第二章 拉伸与压缩 (上)

合集下载

材料力学第2章 轴向拉伸和压缩

材料力学第2章 轴向拉伸和压缩

18
为研究轴向拉(压)杆沿轴线方向的线应变, 可沿轴线方向在x截面处任取微段Δx(见图2.13), 微段变形后其长度的改变量为Δu,比值Δu/Δx为微 段Δx的平均线应变。当Δx无限缩短而趋于零时, 其极限值
图2.13
19
拉(压)杆的变形与材料的性能有关,只能通 过试验来获得。试验表明,在弹性变形范围内,杆 件的变形Δl与轴力FN及杆长l成正比,与横截面面 积A成反比,即
1
概 述
图2.1
图2.2
2
第二节 轴力 轴力图 无论对受力杆件作强度或刚度计算时,都需首 先求出杆件的内力。关于内力的概念及计算方法, 已在上一章中阐述。
3
第三节 拉(压)杆截面上的应力 内力是由外力引起的,仅表示某截面上分布内 力向截面形心简化的结果。而构件的变形和强度不 仅取决于内力,还取决于构件截面的形状和大小以 及内力在截面上的分布情况。为此,需引入应力 (stress)的概念。
图2.11
13
设产生应力集中现象的截面上最大应力为ζ max,同一截面视作均匀分布按净面积A0计算的名 义应力为ζ0,即ζ0=FN/A0,则比值
14
第四节 拉(压)杆的变形 胡克定律 泊松比 工程构件受力后,其几何形状和几何尺寸都要 发生改变,这种改变称为变形(deformation)。 当荷载不超过一定的范围时,构件在卸去荷载后可 以恢复原状。但当荷载过大时,则在荷载卸去后只 能部分地复原,而残留一部分不能消失的变形。在 卸去荷载后能完全消失的那一部分变形称为弹性变 形(elastic deformation),不能消失而残留下来 的那一部分变形称为塑性变形(ductile deformatio n)。
15
现以图2.12所示等截面杆为例来研究轴向拉 (压)杆的变形。在轴向外力F的作用下,杆件的 轴向、横向的尺寸均会发生改变。设杆件变形前原 长为l,横向尺寸为d,变形后长度为l′,横向尺寸 为d′,称 为轴向变形,称

第二章_直杆的拉伸和压缩

第二章_直杆的拉伸和压缩

F
1
FN1 A1
28.3103 202 106
4
90106 Pa 90MPa
2
FN2 A2
20103 152 106
89106Pa 89MPa
2.1.3 应变的概念
绝对变形ΔL, 相对变形或线应变:
L
L
伸长时ε为正,缩短时ε为负
2.2 拉伸和压缩时材料的力学性能
2.2.1 拉伸和压缩试验及材料的力学性能
1、强度校核:
max
N A
2、设计截面:
A
N
3、确定许可载荷: NA
目录
塑性材料 :以材料的屈服极限作为确定许用应力的基础。 变形特征:当杆内的最大工作应力达到材料的屈服极限时,沿 整个杆的横截面将同时发生塑性变形,影响杆的正常工作。 许 用内力的表示为:
对于一般构件的设计,ns规定为1.5到2.0 脆性材料 :以材料的断裂极限作为确定许用应力的基础。 变形特征:直到拉断也不发生明显的塑性变形,而且只有断裂 时才丧失工作能力。许用内力的表示为:
OA
BC
D
PA
PB
PC
PD
N1 A
BC
D
PA
PB
PC
PD
解: 求OA段内力N1:设置截面如图
X 0 N 1 P A P B P C P D 0
N 1 5 P 8 P 4 P P 0N1 2P
N2
BC
D
PB 同理,求得AB、BC、 CD段内力分别为:
N2= –3P N3= 5P N4= P
2.1.3 拉伸和压缩时横截面上的应力
FN F
AA
应力集中:在截面突变处应力局部增大的 现象
应力集中系数:k=σmax/σ

材料力学第二章

材料力学第二章
材料的塑性也可用试样断裂后的横截面面积塑性收缩率 来
衡量,即
A A1 100%
A
(2-9)
式中,A1 为试样被拉断后,在缩颈处测得的最小直径所对应的横截
面面积;A 为原横截面面积; 为断面收缩率。低碳钢的 值为 60%
左右。
如果将试样从 e 点卸载后再加载,直到试样断裂,所得的 加载曲线就如图 2-14 中 O1edf 所示。将该曲线与图 2-12 中的 Oabcdf 相比较,则可看出,图 2-14 所示的试样比例极限提高了, 拉断后的塑性变形减小了,这种现象称为冷作硬化。
过了屈服阶段,曲线又继续上升,即材料又恢复了抵抗变形 的能力。这说明当材料晶格滑移到一定程度后,又产生了抵抗滑 移的能力,这种现象称为材料的强化。这个阶段相当于图 2-12 中 的 cd 段。
载荷达到最高值时,名义应力 也达到最高值,相当于图 2-12 中曲线的最高点 d。这个名义应力的最高值 b 称为材料的强 度极限。低碳钢的 b 约为 400 MPa。
将式(2-2)和式(2-4)代入式(2-5),得
E
(2-6)
式(2-6)为胡克定律的另一表达形式。由此,胡克定律可表述为:若应力不超
过某一极限值,则杆的纵向应变 与正应力 成正比。
上述应力的极限值,称为比例极限,常用 p 表示。各种材料的比例极
限值,可由实验得到。
比例常数 E,称为弹性模量,它表示在拉伸(压缩)时,材料抵抗弹性变
力学知,该平行力系的合力 FN 等于上述无限多个微内力 dFN 之和,即
由此可得
FN
dA
A
dA A
A
FN
A
(2-2)
我们将拉伸中的应力称为拉应力,压缩中的应力称为压应力。计算应力时,只要将 轴力 FN 的代数值,代入式(2-2),所得 的正负,就表示它是拉应力或是压应力。

