外延生长工艺原理
第六章外延生长
3、超饱和度(supersaturation)模型 超饱和度(supersaturation)
(1) 超饱和度的定义: 超饱和度的定义:
当超饱和度为正 当超饱和度为正时,系统为超饱和,—— 外延生长; 外延生长; 系统为超饱和, 当超饱和度为负 当超饱和度为负时,系统不饱和, 系统不饱和, —— 刻蚀过程。 刻蚀过程。
d. 其他:RTCVD外延、UHVCVD外延、离子束外延等等 其他:RTCVD外延 UHVCVD外延 外延、 外延、
3、 外延层的作用:独立控制薄膜晶体结构(组分)、厚度、 外延层的作用:独立控制薄膜晶体结构 组分)、厚度、 晶体结构( )、厚度
杂质种类及掺杂分布
(1) 双极工艺:器件隔离、解决集电极高击穿电压与串连电阻的矛盾 双极工艺:器件隔离、 (2) CMOS工艺:减小闩锁(Latch-up)效应 CMOS工艺 减小闩锁(Latch-up) 工艺: (3) GaAs工艺:形成特定的器件结构层 GaAs工艺 形成特定的器件结构层 工艺: (4) 其他:制作发光二极管、量子效应器件等 其他:制作发光二极管 量子效应器件等 发光二极管、
超饱和度模型未能预测,因为低浓度下外延生长速率是受气 超饱和度模型未能预测, 相质量输运限制的。 质量输运限制的
c. 超饱和度的值过大,会影响单晶薄膜的质量(与薄膜生长模式 超饱和度的值过大,会影响单晶薄膜的质量(
有关)。 有关)。
4、薄膜生长的三种模式: 薄膜生长的三种模式:
(1) 逐层生长( 逐层生长(Layer Growth) 理想的外延生长模式 Growth)
该临界尺寸可写为: 该临界尺寸可写为:
其中,U 是表面的界面自由能,V 是原子体 其中, 是表面的界面自由能, 积, σ0 是反应剂的分气压与平衡气压的比 值(称为饱和度)。 称为饱和度 饱和度)。
第5章 硅外延生长
形状象沙丘,用肉眼可看见。
防止角锥体产生采取的措施: ①选择与(111)面朝〈110〉偏离3~4°的晶向切片, 提高临界生长速度; ②降低生长速度;
③防止尘埃及碳化物沾污,注意清洁等。
41
雾状表面缺陷 ①雾圈 ②白雾
①雾圈 ②白雾
③残迹
④花雾
③残迹
④花雾
42
角锥体
43
3.亮点
外形为乌黑发亮的小圆点。 40~60倍显微镜下呈发亮的 小突起。 大者为多晶点,可因系统沾污,反应室硅粉,SiO2粒脱 落,气相抛光不当或衬底装入反应室前表面有飘落的灰 尘等引起。 细小的亮点多半由衬底抛光不充分或清洗不干净造成。
3.气流速度对生长速率的影响
反应物浓度和生长温度一定时,水平式反应器中的生长速率与 总氢气流速的平方根成正比。 立式反应器,流速较低时生长速度与总氢气流速平方根成比例; 流速超过一定值后,生长速率达到稳定的极限值而不再增加。
21
4.衬底晶向的影响
常压外延生长条件下 (SiCl4+H2源,生长温度T=1280℃,SiCl4浓度0.1%)
决定速率的步骤称速率控制步骤。
24
低温时,固-气表面上的反应最慢 整个生长过程的速度。
决定
过程称表面反应控制过程或动力学控制过程。
正常条件下,表面反应很快,主气流中的反 应物以扩散方式输运到表面的过程最慢,过程 称质量输运控制过程。
25
均质反应模型:
外延生长反应是在衬底表面几微米的空间中发生; 反应生成的原子或原子团再转移到衬底表面上完成晶 体生长; 反应浓度很大,温度较高时可能在气相中成核并长大; 例,高浓度SiH4高温热分解。 结论:复相反应和均质反应, 都认为反应物或反应生成 物要通过体系中的边界层达到衬底表面。
外延生长工艺原理10
生长速率与温度的关系 在较高高温下,取决于气体源分子转移到生长层表面
的快慢 质量转移控制。 在较底温度时,取决于生长层表面进行的化学反应速
率 表面反应控制。
外延层中的杂质分布
自掺杂:凡是非反应气体中有意掺入的杂质所引起的对外 延层施加的掺杂
原因: 1、由于外延生长必须在1000度以上的高温下进行的,不 可避免的会存在杂质的热扩散和热迁移 2、由于反应产物氯化氢对衬底的腐蚀,其中的杂质就会 释放进入外延层
反应设备
采用卧室的反应器 由石英反应腔,石墨基座,高频感应 加热系统等
反应流程
装片 通氢气清除石英管内中空气 升温,一般为1100-1200℃ 通氢气消除表面氧化层或HCl去除表面损伤层。 去除HCl和杂质 通氢气及掺杂源,获得经过掺杂的硅层 关闭氢气,恒温数分钟。 缓慢降温,300℃下可以取片
外延技术用于MOS器件集成化可显著提高电路的 速度
提高电阻率可以提高载流子的迁移率,从而增大了MOS 电路的充放电电流,缩短了充放电时间,提高工作速度。 减小MOS器件的电容效应,高电阻率的外延层使器件的 寄生电容,扩散电容均减小,缩短了充放电时间。
可以解决CMOS集成电路的闭锁效应
