2014年西斯博朗近期工程
美国劳斯阿拉莫斯国家实验室简介
number 6866 381 774 799 709 411 472 10312
67% University degrees
26% hold undergraduate
degrees
18% hold masters degrees
23% PhD
◆ 人数多 ◆ 人员构成比例适当,研究人员 与辅助人员比例相当或占多数; ◆ 研究人员以博士为主,管理与 辅助人员以学士或无学历人员为 主; ◆ 定期合同与无限期合同相结合。
共16个分管副主任,其下共设置了99个部门、办公室或项目组。
人员构成
Employment type Los Alamos National Security. LLC
SOC LOS Alamos (Guard Force) Staff and Support contractors
Students Unionized craft workers Post-doctoral researchers
LANL 核武算,/activemap/NWC‐LANL.html
2013年预算:2.1 billion
54% 核武器;10% 防止核武器扩散项目;5% 安全防护;9% 环境管理; 5% 能源部科学办公室;3% 能源与其它项目;14% 其它
组织机构
传感器与 仪器系统
美国劳斯阿拉莫斯国家实验室(LANL)简介
2014.4.8 At SINAP
地理位置:美国新墨西哥州 面积:93平方公里 气候:温暖干燥、阳光充足湿度低
劳伦斯利福莫 尔国家实验室, 1952年成立。
劳斯阿拉莫斯
国家实验室,
1943年成立。
1945年7月16日,
Autodesk AutoCAD Advance Steel 自定义绘图风格教程说明书
MSF125101-LAutodesk AutoCAD Advance Steel – Creating a Custom Drawing StyleJames Branagan IMAGINiTDescriptionThis will be a hands-on lab describing how to create a custom drawing styleSpeaker(s)Mr. James Branagan is a Civil/Structural Engineering Technologist with over 1 year ofexperience as a software applications expert and over 11 years of experience on major and oil and gas and transportation projects. As a software applications expert he providesknowledgeable and competent support and training in AutoCAD, Civil 3D, Infraworks, Advance Steel. He also provides knowledgeable and competent support in design and layout of roads, earthworks, structural steel, sludge ponds, piling, concrete work and underground utilities. Mr. Branagan also provides knowledgeable and competent support in field inspection and resident engineering duties.Learning Objectives• Learn how to create custom drawing styles • Learn about model objects• Create a labeling strategy for drawing styles• Learn dimension requests for dimensioning model objects •Modify drawing styles for drawing creationIntroductionAutodesk’s Advance Steel contains a number of predefined drawing styles for producing shop drawing, single part and, assembly drawings. As well, users can create their own drawing styles by either copying and modifying an existing drawing style, or creating one from scratch.Editing within the Drawing styles dialog box.The labeling strategies can be modified by either adding new strategies or renaming existing ones.- Create a new labeling strategy- rename an existing labeling strategyCopy vs Deep CopyThere are two different methods to copy styles in Advance Steel; Copy and Deep Copy.Copy will copy the style and continue to use the associated sub-styles that area associated with the original style. Therefore, modifying a substyle will affect all the drawing styles that are using it.Deep copy copies the original style as well as all of the associated sub-styles. This copy can be edited at any level without affecting the original drawing style.Model ObjectsIn Advance Steel, functions are assigned to the model objects either by applying construction rules or interactively. In the drawing creation, these functions are used to explicitly differentiate individual object groups.The functions cover plate, end plate and butt plate automatically create a front plate view in a main part. If no other elements, such as shear or gusset plates, are welded at this spot, no further cut is offered by Advance.Model objects act as filters for 3D objects from model which are defined by the Advance Steel object type, model role and an additional filter.Labeling StrategiesAn essential part of the automatic drawing design is the labeling of model objects in detail views. A labeling rule contains settings for the content, the layout and the label arrangement. Labeling strategies can be shared by different styles and can be managed separately.Setting the label positionThe label position is set in the “Text direction and combining labels” area of the dialog box.Max distance – combines labels so that the distance does not go passed the MaxDistance in mm (in) on the drawingText direction – sets the text orientation between -90° and 90°Place along the object – When this check box is checked the text will be placed in line with the object.Arrange beam label according to compass – When this check box is checked the lables will be configured to show the member’s orientation by arranging the label to point on the beam end based on the shop drawing orientation.Leader Line – Will allow the leader to be used or not as well as setting the visibility status. Setting the label contentThe label content is defined in the “Label Content” area and includes the following options:-Content of Label – the dropdown provides the name of the label being used.o - Create a new label nameo - rename an existing label-Used for object – allows the selection of which object the label is being used for-Label format – the rest of the boxes are used to define the contents of the label and formatting.Which token is being used, text style and height, and frame type can be defined.- will set the label content as variable.Setting the label arrangementThe label arrangement can be set based on two methods.-Based on area-Based on angleExercise: Create sample labeling strategy1. If not already open, open the Drawing Style Manager. Output Tab > DocumentManager Palette > (Drawing Style Manager)2. On the left hand side of the dialog box, select Labeling Strategies.3. In the tree, Expand User and Beams4. Right Click on Section Name and select Copy5. In the New labeling strategy Dialog Box enter “Part Mark & Section Name” for theGroup Name and click OK6. Select the new Part Mark & Section Name Labeling Strategy7. Under Label content select (New) at the end of the Content of Label line8. In the New label type dialog box, enter Part Mark & Section Name for the name9. In the content area hit enter to move HEA 100 down a line.10. Select Main park mark for Token and adjust any of the other settings as desired.11. Click on Apply and OKDimension RequestA dimension request is used to define the dimensioned objects in a dimension chain. Existing dimension styles can be used by different drawings at the same time. As such. modifying a dimension definition affects all the drawing styles that are using it.Dimension definition propertiesA dimension definition contains the following settings:- A Dimension direction defines the dimension chain direction relative to the applies object type.-The selection of dimension points is a list of sub-styles that are available for point selection.The sub-styles specify which points from what objects will be dimensions.-The Dimension chain position includes several options for better positioning relative to the object presentation.Setting the direction of the dimension chainThe direction of the dimension chain refers to the detail view on the drawing or to an object in the modelDimension chain direction-Internal bolt/hole direction X-Internal bolt/hole direction Y-Internal direction angle-Internal direction linear-Negative x-axis of a main part-Negative x-axis of an object-Negative x-orientation of the view-Negative y-axis of a main part-Negative y-orientation of the view-X-axis Bent Beam inner-X-axis Bent Beam outer-X-axis Bent Beam system-X-axis of a main part-X-axis of an object-X-orientation of the view-Y-axis Bent Beam-Y-axis of a main part-Y-axis of an object-Y-orientation of the viewDimension arrangement on the drawingThe following options are available in the Arrangement on the drawing area for better positioning.Dimension Line must not overlap total geometryChoose whether the dimension chain is free of intersections with the local or totalgeometry of the detail.G – GlobalL – LocalArrange the dimension line above and not belowChoose whether the dimension chain is placed above or below in a detail view. Forvertical details, above is to the left and below is to the right/T – TopB – BottomCreate a separate dimension chain for each item marked with *Choose whether every single object detected in the model has a dimension chaincreated. If not chosen, the detected objects are dimensioned in one dimension chain.S – SingleA – AllThe name of the dimension definition contains the settings mentioned above using the abbreviation. For example;Mp Y – Inside Proc Bottom LTSL – no intersection with local geometryT – dimensions placed above detailS – detected elements are dimensioned in separate chainsGroup only related dimensionsDimensions for bolts and holes on secondary parts can be grouped. This will create adimension line for each group and dimensions the objects in the group.Do not combine with other dimensions.Prevents a dimension from combining with others.Selection of Dimension PointsA dimension point selection rule contains setting to adjust:-Model objects and geometric restriction – filter for defining the objects used for selection of dimension points.