存储器、各类ASIC
➢ 数字集成电路特点
➢ 信息表示形式统一、便于计算机处理 ➢ 可靠性高 ➢ 制造工艺成熟、可以大规模集成
例:若 (A D)C AC CD 0 则 AD C (A C)(C D) 1
2020/3/5
模拟电子学基础
32
复旦大学电子工程系 陈光梦
注意点
反演定理:描述原函数和反函数的关系(两个 函数之间的关系)
对偶定理:描述原函数构成的逻辑等式和对偶 函数构成的逻辑等式的关系(两个命题之间的 关系)
反函数
两个逻辑函数互为反函数,是指两个逻辑函数 对于输入变量的任意取值,其输出逻辑值都相 反。下面真值表中 F 和 G 互为反函数。
A
B F(A,B) G(A,B)
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
2020/3/5
模拟电子学基础
20
复旦大学电子工程系 陈光梦
复合逻辑运算
1. 与非 2. 或非 3. 异或 4. 同或
2020/3/5
模拟电子学基础
4
复旦大学电子工程系 陈光梦
数字集成电路的发展
➢ 集成度
➢ SSI(1-10门,逻辑门电路) ➢ MSI(10-100门,计数器、移位寄存器器) ➢ LSI(100-1000门,小型存储器、8位算术逻辑单元) ➢ VLSI(1000-100万门,大型存储器、微处理器) ➢ ULSI(超过100万门,可编程逻辑器件、多功能集成电路)
数字逻辑电路基础
常用 BCD 码
十进制数 8421 码 余 3 码 格雷码 2421 码
0
0000 0011 0000 0000
1
0001 0100 0001 0001
2
0010 0101 0011 0010
数字逻辑电路基础
第一章 数字逻辑电路基础
1.1 数字电路的基本概念 1.2 数制和码制 1.3 基本逻辑运算 1.4 逻辑函数的表示方法 1.5 逻辑代数运算 1.6 逻辑门电路
1.1 数字电路基本概念
一、模拟信号与数字信号
模拟信号——时间连续数值也连续的信号。如速度、压 力、温度等。 数字信号——在时间上和数值上均是离散的。如电子表 的秒信号,生产线上记录零件个数的记数信号等。 数字信号在电路中常表现为突变的电压或电流。
晶体管工作在开关状 态
1、数字信号的特点
•使用高低电平来表示信号。 •门电路起开关作用。 •逻辑状态只有0,1。 •易于存储。 •抗干扰,对元件的要求不高。 •集成度高,通用性强。
2、用逻辑电平描述的数字波形:
数字波形
逻辑电平对时间的图形表示。 脉冲波: 当某波形仅有两个离散值时。 分为:周期波和非周期波
即:(1234)10=1×103 +2×102+3×101+4×100
又如:(209.04)10= 2×102 +0×101+9×100+0×10-1+4 ×10-
2、二进制
数码为:0、1;基数是2。 运算规律:逢二进一,即:1+1=10。 二进制数的权展开式: 如:(101.01)2= 1×22 +0×21+1×20+0×2-1+1 ×2
数字电子技术基础-第一章PPT课件
第一章:数字逻辑基础
【例1-3】将十六进制数8A.3按权展开。 解:(8A.3)16=8×161+10×160+3×16-1
•16
第一章:数字逻辑基础
1.2.2 不同进制数的转换 1. 十进制数转换为二进制、八进制和十六进制数 转换方法: (1) 十进制数除以基数(直到商为0为止)。 (2) 取余数倒读。
•17
第一章:数字逻辑基础
【例1-4】将十进制数47转换为二进制、八进制和十六进制数。 解:
(47)10=(101111)2=(57)8=(2F)16。
•18
第一章:数字逻辑基础
【例1-5】将十进制数0.734375转换为二进制和八进制数。
解:
(1)转换为二进制数。
首先用0.734375×2=1.46875 (积的整数部分为1,积的小数部分为
•25
第一章:数字逻辑基础
按选取方式的不同,可以得到如表1.1所示常用的几种BCD编码。 表1.1 常用的几种BCD编码
•26
第一章:数字逻辑基础
2. 数的原码、反码和补码 在实际中,数有正有负,在计算机中人们主要采用两种
方法来表示数的正负。第一种方法是舍去符号,所有的数字 均采用无符号数来表示。
•7
第一章:数字逻辑基础
2. 数字电路的分类
1) 按集成度划分 按集成度来划分,数字集成电路可分为小规模、中规模、大规模和超大