CMOS闭术的灵活性由利于提高IC集成度 实现隔离技术:由于在进行隔离墙扩散时,横向扩散与纵 向扩散的距离几乎相等,如果外延层较厚,相应的增加了 横向扩散的距离,降低了集成度。
有利于提高少子寿命,降低IC存储单元的漏电流 集成电路的有源区在高温的条件下常会诱生处大量的热缺 陷和微缺陷 ,这些缺陷加速了金属杂质的扩散,杂质与 微缺陷相互作用,导致漏电流增大,发生低击穿现象,功 耗增大,成品率降低。
采用RF射频加热的理由:
1、升温速度快,降温速度快 2、温度稳定性好
外延生长
外延生长的定义与种类
定义:外延生长就是指在某种起始单晶(衬底)上生长 具有相同或接近的结晶学取向的薄层单晶的过程
1. 液相外延(LPE)
2. 金属有机化学汽相沉积(MOCVD)
3. 分子束外延(MBE)4. 化学分子束外延 NhomakorabeaCBE)
液相外延(LPE)
液相外延是指在某种饱和或过饱和溶液中在单晶衬底 上定向生长单晶薄膜的方法。生长的单晶薄膜可以与衬底 的晶向相同,也可以相对于衬底表面的晶向具有另一种特 定的晶格取向。液相外延时,首先在较高温度下把加有溶 质的溶剂溶解成溶液,当冷却到较低温度时,溶液就变成 过饱和状态。当衬底与这种溶液接触并逐渐降温时,溶质 就将从溶剂里析出,在衬底上延伸出新的单晶层,生长层 的组分(包括掺杂)由相图来决定。 液相外延技术于1963年由内尔逊(Nelson)提出,此后应 用该技术已经研制和生产出许多半导体光电子器件,其中 主要的是异质结构器件。它包括探测器、发光管、激光器、 太阳能电池、半导体光阴极和光电子集成器件。
右图表示GaAs液相和固相的平衡相图。 A代表Ga原子,B代表As原子,TA,TB,TAB分 别代表Ga,As和GaAs的熔点,各自为 29.8℃,810℃和1238℃。用Ga做溶剂,在 低于GaAs熔点温度下,利用不同温度下 GaAs在Ga中的溶解度可以生长GaAs晶体。 如起始Ga溶液内组成为x2,当温度为T3时, 若溶液与GaAs衬底接触,这时由于处于液相 区,溶液未饱和,所以衬底GaAs将继续被溶 入(回熔)Ga溶液中,是溶液中As含量增加。 相点C向右移动至D点后,达到该温度下的饱 和状态,GaAs停止溶解。如溶液组成为x2的 Ga溶液,在T2温度下正好处于饱和状态,衬 底GaAs与其接触,不发生回熔。这时如果降 温,溶液呈过饱和状态,如溶液不存在过冷, 那么就会有GaAs析出。若温度从T2降到T1, 则相当于溶液中x2-x1原子比的GaAs将外延 在衬底上。析出GaAs的量和溶液中剩余 GaAs的量可用杠杆定理求得。
SIC外延生长法的工艺流程
SIC外延生长法的工艺流程SIC外延生长法的工艺流程序号:1SIC外延生长法是一种重要的半导体材料生长技术,被广泛应用于功率电子、射频器件和光电子器件等领域。
它通过在SIC衬底上连续沉积SiC晶体层,实现了对SiC材料的高质量控制和大面积生长。
在本文中,我们将深入探讨SIC外延生长法的工艺流程,以帮助读者更好地理解和学习该技术。
序号:2SIC外延生长法的基本原理是在惰性气体气氛中,通过化学气相沉积(CVD)的方法,将硅和碳源气体分解成SiC气体,然后在SIC衬底上沉积成SIC晶体层。
在整个工艺过程中,需要控制好气氛、温度和气体流量等参数,以保证SIC晶体层的质量和厚度的一致性。
序号:3具体而言,SIC外延生长法的工艺流程可以分为以下几个关键步骤:a. 衬底准备:选择合适的SIC衬底,并进行表面处理,以去除杂质和缺陷。
通常使用化学气相沉积(CVD)或物理气相沉积(PVD)等方法来制备合适的SIC衬底。
b. 热解预处理:将SIC衬底放置在高温炉中,通过热解预处理,去除表面的氧化物和其它杂质。
这一步骤也有助于提高SIC晶体层的生长质量。
c. 生长条件控制:在热解预处理后,将SIC衬底放置在CVD反应室中。
控制好反应温度、压力和气体流量等参数,以实现SiC晶体层的均匀和连续生长。
通常,选择适当的碳源和硅源气体,如甲烷(CH4)和四氯化硅(SiCl4),作为SIC生长的原料气体。
d. 控制生长时间:根据所需的SIC晶体层厚度和生长速率,控制生长时间。
通过调整反应室中的反应气体流量和温度,可以有效控制SIC晶体层的生长速率。
e. 冷却和退火:在SIC晶体层生长完成后,将SIC衬底从反应室中取出,并进行冷却和退火处理。
这一步骤有助于提高晶体层的结晶质量、降低残余应力,并改善界面的质量。
序号:4总结回顾:SIC外延生长法是一种关键的半导体材料生长技术,其工艺流程包括衬底准备、热解预处理、生长条件控制、控制生长时间以及冷却和退火等关键步骤。
第2章外延及CVD工艺
可形成接近突变p—n结
外延分类:气相外延(VPE)--常用
液相外延(LPE)--ⅢⅤ
.
