(含24套)人教版高中物理选修3-4【全册】教材知识点梳理汇总

合集下载

(完整版)高中物理选修3-4知识点清单(非常详细)

(完整版)高中物理选修3-4知识点清单(非常详细)

(完整版)高中物理必修3-4知识点清单(非常详细)第一章 机械振动 第二章 机械波一、简谐运动1.概念:质点的位移与时间的关系遵从正弦函数的规律,即它的振动图象(x -t 图象)是一条正弦曲线的振动.2.平衡位置:物体在振动过程中回复力为零的位置. 3.回复力(1)定义:使物体返回到平衡位置的力. (2)方向:时刻指向平衡位置.(3)来源:振动物体所受的沿振动方向的合力. 4.简谐运动的表达式(1)动力学表达式:F =-kx ,其中“-”表示回复力与位移的方向相反.(2)运动学表达式:x =A sin (ωt +φ),其中A 代表振幅,ω=2πf 表示简谐运动的快慢,(ωt +φ)代表简谐运动的相位,φ叫做初相.5 定义 意义振幅 振动质点离开平衡位置的最大距离描述振动的强弱和能量周期振动物体完成一次全振动所需时间描述振动的快慢,两者互为倒数:T =1f频率振动物体单位时间内完成全振动的次数相位 ωt +φ描述质点在各个时刻所处的不同状态二、单摆1.定义:在细线的一端拴一个小球,另一端固定在悬点上,如果细线的伸缩和质量都不计,球的直径比线的长度短得多,这样的装置叫做单摆.2.视为简谐运动的条件:θ<5°.3.回复力:F =G 2=G sin θ=mg lx . 4.周期公式:T =2πl g. 5.单摆的等时性:单摆的振动周期取决于摆长l 和重力加速度g ,与振幅和振子(小球)质量都没有关系.三、受迫振动及共振 1.受迫振动:系统在驱动力作用下的振动.做受迫振动的物体,它的周期(或频率)等于驱动力周期(或频率),而与物体的固有周期(或频率)无关.2.共振:做受迫振动的物体,它的固有频率与驱动力的频率越接近,其振幅就越大,当二者相等时,振幅达到最大,这就是共振现象.共振曲线如图所示.考点一 简谐运动的五个特征 1.动力学特征 F =-kx ,“-”表示回复力的方向与位移方向相反,k 是比例系数,不一定是弹簧的劲度系数.2.运动学特征简谐运动的加速度与物体偏离平衡位置的位移成正比而方向相反,为变加速运动,远离平衡位置时x 、F 、a 、E p 均增大,v 、E k 均减小,靠近平衡位置时则相反.3.运动的周期性特征相隔T 或nT 的两个时刻振子处于同一位置且振动状态相同. 4.对称性特征(1)相隔T 2或2n +12T (n 为正整数)的两个时刻,振子位置关于平衡位置对称,位移、速度、加速度大小相等,方向相反.(2)如图所示,振子经过关于平衡位置O 对称的两点P 、P ′(OP =OP ′)时,速度的大小、动能、势能相等,相对于平衡位置的位移大小相等.(3)振子由P 到O 所用时间等于由O 到P ′所用时间,即t PO =t OP ′.(4)振子往复过程中通过同一段路程(如OP 段)所用时间相等,即t OP =t PO . 5.能量特征振动的能量包括动能E k 和势能E p ,简谐运动过程中,系统动能与势能相互转化,系统的机械能守恒.6.(1)由于简谐运动具有周期性、往复性、对称性,因此涉及简谐运动时,往往出现多解.分析此类问题时,特别应注意,物体在某一位置时,位移是确定的,而速度不确定,时间也存在周期性关系.(2)相隔(2n +1)T2的两个时刻振子的位置关于平衡位置对称,位移、速度、加速度等大反向.考点二 简谐运动的图象的应用某质点的振动图象如图所示,通过图象可以确定以下各量: 1.确定振动物体在任意时刻的位移. 2.确定振动的振幅.3.确定振动的周期和频率.振动图象上一个完整的正弦(余弦)图形在时间轴上拉开的“长度”表示周期.4.确定质点在各时刻的振动方向.5.比较各时刻质点加速度的大小和方向.6.(1)简谐运动的图象不是振动质点的轨迹,它表示的是振动物体的位移随时间变化的规律;(2)因回复力总是指向平衡位置,故回复力和加速度在图象上总是指向t 轴;(3)速度方向可以通过下一个时刻位移的变化来判定,下一个时刻位移如果增加,振动质点的速度方向就远离t 轴,下一个时刻的位移如果减小,振动质点的速度方向就指向t 轴.考点三 受迫振动和共振自由振动 受迫振动 共振受力情况仅受回 复力 受驱动 力作用 受驱动力作用振动周期 或频率 由系统本身性质决定,即固有周期T 0或固有频率f 0由驱动力的周期或频率决定,即T =T 驱或f =f 驱 T 驱=T 0或f 驱=f 0振动能量 振动物体的机械能不变 由产生驱动力的物体提供振动物体获得的能量最大常见例子弹簧振子或单摆(θ≤5°) 机械工作时底座发生的振动共振筛、声音的共鸣等(1)共振曲线:如图所示,横坐标为驱动力频率f ,纵坐标为振幅A .它直观地反映了驱动力频率对某振动系统受迫振动振幅的影响,由图可知,f 与f 0越接近,振幅A 越大;当f =f 0时,振幅A 最大.(2)受迫振动中系统能量的转化:受迫振动系统机械能不守恒,系统与外界时刻进行能量交换.3.(1)无论发生共振与否,受迫振动的频率都等于驱动力的频率,但只有发生共振现象时振幅才能达到最大.(2)受迫振动系统中的能量转化不再只有系统内部动能和势能的转化,还有驱动力对系统做正功补偿系统因克服阻力而损失的机械能.三、实验:用单摆测定重力加速度1.实验原理由单摆的周期公式T =2πl g ,可得出g =4π2T2l ,测出单摆的摆长l 和振动周期T ,就可求出当地的重力加速度g .2.实验器材单摆、游标卡尺、毫米刻度尺、停表. 3.实验步骤(1)做单摆:取约1 m 长的细丝线穿过带中心孔的小钢球,并打一个比小孔大一些的结,然后把线的另一端用铁夹固定在铁架台上,让摆球自然下垂,如图所示.(2)测摆长:用毫米刻度尺量出摆线长L (精确到毫米),用游标卡尺测出小球直径D ,则单摆的摆长l =L +D2.(3)测周期:将单摆从平衡位置拉开一个角度(小于5°),然后释放小球,记下单摆摆动30~50次的总时间,算出平均每摆动一次的时间,即为单摆的振动周期.(4)改变摆长,重做几次实验. 4.数据处理(1)公式法:g =4π2lT2.(2)图象法:画l -T 2图象.g =4π2k ,k =l T 2=ΔlΔT2.5.注意事项(1)悬线顶端不能晃动,需用夹子夹住,保证悬点固定. (2)单摆必须在同一平面内振动,且摆角小于10°.(3)选择在摆球摆到平衡位置处时开始计时,并数准全振动的次数.(4)小球自然下垂时,用毫米刻度尺量出悬线长L ,用游标卡尺测量小球的直径,然后算出摆球的半径r ,则摆长l =L +r .(5)选用一米左右的细线.四、机械波 1.形成条件(1)有发生机械振动的波源. (2)有传播介质,如空气、水等. 2.传播特点(1)传播振动形式、传递能量、传递信息. (2)质点不随波迁移. 3.分类机械波⎩⎪⎨⎪⎧横波:振动方向与传播方向垂直.纵波:振动方向与传播方向在同一直线上.五、描述机械波的物理量1.波长λ:在波动中振动相位总是相同的两个相邻质点间的距离.用“λ”表示. 2.频率f :在波动中,介质中各质点的振动频率都是相同的,都等于波源的振动频率. 3.波速v 、波长λ和频率f 、周期T 的关系公式:v =λT=λf机械波的速度大小由介质决定,与机械波的频率无关. 六、机械波的图象1.图象:在平面直角坐标系中,用横坐标表示介质中各质点的平衡位置,用纵坐标表示某一时刻各质点偏离平衡位置的位移,连接各位移矢量的末端,得出的曲线即为波的图象,简谐波的图象是正弦(或余弦)曲线.2.物理意义:某一时刻介质中各质点相对平衡位置的位移. 四、波的衍射和干涉1.波的衍射定义:波可以绕过障碍物继续传播的现象.2.发生明显衍射的条件:只有缝、孔的宽度或障碍物的尺寸跟波长相差不多,或者小于波长时,才会发生明显的衍射现象.3.波的叠加原理:几列波相遇时能保持各自的运动状态,继续传播,在它们重叠的区域里,介质的质点同时参与这几列波引起的振动,质点的位移等于这几列波单独传播时引起的位移的矢量和.4.波的干涉(1)定义:频率相同的两列波叠加时,某些区域的振动加强、某些区域的振动减弱,这种现象叫波的干涉.(2)条件:两列波的频率相同.5.干涉和衍射是波特有的现象,波同时还可以发生反射、折射. 五、多普勒效应由于波源与观察者互相靠近或者互相远离时,接收到的波的频率与波源频率不相等的现象.考点一 波动图象与波速公式的应用1.波的图象反映了在某时刻介质中的质点离开平衡位置的位移情况,图象的横轴表示各质点的平衡位置,纵轴表示该时刻各质点的位移,如图.图象的应用:(1)直接读取振幅A 和波长λ,以及该时刻各质点的位移.(2)确定某时刻各质点加速度的方向,并能比较其大小. (3)结合波的传播方向可确定各质点的振动方向或由各质点的振动方向确定波的传播方向.2.波速与波长、周期、频率的关系为:v =λT=λf . 3.波的传播方向与质点的振动方向的互判方法图象律表示同一质点在各时刻的位移表示某时刻各质点的位移考点三 波的干涉、衍射、多普勒效应 1.波的干涉中振动加强点和减弱点的判断某质点的振动是加强还是减弱,取决于该点到两相干波源的距离之差Δr . (1)当两波源振动步调一致时若Δr =n λ(n =0,1,2,…),则振动加强; 若Δr =(2n +1)λ2(n =0,1,2,…),则振动减弱.(2)当两波源振动步调相反时若Δr =(2n +1)λ2(n =0,1,2,…),则振动加强;若Δr =n λ(n =0,1,2,…),则振动减弱. 2.波的衍射现象是指波能绕过障碍物继续传播的现象,产生明显衍射现象的条件是缝、孔的宽度或障碍物的尺寸跟波长相差不大或者小于波长.3.多普勒效应的成因分析 (1)接收频率:观察者接收到的频率等于观察者在单位时间内接收到的完全波的个数.当波以速度v 通过观察者时,时间t 内通过的完全波的个数为N =vtλ,因而单位时间内通过观察者的完全波的个数,即接收频率.(2)当波源与观察者相互靠近时,观察者接收到的频率变大,当波源与观察者相互远离时,观察者接收到的频率变小.第三章 电磁波一、电磁波的产生1.麦克斯韦电磁场理论变化的磁场产生电场,变化的电场产生磁场. 2.电磁场变化的电场和变化的磁场总是相互联系成为一个完整的整体,这就是电磁场. 3.电磁波电磁场(电磁能量)由近及远地向周围传播形成电磁波. (1)电磁波是横波,在空间传播不需要介质.(2)真空中电磁波的速度为3.0×108m/s.(3)电磁波能产生干涉、衍射、反射和折射等现象. 二、电磁波的发射与接收 1.电磁波的发射(1)发射条件:足够高的频率和开放电路. (2)调制分类:调幅和调频. 2.电磁波的接收(1)调谐:使接收电路产生电谐振的过程.(2)解调:使声音或图像信号从高频电流中还原出来的过程.第四章 光的折射 全反射一、光的折射与折射率 1.折射定律(1)内容:如图所示,折射光线与入射光线、法线处在同一平面内,折射光线与入射光线分别位于法线的两侧;入射角的正弦与折射角的正弦成正比.(2)表达式:sin θ1sin θ2=n .(3)在光的折射现象中,光路是可逆的. 2.折射率(1)折射率是一个反映介质的光学特性的物理量.(2)定义式:n =sin θ1sin θ2.(3)计算公式:n =c v,因为v <c ,所以任何介质的折射率都大于1.(4)当光从真空(或空气)射入某种介质时,入射角大于折射角;当光由介质射入真空(或空气)时,入射角小于折射角.二、全反射1.条件:(1)光从光密介质射入光疏介质. (2)入射角≥临界角.2.临界角:折射角等于90°时的入射角,用C 表示,sin C =1n.三、光的色散、棱镜 1.光的色散 (1)色散现象白光通过三棱镜会形成由红到紫七种色光组成的彩色光谱,如图.(2)成因由于n 红<n 紫,所以以相同的入射角射到棱镜界面时,红光和紫光的折射角不同,就是说紫光偏折得更明显些,当它们射到另一个界面时,紫光的偏折角最大,红光偏折角最小.三、 全反射现象1.在光的反射和全反射现象中,均遵循光的反射定律;光路均是可逆的.2.当光射到两种介质的界面上时,往往同时发生光的折射和反射现象,但在全反射现象中,只发生反射,不发生折射.当折射角等于90°时,实际上就已经没有折射光了.3.全反射现象可以从能量的角度去理解:当光由光密介质射向光疏介质时,在入射角逐渐增大的过程中,反射光的能量逐渐增强,折射光的能量逐渐减弱,当入射角等于临界角时,折射光的能量已经减弱为零,这时就发生了全反射.4.分析全反射问题的基本思路(1)画出恰好发生全反射的临界光线,作好光路图. (2)应用几何知识分析边、角关系,找出临界角. (3)判断发生全反射的范围. 考点三 光路的计算与判断1.光线射到介质的界面上时,要注意对产生的现象进行分析:(1)若光线从光疏介质射入光密介质,不会发生全反射,而同时发生反射和折射现象,不同色光偏折不同.(2)若光线从光密介质射向光疏介质,是否发生全反射,要根据计算判断,要注意不同色光临界角不同.2.作图时要找出具有代表性的光线,如符合边界条件或全反射临界条件的光线. 3.解答时注意利用光路可逆性、对称性和几何知识. 4.各种色光的比较颜色 红橙黄绿青蓝紫 频率ν 低―→高 同一介质中的折射率 小―→大 同一介质中速度 大―→小波长 大―→小 临界角 大―→小 通过棱镜的偏折角 小―→大四、实验:测定玻璃的折射率 1.实验原理用插针法找出与入射光线AO 对应的出射光线O ′B ,确定出O ′点,画出折射光线OO ′,然后测量出角θ1和θ2,代入公式n =sin θ1sin θ2计算玻璃的折射率.2.实验过程(1)铺白纸、画线. ①如图所示,将白纸用图钉按在平木板上,先在白纸上画出一条直线aa ′作为界面,过aa ′上的一点O 画出界面的法线MN ,并画一条线段AO 作为入射光线.②把玻璃砖平放在白纸上,使它的长边跟aa ′对齐,画出玻璃砖的另一条长边bb ′.(2)插针与测量.①在线段AO 上竖直地插上两枚大头针P 1、P 2,透过玻璃砖观察大头针P 1、P 2的像,调整视线的方向,直到P 1的像被P 2挡住,再在观察的这一侧依次插两枚大头针P 3、P 4,使P 3挡住P 1、P 2的像,P 4挡住P 1、P 2的像及P 3,记下P 3、P 4的位置.②移去玻璃砖,连接P 3、P 4并延长交bb ′于O ′,连接OO ′即为折射光线,入射角θ1=∠AOM ,折射角θ2=∠O ′ON .③用量角器测出入射角和折射角,查出它们的正弦值,将数据填入表格中. ④改变入射角θ1,重复实验步骤,列表记录相关测量数据. 3.数据处理(1)计算法:用量角器测量入射角θ1和折射角θ2,并查出其正弦值sin θ1和sin θ2.算出不同入射角时的sin θ1sin θ2,并取平均值.(2)作sin θ1-sin θ2图象:改变不同的入射角θ1,测出不同的折射角θ2,作sin θ1-sin θ2图象,由n =sin θ1sin θ2可知图象应为直线,如图所示,其斜率为折射率.(3)“单位圆”法确定sin θ1、sin θ2,计算折射率n :以入射点O 为圆心,以一定的长度R 为半径画圆,交入射光线OA 于E 点,交折射光线OO ′于E ′点,过E 作NN ′的垂线EH ,过E ′作NN ′的垂线E ′H ′.如图所示,sin θ1=EH OE ,sin θ2=E ′H ′OE ′,OE =OE ′=R ,则n =sin θ1sin θ2=EHE ′H ′.只要用刻度尺量出EH 、E ′H ′的长度就可以求出n .4.注意事项(1)玻璃砖应选用厚度、宽度较大的. (2)大头针要插得竖直,且间隔要大些.(3)入射角不宜过大或过小,一般在15°~75°之间.(4)玻璃砖的折射面要画准,不能用玻璃砖界面代替直尺画界线. (5)实验过程中,玻璃砖和白纸的相对位置不能改变.第五章 光的干涉 衍射 偏振一、光的干涉1.定义:在两列光波的叠加区域,某些区域的光被加强,出现亮纹,某些区域的光被减弱,出现暗纹,且加强和减弱互相间隔的现象叫做光的干涉现象.2.条件:两列光的频率相等,且具有恒定的相位差,才能产生稳定的干涉现象. 3.双缝干涉:由同一光源发出的光经双缝后形成两束振动情况总是频率相等的相干光波,屏上某点到双缝的路程差是波长的整数倍处出现亮条纹;路程差是半波长的奇数倍处出现暗条纹.相邻的明条纹(或暗条纹)之间距离Δx 与波长λ、双缝间距d 及屏到双缝距离l 的关系为Δx =l dλ.4.薄膜干涉:利用薄膜(如肥皂液薄膜)前后表面反射的光相遇而形成的.图样中同一条亮(或暗)条纹上所对应薄膜厚度相同.二、光的衍射 1.光的衍射现象光在遇到障碍物时,偏离直线传播方向而照射到阴影区域的现象叫做光的衍射. 2.光发生明显衍射现象的条件当孔或障碍物的尺寸比光波波长小,或者跟光波波长相差不多时,光才能发生明显的衍射现象.3.衍射图样(1)单缝衍射:中央为亮条纹,向两侧有明暗相间的条纹,但间距和亮度不同.白光衍射时,中央仍为白光,最靠近中央的是紫光,最远离中央的是红光.(2)圆孔衍射:明暗相间的不等距圆环.(3)泊松亮斑:光照射到一个半径很小的圆板后,在圆板的阴影中心出现的亮斑,这是光能发生衍射的有力证据之一.三、光的偏振1.偏振光:在跟光传播方向垂直的平面内,光在某一方向振动较强而在另一些方向振动较弱的光即为偏振光.光的偏振现象证明光是横波(填“横波”或“纵波”).2.自然光:太阳、电灯等普通光源发出的光,包括在垂直于传播方向上沿各个方向振动的光,而且沿各个方向振动的光波的强度都相同,这种光叫做自然光.3.偏振光的产生 自然光通过起偏器:通过两个共轴的偏振片观察自然光,第一个偏振片的作用是把自然光变成偏振光,叫做起偏器.第二个偏振片的作用是检验光是否是偏振光,叫做检偏器.考点一 光的干涉 1.双缝干涉(1)光能够发生干涉的条件:两光的频率相同,振动步调相同. (2)双缝干涉形成的条纹是等间距的,两相邻亮条纹或相邻暗条纹间距离与波长成正比,即Δx =l dλ.(3)用白光照射双缝时,形成的干涉条纹的特点:中央为白条纹,两侧为彩色条纹. 2.薄膜干涉(1)如图所示,竖直的肥皂薄膜,由于重力的作用,形成上薄下厚的楔形.(2)光照射到薄膜上时,在膜的前表面AA ′和后表面BB ′分别反射出来,形成两列频率相同的光波,并且叠加,两列光波同相叠加,出现明纹;反相叠加,出现暗纹.(3)条纹特点:①单色光:明暗相间的水平条纹; ②白光:彩色水平条纹. 3.明暗条纹的判断方法屏上某点到双缝距离之差为Δr ,若Δr =k λ(k =0,1,2,…),则为明条纹;若Δr =(2k +1)λ2(k =0,1,2,…),则为暗条纹. 考点二 光的衍射现象的理解 1两种现象比较项目单缝衍射 双缝干涉不同 点 条纹宽度 条纹宽度不等,中央最宽 条纹宽度相等条纹间距 各相邻条纹间距不等 各相邻条纹等间距 亮度情况中央条纹最亮,两边变暗 条纹清晰,亮度基本相等相同点干涉、衍射都是波特有的现象,属于波的叠加;干涉、衍射都有明暗相间的条纹2.光的干涉和衍射都属于光的叠加,从本质上看,干涉条纹和衍射条纹的形成有相似的原理,都可认为是从单缝通过两列或多列频率相同的光波,在屏上叠加形成的.考点三 光的偏振现象的理解 1.偏振光的产生方式(1)自然光通过起偏器:通过两个共轴的偏振片观察自然光,第一个偏振片的作用是把自然光变成偏振光,叫起偏器.第二个偏振片的作用是检验光是否为偏振光,叫检偏器.(2)自然光射到两种介质的交界面上,如果光入射的方向合适,使反射光和折射光之间的夹角恰好是90°时,反射光和折射光都是偏振光,且偏振方向相互垂直.2.偏振光的理论意义及应用(1)理论意义:光的偏振现象说明了光波是横波. (2)应用:照相机镜头、立体电影、消除车灯眩光等. 考点四 实验:用双缝干涉测量光的波长 1.实验原理单色光通过单缝后,经双缝产生稳定的干涉图样,图样中相邻两条亮(暗)纹间距Δx 与双缝间距d 、双缝到屏的距离l 、单色光的波长λ之间满足λ=d Δx /l .2.实验步骤 (1)观察干涉条纹①将光源、遮光筒、毛玻璃屏依次安放在光具座上.如图所示.②接好光源,打开开关,使灯丝正常发光.③调节各器件的高度,使光源发出的光能沿轴线到达光屏.④安装双缝和单缝,中心大致位于遮光筒的轴线上,使双缝与单缝的缝平行,二者间距约5 cm ~10 cm ,这时,可观察白光的干涉条纹.⑤在单缝和光源间放上滤光片,观察单色光的干涉条纹. (2)测定单色光的波长①安装测量头,调节至可清晰观察到干涉条纹.②使分划板中心刻线对齐某条亮条纹的中央,记下手轮上的读数a 1,将该条纹记为第1条亮纹;转动手轮,使分划板中心刻线移动至另一亮条纹的中央,记下此时手轮上的读数a 2,将该条纹记为第n 条亮纹.③用刻度尺测量双缝到光屏的距离l (d 是已知的). ④改变双缝间的距离d ,双缝到屏的距离l ,重复测量. 3.数据处理(1)条纹间距Δx =|a 2-a 1n -1|.(2)波长λ=d lΔx .(3)计算多组数据,求λ的平均值. 4.注意事项(1)安装时,注意调节光源、滤光片、单缝、双缝的中心均在遮光筒的中心轴线上,并使单缝、双缝平行且间距适当.(2)光源灯丝最好为线状灯丝,并与单缝平行且靠近.(3)调节的基本依据是:照在光屏上的光很弱,主要原因是灯丝与单缝、双缝,测量头与遮光筒不共轴所致,干涉条纹不清晰一般原因是单缝与双缝不平行所致,故应正确调节.。