规模等各种集成电路。 2) 按制作工艺划分
按制作工艺来划分,数字电路可分为双极型(TTL型)电路和单极型(MOS 型)电路。双极型电路开关速度快,频率高,工作可靠,应用广泛。单极型 电路功耗小,工艺简单,集成度高,易于大规模集成生产。 3) 按逻辑功能划分
1第一章数字电路基础知识
电子技术数字电路部分第一章数字电路的基础知识第一章数字电路的基础知识§1.1 数字电路的基础知识§1.2 逻辑代数及运算规则§1.3 逻辑函数的表示法§1.4 逻辑函数的化简1.1.1 数字信号和模拟信号电子电路中的信号模拟信号数字信号随时间连续变化的信号时间和幅度都是离散的§ 1.1 数字电路的基础知识模拟信号:正弦波信号ut锯齿波信号u研究模拟信号时,我们注重电路输入、输出信号间的大小、相位关系。
相应的电子电路就是模拟电路,包括交直流放大器、滤波器、信号发生器等。
在模拟电路中,晶体管一般工作在放大状态。
数字信号:数字信号产品数量的统计。
数字表盘的读数。
数字电路信号:ut研究数字电路时注重电路输出、输入间的逻辑关系,因此不能采用模拟电路的分析方法。
主要的分析工具是逻辑代数,电路的功能用真值表、逻辑表达式或波形图表示。
在数字电路中,三极管工作在开关状态下,即工作在饱和状态或截止状态。
1.1.2 数制(1)十进制: 以十为基数的记数体制表示数的十个数码:1, 2, 3, 4, 5, 6, 7, 8, 9, 0遵循逢十进一的规律157 = 012107105101⨯+⨯+⨯一个十进制数数 N可以表示成:∑∞-∞=⨯=ii iD KN10)(若在数字电路中采用十进制,必须要有十个电路状态与十个记数码相对应。
这样将在技术上带来许多困难,而且很不经济。
(2)二进制: 以二为基数的记数体制 表示数的两个数码:0, 1遵循逢二进一的规律∑∞-∞=⨯=i ii B K N 2)((1001) B = 012321202021⨯+⨯+⨯+⨯= ( 9 ) D用电路的两个状态---开关来表示二进制数,数码的存储和传输简单、可靠。
位数较多,使用不便;不合人们的习惯,输入时将十进制转换成二进制,运算结果输出时再转换成十进制数。
(3)十六进制和八进制:十六进制记数码:1, 2, 3, 4, 5, 6, 7, 8, 9, A(10), B(11),C(12), D(13), E(14), F(15)(4E6)H = 4⨯162+14 ⨯161+6 ⨯160= ( 1254 ) D十六进制与二进制之间的转换: (0101 1001)B = [0⨯27+1 ⨯26+0 ⨯25+1 ⨯24+1 ⨯23+0 ⨯22+0 ⨯21+1 ⨯20]B= [(0⨯23+1 ⨯22+0 ⨯21+1 ⨯20) ⨯161 +(1 ⨯23+0 ⨯22+0 ⨯21+1 ⨯20) ⨯160]B = ( 59 ) H每四位2进制数对应一位16进制数十六进制与二进制之间的转换: (10011100101101001000)B =从末位开始四位一组(1001 1100 1011 0100 1000)B = ( )H8 4 B C 9 =( 9C B 48 ) H八进制与二进制之间的转换: (10011100101101001000)B = 从末位开始三位一组(10 011100 101 101 001000)B =( )O 01 5 5 4 =(2345510)O3 2十进制与二进制之间的转换,可以用二除十进制数,余数是二进制数的第0位,然后依次用二除所得的商,余数依次是K 1、K 2、……。
数字电子技术基础(整理笔记)
第一章数字逻辑基础1.1 数字电路概述1.1.1 数字电路与模拟电路电子电路根据其处理的信号不同可以分为模拟电子电路和数字电子电路。
1.模拟信号和模拟电路模拟信号:在时间上和数值上都是练习变化的信号。
模拟电路:处理模拟信号的电子电路。
2.数字信号和数字电路数字信号:在时间上和数值上都是离散(变化不连续)的信号。
数字电路:处理数字信号的电子电路。
3.数字电路的特点①数字电路内部的晶体管(包括单、双极型)主要工作在饱和导通或截止状态;模拟电路内部的晶体管主要工作在放大状态。
②数字电路的信号只有两种状态:高电平和低电平,分别对应于(或代表)二进制数中的1和0,表示信号的有或无,便于数据处理。
③数字电路结构相对简单,功耗较低,便于集成。
④数字电路抗干扰能力强。