固相外延(SPE)--熔融在结晶
.
分子束外延(MBE)--超薄
3/31/2020
化学气相淀积(CVD)----低温,非晶 2
材料异同
同质结 Si-Si 异质结GaAs--AlxGa(1-x) As 温度:高温1000℃以上
硅生长---腐蚀速率的各向异型是发生漂移
的根本原因.
3/31/2020
21
3.参数测量
参数内容
常用测量方法
外延层厚度
磨角染色法 层错法
红外椭圆偏振仪法
红外反射干涉法
电阻率
四探针法 三探针法
C-V 法 扩展电阻法
少子寿命
脉冲 MOS 电容法
杂质分布
C-V 法 扩展电阻法 微分电导和霍尔效应
放射性元素示踪分析
N2冲洗
10L/min 260L/min
10min 1min 6min
3/31/2020
11
外延生长程序
(1)N2 预冲洗 (2)H2 预冲洗 (3)升温 1
260L/min 4min
260L/min 5min
850ºC
5min
(4)升温 2
1170ºC
6min
(5)HCl 排空
1.3L/min 1min
衬底中的杂质因挥发等而进入气流,然 后重新返回外延层,称为气相自掺杂。
气源或外延系统中的污染杂质进入外延, 称为系统污染。
3/31/2020
14
同型杂质
异型杂质
3/31/2020
15
四. 外延层中的缺陷与检测
外延生长工艺原理10
外延技术用于MOS器件集成化可显著提高电路的速 外延技术用于MOS器件集成化可显著提高电路的速 度
提高电阻率可以提高载流子的迁移率,从而增大了 MOS电路的充放电电流,缩短了充放电时间,提高工作速 MOS电路的充放电电流,缩短了充放电时间,提高工作速 度。 减小MOS器件的电容效应,高电阻率的外延层使器件的 减小MOS器件的电容效应,高电阻率的外延层使器件的 寄生电容,扩散电容均减小,缩短了充放电时间。
生长速率与温度的关系 在较高高温下,取决于气体源分子转移到生长层 表面的快慢 质量转移控制。 在较底温度时,取决于生长层表面进行的化学反 应速率 表面反应控制。
外延层中的杂质分布
自掺杂:凡是非反应气体中有意掺入的杂质所引起的对外 延层施加的掺杂 原因: 1、由于外延生长必须在1000度以上的高温下进行的, 、由于外延生长必须在1000度以上的高温下进行的, 不可避免的会存在杂质的热扩散和热迁移 2、由于反应产物氯化氢对衬底的腐蚀,其中的杂质就 会释放进入外延层
降低自掺杂效应的方法
在衬底上生长一层较薄的外延层,由它盖住衬底,阻止杂 质的蒸发 外延生长前用氯化氢气相抛光 除掉衬底表面的微量污染 物。 可以经过离子注入的埋层来降低衬底表面的杂质浓度。
外延层生长缺陷
按位置分类有表面缺陷和体内缺陷 在一定的生长速率 在一定的生长速率下,晶格缺陷密度随温度的降低而增加 生长速率下,晶格缺陷密度随温度的降低而增加
采用RF射频加热的理由: 采用RF射频加热的理由: RF射频加热的理由
1、升温速度快,降温速度快 2、温度稳定性好 3、射频感应加热可使反应器腔体壁温度远低于石墨基座 保证产物“择温淀积” 保证产物“择温淀积”在硅衬底上。
,
外延生长的工艺环境
微电子工艺(3)----第三章外延
C Ce ( x) s 2
自掺杂效应
高温外延时,高掺杂衬底杂质 反扩散(蒸发)到气相粘滞层 (边界层),再进入外延层的 现象。 自掺杂效应是气相外延的本征 效应,不可能完全避免。
3.2.6 外延方法
低压外延 选择外延 SOI技术
低压外延
目的:减小自掺杂效应 压力:1*103—2*104Pa 原因: 低压气体扩散速率快,衬底逸出杂质可快速穿过边界层(滞留 层),被排除反应室,重新进入外延层机会减小; 停止外延时,气体易清除,多层外延时缩小了过渡区,冷壁系统 和热基座间无涡流,改善ρ;减小外延层图形的漂移和畸变; 温度影响 压力降低,生长外延层温度下限也降低,T↑,G↑; 问题:易泄漏;基座与衬底间温差大;基座、反应室在减压时放 出吸附气体;外延生长温度低等-----外延层晶体完整性受到一定 影响
微电子工艺
第3章 外延
(Epitaxy)
田
丽
第3章 外延
