外延生长工艺原理10
外延生长

外延生长的定义与种类
定义:外延生长就是指在某种起始单晶(衬底)上生长 具有相同或接近的结晶学取向的薄层单晶的过程
1. 液相外延(LPE)
2. 金属有机化学汽相沉积(MOCVD)
3. 分子束外延(MBE)4. 化学分子束外延 NhomakorabeaCBE)
液相外延(LPE)
液相外延是指在某种饱和或过饱和溶液中在单晶衬底 上定向生长单晶薄膜的方法。生长的单晶薄膜可以与衬底 的晶向相同,也可以相对于衬底表面的晶向具有另一种特 定的晶格取向。液相外延时,首先在较高温度下把加有溶 质的溶剂溶解成溶液,当冷却到较低温度时,溶液就变成 过饱和状态。当衬底与这种溶液接触并逐渐降温时,溶质 就将从溶剂里析出,在衬底上延伸出新的单晶层,生长层 的组分(包括掺杂)由相图来决定。 液相外延技术于1963年由内尔逊(Nelson)提出,此后应 用该技术已经研制和生产出许多半导体光电子器件,其中 主要的是异质结构器件。它包括探测器、发光管、激光器、 太阳能电池、半导体光阴极和光电子集成器件。
右图表示GaAs液相和固相的平衡相图。 A代表Ga原子,B代表As原子,TA,TB,TAB分 别代表Ga,As和GaAs的熔点,各自为 29.8℃,810℃和1238℃。用Ga做溶剂,在 低于GaAs熔点温度下,利用不同温度下 GaAs在Ga中的溶解度可以生长GaAs晶体。 如起始Ga溶液内组成为x2,当温度为T3时, 若溶液与GaAs衬底接触,这时由于处于液相 区,溶液未饱和,所以衬底GaAs将继续被溶 入(回熔)Ga溶液中,是溶液中As含量增加。 相点C向右移动至D点后,达到该温度下的饱 和状态,GaAs停止溶解。如溶液组成为x2的 Ga溶液,在T2温度下正好处于饱和状态,衬 底GaAs与其接触,不发生回熔。这时如果降 温,溶液呈过饱和状态,如溶液不存在过冷, 那么就会有GaAs析出。若温度从T2降到T1, 则相当于溶液中x2-x1原子比的GaAs将外延 在衬底上。析出GaAs的量和溶液中剩余 GaAs的量可用杠杆定理求得。
SIC外延生长法的工艺流程

SIC外延生长法的工艺流程SIC外延生长法的工艺流程序号:1SIC外延生长法是一种重要的半导体材料生长技术,被广泛应用于功率电子、射频器件和光电子器件等领域。
它通过在SIC衬底上连续沉积SiC晶体层,实现了对SiC材料的高质量控制和大面积生长。
在本文中,我们将深入探讨SIC外延生长法的工艺流程,以帮助读者更好地理解和学习该技术。
序号:2SIC外延生长法的基本原理是在惰性气体气氛中,通过化学气相沉积(CVD)的方法,将硅和碳源气体分解成SiC气体,然后在SIC衬底上沉积成SIC晶体层。
在整个工艺过程中,需要控制好气氛、温度和气体流量等参数,以保证SIC晶体层的质量和厚度的一致性。
序号:3具体而言,SIC外延生长法的工艺流程可以分为以下几个关键步骤:a. 衬底准备:选择合适的SIC衬底,并进行表面处理,以去除杂质和缺陷。
通常使用化学气相沉积(CVD)或物理气相沉积(PVD)等方法来制备合适的SIC衬底。
b. 热解预处理:将SIC衬底放置在高温炉中,通过热解预处理,去除表面的氧化物和其它杂质。
这一步骤也有助于提高SIC晶体层的生长质量。
c. 生长条件控制:在热解预处理后,将SIC衬底放置在CVD反应室中。
控制好反应温度、压力和气体流量等参数,以实现SiC晶体层的均匀和连续生长。
通常,选择适当的碳源和硅源气体,如甲烷(CH4)和四氯化硅(SiCl4),作为SIC生长的原料气体。
d. 控制生长时间:根据所需的SIC晶体层厚度和生长速率,控制生长时间。
通过调整反应室中的反应气体流量和温度,可以有效控制SIC晶体层的生长速率。
e. 冷却和退火:在SIC晶体层生长完成后,将SIC衬底从反应室中取出,并进行冷却和退火处理。
这一步骤有助于提高晶体层的结晶质量、降低残余应力,并改善界面的质量。
序号:4总结回顾:SIC外延生长法是一种关键的半导体材料生长技术,其工艺流程包括衬底准备、热解预处理、生长条件控制、控制生长时间以及冷却和退火等关键步骤。
第2章外延及CVD工艺

可形成接近突变p—n结
外延分类:气相外延(VPE)--常用
液相外延(LPE)--ⅢⅤ
.