-Point type selection – properties of the objects geometry used in the points selection process-Position on object or main part – objects points used for dimensioningDrawing Style PropertiesA drawing style is composed of one or multiple views. Each view is composed of properties, objects, dimensions and labels, which have been defined above.View ProperitesThe view properties consists of four tabs-Views arrangement – allows you to select the views, their orientation, arrangement and distances-Detail title – allows the definition of the detail title content and its position-Cut view title - allows the definition of the detail title content and its position-Model object selection – allows the definition of the objects that will be detailed by the selected styleEach view consists of properties, objects, dimensions and labels. The aspects (Direction, Contained Objects, dimension) are kept on the tree panel of the Drawing Style Manager and on the View Definition tab. Selecting an item in the tree displys the items properties panel.-View direction and model box – Select how to look at the objects in the model and options for the viewport definition-Objects presentation – the list of model objects that determine the view content are visible when the tree is expanded as well as what is labled-View Dimension – set the dimension style for the view.Exercise: Create sample Drawing Style1. If not already open, open the Drawing Style Manager. Output Tab > DocumentManager Palette > (Drawing Style Manager)2. On the left hand side of the dialog box, select Drawing Styles3. Expand User > 5 – Assemblies4. Select 5 – Beam. Right-click and select Copy. Name the copy 5 – Beam - Example.5. Select and expand 5 -Beam - Example6. In the right hand window, In the List of views created by this detail, select and deleteall views EXCEPT 5 – Beam – Front7. In the tree, select 5 – Beam Front8. select the (New) button beside the View name dropdown box. Enter 5-Beam-Front – Example for the name9. In the tree expand 5-Beam-Front – Example> Objects presentation10. In the tree select Objects Presentation11. In the right hand window, under Set of objects select the (New) button. EnterBeam – Front – Example for the name.12. In the tree expand Objects presentation > MP-Beam-All and select on LabelingStrategy.13. In the Labeling strategy dropdown menu change Off to. Part Mark & Section Namewhich was created earlier. If you were not able to create the labeling style, selectSection Name14. In the tree, collapse Object presentation and select on View dimensions15. In the right hand window, under Dimension select the (New) button. Enter Beam– Front – Example for the name.16. Select line 24 Mp X – Assembly overall (+ MP infos) GTA and select to deleteit.17. Click apply18. Click use and select the beam in the drawing19. Click OK to close the Drawing styles Manager20. Open the document manager and open the newly created drawing.Autodesk’s Advance Steel contains a number of predefined drawing styles for producing shop drawing, single part and, assembly drawings. This guide has touched on the basics of how tomodify and create custom drawing styles.Appendix ABacking up Databases and Folders:Important Databases:To backup your Databases, you can use file explorer and locate the following files and back them up somewhere. ( XXXX= year version, i.e. 2015,2016, etc) (USA for 2018) (2018 mdf not mdb)C:\ProgramData\Autodesk\Advance Steel XXXX\USA\User2\Data-AstorAddin.mdb (this database will be copied from version to version)C:\ProgramData\Autodesk\Advance Steel XXXX\USA\Steel\Data\-AstorBase.mdb-AstorGratings.mdb-AstorRules.mdb-AstorSettings.mdbC:\ProgramData\Autodesk\Data-AstorProfile.mdbImportant Folders:C:\ProgramData\Autodesk\Advance Steel XXXX\Shared-ConnectionTemp folder- StandardPartTemplate folderC:\ProgramData\Autodesk\Advance Steel XXXX\Shared\Support-BOMTemplate folder-Prototypes folder-Template folderWhat’s being stored in each database:-AstorAddin.mdb (contains most of the modifications and settings that can be done by the user)o Drawing Styles and Processes (User folder)o User added Materials; Model roles; Coating; Bolt coatings, Notes; Texts (added by MT – Object property editor)o Explode settings (profiles)o Preferred sizes / settingso User BOMso QuickConnections settingso Numbering prefixes-AstorBase.mdbo Newly added or modified bolts, anchors, or shear studso New materials or coatingo New model roleso Symbol configurations-AstorGratings.mdbo New or modified gratings-AstorRules.mdbo Configurations done to the accepted profile sizes/classes by joints like the Purlin Structural elemento Saved joint library elements-AstorSettings.mdbo Modifications done to the default values (ones set in Management Tools)-AstorProfiles.mdbo New or modified profiles-AstorDetails.mdbo Drawing Styles and Processes (Advance folder)o Country Drawing Styles and Processes (Advance Folder)Note: These databases contains links to other databases, but the definition of DS itself and DP (drawing process) is fully contained in each corresponding database.Use Microsoft Access for 2014,2015,2016,2107SQL Server for 2018https:///support/advance-steel/getting-started/caas/CloudHelp/cloudhelp/2018/ENU/AdvSteel-GetStarted/files/GUID-36721418-4385-475A-91CA-384AE72121D8-htm.html。
WRC Bulletin 537 及其 勘误表
To: All WRC Subscribers and purchasers of WC 537 From: WRC Publication Staff Date: Friday, August 19, 2011 Subject: WRC Bulletin 537 Errata The following errata have been reported.Page Section/Table/Figure DescriptionDate Corrected 6August 1965 ForewordCorrect range for beta from 0.375 to 0.55/31/201116 3.4 Page number for nondimensional curves for spherical shells shouldbe page 43 5/31/201125 4.4.1 Page number for nondimensional curves for cylindrical shells shouldbe page 91 5/31/201139 Table 5Table 5 – for computation of Nø/(P/Rm) currently states 3C or 4C,should only State 3C – Note Figure 3C is properly labeled. 6/1/2011 39 Table 5Table 5 – for computation of Nx/(P/Rm) currently states 3C or 4C,should only State 4C – Note Figure 4C is properly labeled 6/1/2011 51 Curve Fit Table forSP-1 Incorrect column name in last column currently shows My shouldshow Ny7/5/2011 54,55 Figure SP-3 and Curve Fit TableIncorrect range for right side axis for NiT(RmT)1/2/Mcosq6/21/201174,75 Figure SM-3 and Curve Fit Table Curve fit for data was adjusted to prevent negative values for Y withinvalid range for X 7/22/201186 Figure SM-9 Adjusted the placement of the labels for Nx and My for easier reading 7/22/201189 Curve Fit Table forSM-10 Equation shown is not the equation used to calculate the curve fit6/21/2011101 Figure 4A and CurveFit TableMissing figure and table2/28/2011118 Figure 3B Title is incorrect should be longituidinal moment not circumferential 5/31/2011120 Figure 4B Title is incorrect should be longituidinal moment not circumferential 5/31/2011128, 129Figure 1C-1 Original and Curve Fit Table Incorrect range for Y4/4/2011130, 131 Figure 1C-1 Extrapolated and Curve Fit Table Incorrect range for Y 4/4/2011 184Figure B-2Incorrect values for x axis8/19/2011If you have any further questions,please send an email to subscribers@ . If any additional errata items are reported, this file will be updated. Please check/wrc/BULLETIN%20537_Errata_pages.pdf for any updates.The Welding Research Council, Inc.WRC 537Local Stresses in Spherical and Cylindrical Shells Due To External Loading5FOREWORDTo WRC Bulletin 107, March 1979 Update of August 1965 Original VersionWelding Research Council Bulletin No. 107 has been one of the most widely used bulletins ever published by WRC. The original bulletin was published in August 1965. Since that time, a revised printing was issued in December 1968; a second revised printing was issued in July 1970; a third revised printing was released in April 1972; and a June 1977 reprint of the third revised printing was issued. As sometimes happens with publications of this type, some errors were detected and then corrected in subsequent revised printings.In this March 1979 Revision of Bulletin 107, there are some additional revisions and clarifications. The formulations for calculation of the combined stress intensity, S, in Tables 2, 3, and 5 have been clarified. Changes in labels in Figures 1C-1, 2C-1, 3C , and 4C have been made and the calculated stresses