5 材料力学第二章 轴向拉伸和压缩

5 材料力学第二章 轴向拉伸和压缩
μ
16锰钢
合金钢 铸铁 混凝土 石灰岩 木材(顺纹)
196-216
186-216 59-162 15-35 41 10-12
0.25-0.30
0.25-0.30 0.23-0.27 0.16-0.18 0.16-0.34
橡胶
0.0078
0.47
25
材料力学
§2-5
轴向拉伸时材料的机械性能
一、试验条件及试验仪器
P BC段:N 2 3 P
1
3P + P
AB段:N
3
2 P
+

12
2P
三、横截面上的应力
问题提出: P P (一)应力的概念 P P
度量横截面 上分布内力 的集度
1.定义:作用在单位面积上的内力值。 2.应力的单位是: Pa KPa MPa GPa
3.应力:a:垂直截面的应力--正应力σ 拉应力为正,压应力为负。
※E为弹性模量,是衡量材料抵抗弹 性变形能力的一个指标。“EA”称 为杆的抗拉压刚度。
l E Sl S E E l l EA A
胡克定律:
=Eε
23
四、横向变形
d d 1 d 0
泊松比(或横向变形系数)
d d 1 d 0 相对变形: ' d0 d0
e
DE段:颈缩阶段。
• 材料的分类:根据试件断裂时的残余相对变形率将材料分类: 延伸率(δ )>5% 塑性变形:低碳钢,铜,塑料,纤维。 延伸率(δ )<5% 脆性变形:混凝土,石块,玻璃钢,陶瓷, 玻璃,铸铁。 • 冷作硬化:材料经过屈服而进入强化阶段后卸载,再加载时,弹 性极限明显增加,弹性范围明显扩大,承载能力增大的现象。 • 强度指标:对塑性材料,在拉断之前在残余变形0.2 %(产生 0.2%塑性应变)时对应的应力为这种材料的名义屈服应力,用 0.2表示 ,即此类材料的失效应力。 锰钢、镍钢、铜等 • 脆性材料拉伸的机械性能特点: 1.断裂残余相对变形率δ <5% 0.2 or s max b 2.弹性变形基本延伸到破坏 3.拉伸强度极限比塑性材料小的多 4.b是脆性材料唯一的强度指标

材料力学课件第二章 轴向拉伸和压缩

材料力学课件第二章 轴向拉伸和压缩

2.3 材料在拉伸和压缩时的力学性能
解: 量得a点的应力、应变分别 为230MPa、0.003
E=σa/εa=76.7GPa 比例极限σp=σa=230MPa 当应力增加到σ=350MPa时,对应b点,量得正应变值
ε = 0. 0075 过b点作直线段的平行线交于ε坐标轴,量得 此时的塑性应变和弹性应变
εp=0. 0030 εe= 0 . 0075-0.003=0.0045
内力:变形固体在受到外力作用 时,变形固体内部各相邻部分之 间的相互作用力的改变量。
①②③ 切加求 一内平 刀力衡
应力:是内力分布集度,即 单位面积上的内力
p=dF/dA
F
F
FX = 0
金属材料拉伸时的力学性能
低碳钢(C≤0.3%)
Ⅰ 弹性阶段σe σP=Eε
Ⅱ 屈服阶段 屈服强度σs 、(σ0.2)
FN FN<0
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(1)外载荷不能沿其作用线移动。
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(2)截面不能切在外载荷作用点处,要离开或 稍微离开作用点。
1
2
11
22
f 30 f 20
60kN
Ⅲ 强化阶段 抗压强度 (强度极限)σb
Ⅳ 局部颈缩阶段
例1
一根材料为Q235钢的拉伸试样,其直径d=10mm,工作段 长度l=100mm。当试验机上荷载读数达到F=10kN 时,量 得工作段的伸长为Δ l=0.0607mm ,直径的缩小为 Δd=0.0017mm 。试求此时试样横截面上的正应力σ,并求出 材料的弹性模量E。已知Q235钢的比例极限为σ p =200MPa。

材料力学 第二章 轴向拉伸和压缩

材料力学 第二章  轴向拉伸和压缩

明德行远 交通天下
材料力学
2. 轴力的正负规定 FN 与外法线同向,为正轴力(拉力)
FN
FN F N > 0
FN与外法线反向,为负轴力(压力)
FN
FN
二、轴力图--表明构件不同截面轴力的变化规律
意 ①反映出轴力与截面位置变化关系,较直观; 义 ②确定最大轴力的数值及其所在横截面的位置,
即确定危险截面位置,为强度计算提供依据。
斜截面外法线方向为正,反之为负。
明德行远 交通天下
材料力学
a pa cosa cos2 a
pa
a
pa
sin a
cosa sin a
1
2
sin 2a
讨 论:
当a = 0°时, (a )max (横截面上正应力最大)
当a = 90°时,
( a )min 0
当a
=
±
45°时,| a
|max
2
结果表明,杆件的最大工作应力在BC段,其值为0.75MPa。
明德行远 交通天下
材料力学
二、斜截面上的应力
k
F
F
设有一等直杆受拉力F作用,横截面面积为A。
求:斜截面k-k上的应力。
F
αk