3.1 概述 3.2 气相外延 3.3 分子束外延 3.4 其它外延 3.5 外延层缺陷及检测
3.1 概述
3.1.1外延概念
在微电子工艺中,外延(epitaxy)是指在单晶 衬底上,用物理的或化学的方法,按衬底晶 向排列(生长)单晶膜的工艺过程。 新排列的晶体称为外延层,有外延层的硅片 称为(硅)外延片。 与先前描述的单晶生长不同在于外延生长温 度低于熔点许多 外延是在晶体上生长晶体,生长出的晶体的 晶向与衬底晶向相同,掺杂类型、电阻率可 不同。n/n+,n/p,GaAs/Si。
HWE
这一过程与CdTe源表面状况、温度Ts及源上方的蒸气压有关。 考虑一升华表面,设vx为固态分子垂直于升华表面方向的速度, nx为单位体积内速度处于vx与Vx+dvx之间的CdTe分子数。显然, 只有那些速度大于逸出速度Vg的CdTe分子才能克服周围分子对 它的引力面升华。因此,单位时间内,单位面积上升华的CdTe 分子数Ns,即升华速率为
谢谢
3、淀积生长 气态物质在衬底上进行淀积,是在相变驱动力作用下,从亚 稳态气相转变成稳定的面相的相变过程。相变驱动力的表达 式为 (10) f = −∆g / Vs 式中, ∆ g 为单个分子由亚稳流体转变为固态所引起的自由能 V 的变化; s 为单个固态分子的体积。所以相变驱动力,实际 上是生长单位体积晶体所引起的自由能的降低。 与输运过程分析类似,衬底表面的化学势与衬底表面上气相 化学势之差为
1、 升华 当CdTe源温度为Ts时,由于热起伏,CdTe源表面有部分分子 获得足够高的能量,使得它克服其它分子对它的作用,从晶体 表面逸出,成为CdTe气态分子并立即分解为Cd和Te2,这一升 华过程,可表示为
CdTe ( S ) → CdTe ( g ) → Cd ( g ) + 1 Te 2 2
二 以CdTe为例介绍HWE
HWE法适用于多种材料的外延生长,特别是Ⅱ-Ⅵ族材料 Ⅵ族材料薄膜 的制备,下面以CdTe为例介绍HWE的原理、设备、生长工艺 等。 一、HWE的基本原理 在CdTe的热壁外延生长过程中,衬底温度为Td,它低于源温 Ts。源上面的蒸气压总是低于Ts相对应的平衡蒸气压Po,所以 源表面不断地升华出Cd与Te2的气态原子和分子。由于源和衬 底间温度差和热壁作用,Cd和Te2气态分子不断地被输运到衬 底表面,在衬底表面附近处于过饱和状态,使Cd和Te2衬底上 淀积并反应生成CdTe。最后每个CdTe分子再同相对应衬底的 分子按一定规律结合,完成外延生长。整个过程升华、输运、 升华、 升华 输运、 淀积、成核及长大等步骤组成。下面对几个主要步骤分别进行 淀积、成核 讨论:
LED外延片(外延)的成长工艺
今天来探讨LED外延片的成长工艺,早期在小积体电路时代,每一个6吋的外延片上制作数以千计的芯片,现在次微米线宽的大型VLSI,每一个8吋的外延片上也只能完成一两百个大型芯片。
外延片的制造虽动輒投资数百亿,但却是所有电子工业的基础。
硅晶柱的长成,首先需要将纯度相当高的硅矿放入熔炉中,并加入预先设定好的金属物质,使产生出来的硅晶柱拥有要求的电性特质,接着需要将所有物质融化后再长成单晶的硅晶柱,以下将对所有晶柱长成制程做介绍:长晶主要程式:1、融化(MeltDown)此过程是将置放于石英坩锅内的块状复晶硅加热制高于摄氏1420度的融化温度之上,此阶段中最重要的参数为坩锅的位置与热量的供应,若使用较大的功率来融化复晶硅,石英坩锅的寿命会降低,反之功率太低则融化的过程费时太久,影响整体的产能。
2、颈部成长(Neck Growth)当硅融浆的温度稳定之后,将方向的晶种渐渐注入液中,接着将晶种往上拉升,并使直径缩小到一定(约6mm),维持此直径并拉长10-20cm,以消除晶种内的排差(dislocation),此种零排差(dislocation-free)的控制主要为将排差局限在颈部的成长。
3、晶冠成长(Crown Growth)长完颈部后,慢慢地降低拉速与温度,使颈部的直径逐渐增加到所需的大小。