for Model "R" in Table A-3 and Model "C-l" in Table A-4 have been revised accordingly. The background for the change in labels is given in a footnote on p. 66.Present plans call for a review and possible extension of curves to parameters which will cover the majority of openings in nuclear containment vessels and large storage tanks. Plans are to extend /R T from 300 to 600 and to extend /d D range from 0.003 to 0.10 for the new /R T range, review available test data to establish limits of applicability, and develop some guidance for pad reinforcements.Long range plans are to review shell theory in general, and Bijlaard's method in particular. The goal is to extend the /R T up to 1200 for a /d D up to 0.1. This will include large deflection theory and other nonlinear effects. In addition, available computer programs will be studied in hope of developing one which will be an appropriate supplement to Bijlaard's method. Finally, a review will be made of limit loads related to large /R T and small /d D .J.R, Farr, Chairman PVRC Design DivisionThe Welding Research Council, Inc.WRC 5376Local Stresses in Spherical and Cylindrical Shells Due To External LoadingFOREWORDTo WRC Bulletin 107, August 1965 Original VersionSeveral years ago, the Pressure Vessel Research Committee sponsored an analytical and experimental research program aimed at providing methods of determining the stresses in pressure vessel nozzle connections subjected to various forms of external loading. The analytical portion of this work was accomplished by Prof. P. P. Bijlaard of Cornell University, and was reported in References 1 to 8 inclusive. Development of the theoretical solutions involved a number of simplifying assumptions, including the use of shallow shell theory for spherical vessels and flexible loading surfaces for cylindrical vessels. These circumstances limited the potential usefulness of the results to /i i d D , ratios of perhaps 0.33 in the case of spherical shells and 0.25 in the case of cylindrical shells. Since no data were available for the larger diameter ratios, Prof. Bijlaard later supplied data, at the urging of the design engineers, for the values of 0.375β= and0.50 (/i i d D , ratios approaching 0.60) for cylindrical shells, as listed on page 12 of Reference 10.In so doing, Prof. Bijlaard included a specific warning concerning the possible limitations of these data, as follows: "The values for these large loading surfaces were computed on request of several companies. It should be remembered, however, that they actually apply to flexible loading surfaces and, for radial load, to the center of the loading surface. It should be understood that using these values for the edge of the attachment, as was recommended for small loading surfaces, may be unconservative.''Following completion of the theoretical work, experimental work was undertaken in an effort to verify the theory, the results of which were published in References 17 and 18. Whereas this work seemingly provided reasonable verification of the theory, it was limited to relatively small /i i d D ratios-0.10 in the case of spherical shells and 0.126 in the case of cylindrical shells. Since virtually no data, either analytical or experimental, were available covering the larger diameter ratios, the Bureau of Ships sponsored a limited investigation of this problem in spheres, aimed at a particular design problem, and the Pressure Vessel Research Committee undertook a somewhat similar investigation in cylinders. Results of this work have recently become available emphasizing the limitations in Bijlaard 's data on cylindrical shells, particularly as it applies to thin shells over the "extended range " (page 12 of Reference 10).Incident to the use of Bijlaard's data for design purposes, it has become apparent that design engineers sometimes have difficulty in interpreting or properly applying this work. As a result of such experience, PVRC has felt it desirable that all of Bijlaard's work be summarized in convenient, "cook-book" form to facilitate its use by design engineers. However, before this document could be issued, the above mentioned limitations became apparent, presenting an unfortunate dilemma, viz., the test data indicate that the calculated data are partially inadequate, but the exact nature and magnitude of the error is not known, nor is any better analytical treatment of the problem available (for cylinders).Under these circumstances, it was decided that the best course was to proceed with issuing the "cook-book," extending Bijlaard's curves as best we can on the basis of available test data. This decision was based on the premise that all of the proposed changes would be toward the conservative (or "safe") side and that design engineers would continue to use Bijlaard 's extended range data unless some alternative were offered. The following paper is therefore presented in the hope that it will facilitate the use of Bijlaard's work by design engineers. Every effort has been made to point out any known limitations in the work and to explain the exact nature of the changes which have been made to Bijlaard's original curves and data; however, users are warned that the resulting work is not necessarily adequate for all cases. It is the hope of the Subcommittee that additional theoretical work can be undertaken to provide more adequate data on various phases of this problem.F. S.G. Williams, ChairmanPVRC Subcommittee on Reinforced Openings and External LoadingsThe Welding Research Council, Inc.WRC 537Local Stresses in Spherical and Cylindrical Shells Due To External Loading153.3.2 Stresses Resulting From Overturning Moment,M3.3.2.1Radial Stresses (x σ)a) STEP 1. Using the applicable values of *,,U and ρϒ, read off the dimensionless membrane force()/xN M from the applicable curve which will be found in one of the following figures:Figure SR-3 or SM-1 to SM-10, inclusive.b) STEP 2. By the same procedure used in STEP 1 above, read off the value of dimensionless bendingmoment ()/M M from the applicable curve. This value will be found in the same figureused in STEP 1.c) STEP 3. Using the applicable values of ,,m M R and T , calculate the radial membrane stress()/x N Tby:x N T ⎞=⎝(12) d) STEP 4. By a procedure similar to that used in STEP 3, calculate the radial bending stress()26xMT, thus:26x M T ⎞=⎝ (13) e) STEP 5. Combine the radial membrane and bending stresses by use of the general stress equation(paragraph 2) together with the proper choice of sign (see Table 1); i.e.,26x x x nb N MK K T Tσ=± (14) 3.3.2.2Tangential Stress (y σ)Follow the five steps outlined in 3.3.2.1, using the same figure to obtain ()/y N Mand()/MM used to obtain ()/x N T P and ()/x M P .It follows that:yN T ⎛⎞=⎝⎠(15) 26yM T ⎛⎞=⎝⎠ (16) 26y yy nbN M K K T Tσ=± (17)The Welding Research Council, Inc.WRC 53716Local Stresses in Spherical and Cylindrical Shells Due To External Loading3.3.3Stresses Resulting From Torsional Moment, T MIn the case of a round attachment (such as a pipe), torsional moment is assumed to induce pure shear stresses, so that shear stress ()τ in the shell at the attachment-to-shell juncture is given by:202Tyx xy M r Tττπ==(18) If only shear stresses are being considered, it is to be noted that the equivalent stress intensity is twice the above calculated shear stress.In the case of rectangular attachments, torsional moment produces a complex stress field in the shell. Acceptable methods of analyzing this situation are not available at this time. If the designer has reason for concern, the problem should be resolved by testing in accordance with established code procedures. 3.3.4 Stresses Resulting From Shear Load, V Bijlaard has proposed 14 that shear force()V can be assumed transmitted to the shell entirely bymembrane shear force. Therefore, stresses in the shell at the attachment-to-shell juncture can be approximated as follows:3.3.4.1 Round Attachment0sin xy V(refer to Figure 1)r T τθπ=(19)3.3.4.2 Square Attachment1(90270)4xy V at and c Tτθ==°° (20)3.3.5 Stresses Resulting From Arbitrary LoadingIn the general case, all applied loads and moments must be resolved (at the attachment-shell interface) in the three principal directions; i.e., they must be resolved into components 1212,,,,,T P V V M M and M . If one then proceeds in the manner previously outlined, membrane, bending and shear stresses can be evaluated at eight distinct points in the shell at its juncture with the attachment. These eight points are shown in the sign convention chart, Table 1.The numerous stress components can be readily accounted for, if a scheme similar to that shown in Table 2 and 3 is adopted. In using this scheme, it is to be noted that the Maximum Shear Theory has been used to determine equivalent stress intensities. Also, it is to be noted that evaluation of stresses resulting from internal pressure has been omitted.Test work conducted by PVRC has shown that stresses attenuate rapidly at points removed from the attachment-to-shell juncture, the maximum stress frequently being located at the juncture.