(完整word版)人教版-高中物理选修3-3、3-4、3-5知识点整理(良心出品必属精品)

(完整word版)人教版-高中物理选修3-3、3-4、3-5知识点整理(良心出品必属精品)

影响气体压强的因素:①气体的平均分子动能(温度)②分子的密集程度即单
位体积内的分子数(体积)
三、物态和物态变化
9、晶体:外观上有规则的几何外形,有确定的熔点,一些物理性质表现为各向异

非晶体:外观没有规则的几何外形,无确定的熔点,一些物理性质表现为各向
同性
①判断物质是晶体还是非晶体的主要依据是有无固定的熔点
《高中物理选修 3-4 、3-5 知识点》
Ⅰ 选修 3-4 部分
一、简谐运动 简谐运动的表达式和图象 Ⅰ
1、机械振动:
物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。
机械振动产生的条件是:①回复力不为零 . ②阻力很小 . 使振动物体回到平衡位置的
力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。
⑶周期 T:振动物体完成一次余振动所经历的时间叫做周期。 所谓全振动是指物体从
某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次
全振动。
⑷频率 f :振动物体单位时间内完成全振动的次数。
⑸角频率 ω:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。引入这
个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,
②这两种方式改变系统的内能是等效的
③区别:做功是系统内能和其他形式能之间发生转化;热传递是不同物体(或
物体的不同部分)之间内能的转移
14、热力学第一定律
①表达式 u W Q