固相外延(SPE)--熔融在结晶
.
分子束外延(MBE)--超薄
3/31/2020
化学气相淀积(CVD)----低温,非晶 2
材料异同
同质结 Si-Si 异质结GaAs--AlxGa(1-x) As 温度:高温1000℃以上
硅生长---腐蚀速率的各向异型是发生漂移
的根本原因.
3/31/2020
21
3.参数测量
参数内容
常用测量方法
外延层厚度
磨角染色法 层错法
红外椭圆偏振仪法
红外反射干涉法
电阻率
四探针法 三探针法
C-V 法 扩展电阻法
少子寿命
脉冲 MOS 电容法
杂质分布
C-V 法 扩展电阻法 微分电导和霍尔效应
放射性元素示踪分析
N2冲洗
10L/min 260L/min
10min 1min 6min
3/31/2020
11
外延生长程序
(1)N2 预冲洗 (2)H2 预冲洗 (3)升温 1
260L/min 4min
260L/min 5min
850ºC
5min
(4)升温 2
1170ºC
6min
(5)HCl 排空
1.3L/min 1min
衬底中的杂质因挥发等而进入气流,然 后重新返回外延层,称为气相自掺杂。
气源或外延系统中的污染杂质进入外延, 称为系统污染。
3/31/2020
14
同型杂质
异型杂质
3/31/2020
15
四. 外延层中的缺陷与检测
工艺晶体外延生长技术

工艺晶体外延生长技术工艺晶体外延生长技术是一种关于在晶体中维持一个晶体的生长界面,使得它能够以相同的晶体结构在另一个晶体表面上增长的方法。
这种技术在许多领域中都有广泛的应用,例如半导体材料生长、太阳能电池、发光二极管(LED)等。
工艺晶体外延生长技术的基本原理是利用外延原理,通过在已有的晶体表面上沉积新的晶体材料来实现晶体的生长。
在这个过程中,需要先选择一个基底晶体材料,然后在基底上通过一系列的加热和化学反应来使新的晶体材料生长。
这种技术的主要步骤包括:首先,选择一个合适的基底晶体材料,通常是具有与待生长晶体材料相同或相近晶格结构的材料。
然后,在基底的表面上制备一个“种子层”,这个层往往通过物理气相沉积或化学气相沉积等方法制备。
接下来,在种子层上进行外延生长,一般采用化学气相沉积、分子束外延或金属有机气相外延等方法。
在晶体的生长过程中,需要控制和调节温度、压力、气氛等参数,以实现所需的晶体质量和生长速度。
工艺晶体外延生长技术的优点之一是能够控制晶体的尺寸和形状,可以生长出具有高度均匀性和大面积的晶体。
另外,这种技术还可以在晶体中引入掺杂物,使得晶体具有特殊的电学、光学、磁学性质,进而应用于各种领域。
然而,工艺晶体外延生长技术也存在一些挑战和问题。
例如,晶体生长过程中的杂质和缺陷会对晶体的质量和性能产生不利影响,需要通过优化生长条件和材料选择来解决。
此外,这种技术还需要高精度的仪器和设备来控制生长过程中的各种参数,因此对实验条件和实验操作人员的要求较高。
总之,工艺晶体外延生长技术以其精确控制晶体生长和材料性能的能力,在半导体材料生长、光电子器件等领域具有重要的应用前景。
随着技术的进步和发展,相信这种技术将在更多领域中发挥作用,为科学研究和工业应用提供更多可能性。
工艺晶体外延生长技术在半导体材料生长领域有着重要的应用。
半导体材料是制造集成电路和光电子器件的基础材料,而工艺晶体外延生长技术可以实现高质量、大面积的半导体晶体生长。