其原因是利用脉冲信号的有无传递1和0的数字信息,高低电平间容差较大,幅度较小的干扰不足以改变信号的有无状态。
⑤数字电路不仅能完成数值运算,而且还能进行逻辑运算和比较判断,从而在计算机系统中得到广泛应用。
4.数字电路的分类①按电路的组成结构可分为分列元件电路和集成电路。
②按数字电路集成度可分为小规模、中规模、大规模和超大规模集成电路。
③按集成电路内部器件可分为双极型和单级型。
④按电路的逻辑功能可分为组合逻辑和时序逻辑电路。
1.1.2脉冲波形参数数字电路信号中,研究的对象是一些不连续的突变的电信号,作用时间很短,所以也称为脉冲信号。
脉冲信号波形形状很多,主要有方波、矩形波、三角波、锯齿波等。
①脉冲幅度Um。
脉冲电压变化的最大值,即脉冲波从波底至波顶之间的电压。
②上升时间t r。
脉冲波前沿从0.1Um上升到0.9Um所需的时间。
③下降时间t f。
脉冲波后沿从0.9Um下降到0.1Um所需的时间。
④脉冲宽度t w。
脉冲波从上升沿的0.5Um至下降沿0.5Um所需的时间。
⑤脉冲周期T。
在周期性脉冲信号中,任意两个相邻脉冲上升沿(或下降沿)之间的时间间隔。
⑥重复频率f(单位:Hz)。
大学 数字电子技术基础-第一章--数字逻辑基础
•
23
例1-6 将(154.375)D 转化为十六进制数。 解:(1)整数部分 :“除16取余”
连续“除16取余”的 过程直到商为0为止
24
(2)小数部分:“乘16取整”
0.375×16=6.0 ……… 整数部分为6
(154.375)D=(9A.6)H
直到小数部分为0 为止
25
四、八进制----二进制
二进制数和八进制数之间 有很简单的对应关系,三 位二进制数对应一位八进 制数。对应关系如表所示。
三位二进制数 000 001 010 011 100 101 110 111
一位八进制数 0 1 2 3 4 5 6 7
(374.26)O = (011111100 . 010110)B
1
1
0
0
1
1
0
0
0
33
三、ASCII码
ASCII码是国际上最通用的一种字符码,用7位二进制码来表示128个十进制 数、英文大小写字母、控制符、运算符以及特殊符号
34
第五节 逻辑问题的描述ห้องสมุดไป่ตู้
• 一、自然界中三种基本逻辑关系:
❖1、与逻辑关系:决定某一事物结果的所有条件
同时具备,结果才会发生。这一因果关系称与逻 辑关系
32
二、格雷码
二进制数
b3
b2
b1
b0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
《数电第一章》课件
设计工具:状态机、卡诺 图、逻辑门等。
06 数电第一章复习 题
选择题
选择题1
二进制数10101010转换为十进制 数是____。
答案
A. 106
选择题2
逻辑或运算的运算规则是____。
答案
B. 0 OR 0 = 0, 0 OR 1 = 1, 1 OR 0 = 1, 1 OR 1 = 1
选择题3
在数字电路中,通常使用____来表示 逻辑关系。
数字电路的基本概念
数字信号、数字电路等。
逻辑门电路
与门、或门、非门等。
逻辑代数
基本逻辑运算、逻辑函数等。
组合逻辑电路
加法器、比较器、多路选择器 等。
学习方法
理论学习
通过阅读教材和课件, 掌握数字电路的基本概
念和原理。
实验操作
通过实验,加深对数字 电路的理解,提高实际
操作能力。
习题练习
通过练习习题,巩固所 学知识,提高解题能力
02
或门
当至少一个输入端为高电平时,输出 端就为高电平;否则输出端为低电平 。
01
或非门
当至少一个输入端为高电平时,输出 端为低电平;否则输出端为高电平。
05
03
非门
输入端与输出端的电平状态相反,即 输入高电平时输出低电平,输入低电 平时输出高电平。
04
与非门
当所有输入端都为高电平时,输出端 为低电平;否则输出端为高电平。
。
小组讨论
通过小组讨论,互相交 流学习心得,提高学习
效果。
02 数字电路基础
数字电路概述
01
02
03
数字电路的定义
数字电路是处理离散信号 的电路,其输入和输出信 号通常为二进制形式(0 和1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两类信号: 模拟信号;数字信号. 在时间上和幅值上均连续 的信号称为模拟信号; 在时间上和幅值上均离散 的信号称为数字信号.