解:截面法求内力。由平衡方程:
Fa=F
F
则:pa
Fa Aa
Aa:斜截面面积;Fa:斜截面上内力。
由几何关系:
A
材料力学
第二章 轴向拉伸和压缩
明德行远 交通天下
材料力学
主要内容
• §2-1 轴向拉伸与压缩的概念 • §2-2 轴力及轴力图 • §2-3 应力 • §2-4 轴向拉伸或压缩杆件的变形及节点位移 • §2-5 材料拉伸和压缩时的力学性能 • §2-6 轴向拉伸和压缩杆件的强度计算 • §2-7 轴向拉(压)杆的超静定问题

C 材料力学第二章 轴向拉伸和压缩 第一部分

C 材料力学第二章 轴向拉伸和压缩 第一部分

基于下列实验现象有“平面假设”
现象: 直线保持为直线。 相互垂直的直线依旧相互垂直。->无切应变 纵向线段伸长,横向线段缩短。 长度相等的纵向线段伸长后依旧相等。 长度相等的横向线段缩短后依旧相等。 即变形分布均匀,依据胡克定律应力分布也 均匀。
平面假设
根据表面变形情况,可以由表及里的做出 假设,即横截面间只有相对移动,相邻横 截面间纵线伸长相同,横截面保持平面, 此假设称为平面假设(Plane CrossSection Assumption)。
问题
(1)图示的曲杆,问公式 (2-2)是否适用?
2)图示杆由钢的和铝牢固 粘接而成,问公式(2-2) 是否适用?
(3)图示有凹槽的杆,问 公式(2-2)对凹槽段是否 适用?
σ
变截面杆横截面上的应力
F
F
应力集中 (Stress Concentration)
例:图示杆1为横截面为圆形的钢杆,直径d=16mm,杆2 为横截面为正方形的木杆,边长为100mm。在节点B处作 用20kN的力,试求1、2杆中的应力。
r ∆r o
θ
∆s
s
应力与变形的一般关系
正应力在正应力方向引起线应变,不引 起切应变 切应力引起切应变,在切应力方向不引 起线应变 这里作为结论直接给出,感兴趣可在课 后研究证明之。
轴拉伸实验
平面假设(基于实验观察)
a d e a a d e a b c b b c c d e b c d e
例 题
解:1、2杆都为二力杆,是简单拉 压问题,取节点B进行受力分析: 由节点B的平衡可得:
F N1 3 = G = 15kN 4 F N2 5 = − G = −25kN 4
A 2m
1.5m 1 2 C FN1 FN2 B G

材料力学 第2章轴向拉伸与压缩

材料力学 第2章轴向拉伸与压缩
15mm×15mm的方截面杆。
A
FN128.3kN FN220kN
1
(2)计算各杆件的应力。
C
45°
2
B
s AB

FN 1 A1

28.3103
202
M
Pa90MPa
4
F
FN 1
F N 2 45°
y
Bx
s BC

FN 2 A2
21052103MPa89MPa
F
§2.4 材料在拉伸和压缩时的力学性能
22
5 圣维南原理
s FN A
(2-1)
(1)问题的提出
公式(2-1)的适用范围表明:公式不适用于集中力作
用点附近的区域。因为作用点附近横截面上的应力分布是非
均匀的。随着加载方式的不同。这点附近的应力分布方式就
会发生变化。 理论和实践研究表明:
不同的加力方式,只对力作
用点附近区域的应力分布有
显著影响,而在距力作用点
力学性能:指材料从开始受力至断裂的全部过程中,所表 现出的有关变形和破坏的特性和规律。
材料力学性能一般由试验测定,以数据的形式表达。 一、试验条件及试验仪器 1、试验条件:常温(20℃);静载(缓慢地加载);
2、标准试件:常用d=10mm,l=100 mm的试件
d
l
l =10d 或 l = 5d
36
b点是弹性阶段的最高点.
σe—
oa段为直线段,材料满足 胡克定律
sE
sp
E
se sp
s
f ab
Etana s
O
f′h
反映材料抵抗弹
性变形的能力.
40

拉伸和压缩

拉伸和压缩

解 (1)计算AB杆和BC杆的轴力
d
A
B
30
取结点B为研究对象,其受力如图所示。由 平衡方程
Fx 0, FNBC cos 30 FNAB 0
Fy 0, FNBC sin 30 F 0
C aa FNAB
F
B AB
FNAB
3F,FNBC
2F
(2)校核AB杆和BC杆的强度
FNAB AAB
3F d2 /4
3
二、内力与应力
1、内力
杆件在外力作用下产生变形,其内部相互间的 作用力称为内力。这种内力将随外力增加而增 大。当内力增大到一定限度时,杆件就会发生 破坏。内力是与构件的强度密切相关的,拉压
杆上的内力又称为轴力。
F
FN
2、求内力的方法—截面法
将受外力作用的杆件假想地 切开,用以显示内力的大 小,并以平衡条件确定其 合力的方法,称为截面法。 它是分析杆件内力的唯一 方法。具体求法如下:
例 图示支架中,杆①的许用应力[]1=100MPa,杆②的许用 应力[]2=160MPa,两杆的面积均为A=200mm2,求结构的许
可载荷[F]。
解 (1)计算AC杆和BC杆的轴力
B 取C铰为研究对象,受力如图所示。列平衡
方程
A ① 45 30 ②
§2-2 拉伸和压缩
一、拉伸与压缩时的应用与特点
实验:
F
ac
a
c
F
b
d
bd
1.变形现象
横向线ab和cd仍为直线,且仍然垂直于轴线;
结论:各纤维的伸长相同,所以它们所受的力 也相同。 2.平面假设
变形前原为平面的横截面,在变形后仍保
持为平面,且仍垂直于轴线。