外延生长原理概述

外延生长原理概述1. 引言外延生长原理是材料科学与工程领域一个重要的概念,它在材料的生长和形态控制方面起着关键作用。
本文将对外延生长原理进行概述,从基本原理到应用案例,以帮助读者更全面、深刻地理解这个概念。
2. 外延生长原理的基本概念外延生长是指在固体表面上沉积出与基底晶体结构相同的新晶体层的过程。
这种生长方式通常需要在高温条件下进行,通过在基底表面提供适当的气氛和材料源,使新晶体层的原子能够以正确的方式沉积在基底上。
外延生长可以实现单晶材料的制备,并且具有高结晶质量和较低的缺陷密度。
3. 外延生长的关键影响因素外延生长的过程受到多种因素的影响。
其中,温度、气氛、材料源和基底表面的结构是影响外延生长质量和形态控制的关键因素。
适当的温度控制可以提供足够的能量使原子沉积,同时避免过快或过慢的生长。
气氛和材料源的组成和流量可以调节原子的供应和表面反应速率,从而影响沉积速度和杂质控制。
基底表面的结构和取向对晶体生长的方向和取向有重要影响。
4. 外延生长的应用案例外延生长在半导体器件和光电子器件制造中具有广泛的应用。
外延生长被用于制备各种半导体材料如硅、镓化合物和氮化物等的薄膜和异质结构。
通过控制外延生长的条件和参数,可以实现不同的材料和结构,从而满足不同器件的需求。
外延生长还用于制备纳米材料、量子结构和超晶格等功能材料,以及太阳能电池、激光器和传感器等光电子器件。
5. 总结和回顾外延生长是一种重要的材料生长技术,具有广泛的应用前景。
本文概述了外延生长原理的基本概念、关键影响因素和应用案例。
通过深入探讨这些方面,我希望读者能够更全面、深刻地理解外延生长原理,并认识到它在材料科学与工程中的重要性和潜力。
意见和观点:外延生长技术作为一种重要的材料制备技术,在现代科技发展中发挥着关键的作用。
通过外延生长,可以获得高质量和精密控制的薄膜和异质结构,为各种器件的制备和性能提升提供了重要手段。
随着新材料的不断涌现和对功能材料的需求增加,外延生长技术将继续发展壮大,并为科学研究和技术创新提供更广阔的空间。
外延生长工艺原理10

外延技术用于MOS器件集成化可显著提高电路的速 外延技术用于MOS器件集成化可显著提高电路的速 度
提高电阻率可以提高载流子的迁移率,从而增大了 MOS电路的充放电电流,缩短了充放电时间,提高工作速 MOS电路的充放电电流,缩短了充放电时间,提高工作速 度。 减小MOS器件的电容效应,高电阻率的外延层使器件的 减小MOS器件的电容效应,高电阻率的外延层使器件的 寄生电容,扩散电容均减小,缩短了充放电时间。
生长速率与温度的关系 在较高高温下,取决于气体源分子转移到生长层 表面的快慢 质量转移控制。 在较底温度时,取决于生长层表面进行的化学反 应速率 表面反应控制。
外延层中的杂质分布
自掺杂:凡是非反应气体中有意掺入的杂质所引起的对外 延层施加的掺杂 原因: 1、由于外延生长必须在1000度以上的高温下进行的, 、由于外延生长必须在1000度以上的高温下进行的, 不可避免的会存在杂质的热扩散和热迁移 2、由于反应产物氯化氢对衬底的腐蚀,其中的杂质就 会释放进入外延层
降低自掺杂效应的方法
在衬底上生长一层较薄的外延层,由它盖住衬底,阻止杂 质的蒸发 外延生长前用氯化氢气相抛光 除掉衬底表面的微量污染 物。 可以经过离子注入的埋层来降低衬底表面的杂质浓度。