* However, in the general case of arbitrary loading, one has no assurance that the absolute maximum stress intensity in the shell will be located at one of the eight points considered in the above discussion.3.4 List Of Nondimensional Curves For Spherical ShellsThe nondimensional curves for solid and hollow attachments in spherical shells is shown on page 43 .*Under certain conditions stresses may be higher in the nozzle wall than they are in the vessel wall. This possibility is most likely if the nozzle opening in not reinforced or if the reinforcement is placed on the vessel wall and not on the nozzle.The Welding Research Council, Inc.WRC 537Local Stresses in Spherical and Cylindrical Shells Due To External Loading254.3.5.2 Rectangular Attachment14cx V c Tφτ=(50) 24Lx V c Tφτ=(51) 4.3.6 Stresses Resulting From Arbitrary LoadingIn the general case, all applied loads and moments must be resolved (at the attachment-to-shell interface) in the three principal directions; i.e., they must be resolved into components ,,,,,c L c L T P V V M M and M . If one then proceeds in the manner previously outlined (e.g., paragraph 4.3.1.1), membrane, bending and shear stresses can be evaluated at eight points in the shell at its juncture with the attachment. These eight points are shown in the sign convention chart, Table 4.4.4 Nondimensional Curves For Cylindrical ShellsThe nondimensional curves which follow constitute, in general, a replot of Bijlaard's data to a semilog scale in order that certain portions of the curves can be read with greater facility. Those portions of the curves which are taken directly from Bijlaard's work are shown as solid curves; those portions of the curves which have been modified on the basis of recent experimental data, as discussed in Appendix A, are shown as dotted curves.In the case of longitudinal moment loading and axial loading (thrust), two sets of curves are shown for the bending components of stress-one set applying to the longitudinal axis, and the other applying to an area of maximum stress off the axes of symmetry (longitudinal moment), or to the transverse axis (thrust). In the latter case, a portion of the original curves has been deleted in order to emphasize that the curves should not be used beyond the limits indicated. This was done because the available data indicated that the "outer limits" of the curves were appreciably unconservative, with no feasible manner to "correct" them (as explained in Appendix A).In the case of longitudinal moment , the exact location, of the maximum stress cannot be defined with certainty, but Figure A-14 will provide an estimate of its location (considering that the location of maximum stress under internal pressure and longitudinal moment was essentially the same on IIT model "C-1," as shown on Figures A-2 and A-3). It should also be noted that, to the best of our knowledge, the curves for "maximum stresses off the axes of symmetry" (Figures 1B-1 and 2B-1) would apply only to the case of a round, flexible nozzle connection; it is conceivable that a similar effect might apply to a rigid square or rectangular attachment, for which the shell at the outer edges of the attachment might take a greater part of the load than that portion of the shell adjacent to the longitudinal centerline. However, we know of no direct evidence to support such an assumption.4.4.1 List Of Nondimensional Curves For Cylindrical ShellsThe list of nondimensional curves for cylindrical shells is shown on page 91.4.5 Limits On ApplicationWhere relatively large attachments are considered, or when situations are encountered that deviate considerably from the idealized cases presented herein, the designer should refer to paragraph A.3 in Appendix A and to the original references to ascertain the limitations of applicability for the procedure used. However, there are a few generalizations that can safely be made regarding vessel and attachment geometry.The Welding Research Council, Inc.WRC 53726Local Stresses in Spherical and Cylindrical Shells Due To External Loading4.5.1 External Radial LoadStresses are affected very little by the ratio of shell length to shell radius ()/m l R . Therefore, no restriction is made on the point of load application except in very extreme cases. The curves included in this report are for an /m l R ratio of 8, which is sufficient for most practical applications. On the basis of data presented in Bibliographical Reference 2, results based on an /m l R ratio of 8 will be slightly conservative for lesser values of /m l R ratio and unconservative for greater values of /m l R ratio. However, the error involved does not exceed approximately 10% of all /m l R values greater than 3, which should be sufficiently accurate for most calculations. Since for lesser values of /m l R , the results are conservative, no restriction will ordinarily be necessary on /m l R ratio or the point of load application. For extreme cases or for "off center" loading, one may make corrections by use of the curves presented on page 8 of Bibliographical Reference 2, if desired.Results are not considered applicable in cases where the length of the cylinder ()l is less than its radius()m R . This applies either to the case of an open ended cylinder or closed ended cylinder where thestiffness is appreciably modified from the case considered.4.5.2 External MomentResults are applicable in the case of longitudinally off center attachments (a more usual case) provided that the attachment is located at least half the shell radius ()0.5m R from the end of the cylinder.4.5.3 Attachment StressesThe foregoing procedure provides one with a tool to find stresses in the shell, but not in the attachment. Under certain conditions, stresses may be higher in the attachment than they are in the vessel. For example, in the case of a nozzle, it is likely that the stresses will be higher in the nozzle wall than they are in the vessel wall if the nozzle opening is unreinforced or if the reinforcement is placed on the vessel wall and not on the nozzle.5 ACKNOWLEDGMENTThe authors wish to acknowledge the significant contributions made by J. B. Mahoney of Applied Technology Associates Inc. and M. G. Dhawan of the Bureau of Ships during the preparation of this paper. In addition, the comments received during the review of this document by the members of the PVRC Subcommittee on Reinforced Openings and External Loadings are deeply appreciated.6 REFERENCES1. Bijlaard, P. P., "Stresses from local Loadings in Cylindrical Pressure Vessels," Trans. A.S.M.E., 77,805-816 (1955).2. Bijlaard, P. P., "Stresses from Radial Loads in Cylindrical Pressure Vessels," Welding Jnl., 33 (12),Research Supplement, 615-s to 623-s (1954).3. Bijlaard, P. P., "Stresses from Radial Loads and External Moments in Cylindrical Pressure Vessel,"Ibid., 34 (12). Research Supplement, 608-s to 617-s (1955).4. Bijlaard, P. P., "Computation of the Stresses from Local Loads in Spherical Pressure Vessels orPressure Vessel Heads," Welding Research Council Bulletin No. 34, (March 1957).5. Bijlaard, P. P., "Local Stresses in Spherical Shells from Radial or Moment Loadings," Welding Jnl., 36(5), Research Supplement, 240-s to 243-s (1957).6. Bijlaard, P. P., "Stresses in a Spherical Vessel from Radial Loads Acting on a Pipe," Welding ResearchCouncil Bulletin No. 49, 1-30 (April 1959).7. Bijlaard, P. P., "Stresses in a Spherical Vessel from External Moments Acting on a Pipe," Ibid., No. 49,31-62 (April 1959).The Welding Research Council, Inc.Table 5 Continued – Computation Sheet for Local Stresses in Cylindrical ShellsWRC 537Local Stresses in Spherical and Cylindrical Shells Due To External Loading 39The Welding Research Council, Inc.WRC 53740Local Stresses in Spherical and Cylindrical Shells Due To External LoadingTable 6 – Radial Load PTable 7 – Circumferential Moment c M12/ββγc K for θ c K for M φc xK for M c C for N φ c x C for N0.2515 1.09 1.31 1.84 0.31 0.4950 1.04 1.24 1.62 0.21 0.46 100 0.97 1.16 1.45 0.15 0.44 300 0.92 1.02 1.17 0.09 0.46 0.515 