W
Q
u

外界对3;
做功
吸热

15、能量 律
系统对外界 做功
系统向外界 放热

(完整版)高中物理选修3-4知识点总结

(完整版)高中物理选修3-4知识点总结

高中物理选修 3-4 知识点总结机械振动:物体(或物体的一部分)在均衡地点邻近做来去运动,机械振动产生的条件是:阻尼足够小,拥有均衡地点(答复力为零的地点),在均衡地点有一初速度,运动过程中遇到答复力不为零,振动拥有来去性。

答复力:阻力很小.使振动物体回到均衡地点的力叫做答复力。

答复力是变力答复力的方向老是指向均衡地点。

答复力属于成效力(产生振动加快度,改变速度的大小。

),答复力能够由合外力,几个力的协力,一个力,或某个力的分力供给。

物体振动经过均衡位置时不必定处于均衡状态(合外力不必定为零)弹簧振子振动, O点为均衡地点, AA’分别是左、右两头的最大位移处,振子的振动能够分红四个阶段:O A;A O;O A';A' O。

四个阶段中,振子的位移,答复力、速度和加快度的变化以下表:简谐振动在均衡地点,位移为零,速度最大,加快度为零;在最大位移处,速度为零,加快度最大。

物体的速度在最大位移处改变方向。

简谐振动是一种变加快运动。

简谐振动过程,系统动能和势能相互转变,总机械能守恒。

在均衡地点处,动能最大,动量最大 ,势能为零,在最大位移处,势能最大,动能为零 , 动量最小振动能量 = 动能 + 势能最大位移的势能=均衡地点的动能(由振幅决定,与周期和频次没关)在水平方向上振动的弹簧振子的答复力是弹簧的弹力;在竖直方向上振动的弹簧振子的答复力是弹簧弹力和重力的协力。

水平搁置、竖直搁置的弹簧振子的振动都是简谐运动弹簧振子具备的条件:①弹簧质量忽视不计②无摩擦等阻力③在弹性限度内弹簧振子做简谐运动的答复力公式F kx ,(k为比率系数, 恰巧等于弹簧振子的弹簧劲度系数,其余简谐运动k 不是弹簧的劲度系数。

)加快度公式a kx,加快度的大小跟位m移大小成正比,其方向与位移方向老是相反。

简谐振动的特色物体在跟位移大小成正比,并且老是指向均衡地点的答复力作用下的振动,加快度的大小跟位移大小成正比,其方向与位移方向老是相反。

物理人教版高二选修3-4教材梳理_第十五章_3.狭义相对论的其他结论4.广义相对论简介_word版含解析

物理人教版高二选修3-4教材梳理_第十五章_3.狭义相对论的其他结论4.广义相对论简介_word版含解析

疱丁巧解牛知识·巧学一、狭义相对论的其他结论 1.相对论速度变换公式以高速火车为例,车对地的速度为v ,车上的人以u′的速度沿火车前进的方向相对火车运动,则人对地的速度u=2'1'cv u vu ++,若人相对火车反方向运动,u′取负值. 根据此式若u′=c ,则u=c ,那么c 在任何惯性系中都是相同的.深化升华 (1)当u′=c 时,不论v 有多大,总有u=c ,这表明,从不同参考系中观察,光速都是相同的,这与相对论的第二个假设光速不变原理相一致.(2)对于速度远小于光速的情形,v<<c ,u′<<c ,这时2'cvu 可以忽略不计,相对论的速度合成公式可以近似变为u=u′+v.联想发散 相对论并没有推翻牛顿力学,也不能说牛顿力学已经过时了,相对论是使牛顿力学的使用范围变得清楚了. 2.相对论质量以速度v 高速运动的物体的质量m 和静止时的质量m 0.有如下关系:m=20)(1cv m -.质量公式实际上是质量和速度的关系,在关系m=20)(1cv m -中,若v=c ,则m 可能是无限大,这是不可能的,尤其是宏观物体,设想物体由v=0逐渐向c 靠拢,m 要逐渐变大,产生加速度的力则要很大,所以能量也要很大.因此,宏观物体的速度是不可能(在目前)增大到与光速相比.但是对于一些没有静止质量的粒子(如光子),它却可以有动质量m.深化升华 (1)物体的质量随速度的增大而增大;(2)物体运动的质量总要大于静止质量. 误区警示 不要盲目从公式中得出,v=c 时,质量是无穷大的错误结论. 3.质能方程(1)爱因斯坦方程:E=mc 2.(2)质能方程表达了物体的质量和它所具有的能量的关系:一定的质量总是和一定的能量相对应. (3)对一个以速率v 运动的物体,其总能量为动能与静质能之和:E=E k +E 0.那么物体运动时的能量E 和静止时能量E 0的差就是物体的动能,即E k =E-E 0. 代入质量关系:E k =E-E 0=220)(1cv c m --m 0c 2=21m 0v 2. 误区警示 不能把质量和能量混为一谈,不能认为质量消灭了,只剩下能量在转化,更不能认为质量和能量可以相互转变,在一切过程中,质量和能量是分别守恒的,只有在微观粒子的裂变和聚变过程中有质量亏损的情况下才会有质能方程的应用. 二、广义相对论简介1.广义相对性原理和等效原理(1)广义相对性原理:在任何参考系中,物理规律都是相同的.(2)等效原理:一个均匀的引力场与一个做匀加速运动的参考系等价.深化升华 一个物体受到使物体以某一加速度下落的力,如果不知道该力的来源,就没有办法判断使物体以某一加速度下落的力到底是引力还是惯性力. 2.广义相对论的几个结论(1)光线弯曲:根据电磁理论和经典光学,在无障碍的情况下,光线是直线传播.但按照爱因斯坦的广义相对论,在引力场存在的情况下,光线是沿弯曲的路径传播的.(2)引力红移:根据爱因斯坦的广义相对论,在强引力场中,时钟要走得慢些.因此,光在引力场中传播时,它的频率或波长会发生变化.理论计算表明,氢原子发射的光从太阳(引力强度大)传播到地球(引力强度小)时,它的频率比地球上氢原子发射的光的频率低,这就是引力红移效应.典题·热题知识点一 相对论速度例1地球上一观察者,看见一飞船A 以速度2.5×108 m/s 从他身边飞过,另一飞船B 以速度2.0×108 m/s 跟随A 飞行.求:(1)A 上的乘客看到B 的相对速度; (2)B 上的乘客看到A 的相对速度. 解析:运用相对论速度公式u=2'1'cv u vu ++可解. 答案:(1)-1.125×108 m/s (2)1.125×108 m/s 知识点二 相对论质量例2一个原来静止的电子,经过100 V 的电压加速后它的动能是多少?质量改变了百分之几?速度是多少?这时能不能使用公式E k =21m 0v 2? 解析:由动能定理可以计算出电子被加速后的动能,再根据E k =mc 2-m e c 2计算质量的变化. 答案:加速后的电子的动能是E k =qU=1.6×10-19×100 J=1.6×10-17 J. 因为E k =mc 2-m e c 2,所以m-m e =E k / c 2.把数据代入得e e m m m -=2831--17)10(3109.1101.6⨯⨯⨯⨯=2×10-4. 即质量改变了0.02%.这说明在100 V 电压加速后,电子的速度与光速相比仍然很小,因此可以使用E k =21mv 2这个公式.由E k =21mv 2可得电子的速度v=m E k 2=31--17109.1101.62⨯⨯⨯ m/s≈5.9×106 m/s. 知识点三 质能方程例3一核弹含20 kg 的钚,爆炸后生成的静止质量比原来小1/10 000.求爆炸中释放的能量. 解析:由爱因斯坦质能方程可解释放出的能量. 答案:爆炸前后质量变化:Δm=100001×20 kg=0.02 kg释放的能量为ΔE=Δmc 2=0.002×(3×108)2 J=1.8×1014 J. 方法归纳 一定的质量总是和一定的能量相对应.例4两个电子相向运动,每个电子相对于实验室的速度都是54c ,在实验室中观测,两个电子的总动能是多少?以一个电子为参考系,两个电子的总动能又是多少?解析:计算时由电子运动的能量减去静止时的能量就得到电子的动能.若以其中一个电子为参考系,另一个电子相对参考系的质量应当由质速方程求出,但相对速度应当为两个电子的相对速度.答案:设在实验室中观察,甲电子向右运动,乙电子向左运动.若以乙电子为“静止”参考系,即O 系,实验室(记为O′系)就以54c 的速度向右运动,即O′系相对于O 系的速度为v=54c.甲电子相对于O′系的速度为u′=54c.这样,甲电子相对于乙电子的速度就是在O 系中观测到的电子的速度u,根据相对论的速度合成公式,这个速度是u=2'1'c v u v u ++=2545415454c cc cc ⨯++=4140 c. 在实验室中观测,每个电子的质量是m′=2)(1c v m e -=2)54(1cc m e -=35m e .在实验室中观测,两个电子的总动能为E k 1=2(m′c 2-m e c 2)=2×(35m e c 2-m e c 2)=34m e c 2. 相对于乙电子,甲电子的质量是m″=2)4140(1cc m e -=4.56m e因此,以乙为参考系,甲电子的动能为E k2=m″c 2-m e c 2=4.56m e c 2-m e c 2=3.56m e c 2 问题·探究 思想方法探究问题 被回旋加速器加速的粒子能量能无限大吗? 探究过程:这种问题只能从相对论理论出发进行探究.由相对论质量公式 m=20)(1cv m -看出,当粒子的速度很大时,其运动时的质量明显大于静止时的质量.当加速时粒子做圆周运动的周期必须和交变电压的周期相同,而当交变电压周期稳定时,粒子的速度越来越大,而速度大,半径也大,本不应影响其周期,但是速度大,其运动质量变大,周期也变大了,于是不再同步,所以其能量受到限制,不能被无限加速.探究结论:被回旋加速器加速的粒子能量不能无限大. 交流讨论探究问题 假设宇宙飞船是全封闭的,宇航员和外界没有任何联系,宇航员如何判断使物体以某一加速度下落的力到底是引力还是惯性力? 探究过程:郑小伟:宇宙飞船中的物体受到以某一加速度下落的力可能是由于受到某个星体的引力,也可能是由于宇宙飞船正在加速飞行.两种情况的效果是等价的,所以宇航员无法判断使物体以某一加速度下落的力是引力还是惯性力.宋涛:实际上,不仅是自由落体的实验,飞船内部的任何物理过程都不能告诉我们,飞船到底是加速运动,还是停泊在一个行星的表面.张小红:这个事实告诉我们:一个均匀的引力场与一个做匀加速运动的参考系是等价的.这就是爱因斯坦广义相对论的第二个基本结论,这就是著名的“等效原理”.探究结论:宇航员没有任何办法来判断,使物体以某一加速度下落的力到底是引力还是惯性力.即一个均匀的引力场与一个做匀加速运动的参考系是等价的. 交流讨论探究问题 对相对论几个结论的理解. 探究过程:李兵:从运动学的角度进行理解,根据光速不变原理可知光速与任何速度的合成都是光速,速度合成法则不再适用,光速是极限速度.从动力学的角度进行理解,质量是物体惯性大小的量度.随着物体速度的增大,质量也增大,当物体的速度趋近于光速c 时,质量m 趋向无限大,惯性也就趋向无限大,要使速度再增加,就极为困难了.这时,一个有限的力不管作用多长时间,速度实际上是停止增加了.这与速度合成定理u=2'1'cv u vu ++是吻合的,当u′=c 时,不论v 有多大,总有u=c ,这表明,从不同参考系中观察,光速都是相同的.刘晓伟:根据爱因斯坦质量和速度的关系:m=20)(1cv m -可知,物体的运动的极限速度是光速,当静止质量不为零时,物体的速度永远不会等于光速,更不会超过光速.对于速度达到光速的粒子(如光子),其静止质量一定为零.张兵:对于速度远小于光速的情形,v<<c ,u′<<c ,这时2'cvu 可以忽略不计,相对论的速度合成公式可以近似变为u=u′+v,相对论质量m=m0,不表现为尺缩效应和钟慢效应,所以牛顿力学是在低速情况下相对论的近似结论.探究结论:光速是运动物体的极限速度,对不同的参考系物体的质量是不同的,光子不会有静止质量.在低速情况下,牛顿力学是相对论结论的近似.。

