GaN外延片的主要生长方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008-1-14

外延技术与设备是外延片制造技术的关键所在,金属有机物化学气相淀积(Metal-Organic Chemical Vapor Deposition,简称MOCVD)技术生长III-V族,II-VI族化合物及合金的薄层单晶的主要方法。II、III族金属有机化合物通常为甲基或乙基化合物,如:Ga(CH3)3,In(CH3)3,Al(CH3)3,Ga(C2H5)3,Zn(C2H5)3等,它们大多数是高蒸汽压的液体或固体。用氢气或氮气作为载气,通入液体中携带出蒸汽,与V族的氢化物(如NH3,PH3,AsH3)混合,再通入反应室,在加热的衬底表面发生反应,外延生长化合物晶体薄膜。

MOCVD具有以下优点:

用来生长化合物晶体的各组份和掺杂剂都可以以气态方式通入反应室中,可以通过控制各种气体的流量来控制外延层的组分,导电类型,载流子浓度,厚度等特性。

因有抽气装置,反应室中气体流速快,对于异质外延时,反应气体切换很快,可以得到陡峭的界面。

外延发生在加热的衬底的表面上,通过监控衬底的温度可以控制反应过程。

在一定条件下,外延层的生长速度与金属有机源的供应量成正比。

MOCVD及相关设备技术发展现状:

MOCVD 技术自二十世纪六十年代首先提出以来,经过七十至八十年代的发展,九十年代已经成为砷化镓、磷化铟等光电子材料外延片制备的核心生长技术。目前已经在砷化镓、磷化铟等光电子材料生产中得到广泛应用。日本科学家Nakamura将MOCVD应用氮化镓材料制备,利用他自己研制的MOCVD设备(一种非常特殊的反应室结构),于1994年首先生产出高亮度蓝光和绿光发光二极管,1998年实现了室温下连续激射10,000小时,取得了划时代的进展。到目前为止,MOCVD是制备氮化镓发光二极管和激光器外延片的主流方法,从生长的氮化镓外延片和器件的性能以及生产成本等主要指标来看,还没有其它方法能与之相比。

国际上MOCVD设备制造商主要有三家:德国的AIXTRON公司、美国的EMCORE公司(Veeco)、英国的Thomas Swan 公司(目前Thomas Swan公司被AIXTRON公司收购),这三家公司产品的主要区别在于反应室。

这些公司生产MOCVD设备都有较长的历史,但对氮化镓基材料而言,由于材料本身研究时间不长,对材料生长的一些物理化学过程还有待认识,因此目前对适合氮化镓基材料的MOCVD设备还在完善和发展之中。国际上这些设备商也只是1994年以后才开始生产适合氮化镓的MOCVD设备。目前生产氮化镓中最大MOCVD设备一次生长24片(AIXTRON公司产品)。国际上对氮化镓研究得最成功的单位是日本日亚公司和丰田合成,恰恰这些公司不出售氮化镓生产的 MOCVD设备。日本酸素公司生产的氮化镓-MOCVD设备性能优良,但该公司的设备只在日本出售。

MOCVD设备的发展趋势:

研制大型化的MOCVD设备。为了满足大规模生产的要求,MOCVD设备更大型化。目前一次生产24片2英寸外延片的设备已经有商品出售,以后将会生产更大规模的设备,不过这些设备一般只能生产中低档产品;研制有自己特色的专用MOCVD设备。这些设备一般只能一次生产1片2英寸外延片,但其外延片质量很高。目前高档产品主要由这些设备生产,不过这些设备一般不出售。

1)InGaAlP

四元系InGaAlP化合物半导体是制造红色和黄色超高亮度发光二极管的最佳材料,InGaAlP外延片制造的LED发光波段处在 550~650nm之间,这一发光波段范围内,外延层的晶格常数能够与GaAs衬底完善地匹配,这是稳定批量生产超高亮度LED外延材料的重要前提。 AlGaInP超高亮度LED 采用了MOCVD的外延生长技术和多量子阱结构,波长625nm 附近其外延片的内量子效率可达到100%,已接近极限。目前MOCVD 生长InGaAlP外延片技术已相当成熟。

InGaAlP外延生长的基本原理是,在一块加热至适当温度的GaAs衬底基片上,气态物质In,Ga,Al,P

有控制的输送到GaAs衬底表面,生长出具有特定组分,特定厚度,特定电学和光学参数的半导体薄膜外延材料。III族与V族的源物质分别为TMGa、TEGa、TMIn、TMAl、 PH3与AsH3。通过掺Si或掺 Te以及掺Mg或掺Zn生长N型与P型薄膜材料。对于InGaAlP薄膜材料生长,所选用的III族元素流量通常为(1-5)×10-5克分子,V族元素的流量为(1-2)×10-3克分子。为获得合适的长晶速度及优良的晶体结构,衬底旋转速度和长晶温度的优化与匹配至关重要。细致调节生长腔体内的热场分布,将有利于获得均匀分布的组分与厚度,进而提高了外延材料光电性能的一致性。

2)lGaInN

氮化物半导体是制备白光LED的基石,GaN基LED外延片和芯片技术,是白光LED的核心技术,被称之为半导体照明的发动机。因此,为了获得高质量的LED,降低位错等缺陷密度,提高晶体质量,是半导体照明技术开发的核心。

GaN外延片的主要生长方法:

GaN外延片产业化方面广泛使用的两步生长法,工艺简述如下:

由于GaN和常用的衬底材料的晶格失配度大,为了获得晶体质量较好的GaN外延层,一般采用两步生长工艺。首先在较低的温度下 (500~600℃)生长一层很薄的GaN和AIN作为缓冲层,再将温度调整到较高值生长GaN外延层。Akasaki首先以AIN作为缓冲层生长得到了高质量的GaN晶体。AlN能与GaN较好匹配,而和蓝宝石衬底匹配不好,但由于它很薄,低温沉积的无定型性质,会在高温生长GaN外延层时成为结晶体。随后Nakamura发现以 GaN为缓冲层可以得到更高质量的GaN晶体。

为了得到高质量的外延层,已经提出很多改进的方法,主要如下:

①常规LEO法

LEO是一种SAE(selective area epitaxy)方法,可追溯到Nishinaga于1988年对LPE(liquid phase epitaxy)的深入研究,LEO常用SiO2 或SiNx作为掩膜(mask),mask平行或者垂直衬底的{11-20}面而放置于buffer或高温生长的薄膜上,mask的两种取向的侧向生长速率比为1.5,不过一般常选用平行方向(1-100) 。LEO具体生长过程,GaN在窗口区向上生长,当到达掩膜高度时就开始了侧向生长,直到两侧侧向生长的GaN汇合成平整的薄膜。

② PE(Pendeo epitaxy)法

衬底上长缓冲层,再长一层高温GaN

选择腐蚀形式周期性的 stripe及trench,stripe 沿(1-100)方向,侧面为{11-20}

相关文档
最新文档