实数同步练习题 (1)
实数练习题(打印版)

实数练习题(打印版)一、选择题1. 以下哪个数是实数?- A. i- B. π- C. √2- D. -1/32. 如果一个数的平方是16,那么这个数是:- A. 4- B. -4- C. 4或-4- D. 以上都不是3. 以下哪个数是无理数?- A. 1/3- B. √3- C. 0.33333(无限循环)- D. 2二、填空题1. 圆周率π是 _ (实数/无理数)。
2. 一个数的立方是-8,这个数是 _ 。
3. 如果一个数的绝对值是5,那么这个数可以是 _ 或 _ 。
三、计算题1. 计算下列表达式的值:- (a) √(-4)- (b) √(25)- (c) √(0.16)2. 计算以下数的和:- √2 + π + √3四、解答题1. 证明:对于任意实数a和b,a^2 + b^2 ≥ 2ab。
2. 假设一个数x满足以下条件:x^2 - 4x + 4 = 0,求x的值。
五、应用题1. 一个圆的半径是3cm,求这个圆的周长和面积。
2. 一个直角三角形的两条直角边分别是3cm和4cm,求这个三角形的斜边长度。
答案一、选择题1. D2. C3. B二、填空题1. 无理数2. -23. 5, -5四、解答题1. 证明:由于(a - b)^2 ≥ 0,我们有 a^2 - 2ab + b^2 ≥ 0。
因此,a^2 + b^2 ≥ 2ab。
2. 解:将方程重写为 (x - 2)^2 = 0,我们得到 x = 2。
五、应用题1. 周长= 2πr = 2π × 3 =6π cm,面积= πr^2 = π × 3^2 = 9π cm^2。
2. 斜边长度= √(3^2 + 4^2) = √(9 + 16) = √25 = 5 cm。
实数初中数学浙教版七年级上册同步练习卷(含答案)

3.2 实数课时同步练习一.选择题(共7小题)1.下列实数中是无理数的是()A.3.14B.C.D.2.下列各数:3.14,,3.33311,,0.10110111011110…,,.其中无理数的个数是()A.4B.3C.2D.13.下列实数中,最大的数是()A.πB.C.|﹣2|D.34.的相反数是()A.B.C.D.5.下列说法中,正确的是()A.无限小数都是无理数B.无理数是无限不循环小数C.不带根号的数一定是有理数D.无理数就是带有根号的数6.实数+1在数轴上的对应点可能是()A.A点B.B点C.C点D.D点7.设6﹣的整数部分为a,小数部分为b,则(2a+)b的值是()A.6B.2C.12D.9二.填空题(共6小题)8.比较大小:(填写“>”或“<”或“=”).9.化简式|﹣3|+|2﹣|=.10.已知a,b是两个连续的整数,且a<<b,则2a+b=.11.如图,数轴上A表示的数为2、B点表示的数为2+,且AB=AC,那么数轴上C点表示的数为.12.若6+的整数部分是a,小数部分是b,则代数式a(2b+4)=.13.如图,数轴上A,B两点表示的数分别为和4.1,则A,B两点之间表示整数的点共有个.三.解答题(共6小题)14.把下列数填入相应的集合中.,0.,﹣,3.(1)整数集合;(2)分数集合;(3)有理数集合;(4)无理数集合;(5)实数集合.15.在数轴上近似地表示下列各数,并把它们按从小到大的顺序排列,用“<”连接:,﹣|﹣2|,π,﹣(﹣4).16.如图,点A是数轴上表示实数a的点.(1)用直尺和圆规在数轴上作出表示实数的点P;(保留作图痕迹,不写作法)(2)利用数轴比较和a的大小,并说明理由.17.已知2a﹣1的平方根是±3,a+3b﹣1的立方根是﹣2,c是的整数部分,求a+2b+c 的算术平方根.18.如图所示的是一个数值转换器.(1)当输入的x为256时,输出的y值是.(2)若输入有效的x值后,始终输不出y值,请写出所有满足要求的x的值,并说明你的理由.(3)若输出的y值是,请写出两个满足要求的x值:.19.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵<<,即2<<3,∴的整数部分为2,小数部分为(﹣2).请解答:(1)的整数部分是,小数部分是.(2)如果的小数部分为a,的整数部分为b,求a+b﹣的值;(3)已知:10+=x+y,其中x是整数,且0<y<1,求x﹣y的相反数.参考答案一.选择题(共7小题)1.解:A.3.14是分数,属于有理数,故本选项不合题意;B.=3是整数,故本选项不合题意;C.是无理数,故本选项符合题意;D.是分数,属于有理数,故本选项不合题意;故选:C.2.解:=16,在3.14,,3.33311,,0.10110111011110…,,中,无理数有,0.10110111011110…,,共有3个.故选:B.3.解:|﹣2|=2,∵2<4,∴<2,∴<2<3<π,∴最大的数是π,故选:A.4.解:﹣2的相反数是:﹣(﹣2)=2﹣.故选:A.5.解:A、无限不循环小数都是无理数,本选项说法错误;B、无理数是无限不循环小数,说法正确;C、π不带根号,是无理数,则不带根号的数一定是有理数,说法错误;D、=2,2不是无理数,则无理数就是带有根号的数,说法错误;故选:B.6.解:∵1<2<4,∴1<<2,∴2<+1<3,则实数+1在数轴上的对应点可能是点D,故选:D.7.解:∵3<<4,∴2<6﹣<3,∵6﹣的整数部分为a,小数部分为b,∴a=2,b=6﹣﹣2=4﹣,∴(2a+)b=(2×2+)×(4﹣)=(4+)(4﹣)=6,故选:A.二.填空题(共6小题)8.解:∵1<<2,∴<1,即>,故答案为:>.9.解:∵2<3,∴﹣3<0,2﹣<0,∴原式=3﹣+﹣2=1.故答案为:1.10.解:∵9<10<16,∴3<<4,∴a=3,b=4,∴2a+b=2×3+4=6+4=10.故答案为:10.11.解:∵A表示的数为2,B点表示的数为2+,∴AB=2+﹣2=,∴AC=AB=,∴C点表示的数为:2﹣,故答案为:2﹣.12.解:∵4<5<9,∴2<<3,∴,∴a=8,b=,∴a(2b+4)=8×(﹣4+4)=8×=.故答案为:.13.解:∵1<2<4,∴1<<2,∴A,B两点之间的整数有2,3,4三个,故答案为:3.三.解答题(共6小题)14.