1.00 1.09 1.36 0.64 0.7550 0.98 1.08 1.31 0.57 0.75 100 0.94 1.04 1.26 0.51 0.76 300 0.95 0.99 1.13 0.39 0.77 215 (1.00) (1.20) (0.97) (1.7) (1.3)100 1.19 1.10 0.95 1.43 1.12 300 --- (1.00) (0.90) (1.3) (1.00) 415 (1.00) (1.47) (1.08) (1.75) (1.31)100 1.49 1.38 1.06 1.49 0.81 300 --- (1.27) (0.98) (1.36) (0.74)Note: The values in parenthesis determined by an approximate solution.C u r v e F i t C o e f f i c i e n t s f o r F i g u r e S P -1The Welding Research Council Inc.F i g u r e S P - 2 S t r e s s e s i n S p h e r i c a l S h e l l D u e t o a R a d i a l L o a d P o n N o z z l e C o n n e c t i o n0.01N xN yx (M A X )y (MA X )The Welding Research Council Inc.C u r v e F i t C o e f f i c i e n t s f o r F i g u r e S P -2The Welding Research Council Inc.F i g u r e S P -3 – S t r e s s e s i n S p h e r i c a l S h e l l D u e t o a R a d i a l L o a d P o n N o z z l e C o n n e c t i o nThe Welding Research Council Inc.C u r v e F i t C o e f f i c i e n t s f o r F i g u r e S P -3The Welding Research Council Inc.F i g u r e S P -4 – S t r e s s e s i n S p h e r i c a l S h e l l D u e t o a R a d i a l L o a d P o n N o z z l e C o n n e c t i o n0.01N xN yM x(M A X )The Welding Research Council Inc.C u r v e F i t C o e f f i c i e n t s f o r F i g u r e S M -2The Welding Research Council Inc.F i g u r eS M-3 – S t r e s s e s i n S p h e r i c a l S h e l l D u e t o O v e r t u r n i n g M o m e n tM o n a N o z z l e C o n n e c t i o nThe Welding Research Council Inc.r R TC u r v e F i t C o e f f i c i e n t s f o r F i g u r e S M -3The Welding Research Council Inc.F i g u r eS M-4 – S t r e s s e s i n S p h e r i c a l S h e l l D u e t o O v e r t u r n i n g M o m e n tM o n a N o z z l e C o n n e c t i o n0.010.10.1N xM yN y (M A X )M x (MA X )The Welding Research Council Inc.C u r v e F i t C o e f f i c i e n t s f o r F i g u r e S M -8The Welding Research Council Inc.F i g u r eS M-9 – S t r e s s e s i n S p h e r i c a l S h e l l D u e t o O v e r t u r n i n g M o m e n tM o n a N o z z l e C o n n e c t i o nThe Welding Research Council Inc.r R TC u r v e F i t C o e f f i c i e n t s f o r F i g u r e S M -10The Welding Research Council Inc.The Welding Research Council, Inc.THIS PAGE INTENTIONALLY LEFT BLANKC u r v e F i t C o e f f i c i e n t s f o r F i g u r e 3A – E x t r a p o l a t e dThe Welding Research Council Inc.F i g u r e 4A – M o m e n t()2/cmN MR φβ D u e t o a n E x t e r n a l C i r c u m f e r e n t i a l M o m e n t c M on a C i r c u l a r C y l i n d e r – O r i g i n a lThe Welding Research Council Inc.βC u r v e F i t C o e f f i c i e n t s f o r F i g u r e 4A – O r i g i n a lThe Welding Research Council Inc.i g u r e 1B – M o m e n t()/L m M M R φβ D u e t o a n E x t e r n a l L o n g i t u d i n a l M o m e n t LMo n a C i r c u l a r C y l i n d e r (S t r e s s o n t h e L o n g i t u d i n a l P l a n e o fS y m m e t r y ) – O r i g i n a lβThe Welding Research Council Inc.C u r v e F i t C o e f f i c i e n t s f o r F i g u r e 2B -1 – E x t r a p o l a t e dThe Welding Research Council Inc.F i g u r e 3B – M e m b r a n e F o r c e()2/LmN MR φβ D u e t o a n E x t e r n a l L o n g i t u d i n a l M o m en t LMo n a C i r c u l a r C y l i n d e r – O r i g i n a lβThe Welding Research Council Inc.C u r v e F i t C o e f f i c i e n t s f o r F i g u r e 1C – E x t r a p o l a t e dWRC Bulletin 537Local Stresses in Spherical and Cylindrical Shells Due To External Loading127The Welding Research Council Inc.F i g u r e 1C -1 – B e n d i n g M o m e n tx M PD u e t o a nE x t e r n a l R a d i a l L o a d P o n a C i r c u l a r C y l i n d e r (L o n g i t u d i n a l A x i s ) – O r i g i n a l WRC Bulletin 537128Local Stresses in Spherical and Cylindrical Shells Due To External LoadingThe Welding Research Council Inc.C u r v e F i t C o e f f i c i e n t s f o r F i g u r e 1C -1 – O r i g i n a lWRC Bulletin 537Local Stresses in Spherical and Cylindrical Shells Due To External Loading129The Welding Research Council Inc.F i g u r e 1C -1 – B e n d i n g M o m e n tx M PD u e t o a nE x t e r n a l R a d i a l L o a d P o n a C i r c u l a r C y l i n d e r (L o n g i t u d i n a l A x i s ) – E x t r a p o l a t e d 0.10.5WRC Bulletin 537130Local Stresses in Spherical and Cylindrical Shells Due To External LoadingThe Welding Research Council Inc.C u r v e F i t C o e f f i c i e n t s f o r F i g u r e 1C -1 – E x t r a p o l a t e dWRC Bulletin 537Local Stresses in Spherical and Cylindrical Shells Due To External Loading131The Welding Research Council Inc.F i g u r e 2C – B e n d i n g M o m e n tx M PD u e t o a nE x t e r n a l R a d i a l L o a d P o n a C i r c u l ar C y l i n d e r (T r a n s v e r s e A x i s ) – O r i g i n a l WRC Bulletin 537132Local Stresses in Spherical and Cylindrical Shells Due To External LoadingThe Welding Research Council Inc.The Welding Research Council, Inc.WRC 537Local Stresses in Spherical and Cylindrical Shells Due To External Loading183B.6 FiguresFigure B-1 – Stepped BarThe Welding Research Council, Inc.WRC 537184Local Stresses in Spherical and Cylindrical Shells Due To External Loading00.050.100.150.200.250.300.35Scale BScale A0.51.01.52.02.53.03.5S t r e s s C o n c e n t r a t i o n F a c t o r , KRatio of Fillet Radius to Shellor Nozzle Thickness (r/T, 2r/d n , or 2r/h)5.04.03.02.01.51.0Figure B-2 – Stress Concentration Factors for D d >>。
Method and means for finishing a room
专利名称:Method and means for finishing a room发明人:Wallaeys, Kurt,Vantornout, Chris,Gunst,Stephan,Sinnaeve, Frank申请号:EP06019442.0申请日:20051118公开号:EP1739254A3公开日:20080604专利内容由知识产权出版社提供专利附图:摘要:The invention relates to finishing means (450) for neatly finishing a room. The finishing means are for finishing a transition region between different areas of the room.The finishing means have a finished surface, typically oriented to the room which is to befinished, a back surface for abutment against a wall or construction material and at least one end portion which is adapted to be covered with spreadable covering material (116). The finishing means are first positioned and connected to the transition region to be finished and the surrounding wall and the at least one end portion is then covered by covering material (116), using a guiding surface adjacent the region to be covered with covering material and extending over at least some area in the direction of the region to be covered with covering material. After applying the covering material, the front surface of the finishing means is flush, i.e. lies in the same plane, with the front surface of the applied covering material, thus completely integrating the finishing means in the walls or construction material or in the covering material on top of it. The finishing means is a finishing means for a utility access point.申请人:Orac NV地址:Oudenburgsesteenweg 90 8400 Oostende BE国籍:BE代理机构:Bird, William Edward更多信息请下载全文后查看。
波斯新海狼——伊朗“征服者”级中型潜艇
波斯新海狼谢瑞强—伊朗“征服者”级中型潜艇英国《简氏防务周刊》2月3日报道,在日前伊朗电视台制作的宣传军事成就的电视节目中,伊朗“征服者”级新型潜艇短暂露面。
据悉,伊朗首艘“征服者”级潜艇已于2013年11月下水。
根据卫星图像显示,第1艘“征服者”正在伊朗博斯塔努造船厂进行栖装,第2艘正在里海的恩泽利造船厂建造。
伊朗潜艇技术的发展脉络和现状“征服者”级潜艇是伊朗几十年潜艇技术积累和探索的产物,为了更全面地了解它,我们有必要先了解伊朗潜艇技术的发展脉络和现状。
伊朗海军作为伊朗在波斯湾海域显示存在的军种,一直是国防建设的重点。
由于西方国家的制裁封锁和国内造船工业实力薄弱,伊朗海军装备的基本是中小型水面舰艇。
即便如此,伊朗海军算得上是海湾地区的海军大国,与其他海湾国家海军相比具有一定的优势,但由于同西方国家交恶,伊朗海军的主要作战对象变成装备大量先进大型水面舰艇和核潜艇的西方国家海军(主要是实力强大的美国海军),此时便有些相形见绌。
在无法与西方国家海军正面抗衡的情况下,作为借助海水这一有利介质进行隐蔽作战的潜艇成为伊朗海军对付西方国家海军的“王牌武器”。
伊朗在1987年正式组建潜艇部队,当时伊朗根据德国和日本在二战期间的袖珍潜艇设计图纸建造了一艘袖珍潜艇,于1987年7月完工,但该潜艇下潜试验未获得成功。
1988年,伊朗与苏联签订购置3艘“基洛”级潜艇(877EMK型)的合同,于1992~1996年期间建成并开始服役。
伊朗从20世纪90年代初开始与朝鲜合作研制小型潜艇,通过多年的技术累积,伊朗在2000年研制成功了“萨巴赫”-15型袖珍潜艇。
该型潜艇是伊朗建造的首艘国产潜艇,它的体线型为纺锤形,潜艇前端设有透明的驾驶舱,可搭载2名艇员和3名蛙人,可执行蛙人输送、布雷和侦察等任务。
这种技术水平极低的袖珍潜艇在西方一般被称为蛙人输送艇,只能承担一些特种任务,无法执行反水面舰艇、反潜等作战任务。
2004年11月,伊朗在朝鲜“玉高”级小型潜艇基础上仿制的“加迪尔”级潜艇下水服役。
国外工程按案例 中英文
国外重大工程Project Reference1 毛里求斯污水处理泵站管线工程Montagne Jacquot Sewerage Project / Mauritius2 莫桑比克贝拉供水管线工程Water Supply Pipeline in in Beria, Mozambique3 香港地铁工程Underground project in HK4 坦桑尼亚达累斯城市污水排海管线工程Sewage Project form Tanzania. Dar es Salaam5 阿富汗输水工程water supply pipeline in Afghanistan6 毛里求斯城市污水排放管网项目Lot 2 Plaines Wilhems Sewerage Project in Mauritius7 韩国水原市BTL污水排放工程SUWON BTL Project in Korea8日本上越新干线工程采用我司生产的FWC管接头The Jyoetsu Shinkansen use FWC Coupling毛里球斯污水处理泵站管线工程此项目是由毛里球斯公共事业部于2003年10月22日通过面向国际招标方式,经过严格的,符合FIDIC 条款的评审程序,于2005年元月7日与中国水利电力对外公司正式签署合同。
本项目业主为公共事业部污水局(WMA ),出资方为日本协力基金(JBIC ),咨询工程公司为NJS-SERV ANSINGH JADA V PARTNERS CONSULTING ENGINEERS LTD ,主承包商为中国水利电力对外公司(CWE );工程合同额为2300余万美元,于2005年3月1号正式开工。