外延层生长缺陷
按位置分类有表面缺陷和体内缺陷 在一定的生长速率 在一定的生长速率下,晶格缺陷密度随温度的降低而增加 生长速率下,晶格缺陷密度随温度的降低而增加
采用RF射频加热的理由: 采用RF射频加热的理由: RF射频加热的理由
1、升温速度快,降温速度快 2、温度稳定性好 3、射频感应加热可使反应器腔体壁温度远低于石墨基座 保证产物“择温淀积” 保证产物“择温淀积”在硅衬底上。
,
外延生长的工艺环境
分子束外延生长的原理

分子束外延生长的原理
分子束外延生长(Molecular Beam Epitaxy,简称MBE)是一种用于在晶体表面上逐层生长单晶薄膜的方法。
其原理如下:
1. 分子束发射:首先,通过热蒸发或激光蒸发等方法,将所需材料制成独立的分子束。
这些分子束含有待生长薄膜的原子或分子。
2. 分子束定向:分子束通过使用适当的准直光学系统进行定向,确保其能够以高度定向的方式击中生长基底。
3. 生长基底准备:生长基底(通常是单晶基底)表面需要被清洁和准备好,以确保分子束能够有效地吸附和生长。
4. 吸附和生长:当分子束击中生长基底时,原子或分子会吸附在基底上。
在吸附过程中,吸附物与基底原子相互作用,形成一个层状结构。
分子束在生长过程中控制的参数包括温度、压力和生长速率等。
5. 脱附和富集:一旦层状结构形成并达到所需厚度,可以停止分子束的发射并降低温度,以使薄膜表面的非平衡态物种重新脱附。
这一步骤可以减少杂质和缺陷的存在,提高薄膜质量。
MBE方法能够实现高度控制的单层生长,具有较低的污染和表面缺陷,被广泛应用于半导体器件和纳米结构材料的制备中。
外延生长的基本原理

外延生长的基本原理一、引言外延生长是一种重要的制备薄膜和纳米结构的方法,它在微电子学、光电子学、能源材料等领域得到广泛应用。
本文将介绍外延生长的基本原理。
二、外延生长的定义外延生长是指在晶体表面上沉积一个与衬底同晶向的单晶薄膜或纳米结构。
这个过程可以通过化学气相沉积(CVD)、分子束外延(MBE)等方法实现。
三、衬底选择衬底是外延生长中非常重要的因素,因为它决定了沉积物的结构和性质。
通常选择衬底与待沉积物具有相同或相似的晶格常数和热膨胀系数,以便保证外延层与衬底之间具有良好的匹配度。
同时,衬底表面应该光滑平整,以便于沉积物在其上均匀生长。
四、晶体表面准备在进行外延生长前,需要对晶体表面进行处理,以去除表面杂质和缺陷,并提高其结晶质量。
这个过程称为表面准备。
表面准备的方法包括机械抛光、化学腐蚀、离子注入等。
五、生长过程在外延生长的过程中,先将衬底放置于反应室中,然后向反应室中送入所需气体,通过加热或辅助电场等手段使气体分解并在衬底表面上沉积出晶体。
沉积物的厚度和形貌可以通过控制反应条件(例如温度、压力、气体流量等)来调节。
六、外延生长的基本原理外延生长的基本原理是晶体生长原理。
当气相中存在足够多的原子或分子时,它们会在晶体表面吸附并形成临界核心。
随着吸附原子或分子数量的增加,临界核心逐渐扩大并形成一个新的晶体层。
这个过程可以持续进行直到达到所需厚度。
七、结论综上所述,外延生长是一种重要的制备薄膜和纳米结构的方法,其基本原理是晶体生长原理。
在进行外延生长前需要选择合适的衬底和进行表面处理。