解:(1)整数集合,3;(2)分数集合,;(3)有理数集合,,,3;(4)无理数集合,;(5)实数集合,,,,﹣,3.15.解:数轴如图所示,∴由小到大的顺序排列为:﹣|﹣2|<0<<π<﹣(﹣4).16.解:(1)如图所示,点P即为所求;(2)a>,理由如下:∵如图所示,点A在点P右侧,∴a>.17.解:由题意得2a﹣1=32=9,∴a=5,将a=5代入a+3b﹣1中可得:a+3b﹣1=5+3b﹣1=(﹣2)3=﹣8,解得b=﹣4,∵6<<7,∴c=6,∴a+2b+c=5﹣2×4+6=3,∴a+2b+c的算术平方根为.18.解:(1)当输入的x为256时,第一次求算术平方根得=16,是有理数,第二次求算术平方根得=4,是有理数,第三次求算术平方根得=2,是有理数,第四次求算术平方根得,是无理数,∴输出y=;故答案为:;(2)一个有理数,若算术平方根等于本身,则求算术平方根的结果总是有理数,始终输不出y值,而算术平方根等于本身得数是1和0,∴输入有效的x值后,始终输不出y值,则x=1或0;(3)∵3的算术平方根是,且是无理数,∴输入的数是3的正整数次幂,比如3或9等,故答案为:3或919.解:(1)∵4<<5,∴的整数部分是4,小数部分是,故答案为:4,﹣4;(2)∵2<<3,∴a=﹣2,∵3<<4,∴b=3,∴a+b﹣=﹣2+3﹣=1;(3)∵1<3<4,∴1<<2,∴11<10+<12,∵10+=x+y,其中x是整数,且0<y<1,∴x=11,y=10+﹣11=﹣1,∴x﹣y=11﹣(﹣1)=12﹣,∴x﹣y的相反数是﹣12+;。
人教版七年级数学下册第六章《实数》同步练习(含答案)

第六章 实数 6.1 平方根 第1课时 算术平方根基础题知识点1 算术平方根一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.a 读作“根号a ”,a 叫做被开方数.规定:0的算术平方根是0.1.(2017·桂林)4的算术平方根是( B )A .4B .2C .-2D .±2 2.(2018·南京)94的值等于( A ) A.32B .-32C .±32D.81163.0.49的相反数是( B )A .0.7B .-0.7C .±0.7D .04.下列说法正确的是( A )A .因为52=25,所以5是25的算术平方根B .因为(-5)2=25,所以-5是25的算术平方根C .因为(±5)2=25,所以5和-5都是25的算术平方根 D .以上说法都不对5.求下列各数的算术平方根: (1)121; (2)1; (3)964; (4)0.01.解:(1)因为112=121,所以121的算术平方根是11,即121=11.(2)因为12=1,所以1的算术平方根是1,即1=1. (3)因为(38)2=964,所以964的算术平方根是38,即964=38. (4)因为(0.1)2=0.01,所以0.01的算术平方根是0.1,即0.01=0.1.6.求下列各式的值: (1)81; (2)144289; (3) 1 000 000. 解:(1)因为92=81,所以81=9. (2)因为(1217)2=144289,所以144289=1217. (3)因为1 0002=1 000 000, 所以 1 000 000=1 000.知识点2 估计算术平方根一般采用“夹逼法”确定其值所在的范围.具体地说,先找出与被开方数相邻的两个能开得尽方的整数,分别求其算术平方根,即可确定所要求的数的算术平方根在哪两个整数之间. 7.(2017·柳州期末)估算65的值介于( D )A .5到6之间B .6到7之间C .7到8之间D .8到9之间8.一个正方形的面积为50 cm 2,则该正方形的边长约为( C )A.5 cm B.6 cm C.7 cm D.8 cm9用“>”或“<”填空).知识点3 用计算器求一个正数的算术平方根10.我们可以利用计算器求一个正数a的算术平方根,其操作方法是顺序进行按键输入:a=.小明按键输入16=显示的结果为4,则他按键输入1600=后显示的结果为40.11.用计算器求下列各式的值(结果精确到0.001):(1)800;(2)0.58;(3) 2 401.解:(1)28.284.(2)0.762.(3)49.000.易错点对算术平方根的意义理解不清12.(-6)2的算术平方根是( A )A.6 B.±6 C.-6 D. 613.(2018·安顺)4的算术平方根为( B )A.± 2 B. 2 C.±2 D.2中档题14.下列各数,没有算术平方根的是( B )A.2 B.-4 C.(-1)2D.0.115.若一个数的算术平方根等于它本身,则这个数是( D )A.1 B.-1 C.0 D.0或116.(2017·广州期中)已知一个自然数的算术平方根是a,则该自然数的下一个自然数的算术平方根是( D ) A.a+1 B.a+1 C.a2+1 D.a2+117.(2017·潍坊)用计算器依次按键如下,显示的结果在数轴上对应点的位置介于________之间( A )A.B与C B.C与D C.E与F D.A与B18.(2017·广州四校联考期中)已知a,b为两个连续整数,且a<15<b,则a+b的值为7.19.(教材P41探究变式)如图,将两个边长为3的正方形分别沿对角线剪开,将所得的4个三角形拼成一个大的正20.(教材P43探究变式)≈2.284,521.7≈22.84,填空:(1)0.052 17≈0.228__4,(2)若x≈0.022 84,则x≈0.000__521__7.21.比较下列各组数的大小:(1)12与14;(2)-5与-7;(3)5与24;(4)24-12与32.解:(1)12<14.(2)-5>-7.(3)5>24.(4)24-12>32.综合题22.(教材P43例3变式)国际比赛的足球场长在100 m到110 m之间,宽在64 m到75 m之间,为了迎接某次奥运会,某地建设了一个长方形的足球场,其长是宽的1.5倍,面积是7 560 m2,请你判断这个足球场能用作国际比赛吗?并说明理由.解:这个足球场能用作国际比赛.理由:设足球场的宽为x m,则足球场的长为1.5x m,由题意,得1.5x2=7 560.∴x2=5 040.