4、晶体成长(Body Growth)利用拉速与温度变化的调整来迟维持固定的晶棒直径,所以坩锅必须不断的上升来维持固定的液面高度,于是由坩锅传到晶棒及液面的辐射热会逐渐增加,此辐射热源将致使固业介面的温度梯度逐渐变小,所以在晶棒成长阶段的拉速必须逐渐地降低,以避免晶棒扭曲的现象产生。
5、尾部成长(Tail Growth)当晶体成长到固定(需要)的长度后,晶棒的直径必须逐渐地缩小,直到与液面分开,此乃避免因热应力造成排差与滑移面现象。
切割:晶棒长成以后就可以把它切割成一片一片的,也就是外延片。
芯片,圆片,是半导体元件"芯片"或"芯片"的基材,从拉伸长出的高纯度硅元素晶柱(Crystal Ingot)上,所切下之圆形薄片称为外延片(外延片)。
纳米薄膜的外延生长
外延生长的纳米薄膜具有晶体质量高 、完整性好、界面清晰、晶体取向一 致等优点,广泛应用于电子、光学、 磁学等领域。
历史与发展
早期发展
当前进展
20世纪60年代,人们开始研究外延生 长技术,主要应用于半导体材料的外 延生长。
目前,纳米薄膜外延生长技术已经广 泛应用于各种材料体系,如半导体材 料、氧化物材料、铁电材料等。
光学滤镜和反射镜
通过外延生长不同折射率的薄膜, 可以制作出高性能的光学滤镜和 反射镜,应用于光学仪器、摄影 等领域。
在生物医学中的应用
生物传感器
利用外延生长的纳米薄膜可以制作出高灵敏度和选择性的生物传 感器,用于检测生物分子、细胞和微生物等。
药物输送
通过外延生长技术将药物分子嵌入纳米薄膜中,可以实现药物的 精准输送和治疗。
基底材料的表面粗糙度和清洁度会影响薄膜的附 着力和均匀性。
基底材料的导热性能和热膨胀系数对生长温度和 薄膜质量有影响。
生长温度的影响
1
生长温度是影响纳米薄膜外延生长的关键因素之 一。
2
温度的高低直接影响到原子或分子的运动速度和 扩散能力,从而影响薄膜的生长速率和晶体结构。
3
在适宜的温度范围内,提高生长温度可以促进原 子或分子的扩散和迁移,有利于薄膜的生长。
探索纳米薄膜在新能源、生物医学、环境治理等新兴领域的应用, 开发具有市场潜力的新产品。
跨学科合作
加强与其他学科领域的合作,推动纳米薄膜在交叉学科中的应用研 究,拓展应用领域。
国际化合作与交流
加强国际合作与交流,引进先进技术和管理经验,提高纳米薄膜外 延生长的国际竞争力。
THANKS FOR WATCHING
成核
在原子吸附的基础上,通过扩散和迁移,原子聚集形成晶核,进而发展成为完 整的晶体结构。
外延生长_精品文档
Ver ticalQua
E)
NH 3
TM G
Hor izontalQuar t z F)
TMG NH
3
MOCVD设备 Thomas Swan的设备外型
MBE
分子束外延(MBE)是70年代在真空蒸发的基础上迅速发展起来 的制备极薄单晶层和多层单晶层薄膜的新技术。其基本原理是在超高真 空系统中(真空度优于10-11Pa,分子平均自由程可达1m)将组成化合 物的元素材料分别装入喷射炉内,对面喷射炉相隔一定距离放置衬底 (加热到600-700℃)。从喷射炉喷出的热分子或热原子束射到衬底表 面并延表面移动,与表面发生反应生长成单晶薄膜。
瞬态法共有:平衡冷却法,分步冷却法,过冷法和两相溶液法四种
1)平衡冷却法 当温度达到T1时,溶液刚好饱和,使衬底与溶液接触,即在接触瞬间
两种处于平衡状态。然后以恒定的降温速率,一边冷却,一边生长(本方 法对应于过冷度ΔT=0,降温速率α≠0)。 2)分步冷却法
这种工艺首先使溶液在温度T1下饱和,将衬底与溶液接触,并迅速冷却 到Tg(不能出现自发结晶),此后保持Tg不变进行生长直至结束。 3)过冷法
LED制造系列之---外延生长
外延生长的定义与种类
定义:外延生长就是指在某种起始单晶(衬底)上生长 具有相同或接近的结晶学取向的薄层单晶的过程
1. 液相外延(LPE) 2. 金属有机化学汽相沉积(MOCVD) 3. 分子束外延(MBE) 4. 化学分子束外延(CBE)
液相外延(LPE)