人教版高中物理选修3-4第十一章知识点汇总

人教版高中物理选修3-4第十一章知识点汇总

人教版高中物理选修3—4第十一章知识点总结 第十一章 机械振动一、机械振动:(一)简谐运动:1、简谐运动的特征:1)运动学特征:振动物体离开平衡位置的位移随时间按正弦规律变化在振动中位移常指是物体离开平衡位置的位移2)动力学特征:回复力的大小与振动物体离开平衡的位移成正比,方向与位移方向相反(指向平衡位置)kx F -=①回复力:使振动物体回到平衡位置的力叫做回复力。

②回复力是根据力的效果来命名的。

③回复力的方向总是指向平衡位置。

④回复力可以是物体所受的合外力,也可以是几个力的合力,也可以是一个力,或者某个力的分力。

⑤由回复力产生的加速度与位移成正比,方向与位移方向相反x mk a -= ⑥证明一个物体是否是作简谐运动,只需要看它的回复力的特征2、简谐运动的运动学分析:1)简谐运动的运动过程分析:(1)常用模型:弹簧振子(其运动过程代表了简谐运动的过程)(2)运动过程:简谐运动的基本过程是两个加速度减小的加速运动过程和两个加速度增大的减速运动过程(3)简谐运动的对称性:做简谐运动的物体在经过关于平衡位置对称的两点时,两处的加速度、速度、回复力大小相等 (大小相等、相等)。

动能、势能相等(大小相等、相等)。

2)表征简谐运动的物理量:(1)振幅:振动物体离开平衡位置的最大距离叫做振动的振幅。

①振幅是标量。

②振幅是反映振动强弱的物理量。

(2)周期和频率:①振动物体完成一次全振动所用的时间叫做振动的周期。

②单位时间内完成全振动的次数叫做全振动的频率。

它们的关系是T=1/f 。

在一个周期内振动物体通过的路程为振幅的4倍;在半个周期内振动物体通过的路程为振幅2倍;在1/4个周期内物体通过的路程不一定等于振幅3)简谐运动的表达式:)sin(ϕω+=t A x4)简谐运动的图像:振动图像表示了振动物体的位移随时间变化的规律。

反映了振动质点在所有时刻的位移。

从图像中可得到的信息:①某时刻的位置、振幅、周期②速度:方向→顺时而去;大小比较→看位移大小③加速度:方向→与位移方向相反;大小→与位移成正比3、简谐运动的能量转化过程:1)简谐运动的能量:简谐运动的能量就是振动系统的总机械能。

高中物理选修3-4全部知识点归纳

高中物理选修3-4全部知识点归纳

高中物理选修3-4全部知识点归纳一、简谐运动、简谐运动的表达式和图象1、机械振动:物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。

机械振动产生的条件是:①回复力不为零;②阻力很小。

使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。

2、简谐振动:在机械振动中最简单的一种理想化的振动。

对简谐振动可以从两个方面进行定义或理解:①物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。

②物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,3、描述振动的物理量研究振动除了要用到位移、速度、加速度、动能、势能等物理量以外,为适应振动特点还要引入一些新的物理量。

⑴位移x:由平衡位置指向振动质点所在位置的有向线段叫做位移。

位移是矢量,其最大值等于振幅。

⑵振幅A :做机械振动的物体离开平衡位置的 最大距离叫做振幅,振幅是标量,表示振动的强弱。

振幅越大表示振动的机械能越大,做简揩振动物体的振幅大小不影响简揩振动的周期和频率。

⑶周期T :振动物体完成一次余振动所经历的时间叫做周期。

所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。

⑷频率f :振动物体单位时间内完成全振动的次数。

⑸角频率ω:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。

引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。

因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。

周期、频率、角频率的关系是:T f =1,T ωπ2=. ⑹相位ϕ:表示振动步调的物理量。

4、研究简谐振动规律的几个思路:⑴用动力学方法研究,受力特征:回复力F =- kx ;加速度,简谐振动是一种变加速运动。

在平衡位置时速度最大,加速度为零;在最大位移处,速度为零,加速度最大。

高中物理选修3-4、3-5知识点总结

高中物理选修3-4、3-5知识点总结

高中物理选修3-4知识点总结1.波的特征量及其关系(1)波长:波动过程中,对平衡位置的位移总相等的两相邻质点的距离叫波长;(2)频率:波的频率由波源的振动频率决定,在任何介质中,频率保持不变;(3)机械振动在介质中的传播的距离和所用时间的比值叫波速,波速由介质本身的性质所决定(若光还和光的频率有关),在不同介质中波速是不同的。

(v =λ/T )2.介质中质点运动的特征:(1)每个质点都在自己平衡位置附近作振动,并不随波迁移;(2)后振动的质点振动情况总是落后于相邻的先振动的质点的振动3.波动图象(1)规定用横坐标x表示在波的传播方向上各个质点的平衡位置,纵坐标y表示某一时刻各个质...点.偏离平衡位置的位移,连结各质点位移量末端得到的曲线叫做该时刻波的图象(2)用“同侧法”判断波动图像中质点的速度方向,用作切线判断振动图像中质点的速度方向(3)在一个周期内质点沿y轴振动通过路程4A,1/4个周期不一定是A;波沿x轴匀速传播λ,1/4个周期一定是λ/44、波长、波速和频率(周期)的关系:v =△x/△t=λf=λ/ T。

5、波绕过障碍物的现象叫做波的衍射,能够发生明显的衍射现象的条件是:障碍物或孔的尺寸比波..长小..,或者跟波长相差不多。

d≤λ(超声波(它是机械波非电磁波)定位原理:频率大,波长小不易衍射,直线传播性好)6、产生干涉的必要条件是:两列波源的频率必须相同,干涉区域内某点是振动最强点还是振动最弱点的充要条件:(1)最强:该点到两个波源的路程之差是波长的整数倍,即δ=nλ;(2)最弱:该点到两个波源的路程之差是半波长的奇数倍δ= ;,即。

根据以上分析,在稳定的干涉区域内,振动加强点始终加强....。

(振动加强的点还是做简谐运动,某....;振动减弱点始终减弱时刻位移可能为零)7、声波是纵波,能在空气、液体、固体中传播.声波在固体中波速大于液体大于气体.现象叫多普勒效应。

当波源与观察者相互靠近....。

人教版高中物理选修3-4知识点整理及重点题型梳理] 光的干涉 基础

人教版高中物理选修3-4知识点整理及重点题型梳理]  光的干涉  基础

人教版高中物理选修3-4知识点梳理重点题型(常考知识点)巩固练习光的干涉【学习目标】1.知道光的干涉现象和干涉条件,并能从光的干涉现象中说明光是一种波.2.理解杨氏干涉实验中亮暗条纹产生的原因.3.了解相干光源,掌握产生干涉的条件.4.明确《用双缝干涉测量光的波长》实验原理.5.知道实验操作步骤.6.会进行数据处理和误差分析.【要点梳理】要点一、光的干涉1.光的干涉(1)光的干涉:在两列光波的叠加区域,某些区域相互加强,出现亮纹,某些区域相互减弱,出现暗纹,且加强和减弱的区域相间,即亮纹和暗纹相间的现象.如图所示,让一束平行的单色光投射到一个有两条狭缝1S 和2S 的挡板上,狭缝1S 和2S 相距很近.如果光是一种波,狭缝就成了两个波源,它们的振动情况总是相同的.这两个波源发出的光在挡板后面的空间互相叠加,发生干涉现象,光在一些位置相互加强,在另一些位置相互削弱,因此在挡板后面的屏上得到明暗相间的条纹.(2)干涉条件:两列光的频率相同,振动情况相同且相差恒定.能发生干涉的两列波称为相干波,两个光源称为相干光源,相干光源可用同一束光分成两列而获得,称为分光法.2.屏上某处出现明、暗条纹的条件同机械波的干涉一样,光波的干涉也有加强区和减弱区,加强区照射到光屏上出现亮条纹,减弱区照射到光屏上就出现暗条纹.对于相差为0的两列光波如果光屏上某点到两个波源的路程差是波长的整数倍,该点是加强点;如果光屏上某点到两个波源的路程差是半波长的奇数倍,该点是减弱点.因此,出现亮条纹的条件是路程差:k δλ=,012k =,,, 出现暗条纹的条件是路程差:(21)2k λδ=+,012k =,,, 如图所示,若P '是亮条纹,则21r r k λ=-(012k =,,,).由图知:22212d r L x ⎛⎫=+- ⎪⎝⎭, 22222d r L x ⎛⎫=++ ⎪⎝⎭,22212r r dx -=, 由于d 很小,212r r L +≈,所以21d r r x L -=, 21()r r L L x k d dλ-==(012k =,,,),该处出现亮条纹. 当0k =时,即图中的P 点,12S S 、到达P 点的路程差为零,P 一定是振动加强点,出现亮纹,又叫中央亮纹.当1k =时,为第一亮纹,由对称性可知在P 点的下方也有和P 点上方相对称的亮纹. 同理,由21(21)2r r k λ-=+(012k =,,,), 可得(21)2L x k d λ=+⋅(012k =,,,),该处出现暗条纹.3.双缝干涉条纹特征有关双缝干涉问题,一定要用双缝干涉的特点进行分析,一是两缝间距d 应很小;二是照射到两缝上的光波必须是相干光;三是两相邻亮纹或两相邻暗纹间的距离L x d λ∆=;四是出现亮纹的条件是路程差21r r k δλ==-,012k =,,,;出现暗纹的条件是路程差21(21)2r r k λδ=-=+⋅(012k =,,,);五是白光的干涉条纹为彩色,但中央亮纹仍为白色;六是单色光的干涉条纹宽度相同,明暗相间,均匀分布.不同色光条纹宽度不同,波长越长的干涉条纹的宽度越大;七是白光干涉时,各色光的条纹间距离不等.4 一般情况下很难观察到光的干涉现象的原因由于不同光源发出的光频率一般不同,即使是同一光源,它的不同部位发出的光也不一定有相同的频率和恒定的相差,在一般情况下,很难找到那么小的缝和那些特殊的装置.故一般情况下不易观察到光的干涉现象.要点二、用双缝干涉测量光的波长解题依据1.实验目的(1)观察白光及单色光的双缝干涉图样;(2)测定单色光的波长.2.实验原理(1)光源发出的光经滤光片成为单色光,单色光通过单缝后相当于线光源,经双缝产生稳定的干涉图样,通过屏可以观察到明暗相间的干涉条纹.如果用白光通过双缝可以观察到彩色条纹.(2)若双缝到屏的距离用z 表示,双缝间的距离用d 表示,相邻两条亮纹间的距离用x ∆表示,则入射光的波长为d x lλ∆=.实验中d 是已知的,测出l 、x ∆即可测出光的波长λ. 3.实验器材双缝干涉仪包括:光具座、光源、滤光片、单缝、双缝、遮光筒、毛玻璃屏、测量头,另外还有学生电源、导线、刻度尺.4.实验装置如图所示,将直径约10 cm 、长约l m 的遮光筒平放在光具座上,筒的一端有双缝,另一端装上毛玻璃做光屏,其上有刻度,先取下双缝,打开光源,调节光源高度,使它发出的一束光恰沿遮光筒的轴线照亮光屏,然后放好单缝和双缝,两屏相距5 cm 10 cm ~,使缝互相平行,且位于轴线上,这时可看到彩色干涉条纹,若在单缝屏和光源之间放置一块滤光片,则可观察到单色干涉条纹.5.实验步骤(1)调节双缝干涉仪,观察光的双缝干涉现象; (2)用单色光入射得到干涉条纹,测出n 条亮纹的距离a ,得相邻条纹的距离(1)x an ∆=/-;(3)利用已知的双缝间距d ,用刻度尺测出双缝到屏的距离l ,根据公式/d x l λ=∆计算出波长;(4)换用不同颜色的滤光片,观察干涉条纹间的距离有什么变化,并求出相应的波长. 要点诠释:①某种颜色的滤光片只能让这种颜色的光通过,其他颜色的光不能通过. ②条纹间距用测量头测出.③单缝与双缝闻的距离在5 cm 10 cm ~.6.注意事项(1)调节双缝干涉仪时,要注意调节光源的高度,使它发出的一束光能够沿着遮光筒的轴线把屏照亮;(2)放置单缝和双缝时,缝要相互平行,中心大致位于遮光筒的轴线上;(3)调节测量头时,应使分划板中心刻线对齐条纹的中心,记下此时手轮上的读数,转动测量头,使分划板中心刻线对齐另一条纹的中心,记下此时手轮上的读数,两次读数之差就表示这两条条纹间的距离;(4)不要直接测x ∆,要测几个条纹的间距计算得x ∆,这样可减小误差;(5)白光的干涉观察到的是彩色条纹,其中白色在中央,红色在最外层.7.测量条纹间隔的方法两处相邻明(暗)条纹间的距离x ∆,用测量头测出.测量头由分划板、目镜、手轮等构成,如图甲所示.转动手轮,分划板会左、右移动.测量时,应使分划板中心刻线对齐条纹的中心(如图乙所示),记下此时手轮上的读数1a ,转动手轮,使分划板向一侧移动,当分划板中心刻线对齐另一条相邻的明条纹中心时,记下手轮上的刻度数2a ,两次读数之差就是相邻两条明条纹间的距离.即12||x a a ∆=-.要点诠释:Δx 很小,直接测量时相对误差较大,通常测出n 条明条纹间的距离a ,再推算相邻两条明(暗)条纹间的距离.(1)x a n ∆=/-.8.洛埃镜干涉实验1834年,洛埃利用单面镜得到了杨氏干涉的结果.洛埃镜实验的基本装置如图13-3-16所示,S 为单色光源。