处理数字信号的电路称为数字电路.
数字电路特点:
1) 工作信号是二进制表示的二值信号(具有“0”和“1”
两种取值);
2) 电路中器件工作于“开”和“关”两种状态,电路的输
与逻辑电路
若将开关断开和灯的熄灭状态用逻辑量“0”表示;将开关 合上和灯亮的状态用逻辑量“1”表示,则上述状态表可表 示为:
A 0 0 1 1 与逻辑真值表 B F=A ·B 0 1 0 1 0 0 0 1
A B
&
F=AB
与门逻辑符号
与门的逻辑功能概括: 1)有“0”出“0”; 2)全“1”出“1”。
非逻辑电路
•
与门和或门均可以有多个输入端.
1.3.2
复合逻辑运算
1. 与非逻辑 (将与逻辑和非逻辑组合而成)
与非逻辑真值表 B F=A ·B 0 1 0 1 1 1 1 0
A 0 0 1 1
A
&
B
F=AB
与非门逻辑符号
2. 或非逻辑 (将或逻辑和非逻辑组合而成)
A 0 0 1 1 或非逻辑真值表 B F=A +B
表示二进制数的方法有三种,即原码、反码和补码
符号位(+)
真实二进制数
B6 B 5 B4 B3 B2 B1 B0 1 0 1 0 0 1 1 =-4510
符号位(-)
补码
用补码系统表示有符号数
1.3.3
+9 +4
补码系统中的加法
0 1001 (被加数) 0 0100 (加数) 0 1101 (和=+13)
十进制数 1: 0110001
字母 A : 回车: 1000001 0001101
1.3 算术运算 1.3.1 二进制加法
0+0 = 1+0 = 1+1 = 1+1+1
0 0+1 = 1 10 = 11
1001 (9) +1011 (11) 10100 (20)
1.3.2
有符号数的表示方法
A6 A 5 A4 A3 A2 A1 A0 0 1 0 1 1 0 1 =+4510
例:
(1011.101) 1 2 1 2 1 2 1 2 1 2
3 1 0 1 2
3
8 2 1 0.5 0.125
(2)十进制数转换为二进制数(提取2的幂法)
例:
(45.5)10 32 8 4 1 0.5
1 2 0 2 1 2 1 2 0 2 1 2 1 2
系数
权
2. 二进制
(1) 计数符号: 0, 1 .
(2) 进位规则: 逢二进一. (3) 位置计数法
(101.11) 2 1 2 0 2 1 2 1 2 1 2
2 1 0
1
2
( N) 2 a i 2
i m
n 1
i
数字电路中采用二进制的原因:
若用高电平VH表示逻辑“1”,用低电平VL表示逻辑
“0”,则称为正逻辑约定,简称正逻辑;
若用高电平VH表示逻辑“0”,用低电平VL表示逻辑
“1”,则称为负逻辑约定,简称负逻辑.
在本课程中,如不作特殊说明,一般都采用正逻辑表示. VH和VL的具体值,由所使用的集成电路品种以及所 加电源电压而定,有两种常用的集成电路: 1) TTL电路,电源电压为5伏,VH约为3V左右,VL约为 0.2伏左右; 2) CMOS电路,电源电压范围较宽,CMOS4000系列 的电源电压VDD为3~18伏. CMOS电路的VH约为0.9 VDD, 而VL约为0伏左右.
2. 或逻辑运算 定义:在决定一事件的各种条件中,只要有一个或一 个以上条件具备时,这件事就成立;只有所有的条件都不
具备时,这件事就不成立.这样的因果关系称为“或”逻辑 关系。
A
A 0 0 1 1 或逻辑真值表 B F=A+ B 0 1 0 1 0 1 1 1
E
B
F
或逻辑电路
A
≥1
F=A+B
B
或门逻辑符号
负的符号位
第四种情况:两个负数相加
符号位
−9 −4
1 0111 1 1100 1 1 0011
这个进位忽略,结果为10011(和=−13)
1.3 逻辑代数基础 研究数字电路的基础为逻辑代数,由英国数学家 George Boole在1847年提出的,逻辑代数也称布尔代数.
1.3.1 基本逻辑运算 在逻辑代数中,变量常用字母A,B,C,……Y,Z, a,b, c,……x.y.z等表示,变量的取值只能是“0”或“1”.