由算术平方根的意义可知x= 5 040.又∵702=4 900,712=5 041,∴70< 5 040<71.∴70<x<71.∴105<1.5x<106.5.∴100<1.5x<110.∴符合要求.∴这个足球场能用作国际比赛.23.(教材P48习题T11变式)(1)通过计算下列各式的值探究问题:①42=4;162②(-3)2=3;=1;(-2)2=2.(2)应用(1)所得的结论解决问题:有理数a,b在数轴上对应的点的位置如图所示,化简:a2-b2-(a-b)2+|a+b|.解:a2-b2-(a-b)2+|a+b|=|a|-|b|-|a-b|+|a+b|=-a-b+a-b-a-b=-a-3b.第2课时 平方根基础题知识点1 平方根(1)一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根.这就是说,如果x 2=a ,那么x 叫做a 的平方根,记作±(2)求一个数a 的平方根的运算,叫做开平方,平方与开平方互为逆运算.正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.1.(2018·贺州)4的平方根是( C )A .2B .-2C .±2D .16 2.±8是64的( A )A .平方根B .相反数C .绝对值D .算术平方根 3.13是一个数的平方根,则这个数是( D ) A .1B .3C .±19D.194.下列说法中,不正确的是( D ) A .6是36的平方根B .-6是36的平方根C .36的平方根是±6D .36的平方根是65.下列说法正确的是( D )A .任何非负数都有两个平方根B .一个正数的平方根仍然是正数C .只有正数才有平方根D .负数没有平方根6.计算: ±425=±25,-425=-25,425=25. 7.填表:8.求下列各数的平方根:(1)16; (2)2536; (3)0.008 1.解:(1)因为(±4)2=16,所以16的平方根是±4. (2)因为(±56)2=2536,所以2536的平方根是±56.(3)因为(±0.09)2=0.008 1,所以0.008 1的平方根是±0.09.知识点2 平方根与算术平方根的关系正数a 的正的平方根就是这个数的算术平方根,记作 a. 9.(2017·广州期中)下列说法正确的是( A ) A .-5是25的平方根 B .25的平方根是-5C .-5是(-5)2的算术平方根D .±5是(-5)2的算术平方根 10.下列各式中,正确的是( D )A.4=±2 B .±9=3 C.(-3)2=-3 D.(-3)2=311.求下列各数的平方根与算术平方根: (1)25;解:25的平方根是±5,算术平方根是5.(2)0;解:0的平方根是0,算术平方根是0.(3)110 000. 解:110 000的平方根是±1100,算术平方根是1100.12.求下列各式的值: (1)225; (2)-3649; (3)±144121. 解:(1)∵152=225,∴225=15. (2)∵(67)2=3649,∴-3649=-67. (3)∵(1211)2=144121,∴±144121=±1211.易错点 忽视一个正数的平方根有两个13.若x +3是4的平方根,则x =-1或-5.中档题14.(2017·广州期中)对于2-3来说( C )A .有平方根B .只有算术平方根C .没有平方根D .不能确定 15.(易错题)(2017·广州四校联考期中)16的平方根等于( D ) A .2 B .-4 C .±4D .±2 16.(易错题)若x 2=16,则5-x 的算术平方根是( D )A .±1B .±4C .1或9D .1或317.(2017·玉林期末)已知325.6≈18.044,那么± 3.256≈±1.804__4.18.“平方根”节是数学爱好者的节日,这一天的月份和日期的数字正好是当年年份最后两位数字的算术平方根,例如2009年的3月3日,2016年的4月4日,请你再写出21世纪你喜欢的一个“平方根”节(题中所举例子除外)2025年5月5日.19.下列各数是否有平方根?若有,求出它的平方根;若没有,请说明理由.(1)(-3)2; (2)-42; (3)-(a 2+1). 解:(1)±3.(2)没有平方根,因为-42是负数.(3)没有平方根,因为-(a 2+1)是负数.20.(教材P48习题T8变式)求下列各式中x 的值:(1)4x 2-1=0;解:4x 2=1. x 2=14.x =±12.(2)(2017·广州四校联考期中)(2x-1)2=25.解:2x-1=5或2x-1=-5.解得x=3或x=-2.21.已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b的平方根.解:依题意,得2a-1=9且3a+b-1=16,∴a=5,b=2.∴a+2b=5+4=9.∴a+2b的平方根为±3,即±a+2b=±3.综合题22.(易错题)(1)一个非负数的平方根是2a-1和a-5,这个非负数是多少?(2)已知a-1和5-2a都是m的平方根,求a与m的值.解:(1)根据题意,得(2a-1)+(a-5)=0.解得a=2.∴这个非负数是(2a-1)2=(2×2-1)2=9.(2)根据题意,分以下两种情况:①当a-1与5-2a是同一个平方根时,a-1=5-2a.解得a=2.此时,m=12=1;②当a-1与5-2a是两个平方根时,a-1+5-2a=0.解得a=4.此时,m=(4-1)2=9.综上所述,当a=2时,m=1;当a=4时,m=9.6.2 立方根基础题知识点1 立方根(1)一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根,即如果x 3=a ,那么x 叫做a 的立a 是被开方数,3是根指数.3-a =-3a.(2)求一个数的立方根的运算,叫做开立方,开立方与立方互为逆运算.正数的立方根是正数;负数的立方根是负数;0的立方根是0.1.(2018·恩施)64的立方根为( C )A .8B .-8C .4D .-4 2.(2018·济宁)3-1的值是( B )A .1B .-1C .3D .-33.若一个数的立方根是-3,则这个数为( B ) A .