物理选修3-4知识点总结

物理选修3-4知识点总结

物理选修3-4知识点总结1.热力学热力学是研究热现象和功的变化关系的科学,主要包括物态方程、热力学过程、熵等内容。

2.相变相变是指物质状态从固体、液体、气体等一个物态到另外一个物态的过程,主要包括蒸发、凝结、熔化、凝固等过程。

3.热力学第一定律热力学第一定律是指能量守恒的定律,即能量可以从一种形式转化为另一种形式,但是总能量不会发生变化。

4.熵熵是一个描述系统无序程度的物理量,有可能在一个系统中的微观状态非常多,但是却有一种趋势朝向无序化的统计现象。

5.理想气体热力学理想气体包括玻义兹分子运动论、热力学方程、麦克斯韦分布函数、气体热力学过程等内容。

热力学第二定律是指热力学过程总是不可逆的,总是向着一个趋势不断发展,也就是不可能通过热力学过程来完全地将所有的热量转化为功。

7.热功定理热功定理是指热量和功之间总是恒定的而非取决于具体热力学过程的物理定律。

8.镜像对称镜像对称是指物理空间对称性,关于一些物理量的转化机制,可以在物理空间进行平移、旋转、缩放等变换。

9.超尺度现象超尺度现象包括量子物理学、相对论、广义相对论等内容,主要是对物理世界基本规律的深入研究,反映宏观世界与微观世界的关系。

10.进化论进化论是指生物种族的进化规律,主要分为生物胚胎学、遗传学、分子生物学等领域的分子机制、基础设施、分布规律等。

电动力学是研究电与磁的变化关系的科学,主要包括静电学、电磁感应、电导率、电磁波、电路等内容。

12.电场电场是一个描述空间的物理量,是用来描述以一个粒子所受力的场,主要是被电荷周围的引力场所产生的能量。

13.电荷电荷是电场密度的量子,是荷质比的物理量,是各种粒子中所包含的一种基本多粒子荷质比参数。

14.电磁波电磁波是指电场和磁场的空间交替变化,具有可逆性中流动的一种物理波。

总之,物理选修3-4包含的知识点非常多,这些知识点在高中物理学习中是很重要的。

为了更好地理解这些知识点,学生需要加强日常的自主学习,积极了解各种物理学的新进展和发现,掌握物理实验技巧,提升物理科学素养,从而更好地理解和运用这些知识点来解决实际问题。

人教版高中物理选修3-4知识点总结

人教版高中物理选修3-4知识点总结

人教版高中物理选修3-4知识点总结(总10页)-本页仅作为预览文档封面,使用时请删除本页-2 选 修3—4一、知识网络周期:gLT π2=机械振动简谐运动物理量:振幅、周期、频率 运动规律简谐运动图象阻尼振动受力特点回复力:F= - kx弹簧振子:F= - kx 单摆:x L mgF-= 受迫振动 共振波的叠加 干涉 衍射 多普勒效应 特性 实例声波,超声波及其应用机械波形成和传播特点 类型横波 纵波 描述方法 波的图象 波的公式:vT =λ x=vt电磁波电磁波的发现:麦克斯韦电磁场理论:变化的磁场产生电场,变化的电场产生磁场→预言电磁波的存在赫兹证实电磁波的存在电磁振荡:周期性变化的电场能与磁场能周期性变化,周期和频率 电磁波的发射和接收电磁波与信息化社会:电视、雷达等电磁波谱:无线电波、红外线、可见光、紫外线、x 射线、ν射线相对论简介相对论的诞生:伽利略相对性原理狭义相对论的两个基本假设:狭义相对性原理;光速不变原理 时间和空间的相对性:“同时”的相对性长度的相对性: 20)(1cvl l-=时间间隔的相对性:2)(1cv t -∆=∆τ相对论的时空观狭义相对论的其他结论:相对论速度变换公式:21cv u v u u'+'=相对论质量: 20)(1cv m m -=质能方程2mc E=广义相对论简介:广义相对性原理;等效原理 广义相对论的几个结论:物质的引力使光线弯曲引力场的存在使得空间不同位置的时间进程出现差别二、考点解析考点80 简谐运动简谐运动的表达式和图象要求:I1)如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动。

简谐运动的回复力:即F = – kx 注意:其中x都是相对平衡位置的位移。

区分:某一位置的位移(相对平衡位置)和某一过程的位移(相对起点)⑴回复力始终指向平衡位置,始终与位移方向相反⑵“k”对一般的简谐运动,k只是一个比例系数,而不能理解为劲度系数⑶F回=-kx是证明物体是否做简谐运动的依据2)简谐运动的表达式:“x= A sin (ωt+φ)”3)简谐运动的图象:描述振子离开平衡位置的位移随时间遵从正弦(余弦)函数的规律变化的,要求能将图象与恰当的模型对应分析。

人教版高中物理选修3-4知识点整理及重点题型梳理] 光 复习与巩固 基础

人教版高中物理选修3-4知识点整理及重点题型梳理]  光 复习与巩固  基础

人教版高中物理选修3-4知识点梳理重点题型(常考知识点)巩固练习光 复习与巩固【学习目标】1.学会用光的折射、反射定律来处理有关问题. 2.知道测定玻璃砖的折射率的操作步骤. 3.了解相干光源,掌握产生干涉的条件.4.明确《用双缝干涉测量光的波长》实验原理. 5.理解光产生衍射的条件.6.知道光的偏振现象及偏振光的应用. 7.知道光的色散、光的颜色及光谱的概念. 8.知道激光和自然光的区别及应用【知识网络】折射定律 cn v=12sin sin n θθ= 实验:测定玻璃砖的折射率光的折射干涉图样:单色光是明暗相间、均匀分布的条纹明暗条纹的产生条件:若0ϕ∆=,x k λ∆=出现明条纹;(21)2x k λ∆=+出现 暗条纹(012k =±±,,,) 条纹间距:Lx dλ∆= 双缝干涉 复色光的双缝干涉产生色散复色光的薄膜干涉产生色散及其应用复色光通过三棱镜折射产生色散光的色散 发生明显衍射的条件:孔或障碍物尺寸可以与光的波长相比,甚至比光的波长还小 衍射图样:要会与干涉图样区别实例应了解单缝衍射、圆孔衍射、圆板衍射的特点 光的衍射偏振光与自然光的区别 获取偏振光的两种方法:(1)用偏振片(2)使反射光与折射光垂直,则它们都成为偏振光 偏振现象说明光是横波 光的偏振(1)光密介质→光疏介质 (2)入射角≥临界角光的全反射【要点梳理】要点一、测定水的折射率的五种方法 1.插针法.原理:光的折射定律.方法:如图所示,取一方木板。

在板上画出互相垂直的两条线AB MN 、,从它们的交点O 处画直线OP (使45PON ∠︒<),在直线OP 上P Q 、两点垂直插两枚大头针.把木板放入水中,使AB 与水面相平,MN 与水面垂直.在水面上观察,调整视线P 的像被Q 的像挡住,再在木板S T 、处各插一枚大头针,使S 挡住Q P 、的像,T 挡住S 及Q P 、的像.从水中取出木板,画出直线ST ,量出图中的角i r 、,则水的折射率sin sin n i r =/。

人教版高二物理选修3-4第12章 机械波基础知识梳理

人教版高二物理选修3-4第12章 机械波基础知识梳理

第十二章机械波12.1 波的形成和传播一、机械波的形成1.机械波的定义机械振动在介质中传播,形成机械波。

即波源和介质是波的形成条件2.介质(1)定义:波借以传播的物质。

(2)特点:组成介质的质点之间有相互作用,一个质点的振动会引起相邻质点的振动。

说明:介质是能够传播机械振动的物质,其状态可以是固、液、气三态中的任意一种。

3.机械波的形成(1)动力学观点:介质质点间存在相互作用力,介质中前面的质点带动后面的质点振动,将波源的振动形式向外传播。

(2)能量观点:介质中前后质点间存在相互作用力,因而相互做功,从而将波源能量向外传播。

特别提醒(1)机械波的形成是介质中各质点集体运动的结果,个别质点振动不能形成波。

(2)单个质点是在平衡位置附近往复运动,并不随波迁移。

(3)所有质点前面带后面,后面学前面。

4.波的特点(1)振幅:像绳波这种一维(只在某个方向上传播)机械波,若不计能量损失,各质点的振幅相同。

(2)周期:各质点振动的周期均与波源的振动周期相同。

(3)步调:离波源越远,质点振动越滞后。

(4)运动:各质点只在各自的平衡位置附近做往复振动,并不随波迁移。

(5)实质:机械波向前传播的是振动这种运动形式,同时也传递能量和信息。

二、机械波的传播1.机械波传播的是波源的振动形式介质中各质点并不随波迁移,而是在自己的平衡位置附近振动,各质点都做受迫振动,其振幅和频率(或周期)都与波源的相同,各质点的起振方向也与波源的相同,但振动并不同步,离波源越远的质点振动越滞后。

2.机械波传播的是波源的提供的能量介质中各质点靠弹力相互作用,前一质点带动后一质点振动,后一质点跟着前一质点振动,故可根据前一质点的位置来确定后一质点的运动方向。

若不计能量损失,在均匀介质中各质点振动的振幅应相同。

3.机械波传播的是波源的信息我们用语言进行交流就是利用声波传递信息的。

4.机械波的传播特点(1)波的传播可以脱离波源的振动而独立存在,也就是说机械波一旦形成,运动形式和能量就会向外传播,即使波源的振动停止波也不会停止传播。

(完整版)高中物理知识点总结(人教版)

(完整版)高中物理知识点总结(人教版)

(完整版)高中物理知识点总结(人教版)
引言
高中物理是一门重要的科学课程,主要涵盖了力学、热学、光学、电学和原子物理等方面的知识。

本文旨在对人教版高中物理教材进行总结和概述,以帮助学生更好地掌握物理知识。

知识点总结
1. 力学
- 牛顿运动定律
- 动量和能量守恒定律
- 圆周运动和万有引力定律
- 静电场和电势能
- 电磁感应和电磁波
2. 热学
- 热能与能量转化
- 温度和热量
- 理想气体和热力学循环
3. 光学
- 光的传播和反射
- 光的折射和光的干涉
- 光的衍射和光的偏振
4. 电学
- 电荷和电场
- 电势差和电势能
- 电流和电阻
- 电路和电功率
5. 原子物理
- 原子结构和元素周期表
- 原子核和射线
- 辐射与核能
总结
本文对人教版高中物理教材进行了知识点总结,涵盖了力学、热学、光学、电学和原子物理等方面的内容。