合同范围为:两个污水泵站,及一个污水处理厂;工程范围涉及到土建,工艺设备,电气,自动控制等。
其中GRP 管道采用中国浙江东方集团HOBAS 离心管道产品,最大管道直径为1200MM ,产品质量得到业主和咨询认可和好评。
城市更新4.0:迈向卓越的全球城市
盘活老旧国有企业物业资产, 使这类资产得到更加有效的利 用
化解城市危机:清洁的环境、 更高的宜居性、社区复兴及 对社会结构性变革的有效应 对
保护有助于提升城市肌理的历 史建筑及文化遗产
将智能技术、大数据系统与感 知建筑相结合
建设保障性住房以满足人口 增长的空间需求
大力发展公共交通导向型综合 交通网络,以提升城市的连通 性及通达性
改造的主要驱动力进行了研究, 并着重探索了物业用户的需求、 资 产 表 现、 城 市 发 展 的 前 瞻 性 及可持续发展的能力。
接 着, 我 们 深 入 探 讨 了 实 现 中 国城市更新 4.0 的核心环节—— 物 业 改 造。 首 先, 我 们 解 释 了 物 业 改 造 的 不 同 种 类, 并 分 析 了有效的资产管理对于制定规 划、 实 施 规 划、 项 目 监 管 以 及 实现资产价值最大化的重要性。 需 要 强 调 的 是, 对 现 有 物 业 资 产进行物业改造对于中国城市 更新 4.0 阶段是极其重要的。
城市更新 4.0 迈向卓越的全球城市 11
通过更新或改变现有物业的功能 及用途以适应当前及未来城市经 济发展的需要,是推动中国城市 发展的重要方式。事实上,城市 更新 / 物业改造已经成为中国的 热门话题,引起了人们的高度重 视,进而引发了大量讨论。中国 各城市与政府正在积极寻求机 会,希望通过城市更新 / 物业改 造项目来增强城市的吸引力和凝 聚力。
但随着新城开发速度放缓以及城 市建设用地不足,中国政府开始
寻找新的方法以维持经济的高速 发展。各地政府希望最大程度地 利用现有的城市资源,促进现有 土地和物业的高效利用。因此, 地方政府和开发商开始越来越多 地进行城市更新 / 物业改造,以 建立更活跃和更具吸引力的未来 城市中心。
美国富豪60亿打造地下堡垒 内部奢华防核爆
美国富豪60亿打造地下堡垒内部奢华防核爆
国际时事腾讯国际新闻2015-06-15 11:45
图为堡垒中的泳池,造价约110万美元(约680万元人民币)【点击查看更多组图】
美国富豪60亿打造地下堡垒内部奢华防核爆
时长:1'31''
来源:腾讯视频
虽然2012的世界末日预言已破,但美国一富豪罗伯特-维西尼尔(Robert Vicinio)仍然觉得这一天终将到来,于是他花了10亿美元(约62亿元人民币)在德国一村子里建了一座豪华的地下“避难所”。
房子不仅装修奢华,配有泳池、影院、健身房、餐厅、客房等,还有户外运动场,并配备有直升机。
而且不光好看,它还能抵御核爆以及各种自然灾害。
人可以在里面生活整整一年。
这座豪华的地下堡垒位于德国的Rothenstein村,这里原是二战时期前苏联建军事堡垒的地方,所以堡垒里四周坚固,罗伯特在它的基础上建造了他自己的豪华避难所。
据介绍,这个堡垒可抗核爆、生化攻击、地震和海啸等灾害,总之十分安全。
图为Rothenstein村,标出的地方就是堡垒所在地。
可以看到四周绿树环绕,风景秀丽。
法国国防部大楼——自我循环的生态机器
法国国防部大楼——自我循环的生态机器French Ministry of Defense -The self-cycling ecological Machine项目名称:法国国防部大楼 项目地点:法国 巴黎设计者:Agence Nicolas Michelin & Associ és - ANMA Nicolas Michelin, Michel Delplace, Cyril Tr étout 设计团队:Jean-Pierre Buisson,Simon Barth él émy,Cecilia Bertozzi, Henry Gagnaire, G érald Sellier 建筑面积:165 000m 2竞赛时间:2009.09-2011.01设计时间:2011.05-2011.09建成时间:2015新法国国防部是目前巴黎大区最大的工地:16架吊车夜不停息地运作,两个混凝土制造中心每天生产高达500m3的混凝土,一个10 000m2规模的生活区供2 000名工人使用。
这里正在创造着8hm2的立面和巴黎最大的太阳能屋面。
这正是位于巴黎十五区的由ANMA事务所主持设计的国防部大楼的施工现场,这里将拥有一个可供9 300名军人和市民同时使用的14hm2的办公区和一个9 300m2的公共设施。
非同寻常的建筑新国防部大楼坐落在巴黎十五区拉德芳斯区域的巴拉赫地块(Balard,La Defense),基地坐落在北面的维克多尔大街(Boulevard Victor)和南面的环城大道(Boulevard Peripherique)之间。
地块分为三个区域:东面的维克多尔地块上现有的建筑或被拆除,或被改造和新建,西面地块将建成一个容纳办公和商业的商业综合体“西角广场”(Corne Ouest),中间的瓦兰地块(Parcelle Valin)是项目的核心区域,这里现存的一座佩雷兄弟(Freres Perret)的建筑将被保留融合在新的建筑中。
水电站移民安置复建道路设计要点
文章编号:1006 2610(2023)03 0021 04水电站移民安置复建道路设计要点雷宇超,杨 光(中国电建集团西北勘测设计研究院有限公司,西安 710065)摘 要:库区复建道路作为移民安置规划中一项重要的组成部分,是复建工程的重中之重,其设计成果不仅直接决定了项目的投资大小,更是关系着水库影响区未来的社会生产和经济发展㊂根据多年来的工程经验,从路线总体㊁平面设计㊁纵断面设计㊁路基设计和桥梁设计的角度出发,分析了设计过程中可能会遇到的问题,提出了设计过程中应重点关注的内容,为库区道路设计方案的适用性和合理性提供参考㊂关键词:库区复建道路;复建标准;平面设计;纵断面设计;路基设计中图分类号:U412.36 文献标志码:A DOI :10.3969/j.issn.1006-2610.2023.03.004Key Points in Design of Rehabilitated Roads for Resettlement of Affected Residents of Hydropower StationsLEI Yuchao ,YANG Guang(PowerChina Northwest Engineering Corporation Limited ,Xi'an 710065,China )Abstract :As an important part of the resettlement planning ,road reconstruction in the reservoir area is the top priority of the rehabilita⁃tion project ,and its design results not only directly determine the project investment ,but also affect the future social production and eco⁃nomic development of the reservoir affected area.Based on years of engineering experience ,from the perspectives of overall route design ,plane design ,profile design ,sub-grade design and bridge design ,this paper analyzes the problems that may be encountered during the design process ,and proposes the contents to be focused on.Meanwhile ,the paper provides reference for the applicability and rationality of the road design in the reservoir area.Key words :reconstructed roads in the reservoir area ;reconstruction standards ;plane design ;profile design ;sub-grade design 收稿日期:2023-02-02 作者简介:雷宇超(1991-),男,陕西省铜川市人,工程师,主要从事道路工程设计工作.0 前 言中国是用电大国,发展水电一直是我国能源电力的重要战略方针㊂截至2022年6月底,我国水电装机总容量达4.0亿kW,占全国发电装机容量的16.4%㊂水电工程在保障我国供水安全㊁能源安全㊁应对气候变化和节能减排等方面,发挥了不可替代的重要作用㊂近年来,国家持续大力投资建设水电项目,特别是青海㊁西藏㊁四川㊁云南等适于水电站建设的高山峡谷区㊂而水电站在建成蓄水之后往往会淹没大量的地上附着物,如村镇㊁公路㊁农田等,为了恢复淹没区域的原有生活和生产,需要对淹没的地面附着物进行复建㊂公路作为区域之间互通的纽带,是百姓最常采用的交通方式,特别是在水电站这种地形地貌复杂的山岭区域,公路往往是当地居民耕种㊁放牧㊁就医㊁上学㊁采购等的唯一通道,也是生命通道㊂因此,作为水电站移民安置复建工程的重中之重,道路设计成果的好坏不仅直接决定了项目的投资大小,更是关系着水库影响区未来的社会生产和经济发展,设计中应慎重选择其复建标准,重点把控其总体质量㊂本文根据多年来的工程经验,从路线总体㊁平面设计㊁纵断面设计㊁路基设计的角度出发,分析设计过程中可能会遇到的问题,提出设计中应重点关注的内容及解决方案㊂1 复建标准选取按照现行的NB /T 10801-2021‘水电工程建设征地移民安置专业项目规划设计规范“的要求,对12环保与移民 西北水电㊃2023年㊃第3期 ===============================================水电工程建设征地影响的交通运输㊁电力㊁电信㊁广播电视等工程,需要恢复的,应根据影响程度,按原规模㊁原标准或者恢复原功能的原则,并结合项目所在地的地形㊁地质条件等,选择经济合理的复建方案或处理方案㊂道路作为移民安置复建工程的重点,其建设标准的论证是一个综合性较强的过程,需要从旧路标准㊁交通量㊁路网规划㊁道路功能㊁地形条件㊁工程造价等多角度考虑,通过经济技术论证,确定合理的道路建设标准㊂主要分为以下3种情况: (1)根据已有的工程经验,大多数水电站蓄水后,库区内企业及居民数量减少,生产资料缩水,道路服务对象部分流失,交通量有所减少,所以复建道路最终大多按原标准进行复建,保证道路的通达性和指标连续性即可㊂(2)对于部分经济社会快速发展的区域,如果当地综合交通运输网络有所调整,道路需要扩大规模㊁提高标准(等级)或改变功能时,设计中应结合其要求进行规划设计㊂假设库区内有一条旧路为单车道四级公路,库区蓄水后将被淹没,现根据地方交通体系规划调整,该道路8a后规划升级为三级公路,我们在设计中就应考虑到这一点,从两方面入手对规划进行响应,一是直接按规划的三级公路标准来实施,让当地提前享受到高等级公路服务水平带来的红利;二是暂时按四级公路标准修建,但在设计过程中,可尽量参照三级公路线形标准进行布线,便于地方政府后期升级改造至三级公路㊂需要注意的是复建过程中因提升道路等级或线形指标需要增加的资金,应由有关地方人民政府或相关单位自行解决,不应列入建设征地移民补偿费用㊂(3)除此之外,如果存在服务对象全部被淹没的情况,则应充分论证该道路有无复建的必要性,避免国有资金浪费㊂2 路线总体设计要点路线总体设计是一项十分系统而复杂的工作,综合道路路线㊁路基㊁桥涵㊁隧道等之间的协调统一,基本决定了道路的起终点㊁走向和工程规模,对后续工作的开展起着至关重要的作用㊂根据以往的工程经验,水电站移民安置复建道路一般都位于高山峡谷地区,地形地貌复杂,山体自然坡度普遍在1∶2~1∶1以上,且复建道路大多临河布置,这种地形往往造成复建道路一侧为高边坡,一侧为临河支挡,工程难度和工程规模均比较大,因此在设计过程中要特别加强总体设计的论证,保证为后续设计工作的开展打下一个坚实的基础,在设计过程中主要应注意以下3点㊂2.1 道路起终点选择水电站移民安置复建道路一般仅针对旧路被淹没区段,起终点相对明确,但在设计前期常遇到以下两点问题,需要特别注意:(1)道路起终点位置选择不合理㊂新建道路起终点与旧路相 连接”,而非 顺接”,新建道路与旧路线形 硬”过渡,道路线形的突变导致车辆在行驶过程中需要猛打方向盘,存在一定安全隐患,设计过程中应尽量避免㊂(2)道路起终点高程选择不合理㊂部分设计人员通常以水库正常蓄水位为参考确定道路起终点高程,没有考虑水库回水影响,道路起终点高程偏低,同时低水位路段路基受河流和水库蓄水的冲刷影响较显著,存在较大的水毁风险,因此设计中应尽量抬高道路线位,选择较高的山坡布线㊂2.2 主要控制点选择主要控制点一般包含两种,一种为道路必须或应穿过的点,比如村镇㊁企业㊁学校㊁经济林区等,路线设计过程中应考虑将这些点串联起来,尽量增加道路的服务对象,提高自身价值;另一种为道路必须或应避免穿过的点,比如塌岸影响区㊁滑坡㊁泥石流㊁崩塌体等,设计过程中应提前谋划,通过设置桥梁㊁隧道等方式避过不良地质路段,提出多方案比选,选择更为经济合理的道路线位㊂2.3 与环境的协调性水电站复建道路选线的过程中应结合地形地貌进行,强调填挖平衡,避免强拉硬切,过高的线形指标往往会造成大量高填深挖路段,高边坡数量增加,桥隧比例提高,工程投资增大,同时也会对自然环境造成严重破坏,特别是西藏㊁青海等生态脆弱地区,被破坏的青山绿水在未来很长一段时间内都无法恢复㊂3 平面设计要点平面线形设计的合理性往往是公路总体设计效果的主要评价标准,道路平面线形的确定直接关系着运营期间行车的安全性和舒适性,很大程度上也决定了道路建设的总体投资㊂水电站淹没区一般都具有地形地貌复杂多变的22雷宇超,杨光.水电站移民安置复建道路设计要点===============================================特性,在平面设计过程中会通过频繁设置交点的方式适应地形地貌的变化,但是过多的设置交点会导致道路平面的破碎,线形的连续性和均衡性难以保证,极易出现超出路线平面设计规范指标的情况,给公路的平面设计提出了更高的要求㊂结合以往的工程经验,关于库区道路平面指标的选取,提出以下几点建议,希望可以带来一些帮助,避免一些误区㊂3.1 曲线间直线长度的设置在设计过程中,针对设计速度大多在20~30 km/h的库区复建路,设计人员过分追求同向圆曲线间直线长度达到2V,反向圆曲线间直线长度达到6 V,这是没有必要的㊂对于设计速度小于40km/h 的低等级公路,规范给出的说明是 可参照上述规定执行”,并在文中多次提到 宜”,规定的强制性较弱,因此设计过程中可根据情况取较小值,避免造成指标过高,投资失控㊂3.2 超高、加宽过渡段设置以设计速度20km/h的四级公路为例,部分设计人员在路线平面设计中参考规范规定,全段不设置回旋线,圆曲线之间以直线相接,但直线长度存在不满足超高㊁加宽过渡需求的情况,主要原因是设计过程中忽视了计算㊂针对这一情况,建议设计过程中首先根据曲线半径选择对应的超高值和加宽值,然后根据相应的超高渐变率和加宽渐变率分别计算超高过渡段和加宽过渡段长度,取其较长者作为超高㊁加宽过渡段长度㊂3.3 视距的保障水电站移民安置复建道路一般位于高山峡谷区,平面指标较差,曲线半径多采用极限值,加之山体的遮挡,存在多处视距不良路段,为行车安全埋下隐患㊂针对这一情况,如果有条件,设计中应采取开挖视距平台㊁清除曲线内侧树木等方式消除隐患;如果受地形条件影响无法开挖,则应通过设置鸣喇叭或减速标志㊁震荡标线㊁凸面镜等方式,降低视距不良造成的影响,保证行车安全㊂4 纵断面设计要点纵断面设计的重点主要在于最大坡度和坡长的控制,而水电站选址往往位于高山峡谷地区,地势起伏频繁,高差大,坡度陡,坡度和坡长的设置往往也是复建道路设计中最难于掌控的两点,对设计人员的设计能力有较高的要求㊂规范中对于这两项指标都有明确的规定,但是在应用过程中仍然有较多人踏入误区,给设计产品的进度和质量造成不利影响㊂4.1 纵坡坡度各级公路的最大纵坡主要考虑载重汽车的爬坡性能和公路通行能力,因此规范对各等级道路纵坡有严格限制,以位于西藏积雪冰冻地区㊁设计速度20km/h㊁海拔4200.00m的四级公路为例,最大纵坡选择的过程中应考虑以下几点:(1)设计速度20km/h道路的最大纵坡不应大于9%;(2)积雪冰冻地区路段的最大纵坡不应大于8%;(3)海拔4000~5000m纵坡折减值为2%,折减后纵坡应为7%㊂因此该路段最大纵坡值应取7%㊂4.2 最大坡长载重汽车在较大的上坡路段爬坡时,速度会逐渐降低,坡度越大,坡长越长,速度折减越严重,针对不同设计速度和不同纵坡坡度的路段,规范中给定了对应的最大坡长,但在实际应用过程中经常会出现以下两处误区:(1)以设计速度20km/h的公路为例,上坡路段两相邻纵坡坡度分别为7%和8%,规范给定的最大坡长分别为600m和400m,部分设计人员在设计过程中会给出500m长7%坡段+300m长8%坡段的组合,单独看其中一段与规范并无冲突,但车辆在该组合路段连续爬坡过程中,速度折减已经超过了规范限值,该组合是存在较大安全隐患的㊂正确的设置方法是假设7%坡段长度为X,8%坡段长度为Y,则X/600+Y/400≤1,通过加权平均的方法计算分配坡段长度㊂(2)在连续上坡路段,规范要求在不大于最大坡长之间设置缓和坡段,部分设计人员经常会采用 陡坡最大坡长+缓坡最小坡长”的不利组合,这种机械式的套用标准属于 打擦边球”,忽略了纵坡设计的原则和指标限制的目的,存在一定的安全隐患,应该尽量避免在设计中采用㊂5 路基设计要点水电站移民安置复建道路大多位于高山峡谷地带,地势陡峭,地质条件复杂,不良地质分布较广泛,塌岸㊁泥石流㊁滑坡㊁崩塌体等较为常见㊂为保证后期车辆通行的安全性,设计过程中需要采用形式多样的措施消除隐患,对路基设计人员的技术能力和工作经验提出较大的挑战,以下就工作中常遇到的几项问题展开讨论㊂5.1 邻水路基设计水电站移民安置复建道路往往沿河流布置,受河流冲刷和水库蓄水影响,沿河路基边坡稳定性将受到严重的的威胁,必须对沿河路基进行防护,以确保路基安全稳定㊂常见的沿河路基防护措施如如浸水挡土墙㊁浆砌片石㊁护胆㊁铁丝石笼防护等,设计过程中可根据实际情况灵活选用㊂当遇到水深流急㊁冲刷大㊁水流中的漂浮物多的情况时,可采用浸水挡土墙进行防护;当路基边坡较缓且边坡存在易风化的岩石或为土质边坡时,一般会使用浆砌片石护坡;护坦一般直接依附于路基,并且顺水流方向布置,顶面要在河床面以下1~2m,注重的是对路基坡脚的防护;铁丝石笼防护通常用在挡土墙局部冲刷比较严重路堤坡脚,抵抗水流冲刷和风浪侵袭㊂5.2 路基边坡防护水电站移民安置复建道路多位于山区,地形一般为陡斜坡,路基横断大多为半填半挖或全挖方的形式,且挖方高度较大,会形成大量的路堑高边坡,具有一定的潜在风险㊂因此在设计过程中要严肃对待,首先要针对高边坡路段按独立工点进行细致的地质勘察,掌握该路段地质构造㊁地层岩性㊁覆盖层厚度㊁风化程度㊁岩土物理力学性质等情况,通过稳定性分析和计算,判断边坡可能的破坏形式和边坡稳定性状态,稳定性差的边坡应采用分层开挖㊁设置综合支挡工程等措施㊂高边坡路基主要采用以下几种防护形式:植物防护㊁骨架植物防护㊁喷锚支护㊁护面墙㊁主动防护网等,同时可以通过设置坡顶截水沟㊁平台截水沟㊁被动防护网等形式来保证道路运营期间的边坡安全㊂6 桥梁设计要点6.1 桥型方案选择原则水电站移民安置复建道路一般沿河流两岸布置,为保证河流两岸安置区移民的通行需求,应在河流或冲沟位置架设桥梁,且桥梁规模一般都比较大,设计过程中应对桥型做充分比选㊂桥孔布置应符合水文计算需要,应满足行车净空标准,应满足河道行洪㊁泄洪要求㊂桥型应适合桥位处地形特点,择优选择技术成熟㊁施工方便㊁经济实用的常规结构型式㊂多跨长桥尽量采用标准化㊁系列化,便于工厂化生产,力求施工方便,缩短工期,降低造价㊂遇到特殊地形的时候,如 V”形峡谷,应着重考虑拱桥或悬索桥桥型方案;但也要考虑桥梁施工难度,库区施工条件较差,大型机械进入较为困难,应从施工可行性㊁经济性等对所选桥型进行充分论证㊂6.2 桥梁上部结构选择根据全国已建和在建工程的设计施工经验,对于一般大㊁中桥,装配式梁桥是优先考虑的桥型,其技术可行㊁经济合理,便于结构标准化㊁系列化和施工机械化,施工便捷㊂跨径不大于20m时,推荐选用装配式预应力混凝土空心板梁;当跨径为25~40m时,推荐采用装配式预应力混凝土T梁和小箱梁;因技术经济原因,40m以上跨径的预制梁较少采用㊂对于桥梁位于圆弧曲线半径(150<R<250m)时,应采用预应力混凝土现浇箱梁;R<150时,应采用普通钢筋混凝土现浇梁,曲线桥梁应充分计算桥梁的抗倾覆性,同时避免设置独柱墩;当桥梁跨越的河沟较宽且墩柱大于50m时,为提高桥梁结构刚度和抗震性能㊁减小变形,推荐采用预应力混凝土连续刚构桥㊂6.3 桥梁下部结构选择水电站移民安置复建道路多在地形起伏较大的山区,桥梁建设时应尽量减少对自然环境的破坏,桥台的填土高度一般控制在8m左右,同时应尽可能伸入山体,增加桥台稳定性,降低施工难度,避免桥头跳车㊂桥台主要采用柱式桥台和 U”型桥台㊂桥墩结构型式应根据桥墩高度确定:30m以下的桥墩推荐采用柱式墩;30~60m高的桥墩,推荐采用矩形墩;60m以上的桥墩,推荐采用空心墩;当桥面宽度较窄,且墩柱较高时,应考虑横桥向变截面梯形桥墩,保证桥墩的刚度和稳定性;当桥墩高度大于40 m的桥梁时,应设置墩梁固结㊂6.4 桥梁边坡防护水电站移民安置复建道路多为抬高复建,桥梁跨越的多为陡峭冲沟或峡谷㊂待水电站蓄水后,库区水位会随汛期㊁枯水期进行调整,水位高程会有变化㊂水位升降会对桥梁两岸边坡造成侵蚀或掏空,在设计中需要考虑对桥梁两岸的现状边坡进行防护,常见的防护措施有设置系统锚杆㊁喷射混凝土层等㊂(下转第50页)服务和互联网服务等多种形式综合性信息服务㊂实现用户报修㊁业务受理㊁咨询㊁投诉㊁催费㊁查询和回访等具体业务,提高用户满意度㊂2.2.9 收费管理系统收费管理系统可显示末端用户缴费信息,可计量㊁收集末端用户用热信息;具备开放接口,可扩展收费管理功能㊂3 结 语本文依托实际供热工程项目构建智慧供热管控一体化平台,该平台采用云大物移智㊁GIS及智能模型等先进技术,实现用热单位及居民室内温度㊁管网压力㊁流量㊁热媒温度㊁换热站和热源厂等生产数据的汇集管理,实现供热数据㊁能耗可视化分析,优化供热调度,提升安全预警能力,并实现系统内各种业务数据互通,实现信息共享,消除信息孤岛,向各业务提供数据服务,为管理者提供决策支持,同时开通用户网上缴费服务,更加精细㊁动态管理供热系统的整个生产㊁管理和服务流程㊂参考文献:[1] 蔡俊华.