材料力学第二章-轴向拉伸与压缩

材料力学第二章-轴向拉伸与压缩
FN 3 P
1
2
P
P
1
2
FN1
3 P
3
P FN2
PP FN3
FN 1 P FN 2 0 FN 3 P
1
2
4、作内力图
P
P
P
3 P
1 FN
P
2
3
P x
[例2] 图示杆旳A、B、C、D点分别作用着大小为5P、8P、 4P、 P 旳力,方向如图,试画出杆旳轴力图。
OA PA
B PB
C PC
D PD
q
u 正应力旳正负号要求:
sx
sx sx
s
x
P
u 对变截面杆, 当截面变化缓慢时,横截面上旳 正应力也近似为均匀分布,可有:
s (x) FN (x)
A( x)
合力作用线必须与杆件轴线重叠;
圣维南原理
若用与外力系静力等 效旳合力替代原力系, 则这种替代对构件内应 力与应变旳影响只限于 原力系作用区域附近很 小旳范围内。 对于杆件,此范围相当 于横向尺寸旳1~1.5倍。
h
解: 1) BD杆内力N
取AC为研究对象,受力分析如图
mA 0 , (FNsinq ) (hctgq) Px 0
FN
Px
hcosq
2) BD杆旳最大应力: s max FN max PL A hAcosq
突变规律: 1、从左边开始,向左旳力产生正旳轴力,轴力图向上突变。 2、从右边开始,向右旳力产生正旳轴力,轴力图向上突变。 3、突变旳数值等于集中力旳大小。
即:离端面不远处,应力分布就成为均匀旳。
§2–3 直杆轴向拉压时斜截面上旳应力
一、斜截面上旳内力
n

材料力学第二章 轴向拉伸和压缩

材料力学第二章 轴向拉伸和压缩
伸长 l2 0.24mm 缩短
2、计算各杆轴向变形
C
l 2 =1m a =170mm
B'
B2
F
l1 0.48mm
3、由变形的几何条件确定B点的位移 分别以A为圆心,AB1为半径,C为圆 心,CB1为半径画弧,相较于B’点,
B"
小变形条件,可以用切线代替弧线。
材料力学
第2章 轴向拉伸和压缩
FN FN ( x)
轴力方程
即为轴力图。
即:FN随x的变化规律
以x为横坐标,以FN为纵坐标,绘制FN F( )的关系图线, N x
FN
正的轴力画在x轴的上侧,负的画在下侧.
x
材料力学
第2章 轴向拉伸和压缩
例题1
等值杆受力如图所示,试作其轴力图
F =25kN F 4=55kN 4 1=40kN F
纵向线 即: 原长相同
变形相同
横截面上各点的纵向线应变相等
c
拉压杆变形几何方程.
反映了截面上各点变形之间的几何关系.
材料力学
第2章 轴向拉伸和压缩
§2-2 横截面上的正应力 应力分布规律 找变形规律 研究思路: 试验观察 综合几何方面、物理方面、静力学方面推导应力计算公式
一、几何方面
F
a' b'
材料力学
第2章 轴向拉伸和压缩
第二章 轴向拉伸和压缩
材料力学
第2章 轴向拉伸和压缩
• • • • • •
本章主要内容 轴力及轴力图 横截面上的应力 拉压杆的变形、胡克定律 强度计算 材料的力学性质
材料力学
第2章 轴向拉伸和压缩
§2-1 概述 一、工程实际中的轴向拉压杆

工程力学 第二章 轴向拉伸与压缩.

工程力学 第二章 轴向拉伸与压缩.

2 sin ( 2 cos 1 )ctg 3.9 103 m
B1 B B1 B3 B3 B
B B
B B12 B1 B 2 4.45 10 3 m
[例2-11] 薄壁管壁厚为,求壁厚变化和直径变化D。
解:1)求横截面上的正应力
dx
N ( x) l dx EA( x) l
例[2-4] 图示杆,1段为直径 d1=20mm的圆杆,2 段为边长a=25mm的方杆,3段为直径d3=12mm的圆杆。 已知2段杆内的应力σ 2=-30MPa,E=210GPa,求整个 杆的伸长△L
解: P 2 A2
30 25 18.75KN
N 1l Pl l1 l2 EA 2 EA cos l1 Pl cos 2 EA
[例2-8]求图示结构结点A 的垂直位移和水平位移。
解:
N1 P, N 2 0
Pl l1 , l2 0 EA Pl y l1 EA
N1
N2
Pl x l1ctg ctg EA
F
FN
FN F
F
F
CL2TU2
2.实验现象:
平截面假设
截面变形前后一直保持为平面,两个平行的截面之 间的纤维伸长相同。 3.平面假设:变形前为平面的横截面变形后仍为平面。 4.应力的计算 轴力垂直于横截面,所以其应力也仅仅是正应力。按 胡克定律:变形与力成正比。同一截面上各点变形相 同,其应力必然也相同。 FN (2-1) A 式中: A横截面的面积;FN该截面的轴力。 应力的符号:拉应力为正值应力,压缩应力为负 值应力。
1. 截面法的三个步骤 切: 代: 平:
F F F F