学生们在研究物理知识时可以参考此文档,加深对各个知识点的理解和掌握。

*请注意,本文旨在概述高中物理知识点,并不涉及具体的细
节和计算。

在学习过程中,建议结合教材进行深入学习和实践练习,以提高物理知识的理解和应用能力。

*。

人教版高中物理(选修3-4)-教材分析

人教版高中物理(选修3-4)-教材分析

第十一章《机械振动》教材分析第一节简谐运动【教学重点】掌握简谐运动特征及相关物理量的变化规律.【教学难点】理解简谐运动的运动学特征。

【易错点】学生易将振动图象中一质点的振动情况和下一章将要学习的波动图象中不同质点的振动情况相混淆【解决方法】运用理想化方法,突出主要因素,忽略次要因素,抽象出物理模型——弹簧振子,研究弹簧振子在理想条件下的振动。

第二节简谐运动的描述【教学重点】振幅、周期和频率的物理意义;【教学难点】理解振动物体的固有周期和固有频率与振幅无关。

【易错点】偏离平衡位置的位移与运动学中的位移概念容易混淆。

【解决方法】提高学生观察、分析、实验能力和动手能力,让学生知道实验是研究物理科学的重要基础。

第三节简谐运动的回复力和能量【教学重点】简谐运动的回复力;【教学难点】简谐运动的动力学分析和能量分析。

【易错点】回复力是效果力,与合力不同。

如振动物体经过平衡位置时回复力是零,合力不一定是零【解决方法】简谐运动过程中能量的相互转化情况,对学生进行物质世界遵循对立统一规律观点的渗透;振动有多种不同类型说明各种运动形式都是普遍性下的特殊性的具体体现.第四节单摆【教学重点】掌握好单摆的周期公式及其成立条件。

【教学难点】单摆回复力的分析。

【易错点】单摆的周期与摆球的质量和振幅无关,只与摆长和重力加速度有关。

【解决方法】概括出影响周期的因素,培养由实验现象得出物理结论的能力。

第五节外力作用下的振动【教学重点】受迫振动,共振。

【教学难点】受迫振动的频率等于驱动力的频率,而跟振动物体的固有频率无关。

【易错点】1.物体发生共振决定于驱动力的频率与物体固有频率的关系,与驱动力大小无关.2.当f驱=f固时,物体做受迫振动的振幅最大.【解决方法】通过分析实际例子,得到什么是受迫振动和共振现象,培养学生联系实际,提高观察和分析能力;通过共振的应用和防止的教学,渗透一分为二的观点.第十二章《机械波》第一节波的形成和传播【重点和难点】1、对机械波的形成、横波、纵波反映了质点振动方向与波传播方向之间的关系;2、机械波是从单一质点的振动到多个质点同时又不同步的振动,这对学生的理解力和空间想象力有较高的要求。

人教版高中物理必修选修全套知识点总结

人教版高中物理必修选修全套知识点总结

第一节力,重力一.力是物体对物体的作用1.力不能脱离物体而存在。

(物质性)2.要产生力至少要两个物体。

3.力是物体(施力物体)对物体(受力物体)的作用。

4.研究支持力时:桌面为施力物体,木块为受力物体研究压力时:木块为施力物体,而桌面为受力物体二.力的三要素1.内容:力的大小,方向和作用点。

(问题:①作用点是否一定在物体上?不一定②作用在物体上不同的点效果是否一样?也不一定)2.力的单位:国际单位牛顿(N)3.力的图示法和示意图:图示法要求三要素(大小,方向和作用点)都具备,另外还有标度。

示意图只要求两个要素(方向和作用点,高中作图多是这种)三.力的分类1.按性质命名:如重力,弹力,摩擦力等。

2.按效果命名:如推力,拉力,向心力等。

记忆技巧:按性质命名的力由名称可知其产生原因,按效果命名的力由名称可知其作用结果。

四.重力1.定义:由于地球的吸引而使物体受到的力。

(区别于地球的吸引力)2.重力的方向:正确说法有①竖直向下②垂直于该处水平面向下3.重力的大小:①计算公式:G = mg②重力的大小与位置有关:在地球表面随纬度的升高重力的大小逐渐增大; 在地球上同一地方随高度的升高重力的大小逐渐减小。

(根据万有引力来推导)注意:重力的大小变化实质上是由g的大小变化引起的。

(质量在任何地方都是不变的)所以g 的大小变化规律和重力的大小变化规律一样。

4.重力的作用点(即为重心)①质量分布均匀,形状规则的物体,重心在其几何中心。

②重心可以不在物体上。

例3:铁环,篮球等③悬挂法(只)可以测薄板形物体的重心。

悬挂法是利用二力平衡的原理测物体的重心。

但注意悬挂法并非任何时候都可适用,有条件成立,强调薄板,物体厚度可忽略,其他条件不需要。

第二节弹力一.弹力的产生过程(弹力的定义)内容:发生弹性形变的物体(施力物体),由于要恢复原状,对跟它接触的物体(受力物体)会产生力的作用,这种力就称为弹力。

主谓宾:物体(施力物体)对物体(受力物体)的作用二.弹力的产生条件:相互接触且挤压 A例6:物体A沿墙壁自由下滑,它和墙壁之间有没有弹力?V(接触但不挤压,所以无弹力。

高中物理选修3-4知识点汇总

高中物理选修3-4知识点汇总

高中物理选修3-4知识点汇总一、用单摆测重力加速度实验误区警示①摆线不能过长或过短或易伸长,摆长应是选点到球心间的距离。

摆球用密度大、直径小的金属球。

②摆球摆动时应使偏角不超过10°,且在同一竖直面内,不要形成圆锥摆,摆动中悬点不能松动。

③累积法测周期时,应从最低位置开始计时和记录全振动次数。

④使用秒表方法是三次按按钮:一是“走时”,二是“停止”,三是“复零”。

读数:先读分钟刻度(包括半分钟),再读秒针刻度(最小刻度为0.1 s,不再估读)。

⑤处理数据时,采用图象法,画出T–L图象,求得直线的斜率k,即有g=4π2/k。

二、振动图象和波动图象异同点比较三、波特有的现象①波的叠加:当两列波相遇时,每列波将保持原有的特性,即频率、振幅、波长、波速及振动方向不变,继续按原来的方向传播,他们互不干扰。

在两列波的重叠区域内,介质中的质点同时参与两种振动,其振动的位移等于两列波分别引起的位移的矢量和。

②波的干涉与波的衍射的比较③多普勒效应多普勒效应是指由于波源与观察者之间有相对运动,观察者单位时间内接受到的波的个数发生了变化,出现了观测频率与波源频率不同的现象。

对机械波来说,所谓的运动或静止都是相对于介质而言的。

A.当观察者和波源有一个静止,另一个靠近静止者,观察者单位时间内接收到的波的个数增多了,观察到的波的频率就会变大。

B.当观察者和波源有一个静止,另一个远离静止者,观察者单位时间内接收到的波的个数变少了,观察到波的频率就会变小。

但要注意一点,波源和观察者只有相对运动才能观察到多普勒效应,如果波源和观察者以相同的速度运动,观察者是观测不到多普列效应的。

四、波的多解造成波动问题多解的主要因素(1)周期性①时间周期性:时间间隔u周期的关系不明确;②空间周期性:波传播距离与波长的关系不明确。

(2)双向性①传播方向双向性:波的传播方向不确定;②振动方向双向性:质点振动方向不明确。

(3)对称性波源的振动,要带动它左右相邻质元的振动,波向左右两方向传播。

人教版高中物理选修3-4知识点整理及重点题型梳理] 机械波的产生和传播

人教版高中物理选修3-4知识点整理及重点题型梳理]  机械波的产生和传播

人教版高中物理选修3-4知识点梳理重点题型(常考知识点)巩固练习机械波的产生和传播【学习目标】1.知道直线上波的形成过程.2.理解什么是机械波,确认波是传播振动形式和传递能量的一种方式.3.知道什么是横波、波峰和波谷.4.知道什么是纵波、密部和疏部.【要点梳理】要点一、机械波1.机械波的形成(1)介质:能够传播机械振动的物质叫介质,它可以是固、液、气三态中任意一种.可以把介质看成由许多质点构成,质点与相邻质点互相联系.(2)平衡位置:在没有外来振动之前,各个质点排列在同一直线上,各个质点所在位置称为各自的平衡位置.(3)波源:由于外来的扰动,在水、绳及空气的某一质点会引起振动,首先振动的这个质点即为波源.(4)由于介质之间存在着相互作用力,作为波源的质点就带动周围质点振动,波源周围质点跟着波源做受迫振动获得能量后,再带动邻近质点振动,于是振动就在介质中由近及远地传播.(5)尽管各个质点都在重复波源的振动,但是各个质点振动的步调是不一致的,沿着波的传播方向离波源远的质点开始振动的时间要落后于离波源近的质点.这就是说,在同一时刻,介质中各个质点离开平衡位置的位移是不相同的,这样就形成了凸凹相间(或疏密相间)的波形.2.均匀介质中的横波形成过程波源(被手握住的绳端)上、下做简谐振动,如图.水平均质绳上的振动传播过程,如图.要点二、机械波形成的条件及分类1.机械波形成的条件(1)有持续振动的波源.(也叫振源)(2)传播振动的介质.波源做简谐运动时,在均匀介质中传播形成简谐波.2.波的分类(1)横波:质点的振动方向与波的传播方向垂直的波叫横波,凸起的最高处叫波峰,凹下的最低处叫波谷.(2)纵波:质点的振动方向与波的传播方向在同一直线上的波叫纵波.质点分布密的部分叫密部,分布疏的部分叫疏部.要点诠释:气体、液体、固体都能传播纵波,但气体不能传播横波因为气体不能发生剪切形变,无法传播横波.要点三、振动与波2.振动与波动的区别(1)从运动对象看:①振动是一个质点或物体以平衡位置为中心的往复运动.②波动是在波源的带动下,介质中大量质点依次发生振动而形成的集体运动.(2)从运动原因看:①振动是由于质点受回复力作用的结果.②波动是由于介质中相邻质点的带动的结果.(3)从能量变化看:①振动系统的动能和势能相互转化,对简谐运动来说,转化过程中总机械能保持不变.②波传播过程中,介质里每一振动质点的动能和势能同时达到最大,同时达到最小,质点的机械能在最大与最小值之间变化,而每个质点在不断地吸收和放出能量,因而波的传播过程也是能量的传播过程.3.“带动看齐”法分析质点的振动方向在波的传播中,靠近波源的质点带动后面的质点运动,离波源远的质点追随离波源近的质点.用“带动看齐”的思路可分析各个质点的振动方向.方法:在质点P靠近波源一方附近的图像上另找一点P',若P'在P上方,则P向上运动,若P'在P下方,则P向下运动,如图所示.4.波传播了运动形式,传递了能量,传递了信息(1)各质点都做受迫振动,其振动的频率(或周期)都与波源的频率(或周期)相同,各质点的起振方向都与波源相同,但不同步,离波源越远的质点振动越滞后.(2)机械波传播的是波源的运动形式和波源提供的能量,介质中各质点并不随波迁移,而是在自己的平衡位置附近振动.在横波中,波动方向与振动方向垂直.均匀介质中,波动是匀速运动,振动是变速运动.(3)介质中各质点靠弹力相互作用,前一质点带动后一质点振动,后一质点跟着前一质点,故可根据前一质点的位置而确定后一质点的运动方向.此外,若不计能量损失,在均匀介质中各质点振动的振幅应相同.(4)机械波在传播时也传递了信息.【典型例题】类型一、机械波的理解例1.在机械波中有( ).A .各质点都在各自的平衡位置附近振动B .相邻质点间必有相互作用力C .前一质点的振动带动相邻的后一质点振动,后一质点的振动必定落后于前一质点D .各质点也随波的传播而迁移【思路点拨】波传播的特点是离波源近的质点带动离波源远的质点振动,离波源远的质点重复离波源近的质点的运动,因此各相邻质点间必须有力的作用,但各质点只能在平衡位置附近做简谐运动.【答案】A 、B 、C【解析】振源的振动使其周围质点依次振动,之所以能依次振动下去,就是依靠了相邻质点间的相互作用力;沿波的传播方向,后一质点的振动必滞后于前一质点的振动;质点只在平衡位置附近振动,并不随波迁移.【总结升华】波传播的特点是离波源近的质点带动离波源远的质点振动,离波源远的质点重复离波源近的质点的运动,因此各相邻质点间必须有力的作用,但各质点只能在平衡位置附近做简谐运动.举一反三: 【机械波的产生和传播 例1】【变式1】关于机械波的概念,下列说法中正确的是( ) A .质点振动的方向总是垂直于波传播的方向B .简谐波沿长绳传播,绳上相距半个波长的两质点振动位移的大小相等C .任一振动质点每经过一个周期沿波的传播方向移动一个波长D .相隔一个周期的两时刻,简谐波的图象相同【答案】D【解析】对于横波,质点振动的方向总是垂直于波传播的方向。