通过控制反应条件可以调节沉积物的厚度和形貌。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同质外延 当衬底与外延层具有相同材料
异质外延 外延结
扩散结
外延形成的PN结不是通过杂质补偿形成的,接近于理想 的突变结
外延层的优点
可以获得理想高质量的硅材料
在单晶材料加工过程中,不可避免地引入严重的表面机 械损伤及表面自吸附足够多的杂质,虽然经历了切割,研 磨和抛光,也许能达到很好的光洁度和平整度,但是也存 在肉眼看不见的缺陷。
生长速率与温度的关系 在较高高温下,取决于气体源分子转移到生长层表面
的快慢 质量转移控制。 在较底温度时,取决于生长层表面进行的化学反应速
率 表面反应控制。
外延层中的杂质分布
自掺杂:凡是非反应气体中有意掺入的杂质所引起的对外 延层施加的掺杂
原因: 1、由于外延生长必须在1000度以上的高温下进行的,不 可避免的会存在杂质的热扩散和热迁移 2、由于反应产物氯化氢对衬底的腐蚀,其中的杂质就会 释放进入外延层
在一定的淀积温度下,晶格缺陷又随生长速率的增加而增 多
降低自掺杂效应的方法
在衬底上生长一层较薄的外延层,由它盖住衬底,阻止杂 质的蒸发
外延生长前用氯化氢气相抛光 除掉衬底表面的微量污染 物。
可以经过离子注入的埋层来降低衬底表面的杂质浓度。
精品课件!
精品课件!
外延层生长缺陷
按位置分类有表面缺陷和体内缺陷 在一定的生长速率下,晶格缺陷密度随温度的降低而增加
外延技术用于MOS器件集成化可显著提高电路的 速度
提高电阻率可以提高载流子的迁移率,从而增大了MOS 电路的充放电电流,缩短了充放电时间,提高工作速度。 减小MOS器件的电容效应,高电阻率的外延层使器件的 寄生电容,扩散电容均减小,缩短了充放电时间。
可以解决CMOS集成电路的闭锁效应
CMOS闭锁效应
可以解决击穿电压和集电区串联电阻之间的矛盾
外延晶层制备技术的灵活性由利于提高IC集成度 实现隔离技术:由于在进行隔离墙扩散时,横向扩散与纵 向扩散的距离几乎相等,如果外延层较厚,相应的增加了 横向扩散的距离,降低了集成度。
有利于提高少子寿命,降低IC存储单元的漏电流 集成电路的有源区在高温的条件下常会诱生处大量的热缺 陷和微缺陷 ,这些缺陷加速了金属杂质的扩散,杂质与 微缺陷相互作用,导致漏电流增大,发生低击穿现象,功 耗增大,成品率降低。
采用RF射频加热的理由:
1、升温速度快,降温速度快 2、温度稳定性好
3、射频感应加热可使反应器腔体壁温度远低于石墨基座 ,
保证产物“择温淀积”在硅衬底上。
外延生长的工艺环境
生长速率与浓度的关系 在硅气相淀积中,在低浓度时生长速率与浓度成正比,
高浓度时,反而降低,主要是产生了逆向腐蚀作用。
CMOS倒相器中的寄生元器件结构
外延方法
物理气相外延 蒸发 溅射 ,化学气相外延 通过化学反 应来激活或强化生长的过程
液相外延 金属有机CVD 淀积金属以及氧化物的多晶或无定型膜 分子束外延 淀积GaAs异质外延反应在硅的表面生长一层
单晶硅,SiCl4+2H2=Si+4HCl。
反应设备
采用卧室的反应器 由石英反应腔,石墨基座,高频感应 加热系统等
反应流程
装片 通氢气清除石英管内中空气 升温,一般为1100-1200℃ 通氢气消除表面氧化层或HCl去除表面损伤层。 去除HCl和杂质 通氢气及掺杂源,获得经过掺杂的硅层 关闭氢气,恒温数分钟。 缓慢降温,300℃下可以取片