-33B .-27C .±33D .±274.下列说法中,不正确的是( D ) A .0.027的立方根是0.3 B .-8的立方根是-2 C .0的立方根是0D .125的立方根是±55.下列计算正确的是( C ) A.30.012 5=0.5 B.3-2764=34C.3338=112D .-3-8125=-256.-13是-127的立方根,-16164的立方根是-54.7.求下列各数的立方根: (1)0.216;解:∵0.63=0.216,∴0.216的立方根是0.6,即30.216=0.6.(2)0;解:∵03=0,∴0的立方根是0,即30=0.(3)-21027;解:∵-21027=-6427,且(-43)3=-6427,∴-21027的立方根是-43,即3-21027=-43.(4)-5.解:-5的立方根是3-5.8.求下列各式的值:(1)30.001;解:30.001=0.1.(2)3-343125;解:3-343125=-75.(3)-31-1927.解:-31-1927=-23.知识点2 用计算器求立方根9.用计算器计算328.36的值约为( B )A.3.049 B.3.050 C.3.051 D.3.05210.一个正方体的水晶砖,体积为100 cm3,它的棱长大约在( A )A.4 cm~5 cm之间B.5 cm~6 cm之间C.6 cm~7 cm之间D.7 cm~8 cm之间11.计算:325≈2.92(结果精确到0.01).易错点立方根与平方根相混淆12.立方根等于本身的数为0,1或-1.中档题13.(易错题)32的立方根是( A )A.33 B.39 C.2 D.314.下列说法正确的是( D )A.一个数的立方根有两个,它们互为相反数B.一个数的立方根比这个数的平方根小C.如果一个数有立方根,那么它一定有平方根 D.3a与3-a互为相反数15.若a2=(-5)2,b3=(-5)3,则a+b的值为( D )A.0 B.±10C.0或10 D.0或-10 16.已知2x+1的平方根是±5,则5x+4的立方根是4.17.(1)填表:(2)由上表你发现了什么规律?请用语言叙述这个规律:被开方数扩大到原来的1__000倍,则立方根扩大到原来的10倍;(3)根据你发现的规律填空:①已知33≈1.442,则33 000≈14.42,30.003≈0.144__2; ②已知30.000 456≈0.076 97,则3456≈7.697. 18.求下列各式的值: (1)-3-0.125; 解:原式=0.5.(2)-3729+3512; 解:原式=-9+8=-1.(3)30.027-31-124125+3-0.001. 解:原式=0.3-31125+(-0.1) =0.3-15-0.1=0.19.比较下列各数的大小: (1)39与3; 解:39> 3.(2)-342与-3.4. 解:-342<-3.4.20.求下列各式中x 的值:(1)8x 3+125=0;解:8x 3=-125. x 3=-1258.x =-52.(2)(2017·广州期中)(2x -1)3=-8. 解:2x -1=-2. 解得x =-12.21.将一个体积为0.216 m 3的大立方体铝块改铸成8个一样大的小立方体铝块,求每个小立方体铝块的表面积. 解:设每个小立方体铝块的棱长为x m ,则 8x 3=0.216. ∴x 3=0.027.∴x=0.3.∴6×0.32=0.54(m 2).答:每个小立方体铝块的表面积为0.54 m 2.综合题22.请先观察下列等式: 32+27=2327, 33+326=33326, 34+463=43463, …(1)请再举两个类似的例子;(2)经过观察,写出满足上述各式规则的一般公式.解:(1)35+5124=535124,36+6215=636215. (2)3n +n n 3-1=n 3nn 3-1(n >1,且n 为整数).6.3 实数基础题知识点1 实数的概念及其分类1.(2018·玉林)下列实数中,是无理数的是( B ) A .1B. 2C .-3D.132.下列说法中,正确的是( C )A .无理数包括正无理数、零和负无理数B .无限小数都是无理数C .正实数包括正有理数和正无理数D .实数可以分为正实数和负实数两类知识点2 实数与数轴上的点的关系实数和数轴上的点是一一对应的,反过来,数轴上的每一个点必定表示一个实数.3.若在数轴上画出表示下列各数的点,则与原点距离最近的点是( B ) A .-1B .-12C.32D .2知识点3 实数的相反数、绝对值、倒数实数a 的相反数是-a ;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即 |a|=⎩⎪⎨⎪⎧a ,当a>0时;0,当a =0时;-a ,当a<0时.4.-2的相反数是( C ) A .- 2B.22C. 2D .-225.π是1π的( B )A.绝对值B.倒数C.相反数D.平方根6.(2017·广州期中)3-8的绝对值是2.7.写出下列各数的相反数与绝对值.知识点4 实数的运算实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.8.(2018·包头)计算-4-|-3|的结果是( B )A.-1 B.-5 C.1 D.59.计算364+(-16)的结果是( B )A.4 B.0 C.8 D.12 10.计算:(1)33+53;解:原式=(3+5) 3=8 3.(2)|1-2|+|3-2|.解:原式=2-1+3- 2=3-1.11.计算(结果保留小数点后两位):(1)π-2+3;解:原式≈3.142-1.414+1.732≈3.46.(2)|2-5|+0.9.解:原式≈2.236-1.414+0.9≈1.72.易错点对无理数的判断有误12.下列说法正确的是( D )A.33是分数 B.227是无理数 C. π-3.14是有理数 D.3-83是有理数中档题13.下列各组数中,互为相反数的一组是( C ) A .-|-2|与3-8B .-4与-(-4)2C .-32与|3-2|D .-2与1214.有一个数值转换器,原理如下:当输入的x 为4时,输出的y 是( C )A .4B .2 C. 2D .