出和输入为逻辑关系;
3) 电路既能进行“代数”运算,也能进行“逻辑”运算; 4) 电路工作可靠,精度高,抗干扰性好.
1.1
数制与BCD码
所谓“数制”,指进位计数制,即用进位的方法来计 数. 数制包括计数符号(数码)和进位规则两个方面。 常用数制有十进制、二进制、十六进制、八进制等。
1.1.1 常用数制
A
B
=1
F=A B
异或门逻辑符号
异或逻辑的功能为:
1) 相同得“0”; 2) 相异得“1”.
5.同或逻辑
同或逻辑式为:F = A B + A B =A . B
同或逻辑 真值表 A B F=A . B 0 0 1 1 0 1 0 1 1 0 0 1
=
A B
F=A
.B
同或门逻辑符号
对照异或和同或逻辑真值表,可以发现: 同或和异或互
或门的逻辑功能概括为: 1) 有“1”出“1”; 2) 全“0” 出“0”.
3. 非逻辑运算 定义:假定事件F成立与否同条件A的具备与否有关,
若A具备,则F不成立;若A不具备,则F成立.F和A之间的这 种因果关系称为“非”逻辑关系.
非逻辑真值表
1
E
A
F
A
F=A 非门逻辑符号
A 0 1
F=A 1 0
2. 格雷码(Gray码) 格雷码为无权码,特点为:相邻两个代码之间仅有一
位不同,其余各位均相同.
格雷码和四位二进制码之间的关系: 设四位二进制码为B3B2B1B0,格雷码为R3R2R1R0, 则
R3=B3, R2=B3B2 R1=B2B1 R0=B1B0
其中, 为异或运算符,其运算 规则为:若两运算数相同,结果 为“0”;两运算数不同,结果为 “1”.
为反函数,即:
A B = A . B
表1.12给出了门电路的几种表示方法,本课程中,均采 用“国标”。国外流行的电路符号常见于外文书籍中, 特别在我国引进的一些计算机辅助分析和设计软件中, 常使用这些符号。
1.3.3
逻辑电平及正、负逻辑
门电路的输入、输出为二值信号,用“0”和“1”表 示.这里的“0”、“1”一般用两个不同电平值来表示.
两位格雷码 R1R0:00,01,11,10
R0
01
●
QPSK通信 00
●
R1
11
● ●
10
3. 奇偶校验码
具有检错能力的代码 原代码的基础上增加一个码位使代码中含有 的1的个数均为奇数(称为奇校验)或偶数(称 为偶校验),通过检查代码中含有的1的奇偶性 来判别代码的合法性。
4. ASCII 码 美国信息交换的标准代码
对一个特定的逻辑门,采用不同的逻辑表示时,其门的 名称也就不同.
电平真值表 Vi1 Vi2 VL VL VL VH VH VL VH VH 正负逻辑转换举例 正逻辑(与非门) A B Y 0 0 1 0 1 1 1 0 1 1 1 0 负逻辑(或非门) A B Y 1 1 0 1 0 0 0 1 0 0 0 1
② 5421BCD码的前5个码和8421BCD码相同,后5个码在
前5个码的基础上加1000构成,这样的码,前5个码和后5 个码一一对应相同,仅高位不同;
③ 2421BCD码的前5个码和8421BCD码相同,后5个码以 中心对称取反,这样的码称为自反代码.
例:
4→0100
0→0000
5→1011
9→1111
常用BCD码
十进制数
0 1 2
8421码
0000 0001 0010
5421码
0000 0001 0010
2421码
0000 0001 0010
余 3码
0011 0100 0101
3
4 5 6 7
Байду номын сангаас
0011
0100 0101 0110 0111
0011
0100 1000 1001 1010
0011
0100 1011 1100 1101
1. 十进制
(1) 计数符号: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. (2) 进位规则: 逢十进一. (3) 采用位置计数法 例:
1987.45=1×103 +9×102 + 8×101 + 7×100 +4×10-1 +5×10-2
( N ) a 10
10 i m i n 1 i
1)数字装置简单可靠; 2)二进制数运算规则简单; 3)数字电路既可以进行算术运算,也可以进行逻辑运算.
3.十六进制和八进制 十六进制数计数符号: 0,1, .,9,A,B,C,D,E,F.
十六进制数进位规则: 逢十六进一. 例:
(6D.4B)16 6 16 D 16 4 16 B 16 1 0 1 2 6 16 13 16 4 16 11 16