材料力学第2章

材料力学第2章
第二章
轴向拉伸和压缩
1
§2.1 轴向拉伸和压缩的概念
当作用于杆上的外力合力的作用线与直杆的轴线 重合时,杆的主要变形是纵向伸长或缩短,这类 构件称为拉杆或压杆。 如图 所示三 角架中的AC 杆为拉杆, BC杆为压杆 。
2
右图所示的桁架 中的杆也是主要 承受拉伸或压缩 变形的。
轴向拉力和轴向压力的 概念可由右图给出,上 图为轴向拉力;下图为 轴向压力。
若设BC段内立柱的单位长度自重为q2、横截面面 积为A2,则:
q2 γ A2 19kN/m 0.37m 0.37m 2.6kN/m
3
15
例题 2.2
(b)图:这是在集中荷载单 独作用下,柱的轴力图。图 中的负号表示轴力为压力。
(c)图:这是在自重荷载单 独作用下,柱的轴力图。即 在B处的轴力为:
①画一条与杆的轴线平行且与杆等长的直线作基 线; ②将杆分段,凡集中力作用点处均应取作分段点; ③用截面法,通过平衡方程求出每段杆的轴力; 画轴力图时,截面轴力一般先假设为正的,这样 ,计算结果是正的,则就表示为拉力,计算结果 是负的,就表示为压力。 ④按大小比例和正负号,将各段杆的轴力画在基 线两侧,并在图上表示出数值和正负号。
7
例题 2.1
图a所示等直杆,求各段内截面上的轴力并作出 轴力图的轴力图。
8
例题 2.1
解: (1) 求约束反力
由平衡方程求出约束力 FR=10 kN。 (2)求各杆段截面轴力 杆件中AB段、BC段、CD段、DE段的轴力是不 同的。分别用四个横截面:1-1、2-2、3-3、4-4 ,截杆并取四个部分为研究对象。
25kN
(e)
20kNFxFra bibliotek 0 : FN 3 F3 F4 0

材料力学第2章-拉压2

材料力学第2章-拉压2

第二章 轴向拉伸和压缩
拉、压杆件的变形分析
解:1. 作轴力图 由于直杆上作用有4个轴向 载荷,而且AB段与BC段杆横截 面面积不相等,为了确定直杆 横截面上的最大正应力和杆的 总变形量,必须首先确定各段 杆的横截面上的轴力。
应用截面法,可以确定AD、 DEB、BC段杆横截面上的轴力 分别为:
FNAD=-2FP= -120 kN; FNDE=FNEB=-FP= -60 kN; FNBC=FP=60 kN。
F

K
p
A
(a)
K
(b)
ΔF p ΔA
(1)应力定义在截面内的一点处; (2)应力是一个矢量。 正应力, 切应力
ΔF dF p lim Δ A 0 Δ A dA
单位:Pa (N/m2), MPa (106 N/m2)
第二章 轴向拉伸和压缩 上节回顾 轴向拉伸和压缩杆件横截面上只有正应力。
A A = cos
FP x= A
其中,x为杆横截面上的正应力; Aθ 为斜截面面积
第二章 轴向拉伸和压缩 上节回顾
= x cos
2
1 = xsin 2 2
由于微元取得很小,上述微元斜面上的应力, 实际上就是过一点处不同方向面的应力。因此,当 论及应力时,必须指明是哪一点处、哪一个方向面 上的应力。
第二章 轴向拉伸和压缩
拉、压杆件的变形分析
绝对变形
弹性模量
FPl FN l Δl EA EA
当拉、压杆有二个以上的外力作用时,需要 先画出轴力图,然后按上式分段计算各段的变形, 各段变形的代数和即为杆的总伸长量(或缩短量):
FNi li Δ l i EAi
第二章 轴向拉伸和压缩

机械设计基础第2章拉伸与压缩

机械设计基础第2章拉伸与压缩
第一节 概述 第二节 轴向拉伸或压缩时横截面上的内力 第三节 应力的概念 拉(压)杆横截面上的应力 第四节 拉(压)杆的变形
胡克定律
第五节 材料在拉伸和压缩时的力学性能 第六节 拉(压)杆的强度条件及其应用
概述
在静力学分析时,受力体是作为刚体来考虑的。
物体在载荷作用下应该有足够的强度、刚度和稳定
分析与计算是解决杆件强度、刚度和稳定性计算的基础。
直接利用外力计算轴力的规则 杆件承受拉伸(或压缩)时,杆件任一横截面上的轴力等 于截面一侧(左侧或右侧)所有轴向外力的代数和。外力背 离截面时取正号,外力指向截面时取负号。
截面法、轴力与轴力图
例2 钢杆上端固定,下端自由,受力 如图所示。已知l = 2m,F = 4 kN, q = 2 kN/m,试画出杆件的轴力图。
解:(1)计算D端 支座反力。由整体受力 图建立平衡方程:
Fx 0
FD F1 F2 F3 0
FD F2 F3 F1 14kN
(2)分段计算轴力 将杆件分为三段。用截面法截取如图b,c,d所示的研究对象,分 别用FN1、FN2、FN3替代另一段对研究对象的作用,一般可先假设 为拉力,由平衡方程分别求得:
第三节 应力的概念 拉(压)杆横截面上的应力
m
取左段: F n F FN` FN F F
Σ FX = 0
FN – F = 0 FN = F 取右段:FN `= F
轴力(内力) FN 是一个代数量,其正负与它在空间的方向无关。 而与它对杆件的作用方向有关。规定:杆件受拉伸(轴力方向 离开截面)时为正,受压缩(轴力方向指向截面)为负。
*轴力:由于外力的作用线与杆的轴线重 合,内力的作用线也必通过杆件的轴线并 与横截面垂直,故轴向拉伸或压缩时杆件 横截面上的内力称为轴力。