- 215.(2017·宁夏)实数a 在数轴上的位置如图所示,则|a -3|16.点A 在数轴上和原点相距3个单位长度,点B 在数轴上和原点相距5个单位长度,则A ,B 两点之间的距离是17.把下列各数分别填入相应的集合中.-15,39,π,3.14,-327,0,-5.123 45…,0.25,-32. (1)有理数集合:{-15,3.14,-327,0,0.25,…};(2)无理数集合:{39,π,-5.123 45…,-32,…};(3)正实数集合:{39,π,3.14,0.25,…};(4)负实数集合:{-15,-327,-5.123 45…,-32,…}.18.求下列各式中的实数x. (1)|x|=45;解:x =±45.(2)|x -2|= 5. 解:x =2± 5.19.计算:(1)23+32-53-32; 解:原式=(2-5)3+(3-3) 2 =-3 3.(2)|3-π|+|4-π|. 解:原式=π-3+4-π =1.20.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为2,f 的算术平方根是8,求12ab+c+d5+e2+3f的值.解:由题意可知ab=1,c+d=0,e=±2,f=64,∴e2=(±2)2=2,3f=364=4.∴12ab+c+d5+e2+3f=12+0+2+4=612.综合题21.阅读下列材料:如果一个数的n(n是大于1的整数)次方等于a,这个数就叫做a的n次方根,即x n=a,则x叫做a的n次方根.如:24=16,(-2)4=16,则2,-2是16的4次方根,或者说16的4次方根是2和-2;再如(-2)5=-32,则-2叫做-32的5次方根,或者说-32的5次方根是-2.回答问题:(1)64的6次方根是±2,-243的5次方根是-3,0的10次方根是0;(2)归纳一个数的n次方根的情况.解:当n为偶数时,一个正数的n次方根有两个,它们互为相反数;当n为奇数时,一个数的n次方根只有一个.负数没有偶次方根.0的n次方根是0.章末复习(二) 实数分点突破知识点1 平方根、算术平方根、立方根 1.(2017·泰州)2的算术平方根是( B )A .± 2 B. 2 C .- 2 D .2 2.(2018·铜仁)9的平方根是( C )A .3B .-3C .3和-3D .81 3.(2018·荆门)8的相反数的立方根是( C ) A .2B.12C .-2D .-124.下列各式正确的是( A ) A .±31=±1B.4=±2C.(-6)2=-6 D.3-27=3知识点2 实数的分类5.把下列各数分别填在相应的集合中:5,-6,38,0,π5,3.141 592 6,227,-16,-234.101 001 000 1…(相邻两个1之间依次多1个0).知识点3 相反数、绝对值、倒数 6.9的倒数等于( D ) A .3B .-3C .-13D.137.实数1-2知识点4 无理数的估算及实数的大小比较8.(2018·贺州)在-1,1,2,2这四个数中,最小的数是( A ) A .-1 B .1 C. 2 D .29.(2018·南通)如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数2-5的点P 应落在( B )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上知识点5 实数的运算 10.求下列各式的值:(1)(2017·广州期末)38-9;解:原式=2-3=-1.(2)(2017·南宁期末)-32+|2-3|-(-2)2;解:原式=-9+3-2-2=-8- 2.(3)121+7×(2-17)-31 000.解:原式=11+27-1-10=27.易错题集训11.下列说法正确的是( D )A.-4没有立方根B.1的立方根是±1C.136的立方根是16D.-5的立方根是3-512.下列说法中,正确的有( B )①只有正数才有平方根;②a一定有立方根;③-a没意义;④3-a=-3a;⑤只有正数才有立方根.A.1个B.2个C.3个D.4个常考题型演练13.关于12的叙述,错误的是( A )A.12是有理数B.面积为12的正方形边长是12C.12在3与4之间D.在数轴上可以找到表示12的点14.(2017·钦州期末)下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的有( A )A.0个B.1个C.2个D.3个15.(易错题)如果一个实数的算术平方根等于它的立方根,那么满足条件的实数有( C )A.0个B.1个C.2个D.3个16.已知30.5≈0.793 7,35≈1.710 0,那么下列各式正确的是( B )A.3500≈17.100 B.3500≈7.937C.3500≈171.00 D.3500≈79.3717.写出3-9到23之间的所有整数:-2,-1,0,1,2,3,4.18.(2018·东莞)一个正数的平方根分别是x+1和x-5,则x=2.19.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A到达点A′的位置,则点A′表示的数是-4π.20.求下列各式中x的值:(1)x 2-5=49;解:x 2=499,x =±73.(2)(x -1)3=125. 解:x -1=5, x =6.21.已知某正数的两个平方根分别是a +3和2a -15,b 的立方根是-2,求3a +b 的算术平方根. 解:∵该正数的两个平方根分别是a +3和2a -15,b 的立方根是-2,∴a+3+2a -15=0,b =(-2)3=-8. ∴a=4,b =-8.∴3a +b =4=2,即3a +b 的算术平方根是2.22.魔方又叫魔术方块,也称鲁比克方块,是匈牙利布达佩斯建筑学院厄尔诺·鲁比克教授在1974年发明的.魔方与中国人发明的“华容道”、法国人发明的“独立钻石”一同被称为智力游戏界的三大不可思议.如图是一个4阶魔方,又称“魔方的复仇”,由四层完全相同的64个小立方体组成,体积为64 cm 3. (1)求组成这个魔方的小立方体的棱长;(2)图中阴影部分是一个正方形,则该正方形的面积为10cm 2解:组成这个魔方的小立方体的棱长为364÷64=1(cm).。