夏热冬冷地区实施集中供热的可行性[C]//中国市政工程华北设计研究总院有限公司.中国建设科技集团股份有限公司.2021供热工程建设与高效运行研讨会论文集.天津:‘煤气与热力“杂志社有限公司,2021:151-156. [2] 蒋涵.智慧供热信息化平台建设实例分析[C]//中国市政工程华北设计研究总院有限公司.中国建设科技集团股份有限公司.2021供热工程建设与高效运行研讨会论文集.天津:‘煤气与热力“杂志社有限公司,2021:817-822.[3] 李昊.基于多维决策向量的多热源联网大型供热系统调度优化[D].杭州:浙江大学,2021.[4] 许广平.集中供热的智慧化管理与控制策略探讨[J].科技资讯,2019,17(19):92-93.[5] 柴春蕾.智慧供热系统研究与架构设计[J].物联网技术,2020(05):109-111.[6] 康金霞.智慧供热信息化建设管理系统研究 以渭源县为案例[J].江西建材,2020(04):187-188.[7] 李光明,赵立强,高远谋.城市供热监控与智能化管理系统的设计与实现[J].信息通信,2016(09):58-60. (上接第24页)7 结 语库区复建道路作为移民安置规划中一项重要的组成部分,是水库生产安置移民最主要的交通运输方式,关系到库区安置群众的生产㊁生活,关系到水库移民的经济社会发展,关系到建设区域的生态环境保护,同时也直接影响着国家资金投入的多少㊂因此,在建设过程中,设计人员应把好 第一道关”,充分发挥作用,干出一条经济安全㊁生态环保㊁人民满意的绿色通道㊂参考文献:[1] 闫醒春,王海云.水库库区公路路线设计及工程地质问题探究[J].甘肃科技,2006,22(09):139-141.[2] 李鹏.山区公路勘察设计常见的问题及对策[J].黑龙江交通科技,2018,41(09):71-73.[3] 王立民.公路路基设计中边坡防护技术分析[J].北方建筑,2022(05):23-26.[4] 杨欢.实例探析道路路线平㊁纵㊁横断面设计要点[J].黑龙江交通科技,2015(07):35-36.[5] 刘婷.公路路线设计中存在的问题及要点分析[J].交通世界,2019(14):57-58.[6] 祁荣欣.山区公路路线设计与质量控制研究[J].工程与建设,2022(02):74-76.[7] 李智.公路工程设计中的路线布设及路基设计[J].中国公路,2020(06):104-105.[8] 于维鑫.公路路基设计中的边坡防护问题分析[J].智能城市,2020(05):198-199.[9] 马建国.公路路基设计中边坡防护技术的应用[J].交通世界,2022(14):112-114.[10] 张大勇,闫海清,周涛.库区复建公路桥梁设计选型[J].人民长江,2008(11):77-78.05王洁瑜,魏鹏刚,杨文栋.基于BP神经网络的智慧供热管控系统研究与应用===============================================。
美国军用环境试验概况
美国军用环境试验概况图1 美军重点鉴定与试验设施分布(图中序号说明见表1)1、美国陆军环境试验场体系美国陆军环境试验网隶属美陆军试验与鉴定司令部(TECOM)管辖,在该机构下设有六个试目前,太阳辐射试验标准主要分为两种体系,一是以MIL-STD-810为代表的美国体系标准,二是以IEC 68-2出版物为代表的欧洲体系标准。
前者只适用于设备,后者既可用于设备,也可用于元器件和材料。
由于这些因素在地球表面有很大差异,因此材料或产品的环境老化是不遵循于一固定的科学理论的,其性能也将随气候条件及材料化学性质的改变而改变。
事实上,环境试验是采用静态与加速两种方法来完成,因为影响材料或产品环境适应性的气候因素非常多变,通常就同时采用几种不同的试验方法来试验材料或产品的综合化学特性。
美国最主要的环境试验标准、方法见图2:图 2 美国环境试验标准体系美国的环境试验场各类环境试验涉及的标准达850个,一方面通过有效的环境试验,评价材料的环境适应性,另外通过环境试验积累大量基础数据以用于制定和修订标准。
同时,由于军民品在使用环境严酷度和性能要求方面的差异,美军另外制定了科学、系统的军用环境试验标准。
在环境条件方面,美军分门别类地研究了全球气候(热带、寒带、沙漠等)的特点、规律以及极值情况,成果反映在MIL-STD-210中。
在试验方法及设备方面,美军制定了统一的环境试验标准MIL-STD-810F、《美国陆军装备试验操作规程》(MTP/TOP)和《国根据轻重缓急进行安排。
全军实行统一收费标准。
在科学技术计划中,技术基础一词指基础研究、应用研究以及对科学家和工程师的培养和教育,这是今后军事发展和应用的基础。
国防部必须寻找到可降低系统的使用、维护和逐步改进费用的技术和应用办法。
在系统采办的每个阶段和在系统的全寿命期间采用这些技术,必须寻找象嵌入式的腐蚀传感器和断裂传感器等新概念、非破坏性试验技术以及提高人工智能诊断工具的速度和效率的新办法,并把它们纳入作战系统。
伊朗计划投入5亿美元加快开发卫星技术
伊朗计划投入5亿美元加快开发卫星技术
王其胜
【期刊名称】《卫星电视与宽带多媒体》
【年(卷),期】2006(000)003
【摘要】目前,伊朗正加快速度从国外引进卫星技术,并计划在2个月内利用俄罗斯火箭发射第二颗人造地球卫星——“迈斯巴”。
据伊朗政府官员称,他们的目标是成为“世界上掌握最尖端航天技术的8个国家之一”。
【总页数】1页(P32)
【作者】王其胜
【作者单位】无
【正文语种】中文
【中图分类】TN94
【相关文献】
1.美国国防部宣布计划在五年内投入20亿美元用于人工智能开发 [J], 刘越
2.非洲开发银行计划5年投入20亿美元支持非洲大陆农业 [J], 李海亮(译)
3.伊朗NIOC计划向SP开发拨款50亿美元 [J],
4.印度瑞莱斯公司计划投入120亿美元开发天然气 [J],
5.日本计划5年投入9亿美元开发尖端半导体技术 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
土耳其阿特拉斯2×600MW伊斯肯德伦火电厂
国家优质工程土耳其阿特拉斯2×600MW伊斯肯德伦火电厂中电投电力工程有限公司工程概况>>建设规模土耳其阿特拉斯工程位于土耳其伊斯肯德伦(Iskenderun)市工业开发区内,滨临地中海伊斯肯德伦海湾,处于中国国家经济发展战略“一带一路”经济带的核心地区。
工程新建两台600MW超临界凝汽式燃煤发电机组,同步配套建设烟气脱硫、脱硝设施。
>>主要设备项目主、辅机均采用中国设备。
三大主机采用哈尔滨电站集团公司产品。
主变压器为特变电工衡阳变压器有限公司SFP-720000/400。
>>参建单位该工程由土耳其迪勒(DILER)控股集团阿特拉斯能源有限公司投资,中电投电力工程有限公司实行EPC总承包。
设计单位:中国中南电力设计院有限公司主体施工单位:湖北省电力建设第二工程公司湖北省电力建设第一工程公司脱硫总承包单位:中电投远达环保工程有限公司土建施工单位:湖北省工业建筑集团有限公司监理单位:土耳其可齐亚坦咨询有限公司调试单位:西北电力建设调试施工研究所运行维护单位:中电投电力工程有限公司>>工程投资EPC总承包同总价6.9亿美元。
>>建设时间项目经土耳其哈塔伊省伊斯肯德伦市政府批准,于2011年11月10日开工,两台机组分别于2014年8月8日和2014年12月19日投入商业运行。
建设管理>>工程建设总目标“创中国电力优质工程奖,争创国家优质工程金奖”,创建“一带一路”火电燃煤机组示范工程。
>>质量控制目标高标准达标投产,确保主要技术经济指标优于EPC合同要求,实现机组长周期安全、稳定运行。
>>质量追求终极目标创“国家优质工程金质奖(境外),创建“一带一路”火电燃煤机组示范工程。
>>建设管理措施1.建立了完善的质量保证体系,编制了创优规划和创优实施细则,认真落实各项策划,实现过程创优。
2.加强项目质量风险防范,制定了确保输出功率、锅炉效率、汽机热耗、主变效率及厂用电耗等关键技术质量风险防范实施细则。
博朗发展历程
博朗发展历程
博朗是一家跨国企业,总部位于瑞士,专注于电器和工具的设计、生产和销售。
以下是博朗的发展历程:
- 1921年,博朗公司由鲁道夫·博朗和海因茨·博朗兄弟在德国
弗兰肯泽克创立。
最初,公司主要生产和销售无线电设备和部件。
- 1932年,博朗开始涉足个人护理产品领域,推出了第一台电
动剃须刀,这标志着公司将电器产品作为其主要业务方向之一。
- 1950年代,博朗公司迅速扩大其产品线,开始生产电吹风机、电动牙刷和其他个人护理产品。
- 1960年代,博朗进一步扩大了业务范围,涉足工具和家用电
器市场。
- 1980年代,博朗的市场份额在全球范围内持续增长,公司进
一步扩大生产和销售规模,并通过收购其他品牌来提高市场竞争力。
- 1990年代,博朗开始将重心转向研发和创新,推出许多颇受
欢迎的电器产品,如电动剃须刀系列、电动牙刷系列和美发工具系列。
- 2000年代,博朗继续致力于技术创新和产品研发,推出了一
系列创新产品,如智能电动剃须刀、美容器具和家用电器。
- 至今,博朗作为一家全球知名的电器和工具品牌,不断推出创新的产品和解决方案,满足消费者日常生活的各种需求。
公司的产品在全球范围内销售,并享有良好的声誉和市场份额。
EN 13032-1-2004+AC-2005 Light and lighting-Measurement and presentation of photometric data of lamps
Management Centre: rue de Stassart, 36
B-1050 Brussels
© 2004 CEN
All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.
This European Standard was approved by CEN on 16 January 2004. CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CEN member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the Central Secretariat has the same status as the official versions. CEN members are the national standards bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.
世界著名的工程项目案例
世界著名的工程项目案例1.埃及南部河谷工程,投资900亿美元:位于纳赛尔湖西南部。
这个项目是埃及现代史中最富有雄心的工程,如果按规划完成,埃及国土可居住的面积将由目前的不到5%增加到25%;可耕地面积由目前的800万费丹,增加到1140万费丹。
全部工程包括:在纳赛尔湖边的托西卡建一座日抽水量达2500万立方米的巨型扬水站(最大年抽水量60亿立方米),修建总长850公里的主渠道和9条分渠构成的灌溉网。
通过灌溉渠将西部沙漠中的可耕地和6个主要绿洲连为一体,构成新河谷及新三角洲。
总投资将超过3000亿埃锈(当时外国银行等机构估计为880亿美元)。
整个工程完工后,开发面积将达26万平方公里,46%的西部沙漠土地将得到开发利用。
在这个大开发区内计划吸引移民300万人,因此除兴建农业区外、还将建立工业区、商业区、居民生活区、旅游区,修建铁路、公路等基础设施以吸引人们迁往新河谷,减轻老河谷承受的压力。
2.沙特阿拉伯“朱拜尔2号”工程项目,投资800亿美元:主要工程包括钢结构安装12000吨,混凝土基础及涵洞施工60000m3,预埋钢板1000吨,以及附属系统的施工。
该项目荣获沙特皇家委员会须发的“连续300万工时零安全事故奖"3.迪拜的“迪拜乐园项目”(Dubailand)。
投资640亿美元:正在建设的“迪拜乐园”将成为全球最大的主题公园,阿联首迪拜乐园将是全世界最大的休闲、度假、娱乐中心,包括31家饭店群,100家戏院,还有在海底要建一座十星级豪华酒店,为全球独创。
当然最令人叹为观止的是完全靠人工填海的棕榈岛(见图),岛上有别野、宾馆、公寓、办公楼和商厦,将以更舒适的居住环境和度假设施,吸引全世界的富豪。
据说这个建筑在月球上也能看到,因此被称为“世界第八大奇迹"。
整个建筑区域光长度就有10公里长。
计划中,旅馆房间数目达29000个,是目前迪拜旅馆房间数目的一倍。
兴建目的是为了迎接2010年后,观光客可望从600多万人突破到1500万人的目标。
工程伦理案例分析
工程伦理案例分析1867年石油在一次能源消费结构中的比例达到40.8%,超过了煤炭所占比例,就此意味着人类正式进入石油时代,并逐步成为工业的血液。
作为内燃机的动力来源,石油的需求和贸易从20世纪20年代一路飙升,直到20世纪30年代末,美国和苏联两国成为主要的石油出口国,全球能源贸易中石油国际贸易开始占据十分显要的位置,同时推动了国际能源贸易的迅速增长,进一步动摇了煤炭在国际能源市场中的主体地位。
二战期间,石油的地位举足轻重,美国则成为盟国的主要能源供应商。
二战结束后的一段时间内,美国一度掌握了世界大半的原油产量。
总的来说,从1859年在宾夕法尼亚打出了第一口油井到二战之后的一段时间,世界能源版图被称之为“墨西哥湾时代”。
本文选择的案例正是发生在美国墨西哥湾的原油泄漏事件,该事件发生于2010年4月20日,英国石油公司(英国石油公司拥有世界上最为先进的石油开发技术)租赁的一座钻井平台在墨西哥湾发生爆炸并引发大火,导致7人重伤11人死亡。
由此引发的原油泄漏事件成为美国历史上最严重的环境灾难, 其带来的生态灾难和经济损失无法估量,并且由于事件的严重后果引起了世界各方的高度关注。
根据相关消息显示,导致墨西哥湾原油泄漏的主要原因是美国过早开放深海石油开采以及英国石油公司忙赶工期,美联社报道,自从联邦政府监管人员放松设备检测后,数年间数座钻井平台的“防喷阀”未能发挥应有作用。
这也造成了甲烷气泡从钻杆底部高压处上升到低压处,突破数处安全屏障,并没有得到有效控制,而是使事故进一步扩大,造成了严重的经济损失和生态破坏,相关研究显示“深水地平线”事故造成1500米深海的原油泄漏,是历史上首次发生在超过500米以上深海的原油泄漏。
与海面航行的大油轮漏油相比,其危害更大、更隐蔽。
从中不难看出在政府监管方面出现了十分严重的问题,作为世界上最发达国家的美国,监督管理体制同样存在疏漏,各个处在主管地位的部门在行使自己的职能上存在冲突,以及由于自身和石油公司的密切交往,干扰了监管职能的正常行使,一份2008年的报告显示,负责出租钻井平台的矿产管理局的监管人员玩忽职守,对有关安全警告置若罔闻,收受被监管公司的礼物,甚至与石油公司员工发生不正当关系,更早的活动报告显示,管理局更是曾允许被监管的石油公司用铅笔自行填写检查报告。
Mars背景故事与时间线_GAOQS
Mars 背景故事与时间线时间线Timelinel2015年世界多数军事冲突地区,PMC承担起多数军事任务,并且在装备上日趋正规化。
当时最大的PMC瑞文(Raven)安全系统公司收购多家武器制造商,成为真正意义上的全能型军事集团。
这一系列收购刺激了其他PMC纷纷出手收购传统军火商,全球军事市场寡头化显现。
(整合顶级军事科技的诸多研究资源,大大加快了军事装备的研发速度,重点研究领域包括智能机器人、纳米机器人与生物武器)l2016年恐怖主义活动持续发展,并已握有大规模杀伤性武器的事实,致使原有的国际联合(国联)维和部队体系无法满足需要,而各军事大国出于敏感的政治因素而不便直接出面进行军事行动。
(对于恐怖分子如何获取大规模杀伤性武器一直众说纷纭,据一份未经公开的国联特别委员会报告指出,此事很可能与某PMC有密切关联,但因缺乏直接证据该报告被收回)国联成立了第一个超主权的常设武装力量‘国联维持和平快速反应部队’。
这一部队的^_^永久基地设在由法国提供的法属卡里尼亚岛。
该部队下设特别情报中心,其核心任务包括秘密监察PMC的全球动态。
l2022年在中非发生“杰利村事件”,世界第三大PMC(阿尔法防御服务公司)在一次军事行动中,因错误的情报,误袭了一个名叫杰利的村庄,致使15名平民死亡。
该事件引发全球舆论强烈谴责并要求解散这些PMC。
但各个大国基于本国利益的考虑并没有做出严厉的惩处,而是在国联通过一项新的安全倡议,并成立了一个新的管理委员会负责对全球PMC在全球的活动作出公开监视。
首片神经元芯片走出实验室,计算机技术发展迎来新的大发展。
l2026年‘国联维持和平快速反应部队’扩大,并正式更名‘国联部队’这一变化获得了大多数欠发达以及军事实力不强的小国欢迎,并实际成为国际军队。
纳米级机器人投入实用,最初应用于定点清除人体内的癌细胞。
(国联部队实现数字化指挥系统,由三套全天候的AI系统直接进行战场指挥。
同时能够全时监控士兵的纳米级机器人技术成熟,并开始逐步作为标准士兵装备)l2032年世界第二大PMC公司(艾森防卫国际)因一次意外核泄漏事故爆出丑闻,其试图持有大规模杀伤性武器的事实被曝光,深陷丑闻的艾森防卫不得不面临全球制裁并最终被迫宣布破产。
牙好胃口好,大炮也一样要刷牙!