材料力学第五版第二章 1

材料力学第五版第二章  1

第二章 轴向拉伸和压缩
例 一等直杆受力情况如(a)图所示。试作杆的轴力图。
解:1.先求约束力。
由平衡方程
∑F
x
=0
得:FRA = 20KN
第二章 轴向拉伸和压缩
2. 计算各段的轴力。 AB段: 得 BC段: 得 CD段: 得
∑F
x
=0
FN1 = FRA = 20KN
∑F
x
=0
FN 2 = −30KN
第二章 轴向拉伸和压缩
斜截面上的正应力:
σα = pα cosα = σ cos α
2
斜截面的切应力:
τα = pα sin α = σ cosα sin α =
σ
2
sin 2α
α正负的规定:以 x 轴为起点,逆时针转向者为正,反之为负。
第二章 轴向拉伸和压缩
α = 0o 时
σα = σα max = σ τα = 0
∑F
x
=0
− FN 3 = 40KN
第二章 轴向拉伸和压缩
3.绘制轴力图
第二章 轴向拉伸和压缩
应力﹒ §2-3 应力﹒拉(压)杆内的应力 通常情况下,受力构件不同截面上内力是不相同的, 通常情况下,受力构件不同截面上内力是不相同的, 就是在同一截面各个点上内力也是不相同的。例如, 就是在同一截面各个点上内力也是不相同的。例如,图中 吊架横梁各个横截面上的内力是不相同的; 吊架横梁各个横截面上的内力是不相同的;就 是过 A 、B 两点的同一个截面上,各点的内力 两点的同一个截面上, 大小也不相同, 两点上的内力最大。 大小也不相同, A 、B 两点上的内力最大。 可见,在研究构件强度时, 可见,在研究构件强度时,对构件内各 个点受力情况十分关心,要引入应力这个概 个点受力情况十分关心,要引入应力这个概 应力 念。

第2章 轴向拉伸与压缩

第2章 轴向拉伸与压缩

2.5.5 塑性材料和脆性材料的主要区别
(5) 塑性材料承受动载荷的能力强,脆性材料承 受动荷载的能力很差,所以承受动载荷作用的构 件多由塑性材料制做。
2.5.5 塑性材料和脆性材料的主要区别
对于脆性材料,当应力达到其强度极限σb 时, 构件会断裂而破坏;对于塑性材料,当应力达到 屈服极限σs时,将产生显著的塑性变形,常会 使构件不能正常工作。
2.5.2 低碳钢拉伸时的力学性能
OB:弹性阶段__弹性极限σe BC:屈服阶段__屈服极限σs CD:强化阶段__强度极限σb DE:颈缩阶段
2.5.2 低碳钢拉伸时的力学性能
OB:弹性阶段---弹性极限σe OA:线性阶段---比例极限σP
σ=Eε 胡克定律
E: 弹性模量 σe≈σP
伸长率
Fbs
Fbs
Fbs
实际挤压面
挤压应力:
2.8.2 挤压和挤压强度计算
smaxBiblioteka dFbs(a)
smax
(b)
t
(b)
ssj bs
(c) (c)
挤压面 计算挤压面积 =dt
两种材料的极限应力分别是? 许用应力=?
2.6 拉压杆的变形
2.6 拉压杆的变形
例: 已知等截面直杆横截面面积A=500mm2,弹性模量 E=200GPa,试计算杆件总变形量。
6KN
8KN 5KN
3KN
1m
2m
1.5m
ΔL=?
2.8 拉压杆接头的计算
2.8 拉压杆接头的计算
2.8.1 剪切和剪切强度计算
(1) 多数塑性材料在弹性变形范围内,应力与应 变成正比关系,符合胡克定律;多数脆性材料在 拉伸或压缩时σ-ε图一开始就是一条微弯曲线, 即应力与应变不成正比关系,不符合胡克定律, 但由于σ-ε曲线的曲率较小,所以在应用上假设 它们成正比关系。