人教版 八上 实数同步练习题

实 数(一)选择题1、下列各数654.0 、23π、0)(π-、14.3、80108.0、ππ--1、 1010010001.0、4、 544514524534.0,其中无理数的个数是( )(A) 1 ( B) 2 (C) 3 (D) 42、下列语句中,正确的是 ( ( ) (A) 无理数与无理数的和一定还是无理数 (B) 无理数与有理数的和一定是无理数 (C) 无理数与有理数的积一定仍是无理数 (D) 无理数与有理数的商可能是有理数3、下列说法中不正确的是 ( ) (A) 1-的立方是1-,1-的平方是1 (B) 两个有理数之间必定存在着无数个无理数 (C)在1和2之间的有理数有无数个,但无理数却没有 (D) 如果62=x,则x 一定不是有理数4、下列运算中,错误的是 ( )①1251144251=,②4)4(2±=-,③22222-=-=-,④2095141251161=+=+ (A) 1个 ( B) 2个 (C) 3个 (D) 4个5、下列说法中,正确的是 ( )A. 不带根号的数不是无理数B. 8的立方根是±2C. 绝对值是3的实数是3D. 每个实数都对应数轴上一个点6、若51=+m m ,则mm 1-的平方根是 ( ) (A) 2± (B) 1± (C) 1 (D) 2(二)填空题 7、比较下列实数的大小(在 填上 > 、< 或 =) ①-2;②215-21; ③11253。
8、若01)1(2=++-b a ,则_____20052004=+b a ;9、当_______x 时,式子21--x x 有意义;10、已知x 、y 满足0242422=+-++y x y x ,则_______16522=+y x ;11、20041-的立方根是 ,2004)1(-的平方根是 ;12、如果a 的平方根等于2±,那么_____=a ;(三)计算题13、实数a 、b 在数轴上的位置如图所示,请化简:a14、化简下列各式 (1)2)525(-(2(35+(4)03+15、求x 值:361(12)164x +-= 16、求x 值: 29(1)48x +=15、请在同一个数轴上用尺规作出 2- 和 5 的对应的点。
实数计算题专题训练含答案(供参考)

实数计算题专题训练含答案(供参考)实数计算题专题训练含答案(供参考)1. 对于以下实数计算题,我们来进行专题训练。
每道题中都给出了详细的解题步骤和答案,供大家参考。
1) 计算:$\sqrt{2} \times \sqrt{2}$解:根据指数运算法则,$\sqrt{2} \times \sqrt{2} = \sqrt{2 \times 2} = \sqrt{4} = 2$答案:22) 计算:$\frac{\sqrt{8}}{\sqrt{2}}$解:根据根式的乘除法则,$\frac{\sqrt{8}}{\sqrt{2}} =\sqrt{\frac{8}{2}} = \sqrt{4} = 2$答案:23) 计算:$\sqrt{18} - \sqrt{8}$解:根据根式的加减法则,$\sqrt{18} - \sqrt{8} = \sqrt{9 \times 2} - \sqrt{4 \times 2} = 3\sqrt{2} - 2\sqrt{2} = \sqrt{2}$答案:$\sqrt{2}$4) 计算:$\frac{1}{\sqrt{5} - 2}$解:根据有理化分母的方法,$\frac{1}{\sqrt{5} - 2} =\frac{1}{\sqrt{5}-2} \times \frac{\sqrt{5}+2}{\sqrt{5}+2} =\frac{\sqrt{5}+2}{(\sqrt{5}-2)(\sqrt{5}+2)} = \frac{\sqrt{5}+2}{5-2} =\frac{\sqrt{5}+2}{3}$答案:$\frac{\sqrt{5}+2}{3}$5) 计算:$\sqrt{5 \left(\frac{3}{5}\right)}$解:根据根式的乘法法则,$\sqrt{5 \left(\frac{3}{5}\right)} = \sqrt{5} \times \sqrt{\frac{3}{5}} = \sqrt{5} \times \frac{\sqrt{3}}{\sqrt{5}} =\sqrt{3}$答案:$\sqrt{3}$2. 通过以上的实数计算题专题训练,我们可以总结一些解题的基本方法和技巧。
实数练习题(含答案)

实数练习题(含答案)篇一:实数练习题基础篇附答案实数练习题一、判断题(1分×10=10分)1. 3是9的算术平方根() 2. 0的平方根是0,0的算术平方根也是0()23.(-2)的平方根是?2 () 4. -是的一个平方根()5.a是a的算术平方根( )6. 64的立方根是?4() 7. -10是1000的一个立方根()8. -7是-343的立方根() 9.无理数也可以用数轴上的点表示出来() 10.有理数和无理数统称实数()二、选择题(3分×6=18分) 11.列说法正确的是() A 、1是的一个平方根 B、正数有两个平方根,且这两个平方根之和等于0 42C、 7的平方根是7D、负数有一个平方根 12.如果y?,那么y的值是()A、 B、 ?、、? 13.如果x是a的立方根,则下列说法正确的是() A、?x也是a的立方根 B、?x是?a的立方根 C、x是?a 的立方根 D、等于a 14.?、322?可,无理数的个数是()、?、、、A 、1个 B、 2个 C、 3个 D、 4个 15.与数轴上的点建立一一对应的是()(A、全体有理数B、全体无理数C、全体实数D、全体整数16.如果一个实数的平方根与它的立方根相等,则这个数是() A、0 B、正实数 C、0和1 D 、1三、填空题(1分×30=30分)的平方根是,10的算术平方根是。
3.?是的平方根?3是的平方根;(?2)的算术平方根是24.正数有个平方根,它们;0的平方根是;负数平方根。
5.?125的立方根是,?8的立方根是,0的立方根是。
6.正数的立方根是数;负数的立方根是数;0的立方根是。