高中物理选修3-4知识点总结:第十三章 光(人教版)

高中物理选修3-4知识点总结:第十三章 光(人教版)

高中物理选修3-4知识点总结:第十三章光(人教版)这一章内容比较多,重要的是光的几种特性,包括:折射、干涉、衍射、偏振和光的全反射。

本章的难点在于光的折射中有关折射率的问题,用双缝干涉测量光波的波长,以及光的全反射的有关计算问题。

理解性的内容主要有:光的色散,光的偏振等知识点。

考试的要求:Ⅰ、对所学知识要知道其含义,并能在有关的问题中识别并直接运用,相当于课程标准中的“了解”和“认识”。

Ⅱ、能够理解所学知识的确切含义以及和其他知识的联系,能够解释,在实际问题的分析、综合、推理、和判断等过程中加以运用,相当于课程标准的“理解”,“应用”。

要求Ⅰ:折射率、全反射、光导纤维、光的干涉、光的衍射、光的偏振以及色散等内容。

要求Ⅱ:光的折射定律、折射定律的运用、折射率的有关计算等有关的知识内容。

知识网络:内容详解:一、光的折射:反射定律:反射光线和入射光线以及法线在同一平面内,反射光线和入射光线分居法线两侧,反射角等于入射角。

折射定律:折射光线和入射光线以及法线在同一平面内,折射光线和入射光线分居法线两侧,入射角的正弦与折射角的正弦成正比。

在光的折射中光路是可逆的。

折射率:光从真空射入某介质时,入射角的正弦和折射角的正弦之比,称为折射率,用字母n表示。

测定玻璃的折射率:如图所示为两面平行的玻璃砖对光路的侧移,用插针法找出与入射光线AO对应的出射光线O′B,确定出O′点,画出O′O,量出入射角和折射角的度数。

根据公式:n=sinθ sinφ计算出玻璃的折射率。

对折射率的理解:介质折射率的大小取决于介质本身及入射光的频率,不同介质的折射率不同,与入射角、折射角的大小无关。

当光从真空射入介质中时,入射角、折射角以及它们的正弦值是可以改变的,但是正弦值之比是一个常数。

不同的介质,入射角的正弦跟折射角的正弦之比也是一个常数,但不同的介质具有不同的常数,说明常数反映着介质的光学特性。

介质的折射率跟光的传播速度有关,由于光在真空中的传播速度大于光在其他任何介质中的传播速度,所以任何介质的折射率都大于光从真空射入任何介质。

高中物理选修3-4知识点

高中物理选修3-4知识点

高中物理选修3-4知识点章节名称定义(内容)公式标准单位第十一章机械振动第一节简谐运动弹簧振子1、小球静止时的位置叫平衡位置2、小球在平衡位置附近的往复运动是一种机械运动,简称振动,这样的系统称谓弹簧振子弹簧振子的位移——时间图象波形图象简谐运动及其图象1、如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图象是一条正弦曲线,这样的振动叫做简谐运动。

2、简谐运动是最简单、最基本的振动3、弹簧振子的运动就是简谐运动第二节简谐运动的描述描述简谐运动的物理量1、振幅:振动物体离开平衡位置的最大距离2、全振动:弹簧振子从通过平衡位置的时刻开始,第二次到达平衡位置时完成一次完整的振动。