液相外延是指在某种饱和或过饱和溶液中在单晶衬底 上定向生长单晶薄膜的方法。生长的单晶薄膜可以与衬底 的晶向相同,也可以相对于衬底表面的晶向具有另一种特 定的晶格取向。液相外延时,首先在较高温度下把加有溶 质的溶剂溶解成溶液,当冷却到较低温度时,溶液就变成 过饱和状态。当衬底与这种溶液接触并逐渐降温时,溶质 就将从溶剂里析出,在衬底上延伸出新的单晶层,生长层 的组分(包括掺杂)由相图来决定。
LED工艺说明
LED芯片制造流程外延生长的基本原理是:在一块加热至适当温度的衬底基片(主要有蓝宝石和、SiC、Si)上,气态物质InGaAlP有控制的输送到衬底表面,生长出特定单晶薄膜。
目前LED外延片生长技术主要采用有机金属化学气相沉积方法。
/4MOCVD介绍:金属有机物化学气相淀积(Metal-Organic Chemical Vapor Deposition,简称MOCVD),1968年由美国洛克威尔公司提出来的一项制备化合物半导体单品薄膜的新技术。
该设备集精密机械、半导体材料、真空电子、流体力学、光学、化学、计算机多学科为一体,是一种自动化程度高、价格昂贵、技术集成度高的尖端光电子专用设备,主要用于GaN(氮化镓)系半导体材料的外延生长和蓝色、绿色或紫外发光二极管芯片的制造,也是光电子行业最有发展前途的专用设备之一。
LED芯片的制造工艺流程:外延片→清洗→镀透明电极层→透明电极图形光刻→腐蚀→去胶→平台图形光刻→干法刻蚀→去胶→退火→SiO2沉积→窗口图形光刻→SiO2腐蚀→去胶→N极图形光刻→预清洗→镀膜→剥离→退火→P极图形光刻→镀膜→剥离→研磨→切割→芯片→成品测试其实外延片的生产制作过程是非常复杂的,在展完外延片后,下一步就开始对LED外延片做电极(P极,N极),接着就开始用激光机切割LED外延片(以前切割LED外延片主要用钻石刀),制造成芯片后,在晶圆上的不同位置抽取九个点做参数测试,如图所示:1、主要对电压、波长、亮度进行测试,能符合正常出货标准参数的晶圆片再继续做下一步的操作,如果这九点测试不符合相关要求的晶圆片,就放在一边另外处理。
2、晶圆切割成芯片后,100%的目检(VI/VC),操作者要使用放大30倍数的显微镜下进行目测。
3、接着使用全自动分类机根据不同的电压,波长,亮度的预测参数对芯片进行全自动化挑选、测试和分类。
`4、最后对LED芯片进行检查(VC)和贴标签。
芯片区域要在蓝膜的中心,蓝膜上最多有5000粒芯片,但必须保证每张蓝膜上芯片的数量不得少于1000粒,芯片类型、批号、数量和光电测量统计数据记录在标签上,附在蜡光纸的背面。
第六章外延生长
3、 外延层的质量:
低缺陷密度、厚度及其均匀性、掺杂杂质的再分布最小
4、硅外延前的清洗工艺:
去除表面氧化层、杂质(有机物、无机物金属离子等)和颗粒 (1) 化学清洗工艺:高纯度化学溶液清洗→高纯度去离子水冲洗 →高纯度N2甩干
SC-1的主要作用是去除微颗粒,利用NH4OH的弱碱性来活化硅
的表面层,将附着其上的微颗粒去除
(3)
逐层+岛式生长(Layers and Islands Growth)
5、硅片表面的化学反应
(1) 在化学反应限制区,不同硅源的化学反应激活能是相似的。 (2) 一般认为,硅外延速率受限于H从硅片表面的解吸附过程。
(3) 硅片表面的主要反应剂是SiCl2,反应剂是以物理方式吸附
在硅片表面。
图14.8 不同硅源外延淀积速率与温度的关系
通过改进衬底制备工艺、清洗工艺和外延工艺条件,可极大 改善上述缺陷密度。 (2) 外延层的图形漂移: 外延生长速率与晶向有关,{111}面的图形漂移最严重。
四、硅的气相外延工艺
1、 反应原理:
氢还原反应: 硅烷分解反应: 外延工艺一般在常压下进行
2、 影响外延生长速率的主要因素:
反应温度、反应剂浓度、气体流速、反应腔形状结构、 衬底晶向等。
2)
因此,需要采用与CVD技术中类似的方法,通过将VPE过程分
成几个连续步骤,来建立描述VPE的更精确的模型。
2、连续步骤模型
描述生长过程的更精确的模型
2)传输到硅片表面; 1) VPE步骤包括: 1)气相分解; 3)吸附;4)扩散;5)分解;6)反应副产物的解吸附。 注意:VPE中的每一步 骤都可能影响外延生长 的速率,其中进行得最 慢的一步是关键限制因
液相外延法生长晶体