材料力学课件第2章拉伸、压缩-1

材料力学课件第2章拉伸、压缩-1
F
d
F
h
2、试验仪器:万能材料试验机;变形仪(常用引伸仪)。
二、低碳钢试件的拉伸图(P - l图)
sF A
L L
三、低碳钢试件的应力--应变曲线(s - 图)
e
d
c b a
(1) 低碳钢拉伸的弹性阶段(oa 段) 1、oa -- 比例段:
sp -- 比例极限
s
E
Etga
e
d
c b a
1.伸长率: 2.断面收缩率:
L1LL10000 AAA110000
3.脆性、塑性及相对性
以 500为界
s
s 0.2
0.2
s
s bL
四、无明显屈服现象的塑性材料
名义屈服应力: s 0.2 ,即此类材
料的失效应力。 %
五、铸铁拉伸时的机械性能
sbL -- 铸铁拉伸强度极限(失效应力)
paF Aa aF Acosascosa斜截面上的应力:pa scosa
斜截面上的应力:pa scosa F
k
F
分解:
a
sapacosascos2a F
k
k
pa ap asin a sc o sasin a s 2sin2 a
a
k
反映:通过构件上一点不同截面上应力变化情况。
基础。求内力的一般方法是截面法。 1. 截面法的基本步骤: ①截开:在所求内力的截面处,假想地用截面将杆件一分为二。 ②代替:任取一部分,其弃去部分对留下部分的作用,用作用
在截开面上相应的内力(力或力偶)代替。 ③平衡:对留下的部分建立平衡方程,根据其上的已知外力来
计算杆在截开面上的未知内力(此时截开面上的内力 对所留部分而言是外力)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)极限应力 1) 材料的强度遭到破坏时的应力称为极限应力。 2) 极限应力通过材料的力学性能试验测定。 3) 塑性材料的极限应力 s
4) 脆性材料的极限应力 b
Ⅱ拉(压)杆的强度计算/三 拉压杆的强度条件 (2)安全系数n 1) 对材料的极限应力打一个折扣,这个折扣通常用 一个大于1的系数来表达,这个系数称为安全系数。 2) 为什么要引入安全系数 ①准确性 ②简化过程和计算方法的精确性 ③材料的均匀性 ④构件的重要性 3) 安全系数的大致范围
F
F
F
FN=F
FN=F
F
Ⅱ拉(压)杆的强度计算/一 拉压杆横截面上的内力
2 求内力的方法—截面法 (3)应用截面法求内力时应注意:刚体模型适用的概念、 原理、方法,对变形固体的可用性与限制性。例如:力系 的等效与简化;平衡原理与平衡方法等。
Ⅱ拉(压)杆的强度计算/一 拉压杆横截面上的内力
2 求内力的方法—截面法 请判断下列 简化在什么情形 2 求内力的方法 — 截面法 下是正确的,什 么情形下是不正 确的:
1
10KN 10KN 1 6KN
2
3
6KN
2
3
Ⅱ拉(压)杆的强度计算/一 拉压杆的横截面上的内力 4 轴力图: 轴力与截面位置关系的图线称为轴力图.
1 F A 1 B 2
3F
2 2F C 4KN
9KN
3KN 2KN
F 2F
4KN 2KN 5KN
Ⅱ拉(压)杆的强度计算/一 拉压杆的横截面上的内力
F F 2F 2F
33 20MPa
20kN
二 拉压杆横截面及斜截面上的应力/例题
A
d
图示支架,AB杆为圆截面杆,d=30mm, BC杆为正方形截面杆,其边长a=60mm, P=10KN,试求AB杆和BC杆横截面上的 正应力。
FNAB sin 300 F
FNAB
300
C
B
FNAB cos 300 FNBC
(3)轴力的正负号规则
F
FN FN
F
拉力为正
FN

Ⅱ拉(压)杆的强度计算/一 拉压杆横截面上的内力
3 轴力及其符号规定
F
FN
FN

F
压力为负
FN
(4)轴力的单位: N(牛顿)
KN( 千牛顿)
Ⅱ拉(压)杆的强度计算/一 拉压杆的横截面上的内力
截面法求轴力例题1 20KN 1 2
20KN
40KN
20KN 20KN
2F
Ⅱ拉(压)杆的强度计算/一 拉压杆的横截面上的内力 图示砖柱,高h=3.5m,横截面面积A=370×370mm2, 砖砌体的容重γ =18KN/m3。柱顶受有轴向压力F=50KN, 试做此砖柱的轴力图。 F y 350 n n
F Ny
F
G Ay
50KN
F Ay FNy 0
FNy F Ay 50 2.46 y
圣维南原理:力作用于杆端的分布方式的不同,只影响杆 端局部范围的应力分布,影响区的轴向范围约离杆端1~2个 杆的横向尺寸。
F
F
Ⅱ拉(压)杆的强度计算/二 拉压杆横截面及斜截面上的应力
Ⅱ拉(压)杆的强度计算/二 拉压杆横截面及斜截面上的应力 3 拉(压)杆斜截面上的应力

F F
n
F
FN A
设一悬挂在墙上的弹簧秤,施加初拉 力将其钩在不变形的凸缘上。 若在弹簧的下端施加砝码,当所加砝 码小于初拉力时,弹簧秤的读数将保 持不变;当所加砝码大于初拉力时, 则下端的钩子与凸缘脱开,弹簧秤的 读数将等于所加砝码的重量。 实际上,在所加砝码小于初拉力时, 钩子与凸缘间的作用力将随所加砝码 的重量而变化。凸缘对钩子的反作用 力与砝码重量之和,即等于弹簧秤所 受的初拉力。
一 拉压杆横截面上的内力 二 拉压杆横截面及斜截面上的应力
三 拉压杆的强度计算
Ⅱ拉(压)杆的强度计算/一 拉压杆横截面上的内力
1 内力的概念 (1)内力的本义: 变形固体内部各质点间本身所具有的
吸引力和排斥力。 (2) 材料力学研究的内力:
变形引起的物体内部附加力,简称内力。 (3) 内力特点: 内力不能是任意的,内力与变形有关。
FNAB 150MPa A
a
a
二 拉压杆横截面及斜截面上的应力/例题
计算图示结构BC和CD杆横截面上的正应力值。 已知CD杆为φ 28的圆钢,BC杆为φ 22的圆钢。
D
以AB杆为研究对像 以CDE为研究对像 20kN
m m
A
0 FNAB 9 18 5 0 FNBC 10kN 0 FNCD 40kN