7.2的相反数是,??= ,8.比较下列各组数大小:⑴⑵?64?1⑶?2 2四、解下列各题。
1.求下列各数的算术平方根与平方根(3分×4=12分)⑴225 ⑵1212⑶⑷ (?4) 1442.求下列各式值(3分×6=18分)⑴225⑵? ⑶?144⑷⑸ ?125 ⑹?272893.求下列各式中的x:(3分×4=12分)2⑴x?49 ⑵x?225333⑶x?3?⑷(x?2)?125 818附加题:(10分×2=20分)1.怎样计算边长为1的正方形的对角线的长?2.如图平面内有四个点,它们的坐标分别是 A(1,22) B(3,22) C(4,2) D(1,2) ⑴依次连接A、B、C、D,围成的四边形是什么图形?并求它的面积⑵将这个四边形向下平移22一、选择题(3分×8=24分) 1.实数8 ? 421025 其中无理数有() 3A、 1个B、 2个C、 3个D、 4个1的平方根是() 91111A、 B、 ? C、 ? D、?333812.3.如果x?16,则的值是()A、 4B、 -4C、 ?4D、 ?24.下列说法正确的是()A、 25的平方根是5B、?2的算术平方根是2C、的立方根是D、22525是的一个平方根 6365.下列说法⑴无限小数都是无理数⑵无理数都是无限小数⑶带根号的数都是无理数⑷两个无理数的和还是无理数。
人教版实数练习题

人教版实数练习题在本篇文章中,没有明显的格式错误或需要删除的段落。
但是,可以对每段话进行小幅度的改写,如下:6.1 平方根同步练(1)知识点:1.算术平方根:如果一个正数的平方等于a,那么这个正数就是a的算术平方根,而a被称为被开方数。
2.平方根的性质:一个数的平方根可以有两个,它们互为相反数。
但是,负数没有平方根。
同步练:一、基础训练1.(05年南京市中考)9的算术平方根是()A。
-3 B。
3 C。
±3 D。
812.下列计算不正确的是()A。
4=±2 B。
(-9)²=81=9 C。
30.064=0.4 D。
3⁻²¹⁶=-63.下列说法中不正确的是()A。
9的算术平方根是3 B。
16的平方根是±2 C。
27的立方根是±3 D。
立方根等于-1的实数是-14.364的平方根是()A。
±8 B。
±4 C。
±2 D。
±25.(-1/8)²的立方根是()A。
4 B。
1/8 C。
-11/4 D。
46.(16/81)的平方根是_______;9的立方根是_______.7.用计算器计算:41≈_______;≈_______(保留4个有效数字)8.求下列各数的平方根:1)100;(2)1/9;(3)5;(4)1;(5)1/15;(6)0.09.9.计算:1)-9;(2)3⁻⁸;(3)16;(4)±0.25.二、能力训练10.如果一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A。
x+1 B。
x²+1 C。
x+1 D。
x²+111.若2m-4与3m-1是同一个数的平方根,则m的值是()A。
-3 B。
1 C。
-3或1 D。
-112.已知x,y是实数,且3x+4+(y-3)²=25,则xy的值是()A。
4 B。
-4 C。
9/4 D。
-9/413.如果一个偶数的立方根比2大,算术平方根比4小,则这个数是_______.14.将半径为12cm的铁球熔化,重新铸造出8个半径相同的小铁球,不计损耗,球的半径是多少厘米?(球的体积公式为V=4/3πR³)三、综合训练15.利用平方根、立方根来解下列方程:1)(2x-1)²-169=0;(2)4(3x+1)²-1=0;3)2.已知方程 $25x^2-144=0$,且 $x$ 是正数,求$25x+13$ 的值。
(完整版)实数练习题及答案

实数练习题及答案一、选择题(每小题3分,共30分)1.下列各式中无意义的是()A. B. C. D.2.在下列说法中: 10的平方根是±; -2是4的一个平方根; 的平方根是④0.01的算术平方根是0.1;⑤,其中正确的有()A.1个B.2个C.3个D.4个3.下列说法中正确的是()A.立方根是它本身的数只有1和0B.算数平方根是它本身的数只有1和0C.平方根是它本身的数只有1和0D.绝对值是它本身的数只有1和04.的立方根是()A. B. C. D.5.现有四个无理数,,,,其中在实数+1 与+1 之间的有()A.1个B.2个C.3个D.4个6.实数,-2,-3的大小关系是()A. B. C. D.7.已知 =1.147, =2.472, =0.532 5,则的值是()A.24.72B.53.25C.11.47D.114.78.若,则的大小关系是()A. B. C. D.9.已知是169的平方根,且,则的值是()A.11B.±11C. ±15D.65或10.大于且小于的整数有()A.9个B.8个 C .7个 D.5个二、填空题(每小题3分,共30分)10.绝对值是,的相反数是.11.的平方根是,的平方根是,-343的立方根是,的平方根是.12.比较大小:(1);(2);(3);(4) 2.13.当时,有意义。
14.已知=0,则 =.15.最大的负整数是,最小的正整数是,绝对值最小的实数是,不超过的最大整数是.16.已知且,则的值为。
17.已知一个正数的两个平方根是和,则=,=.18.设是大于1的实数,若在数轴上对应的点分别记作A、B、C,则A、B、C 三点在数轴上从左至右的顺序是.19.若无理数满足1,请写出两个符合条件的无理数.三、解答题(共40分)20.(8分)计算:(1);(2);(3);(4);21.(12分)求下列各式中的的值:(1);(2);(3);(4);22.(6分)已知实数、、在数轴上的对应点如图所示,化简:23.(7分)若、、是有理数,且满足等式,试计算的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.3《实数》同步练习题(1)
知识点:
1.有理数:整数和分数叫有理数 无限循环小数叫有理数
2.无理数:无限不循环小数叫做无理数
3..实数:有理数和无理数统称实数
4..实数都能用坐标上的点表示 同步练习:
考场秘诀:谁沉着、冷静、认真、细心,谁就一定能够在考场上赢得最大的胜利!!祝你成功!!