液相外延法生长晶体液相外延法(Liquid Phase Epitaxy,简称LPE)是一种用于生长晶体的常用方法。
它是通过在溶液中使底物与溶液中的成分反应,使晶体逐渐沉积在底物上的过程。
液相外延法具有生长速度快、晶体质量高等优点,因此在半导体器件制造、光电子器件以及光纤等领域得到广泛应用。
液相外延法的基本原理是利用熔点较低的材料,在高温下将其溶解于溶剂中,形成溶液。
溶液中含有需要生长的晶体材料的离子或分子。
然后,将底物(通常是晶体片或玻璃片)放入溶液中,通过控制温度和浓度等参数,使溶液中的晶体材料逐渐沉积在底物表面,形成所需的晶体结构。
液相外延法的生长过程可以分为几个主要步骤。
首先是预处理步骤,即对底物进行清洗和表面处理,以保证底物表面的纯净度和光洁度。
然后,将底物放入外延炉中,控制炉内温度和压力,使溶液中的晶体材料在底物表面生长。
在生长过程中,可以通过改变温度、浓度和生长时间等参数,来控制晶体的生长速度和质量。
最后,将生长完毕的晶体进行冷却和固化处理,以获得完整而稳定的晶体结构。
液相外延法在半导体器件制造中有着广泛的应用。
例如,用于生长硅、镓、砷化镓、磷化镓等材料的外延片,可以用于制造各种类型的光电子器件,如LED、激光器等。
此外,液相外延法还可以用于生长光纤材料,用于制造通信领域所需的光纤器件。
液相外延法的优点之一是生长速度快。
由于溶液中的晶体材料可以快速沉积在底物表面,因此可以在较短的时间内得到较大尺寸的晶体。
此外,液相外延法还具有较高的生长温度范围,可以适应不同材料的生长需求。
然而,液相外延法也存在一些限制和挑战。
首先,由于生长过程中需要控制多个参数,如温度、浓度、生长时间等,因此操作相对复杂,需要经验丰富的操作人员。
其次,溶液中的杂质和缺陷会对晶体的生长和质量产生影响,因此需要对溶液进行精确的控制和纯化。
此外,液相外延法的生长速度受到物质扩散的限制,因此无法实现超高速的生长。
总结起来,液相外延法是一种常用的晶体生长方法,具有生长速度快、晶体质量高等优点。
外延生长的基本原理与应用领域
外延生长的基本原理与应用领域外延生长的基本原理是,在一块加热至适当温度的衬底基片(主要有蓝宝石和SiC,Si)上,气态物质In,Ga,Al,P有控制的输送到衬底表面,生长出特定单晶薄膜。
目前LED外延片生长技术主要采用有机金属化学气相沉积方法。
MOCVD金属有机物化学气相淀积(Metal-OrganicChemicalVaporDeposition,简称 MOCVD), 1968年由美国洛克威尔公司提出来的一项制备化合物半导体单品薄膜的新技术。
该设备集精密机械、半导体材料、真空电子、流体力学、光学、化学、计算机多学科为一体,是一种自动化程度高、价格昂贵、技术集成度高的尖端光电子专用设备,主要用于GaN(氮化镓)系半导体材料的外延生长和蓝色、绿色或紫外发光二极管芯片的制造,也是光电子行业最有发展前途的专用设备之一。
日亚化工(株)日亚化工是GaN系的开拓者,在LED和激光领域居世界首位。
在蓝色、白色LED市场遥遥领先于其他同类企业。
它以蓝色LED的开发而闻名于全球,与此同时,它又是以荧光粉为主要产品的规模最大的精细化工厂商。
它的荧光粉生产在日本国内市场占据70%的比例,在全球则占据36%的市场份额。
荧光粉除了灯具专用的以外,还有CRT 专用、PDP专用、X光专用等类型,这成为日亚化工扩大LED事业的坚实基础。
除此以外,日亚化工还生产磁性材料、电池材料以及薄膜材料等精细化工制品,广泛地涉足于光的各个领域。
在该公司LED的生产当中,70%是白色LED,主要有单色芯片型和RGB三色型两大类型。
此外,该公司是世界上唯一一家可以同时量产蓝色LED和紫外线LED两种产品的厂商。
以此为基础,日亚化工不断开发出新产品,特别是在SMD(表面封装)型的高能LED方面,新品层出不穷。
2004年10月,日亚化工开发出了发光效率为50lm/W的高能白色LED。
该产品成功地将之前量产产品约20lm/W的发光效率提高了2.5倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可以解决击穿电压和集电区串联电阻之间的矛盾