FN A
Ⅱ拉(压)杆的强度计算/二 拉压杆横截面及斜截面上的应力
(4) 实验验证
FN A
的适用条件:
① 只适用于轴向拉伸与压缩杆件,即杆端处力的合 力作用线与杆件的轴线重合。 ② 只适用于离杆件受力区域稍远处的横截面。
Ⅱ拉(压)杆的强度计算/二 拉压杆横截面及斜截面上的应力
Ⅱ拉(压)杆的强度计算/二 拉压杆横截面及斜截面上的应力
内力必经满足平衡条件
Ⅱ拉(压)杆的强度计算/一 拉压杆横截面上的内力
2 求内力的方法—截面法 (1)截面法的基本思想: 用假想的截面将物件截开,取任一部分为脱离体,用 静力平衡条件求出截面上内力。
F1 F3
F2
Fn 假想截面
Ⅱ拉(压)杆的强度计算/一 拉压杆横截面上的内力
2 求内力的方法—截面法 (2)截面法的步骤: 截开、取段、代力、平衡

α
X
FN 2 cos cos p cos A A
A cos

p

p sin
1 cos sin sin 2 2
σα——斜截面上的正应力;τα——斜截面上的切应力
二 拉压杆横截面及斜截面上的应力/3 拉压杆斜截面上的应力 讨论:
1) 00
max
0
2) 45
max
min
1 2 轴向拉压杆件的最大切应力发生在与
1 杆轴线成450截面上。 2
轴向拉压杆件的最大正应力发生在横 截面上。
45
F
0
45
0
45
0
45
0
切应力互等定理
3) 900 90 0 90
F F
二 拉压杆横截面及斜截面上的应力/例题
长为b、内径d=200mm、壁厚δ =5mm的薄壁圆环,承受p=2MPa的内 压力作用,如图a所示。试求圆环径向截面上的拉应力。
d
d
b
P
P
二 拉压杆横截面及斜截面上的应力/例题
d
d
b
y
P
P
FR d

m m FN
d pbd FR 0 ( pb d ) sin 0 sind pbd 2 2
1 1
2 40KN
FN 1
FN 2
FN 1 0
1
FN 2 40kN
Ⅱ拉(压)杆的强度计算/一 拉压杆的横截面上的内力 截面法求轴力例题2
2F F 1 2F F 2
1
2F
2
2 F
2
Ⅱ拉(压)杆的强度计算/一 拉压杆的横截面上的内力 截面法求轴力课堂练习题1:
1 F
2
3
F
2
1
3
Ⅱ拉(压)杆的强度计算/一 拉压杆的横截面上的内力 截面法求轴力课堂练习题2:
2 拉压杆横截面上的应力 (2)作出假设:横截面在变形前后均保持为一平面——平面假设 横截面上每一点的轴向变形相等。
Ⅱ拉(压)杆的强度计算/二 拉压杆横截面及斜截面上的应力 (3)理论分析 横截面上应力为均匀分布,以表示。
F F F FN=F
F

A
根据静力平衡条件: FN dF d A A 即
Ⅱ拉(压)杆的强度计算/一 拉压杆横截面上的内力
2 求内力的方法—截面法 请判断下列 简化在什么情形 下是正确的,什 么情形下是不正 确的:
Ⅱ拉(压)杆的强度计算/一 拉压杆横截面上的内力
3 轴力及其符号规定 (1)轴力— 轴向拉压杆的内力,其作用线与杆的轴线重合。
(2)轴力的符号用 FN 表示
Ⅱ拉(压)杆的强度计算/二 拉压杆横截面及斜截面上的应力 2 拉压杆横截面上的应力 研究方法: 实验观察
作出假设
理论分析
实验验证
(1)实验观察
F
a a b b
c d
c d
F
变形前:
ab // cd
变形后: ab // cd // ab // cd
Ⅱ拉(压)杆的强度计算/二 拉压杆横截面及斜截面上的应力
Ⅱ拉(压)杆的强度计算/二 拉压杆横截面及斜截面上的应力 F1
ΔFQy
DF
ΔA
Δ FN
1 应力的概念
ΔFQz
F2
全应力
p lim
DF DA
DA0
(3)全应力及应力分量
正应力 lim DFN dFN DA0
DA dA
剪应力 lim DA0
DFQ dFQ DA dA
Ⅱ拉(压)杆的强度计算/二 拉压杆横截面及斜截面上的应力 1 应力的概念 (4) 应力的单位 应力是一向量,其量纲是[力]/[长度]²。应力的国际单 位为牛顿/米²,称为帕斯卡,简称帕(Pa). 1Pa=1N/m2 1MPa=106Pa=1N/mm2 1GPa=109Pa
材 料 力 学
讲授:顾志荣
材料力学
第二章 拉伸与压缩
相关文档
最新文档