小军迷联盟·拉大锯,扯大锯,小炮管,别生气。
我刷我刷我刷刷刷,牙膏给它轻轻挤一下!冷战时期,波兰军队士兵清理T55A坦克炮管。
1942年,几名德军士兵在清洗88毫米高炮炮管。
2013年7月16日,二级军士查尔斯·埃斯比使用清洗器清洗阿里伯克级驱逐舰“摩森”号上的MK45型127毫米主炮炮管。
科技改变生活,一个清洗器,炮管新又亮,比从前清洗方便多了,妈妈再也不用担心我会弄脏自己的衣服了。
2012年11月9日,一名以色列坦克兵正在清洗炮管。
麦子熟了,长官,我想请假回家割麦子。
●大炮也要讲卫生●那么问题来了,膛线是什么洗刷刷,洗刷刷,蹦蹦跳让他们看看我们的精气神儿!给我一个支点,我能撬动整艘……哎呀妈呀,压不动,算了,当我没说。
1940年,澳大利亚士兵在一起清洗9.2英寸(约228毫米)的海岸炮炮膛。
让我们齐心协力给它好好刷刷牙!第二次世界大战期间,士兵正在清洗B-25G 轰炸机的75毫米大炮的炮管。
往飞机上装大炮,后坐力太大了,晃得我都晕机了,谁设计的给我站出来,一牙刷我敲晕你!一名水兵正在擦拭﹃澳大利亚﹄号巡洋舰队上的8英寸(约203毫米)炮。
1943年7月,德国第502重型装甲营士兵正在为虎式坦克的88毫米炮清洗炮膛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西斯博朗近期工程业绩
序号工程名称(国外)使用产品使用情况1加拿大女子医院整体百叶良好
2阿布扎比中心市场主楼采光顶库门、移动屋顶良好
3阿布扎比ADIC螺杆式、遮阳控制系统良好
4新加坡美国学校手摇百叶窗系统良好
5美国斯坦福大学学术交流中心推杆式、链条式、电动遮阳卷帘良好
6迪拜跑马场推杆式、遥控控系统良好序号工程名称(国内)使用产品良好
1山西峰岩集团铸造厂推杆式良好
2大连华信软件园双链条式、链条式,多点锁良好
3天津生态城双链条式、链条式,消防控制系统良好
4锦州滨海体育中心推杆式,消防控制系统良好
5长春市金叶嘉园推杆式,消防控制系统良好
6吉林大学第一医院双链条式、链条式,消防控制系统良好
7武汉市中南电力设计院链条式、消防控制系统良好
8宁波鄞州区综合活动中心链条式、消防控制系统良好
9济南高新区创新大厦双链条式、消防控制系统良好10勒泰中心链条式、消防控制系统良好11济南时代广场推杆式、消防控制系统良好12济南成城大厦链条式、消防控制系统良好13辽宁省反腐倡廉教育基地电动百叶帘良好14十二运辽宁省图书馆螺杆式、消防控制系统、FTS遮阳系统良好15十二运辽宁省科技馆电动卷帘系统良好16十二运辽宁省档案馆FTS遮阳系统良好17沈阳桃仙机场T3航站楼螺杆式、消防控制系统良好
18北京汽车产业研发中心螺杆式、消防控制系统良好
链条式、推杆式、消防控制系统、梭形
19北京政协文史馆
良好
遮阳百叶
20武汉市民中心推杆式、消防控制系统良好21中国运载火箭科研楼链条式(含控制模块)、手动开关良好22沈阳国际展览中心螺杆式、同步器、消防控制系统良好23沈阳工业博物馆高窗手动手摇窗良好
玻璃百叶、铝合金百叶、螺杆式、消防
24大连国际会议中心电动百叶
良好
控制系统
推杆式、双链条式、同步器、消防控制
良好25大连国际会议中心
系统
26大连市民健身中心双链条式、单链条式、消防控制系统良好
单链式、双链式、螺杆式、遥控系统、
27青岛远雄
良好
消防控制系统
28青岛奥帆博物馆推杆式、平板遮阳百叶、消防控制系统良好29青岛市残联二期文体馆链条式、消防控制系统良好30辽宁友谊宾馆推杆式、同步器、消防控制系统良好31大同市大有广场链条式、消防控制系统良好32大同云中物流双链条式、单链条式、消防控制系统良好33沈阳市府恒隆遮阳百叶、推杆式、遮阳控制系统良好34石家庄神威药业综合楼链条式、手动开关良好35中国运载火箭科研楼采光顶推杆式、同步器、消防控制系统良好
推杆式、链条式、同步器、消防控制系
良好36大连体育中心
统
铝合金百叶、螺杆式、双链条式、消防
37徐州音乐厅
良好
控制系统
38徐州日报社螺杆式、穿孔遮阳百叶、消防控制系统良好
39徐州美术馆链条式、消防控制系统良好40矿大南湖校区图文信息中心螺杆式、梭形遮阳百叶、消防控制系统良好41国家行政学院双链式、推杆式、消防控制系统良好42辽宁训练馆链条式、双链式、消防控制系统良好43沈阳射击馆百叶全翼穿孔百叶、半翼不穿孔百叶良好44辽宁省政协双链条式、风雨感应集中控制系统良好45六里桥高速公路指挥中心链条式、消防控制系统良好46安徽富广大厦双链式、手动开关良好47苏州润华环球188双链式、单链式、多点锁、手动开关良好
玻璃百叶、螺杆式、风机控制单元、手
48北京金唐大厦
良好
动开关
49北京华能大厦链条式、消防控制系统良好50沈阳中街恒隆广场遮阳百叶、推杆式、遮阳控制系统良好51天津航天668双链式、集中控制系统良好52北丰C2链条式、手动开关、遥控器良好53马钢文化中心双链条、手动开关良好54中铁广场双链式、消防控制系统良好55北京吉祥大厦链条式、消防控制系统良好56上海远洋宾馆链条式、螺杆式、消防控制系统良好57上海南门港码头推杆式、消防控制系统良好58上海吴淞口国际邮轮码头推杆式、消防控制系统良好59上海明园森林都市螺杆式、遮阳控制系统良好60无锡高等师范学校链条式、消防控制系统良好61葛洲坝大厦电动百叶帘良好62连云港游泳馆推杆式、消防控制系统良好63南昌火车站推杆式、消防控制系统良好64严家宅三期链条式、手摇开窗器良好
65汇福国际双链式、消防控制系统良好66营口文化广场推杆式、链条式、消防控制系统良好67大连市体育游泳馆推杆式、消防控制系统良好68大连天沐集团推杆式、消防控制系统良好69新华国际链条式、消防控制系统良好70天津港国际邮轮码头链条式、消防控制系统良好71武汉江夏楚天大厦推杆式、同步器、消防控制系统良好72武汉时代广场链条式、消防控制系统良好73沈阳机场螺杆式、同步器、消防控制系统良好74广东梅州客家博物馆推杆式、消防控制系统良好75中国第一飞机设计研究院推杆式、消防控制系统良好76东方云顶工程链条式、消防控制系统良好77南京邓府巷链条式、消防控制系统良好78呼和浩特白塔机场推杆式、消防控制系统良好79和记黄埔西安工程推杆式、消防控制系统良好80宁夏图书馆推杆式、消防控制系统良好81湖北黄冈伊利链条式、消防控制系统良好82郑州客属地产螺杆式、消防控制系统良好83安徽大学推杆式、消防控制系统良好84河南艺术中心双链条式、消防控制系统良好85河南省平顶山新城区市民中心链条式、消防控制系统良好86瑞华医院推杆式、电动百叶窗、消防控制系统良好87哈锅电塔家园会馆双链条式、消防控制系统良好88徐州师范学校螺杆式、链条式、消防控制系统良好89天津恒隆广场链条式、消防控制系统良好90徐州君庭酒店链条式、消防控制系统良好91上海陆家嘴金融贸易区X3-2双链条式、消防控制系统良好
92上海东方渔人码头双推杆式、消防控制系统良好93北京中粮健康研究院链条式、消防控制系统良好94国家电网研究院链条式、消防控制系统良好95武汉风亭变电所推杆式、消防控制系统、良好96济宁创新大厦双链条式、消防控制系统良好97山东电力研究院双链条式、消防控制系统良好98泰安文化艺术中心推杆式、消防控制系统良好
螺杆式、链条式双链条式、消防控制系
良好99济南重汽
统
100徐州奥体中心链条式、螺杆式、消防控制系统良好101四川成美广场推杆式、消防控制系统良好102大连东港C07地块链条式、消防控制系统良好103大连维多利亚公馆链条式、消防控制系统良好104合肥中国银行电动消防百叶窗-螺杆式良好105沈阳恒大售楼处推杆式、消防控制系统良好106上海紫竹网络链条式、消防控制系统良好107深圳平安金融中心螺杆式、消防控制系统良好。