外延晶层制备技术的灵活性由利于提高IC集成度 外延晶层制备技术的灵活性由利于提高IC集成度 实现隔离技术:由于在进行隔离墙扩散时,横向扩散与 纵向扩散的距离几乎相等,如果外延层较厚,相应的增加 了横向扩散的距离,降低了集成度。 有利于提高少子寿命,降低IC存储单元的漏电流 有利于提高少子寿命,降低IC存储单元的漏电流 集成电路的有源区在高温的条件下常会诱生处大量的热缺 陷和微缺陷 ,这些缺陷加速了金属杂质的扩散,杂质与 微缺陷相互作用,导致漏电流增大,发生低击穿现象,功 耗增大,成品率降低。
采用RF射频加热的理由: 采用RF射频加热的理由: RF射频加热的理由
1、升温速度快,降温速度快 2、温度稳定性好 3、射频感应加热可使反应器腔体壁温度远低于石墨基座 保证产物“择温淀积” 保证产物“择温淀积”在硅衬底上。
,
外延生长的工艺环境
生长速率与浓度的关系 在硅气相淀积中,在低浓度时生长速率与浓度成 正比,高浓度时,反而降低,主要是产生了逆向腐蚀作用。
降低自掺杂效应的方法
在衬底上生长一层较薄的外延层,由它盖住衬底,阻止杂 质的蒸发 外延生长前用氯化氢气相抛光 除掉衬底表面的微量污染 物。 可以经过离子注入的埋层来降低衬底表面的杂质浓度。
外延层生长缺陷
按位置分类有表面缺陷和体内缺陷 在一定的生长速率 在一定的生长速率下,晶格缺陷密度随温度的降低而增加 生长速率下,晶格缺陷密度随温度的降低而增加
外延技术用于MOS器件集成化可显著提高电路的速 外延技术用于MOS器件集成化可显著提高电路的速 度
提高电阻率可以提高载流子的迁移率,从而增大了 MOS电路的充放电电流,缩短了充放电时间,提高工作速 MOS电路的充放电电流,缩短了充放电时间,提高工作速 度。 减小MOS器件的电容效应,高电阻率的外延层使器件的 减小MOS器件的电容效应,高电阻率的外延层使器件的 寄生电容,扩散电容均减小,缩短了充放电时间。
在一定的淀积温度 在一定的淀积温度下,晶格缺陷又随生长速率的增加而增 淀积温度下,晶格缺陷又随生长速率的增加而增 多
外延生长工艺原理
外延生长:在单晶衬底上淀积一层薄的单晶层,单晶取向 值取决于源衬底的结晶晶向。 同质外延 异质外延 外延结 扩散结 外延形成的PN结不是通过杂质补偿形成的,接近于理想的 外延形成的PN结不是通过杂质补偿形成的,接近于理想的 突变结 当衬底与外延层具有相同材料
外延层的优点
可以获得理想高质量的硅材料
硅气相外延
利用硅的气态化合物,经过化学反应在硅的表面生长一层 单晶硅,SiCl4+2H2=Si+4HCl。 SiCl4+2H2=Si+4HCl。
反应设备
采用卧室的反应器 应加热系统等 由石英反应腔,石墨基座,高频感
反应流程
装片 通氢气清除石英管内中空气 升温,一般为1100- 升温,一般为1100-1200℃ 通氢气消除表面氧化层或HCl去除表面损伤层。 通氢气消除表面氧化层或HCl去除表面损伤层。 去除HCl和杂质 去除HCl和杂质 通氢气及掺杂源,获得经过掺杂的硅层 关闭氢气,恒温数分钟。 缓慢降温,300℃下可以取片 缓慢降温,300℃下可以取片
生长速率与温度的关系 在较高高温下,取决于气体源分子转移到生长层 表面的快慢 质量转移控制。 在较底温度时,取决于生长层表面进行的化学反 应速率 表面反应控制。
外延层中的杂质分布
自掺杂:凡是非反应气体中有意掺入的杂质所引起的对外 延层施加的掺杂 原因: 1、由于外延生长必须在1000度以上的高温下进行的, 、由于外延生长必须在1000度以上的高温下进行的, 不可避免的会存在杂质的热扩散和热迁移 2、由于反应产物氯化氢对衬底的腐蚀,其中的杂质就 会释放进入外延层
可MOS闭锁效应 CMOS闭锁效应
CMOS倒相器中的寄生元器件结构
外延方法
物理气相外延 蒸发 溅射 ,化学气相外延 化学反应来激活或强化生长的过程 液相外延 金属有机CVD 金属有机CVD 淀积金属以及氧化物的多晶或无定型膜 分子束外延 淀积GaAs异质外延层 淀积GaAs异质外延层 通过