一、 仔细选一选:(每题3分,共30分)
1.下列实数: 32-,0,141592.3-,•59.2,2
π
,25,3, 0.020020002……中,无
理数有( )个.
A.2
B.3
C.4
D.5 2.25表示的意义是( )
A.25的立方根
B.25的平方根
C.25的算术平方根
D.5的算术平方根 3.下列语句正确的是( )
A. -2是-4的平方根;
B. 2是(-2)2的算术平方根;
C. (-2)2的平方根是2;
D. 8的立方根是±2. 4.下列各数中,互为相反数的是( )
A.-2与2)2(-;
B.-2与38-;
C.-2与2
1
-; D.2-与2. 5.算术平方根等于它本身的数是( )
A .1和0
B .0
C . 1
D . 1±和0
6. 某位老师在讲“实数”时,画了一个图(如图1),即“以数轴的单位线段为边做一个正方形,然后以O 为圆心,正方形的对角线长为半径画弧交x 轴上于一点A”。
则OA 的长就是2个单位长度,想一想:作这样的图可以说明什么?
A.数轴上的点和有理数一一对应
B.数轴上的点和无理数一一对应
C.数轴上的点和实数一一对应
D.不能说明什么
7.实数a 、b 、c 在数轴上的位置如图2: 则化简 c b a +-的结果是( )
A.a -b -c;
B.a -b+c;
C.-a+b+c;
D.-a+b -c .
8.绝对值小于5的所有实数的积为 ( )
A.24;
B.576;
C.0;
D. 10 9、若实数x 满足|x |+x=0,则x 是( )。
A. 零或负数
B. 非负数
C. 非零实数
D.负数. 10.
11的整数部分为a ,小数部分为b ,则b 2为( )
A .2
B .20
C .20-611
D .20+611
二、细心填一填(每题4分,共32分) 1、-3的倒数是________,绝对值是________ 2.9的平方根是
121的算术平方根是______
3.若33-x =-2,则x 的值是 4、如果3+a =3,那么(a+3)2的值为
5、计算:3
164
37
-= 6、=-2
)4( . )81()64(-⨯-
7、若三角形的三边a 、b 、c 满足a 2-4a+4+3-b =0,则笫三边c 的取值范围是_____________ 8、计算: )23)(23(+-=_____,)32)(32(+-=_____,)25)(25(+-= ____;…….通过以上计算,试用含n(n 为正整数)的式子表示上面运算揭示的规律:__________________ 三、解答题:(共38分)
图2
1、(6分)求下列各式的值: (1)49±; (2)256
121
; (3)-09.0
2、(6分)化简:(1)453227+- (2)⨯3)(632-
3、(6分)已知31-x =x -1,求x 的值。
4、(6分)一个长方体的长为5 cm ,宽为2 cm ,高为3 cm ,而另一个正方体的体积是它的3倍,求这个正方体的棱长(结果精确到0.01 cm).
5、(7分) 已知三角形的三边a、b、c的长分别为45cm 、80cm、125cm,
求这个三角形的周长和面积.
图3
6、(7分).如图3所示,某计算装置有一数据入口A和一运算结果的出口B,下表给出的是小
红输入的数字及所得的运算结果:
A 0 1 4 9 16 25 36
B -1 0 1 2 3 4 5
若小红输入的数为48,输出的结果应为多少?若小红输入的数字为a,你能用a表示输出结果吗?
《实数》实战演练参考答案 一、BCBAA ,CCCAC 二、1、-
3;33 2、±3;11 3、-5 4、81 5、4
3- 6、4;72 7、1<c<5 8、1,1,1, .1)1)(1(=++-+n n n n 三、1、(1)±7 (2)
16
11
(3)-0.3 2、(1)原式=533533233+=
+-
(2)原式=⨯3=⨯-63326-32。
3、因为立方根等于它本身的数是1,-1,0,所以有x -1=1, x -1=-1或x -1=0, 所以x=2,0或1
4、33325⨯⨯⨯=390≈4.48cm
5、周长=45+80+125=125cm ; 因为(45)2+(80)2=125=(125)2, 所以三角形是直角三角形,故面积=
2
1
×45×80=30cm 2
6、(1)经观察易得出规律:11= (21(0)a ≥。