这个振动过程称为一次全振动3、做简谐运动的物体完成一次全振动所需要的时间叫振动的周期4、单位时间完成振动的次数叫振动的频率,单位赫兹5、周期性运动在各个时刻所处的不同状态叫相位Tf1=Hz简谐运动的表达式)2sin(ϕπ+=tTAx第三节简谐运动的回复力和能量简谐运动的回复力1、如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动2、把物体拉回平衡位置的力叫回复力kxF-=简谐运动的能量忽略阻力的损耗,在弹簧振子运动的任意位置,系统的动能与势能之和都是一定得第四节单摆单摆悬挂起来的物体在竖直平面内摆动,细线的质量与小球相比可以忽略,球的直径与线的长度相比也可以忽略,这样的装置就叫做单摆单摆的回复力在偏角很小的情况下,单摆做简谐运动(摆长越长,周期越长)kxF-=用单摆测定重力加速度单摆做简谐运动的周期与摆长的二次方成正比,与重力加速度的二次方成反比,而与振幅、摆球质量无关224Tlgπ=第五节外力作用下的振动固有频率不受外力作用的振动叫固有振动,其振动频率叫固有频率阻尼振动振幅逐渐减小的振动叫阻尼振动受迫振动系统在驱动力作用下的振动叫受迫振动共振驱动力频率等于系统的固有频率时,受迫振动的振幅最大,这种现象叫做共振高中物理选修3-4知识点章节名称定义(内容)公式标准单位第十二章机械波第一节波的形成和传播波的形成和传播振动的传播称为波动,简称波横波和纵波1、质点的振动方向与波的传播方向相互垂直的波叫做横波,在横波中,凸起的最高处叫做波峰,凹下的最低处叫做波谷2、质点的振动方向与波的传播方向在同一直线上的波,叫做纵波,在纵波中,质点分布最密的位置叫做密部机械波借以传播的物质叫做介质,机械振动在介质中传播形成了机械波第二节波的图象正弦波如果波的图象是正弦曲线,这样的波叫做正弦波第三节波长、频率和波速波长在波动中,振动相位总是相同的两个相邻质点间的距离叫做波长频率、周期质点振动的频率和周期等于波的频率和周期波速机械波在介质中的传播速度由介质本身决定,在不同的介质中,波速是不同的第四节波的衍射和干涉波的衍射波可以绕过障碍物继续传播,这种现象叫做波的衍射(一切波都能发生衍射,衍射是波特有的现象)波的叠加几列波相遇时能够保持各自的运动特征,继续传播,在其他重叠的区域里,介质的质点同时参与这几列波引起的振动,质点的位移等于这几列波单独传播时引起的位移的矢量和波的干涉频率相同的两列波叠加时,某些区域的振幅加大、某些区域的振幅减小,这种现象叫做波的干涉(干涉也是波所特有的现象)第五节多普勒效应多普勒效应波源与观察者相互靠近或者相互远离时,接收到的波的频率都会发生变化,这种现象叫做多普勒效应第六节惠更斯原理波面和波线振动状态相同的点组成的面叫波面,与波面垂直、代表波的传播方向的线叫做波线惠更斯原理在介质中任一波面上的各点,都可以看做发射子波的波源,其后任意时刻,这些子波在波前进方向的包络面就是新的波面波的反射波进入第二种介质时返回到第一种介质的现象波的折射波进入第二种介质后传播方向发生偏折的现象高中物理选修3-4知识点章节名称定义(内容)公式标准单位第十三章光第一节光的反射和折射反射定律和折射定律1、光从第一种介质射到第二种介质的分界面时,一部分光会返回到第一种介质,这个现象叫做光的反射,另一部分光会进入第二种介质,这个现象叫做光的折射2、反射定律反:射线与入射线、法线处在同一平面内,反射光线与入射光线分别位于法线的两侧;反射角等于入射角这就是反射定律3、折射定律:折射光线与入射线、法线处在同一平面内,折射光线与入射光线分别位于法线的两侧;入射角的正弦与折射角的正弦成正比4、在光的折射现象中,光路是可逆的1221sinsinn=θθ折射率光从真空射入某种介质发生折射时,入射角的正弦与折射角的正弦之比,叫做这种介质的绝对折射率,简称折射率(光从真空射入任何介质时,入射角总是大于折射角)vcn=第二节全反射全反射1、光疏介质:折射率较小的介质2、光密介质:折射率较大的介质3、光在光密介质中的传播速度比在光疏介质中的传播速度小4、全反射和临界角:光从光密介质射入光疏介质时,同时发生折射和反射。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(共24套118页)人教版高中物理选修3-4(全册)教材知识点梳理汇总疱丁巧解牛知识·巧学一、波的形成和传播1.机械波的形成传播机械波的物质,如水、绳、空气等,可以分成许多小部分,每一小部分都可以看作质点.当其中一个质点振动时,由于质点间的相互作用,就带动相邻的质点振动起来,该质点又带动后面的质点振动起来,这样振动的状态就传播出去,形成了机械波.记忆要诀“带动”“重复”“滞后”可以描述机械波的形成过程及特点.即前一质点“带动”后一质点振动,后一质点在前一质点的“带动”下“重复”前一质点的振动形式,因此,后一质点的振动总要“滞后”前一质点一段时间.2.机械波的传播(1)各质点的振动周期都与波源的振动周期相同.联想发散波传播时,介质中的质点跟着波源做受迫振动,每个质点的振动频率都与波源的振动频率相同.(2)离波源越远,质点的振动越滞后,但各质点的起振方向与波源起振方向相同.(3)波传播的是振动形式,而各介质的质点并不随波迁移.波传播的只是运动形式,介质的每个质点只在自己平衡位置附近振动,并不随波迁移,如运动会上表演麦浪的团体操,许多学生手举麦穗,随着音乐声依次上下起伏,于是就形成了像一大片金黄的滚滚麦浪,可是,这里的每个学生谁也没有向前移动一步,仅把上下起伏的运动形式依次传出去了.二、横波和纵波从质点的振动方向和波的传播方向之间关系来看,机械波有两种基本类型:1.横波: 质点振动的方向跟波的传播方向垂直的波,叫做横波,如绳波、水波.在横波中,凸起的最高处叫做波峰,凹下去的最低处叫做波谷,横波是以波峰和波谷这个形式将机械振动传播出去,这种波在传播时呈现出凸凹相间的波形.深化升华横波是物体的形状发生了变化而产生弹力的作用所致,故纯粹的横波只能通过固体传播.2.纵波: 质点的振动方向跟波的传播方向在同一直线上的波,叫做纵波.例如: 一根长的弹簧,它的一端固定,在另一端用手轻轻一推,就形成了弹簧圈密集的部分一直向前传播;如用手轻轻一拉,就形成了弹簧圈稀疏的部分也沿着弹簧向前传播,如果不断地推拉弹簧,就可以看到一系列的密集的部分和稀疏的部分依次向前传播,这就是纵波,如图12-1-2所示.图12-1-2在纵波中,质点分布最密的地方叫做密部,质点分布最疏的地方叫做疏部,纵波在传播时呈现出疏密相间的波形.要点提示声波是纵波,地震波既有横波成分又有纵波成分.深化升华在纵波的情况下,物体的各部分经常受到压缩和拉伸,也就是说经常在改变自己的体积,在体积改变时,固体内固然要产生弹力,液体和气体也要产生弹力,所以纵波在这三种状态的介质中都能传播.三、机械波1.介质: 波借以传播的物质.2.机械波: 机械振动在介质中的传播.3.机械波产生条件:(1)必须有持续振动的波源.(2)必须有传播的介质.深化升华振动是波动的原因,波动是振动的结果;有波动必有振动,有振动不一定有波动.因为波源和介质是组成机械波的必有条件,缺一不可.4.机械波在传递机械振动的同时,也传递能量和信息.由于质点间的弹力作用,先振动的质点要对相邻的后振动的质点做正功,后者对前者做负功,因而离波源近的质点把机械能传递给离波源远的质点.联想发散其他形式的波也能传递信息,如广播电视应用无线电波传递信息,光缆利用光波传递信息.典题·热题知识点一 机械波的形成和传播例1关于机械波的形成和传播,下列说法中正确的是( )A.物体做机械振动,一定产生机械波B.后振动的质点总是跟着先振动的质点重复振动,只是时间落后一步C.参与振动的质点群有相同的频率D.机械波是质点随波迁移,也是振动能量的传递解析: 机械波的形成必须具备的两个条件: 振源和介质,只有物体做机械振动,而其周围没有传播这种振动的介质,远处的质点不可能振动起来形成机械波,故A 选项错误;任何一个振动的质点都是一个波源而带动它周围的质点振动,将振动传播开来,所以后一质点总是落后,故选项B 、C 正确,形成机械波的各个质点,只有在平衡位置附近往复运动,并没有随波迁移,离振源远的质点振动的能量,是通过各质点的传递从振源获得,故选项D 错误.答案: BC方法归纳 本题考查机械波的产生及其传播特点.机械波是由于机械振动在介质中的传播形成机械波,机械波在传播中各质点的振动周期都与波源的振动周期相同;离波源越远,质点的振动越滞后,但各质点的起振方向与波源起振方向相同;波传播的是振动形式,而各介质的质点并不随波迁移;波在传播振动形式的同时,也在传播能量和信息.例2图12-1-3所示为波源开始振动后经过一个周期的波形图,设介质中质点振动周期为T ,下列说法中正确的是( )图12-1-3A.若M 点为波源,则M 点开始振动时方向向下B.若M 点为波源,则P 点已经振动了43T C.若N 点为波源,则P 点已经振动43T D.若N 点为波源,则该时刻P 质点动能最大解析: 若M 点为波源,相当于其他点追随M 点振动,又因为是经过一个周期的波形,此时M 点的振动方向向上,即为开始振动时的方向或者根据波传到了N 点,此时N 点振动方向向上,即波源的开始振动方向向上,而传到P 点要经过43T ,因而P 点已振动41T ,若N 点为波源,N 开始振动方向向下,传到P 点经4T ,故P 点已振动了43T ,而此时P 点在最大位移处,速度为零,动能最小,答案为C 选项.答案: C方法归纳 当波源确定后便可确定波传播的方向,由于介质中各质点从波源开始依次运动,即越靠近波源的质点运动的时间越长.另外,任何一个质点的起振方向都与波源的起振方向相同.知识点二 横波和纵波例3关于横波和纵波,下列说法正确的是( )A.质点的振动方向和波的传播方向垂直的波叫横波B.质点振动方向跟波的传播方向在同一直线上的波叫纵波C.横波有波峰和波谷,纵波有密部和疏部D.地震波是横波,声波是纵波解析: 根据横波和纵波的定义知,A、B、C三项正确,声波是一种纵波,但地震波中既有横波又有纵波,D选项错误.答案: ABC知识点三机械波例4以下对机械波的认识正确的是( )A.形成机械波一定要有振源和介质B.振源做简谐运动形成的波中,各质点的运动情况完全相同C.横波向右传播时,处于波峰的质点也向右迁移D.机械波向右传播时,右方的质点比左方的质点早一些振动解析: 振源和介质是形成机械波的两个必不可少的条件,故A选项正确.简谐运动在介质中传播时,介质中各质点都做简谐运动,沿波的传播方向上,后面的质点比前面的质点总要晚一些开始振动,但质点本身并不随波的传播而发生迁移,而且各质点的振动步调不一致,故B、C、D三项都错.答案: A误区警示波动与振动是两个不同的概念,一些同学往往认为: 振动就是波动,我们知道在波的传播过程中,一定有质点的振动,但质点振动,不一定能够形成波动,波动是许多质点振动而形成的,振动则是单个质点的运动.知识点四振动和波的关系例5关于振动和波的关系,下列说法正确的是( )A.有机械波必有振动B.有机械振动必有波C.离波源远的质点振动周期长D.波源停振时,介质中的波动立即停止解析: 一个质点的振动会带动邻近质点的振动,使振动这种运动形式向外传播出去而形成机械波,但在缺少介质的情况下,波动现象就无法发生,故A选项对,B选项错.波动形成以后,各质点的振动都先后重复波源的振动,故各质点的振动周期是一样的,C错,大量质点的振动所形成的波动不会因波源的停振而立即消失,因为能量不会无缘无故地消失,故D选项错.答案: A误区警示很多同学会认为“波源停振时,介质中的波动立即停止”,错误的主要原因是不能明确波的形成条件及传播特点.问题·探究思维发散探究问题波的传播方向和质点运动方向关系如何判断?探究过程: 已知质点运动方向判断波的传播方向或与之相反的问题,判断的基本规律是横波的形成与传播的特点,常用方法有:方法一: 上下坡法沿波的传播方向看,“上坡”的点向下运动,“下坡”的点向上运动,简称“上坡下、下坡上”(如图12-1-4甲所示).方法二: 同侧法在波的图象上的某一点,沿竖直方向画出一个箭头表示质点运动方向,并设想在同一点沿水平方向画个箭头表示波的传播方向,那么这两个箭头总是在曲线的同侧(如图1214乙所示).方法三: 头头(尾尾)相对法在波形图的波峰(或波谷)上画出一个箭头表示波的传播方向,并在波峰(或波谷)两边波形上分别画出两个箭头表示质点运动方向,那么这三个箭头总是头头相对,尾尾相对(如图12-1-4丙所示).方法四: 平移法将原波形(实线)沿波的传播方向平移4后(虚线),则从原波形中平衡位置沿y 轴指向虚线最大位移处的方向,表示原波形中质点的运动方向(如图12-1-4丁所示).甲 乙丙 丁图12-1-4 探究结论:方法一: 上下坡法方法二: 同侧法方法三: 头头(尾尾)相对法方法四: 平移法材料信息探究材料: 地震波包含纵波和横波.振动方向与传播方向一致的波为纵波(P 波).来自地下的纵波引起地面上下颠簸振动.振动方向与传播方向垂直的波为横波(S 波).来自地下的横波能引起地面的水平晃动.横波是地震时造成建筑物破坏的主要原因.由于纵波在地球内部传播速度大于横波,所以地震时,纵波总是先到达地表,而横波总落后一步.这样,发生较大的地震时,一般人们先感到上下颠簸,过数秒到十几秒后才感到有很强的水平晃动.这一点非常重要,因为纵波给我们一个警告,告诉我们造成建筑物破坏的横波马上要到了,快点作出防备.问题地震波只是一种横波吗?我们能不能利用横波和纵波的波速不同,来预报地震?探究过程: 由材料信息可知,地震波包含纵波和横波,即地震波不只是一种横波.由于纵波先到达地表,给人以警告,但纵波由于上下振动、破坏力不大,而横波由于水平振动会造成建筑物的破坏.人们可以利用横波和纵波到达的时间差作出反应和防备,但时间差很短. 探究结论:地震波是由于地球内部的介质突然发生破坏、运动而引起的,分为体波和面波,而体波分解为横波和纵波.横波和纵波的波速不同,从理论上看,是可以的,但时间极短,需要人们迅速作出反应.疱丁巧解牛知识·巧学一、波的图象1.波的图象波传播时,各质点都在平衡位置附近振动,如图12-2-1所示为向右传播的横波中各质点在某时刻的位置.各质点的位移矢量用从平衡位置指向该时刻所在位置的有向线段表示.波的图象有时也称波形图,简称波形.图12-2-1误区警示尽管横波的图象形状与波在传播过程中介质中各质点某时刻的分布相似,波形中的波峰即为图象中的位移正向最大值,波谷即为图象中位移负向的最大值,波形中通过平衡位置的质点在图象中也恰好处于平衡位置.但是波的图象表示的是某一时刻各个质点偏离平衡位置的位移情况,两者之间有明显的区别,要注意.2.横波的波形图象的建立用横坐标x表示在波的传播方向上介质中各质点的平衡位置,纵坐标y表示某一时刻各个质点偏离平衡位置的位移,并规定横波中位移方向向上时为正值,位移向下时为负值.在xy平面上,画出各个质点的平衡位置x与各质点偏离平衡位置的位移y的各点(x,y),用平滑的曲线把各点连接起来就得到了横波的波形图象(如图12-2-2).图12-2-23.纵波的图象的建立波的图象是一种数学的表示方法,只是在横波的情况下能直观地表示出波形.在纵波中,如果规定质点的位移方向向右时取正值,位移方向向左时取负值,可以同样地画出如图12-2-3所示的纵波的图象,可以看出纵波的图象与纵波的“形状”并无相同之处.实际上,在横波中如果规定位移方向向下时取正值(一般不这样规定,但这样规定未尝不可),则作出的波的图象与横波的形状恰好相反.图12-2-3纵波的图象,图甲表示各个质点所在的平衡位置,图乙表示各个质点发生的位移,图丙表示纵波的图象,其中横坐标表示各个质点的平衡位置,纵坐标表示各个质点的位移,如x2表示质点2向右的位移,x5表示质点5向左的位移.图12-2-34.正弦波如果波的图象是正弦曲线,这样的波叫做正弦波,也叫简谐波.5.图象的特点(1)横波的图象形状与波在传播过程中介质中各质点某时刻的分布相似,波形中的波峰即为图象中的位移正向最大值,波谷即为图象中位移负向的最大值,波形中通过平衡位置的质点在图象中也恰好处于平衡位置.(2)波形图线是正弦或余弦曲线的波称为简谐波.简谐波是最简单的波.对于简谐波而言,各个质点振动的最大位移都相同.(3)波的图象的重复性: 相隔时间为周期整数倍的两个时刻的波形相同.(4)波的传播方向的双向性: 不指定波的传播方向时,图象中波可能向x轴正向或x轴负向传播.二、由波的图象可获取的信息如果已知一列波某时刻波形如图12-2-4所示,那么我们从波的图象中可以获取的信息有以下几点:图12-2-41.可以直接看出在该时刻沿传播方向上各质点的位移.图线上各点的纵坐标表示的是各点在该时刻的位移.如图线上的M点的位移是2 cm. 2.可以直接看出在波的传播过程中介质各质点的振幅A,即波动图线上纵坐标最大值的绝对值,如图12-2-4中波的振幅为A=4 cm.3.可以由波的传播方向判断出质点的运动方向,也可以由质点的运动方向判断出波的传播方向.如图12-2-4中,由波向右传播,可知点M向上运动,反之,如果M向上运动,可知波向右传播.方法归纳根据波的传播方向确定质点的振动方向(或由质点振动方向确定波传播方向)(1)带动法: 在质点P靠近波源一方附近图象上找另一点P′,P′若在下方,则P向下运动;若P′在上方,则P向上运动.(2)微平移法: 根据波的传播方向,作出经微小时间Δt(Δt<T/4)后的波形,由此可知Δt 后质点的位置,根据其位置可判断出质点的振动方向.(3)口诀法: 上坡“下”,下坡“上”,即沿着波的传播方向看,向上凸起时的振动方向向下,反之向上.(4)可以画出另一时刻的波形图,波由介质中的某一点传播到另一点需要一定的时间,即机械波在介质中是以一定的速率v (通常称波速)传播.在单位时间Δt 内某一波峰或波谷(密部或疏部)沿波的传播方向移动的距离等于波速.如果已知一列简谐波在t 时刻的波形图象及波的传播方向,又知波速,就可以画出经Δt 后的波形图象.学法一得 在已知的某一时刻的波形图象,若要画出t+Δt 时刻的波形图象,则须将波的图线沿波的传播方向移动一段距离Δx=vΔt ,即得到t+Δt 时刻的波形图象.若要画出t-Δt 时刻的波形图象,则须将波形图线逆着波的传播方向移动一段距离Δx=vΔt ,即得到t-Δt 时刻的波形图象,这种方法称为平移法.辨析比较 波的图象和振动图象的比较.振动图象 波的图象 研究对象一个振动质点 沿波传播方向上若干质点 坐标 横轴表示时间,纵轴表示质点的位移横轴表示波线上各质点平衡位置,纵轴表示各质点对各自平衡位置的位移 研究内容一个质点的位移随时间变化规律 某时刻所有质点的空间分布规律 图象物理意义图象表示一个质点在各个时刻的位移 图象表示某时刻,波线上各质点的位置 图象变化随时间延伸,图象形状不变,只是图象沿t 轴延续 随时间推移,图象整体沿波的传播方向平移 一个完整正弦(余弦)图象 表示一个周期T 表示一个波长λ典题·热题知识点一 波的图象例1如图12-2-5所示是一列横波在某一时刻的波形图,波沿x 轴正向传播.图12-2-5(1)该时刻A 质点运动的方向是向_____________,C 点的运动方向是向_____________,D 点的运动方向是向_____________.(2)再经过2T ,质点A 通过的路程是___________cm ,质点C 的位移是___________cm. 解析: (1)由于波沿x 轴正方向传播,所以A 点在“下坡区”,向上运动;C 点、D 点均在“上坡区”,C 、D 两点都向下运动.(2)再经过2T ,A 又回到平衡位置,所以A 通过的路程为4 cm ;C 点也回到平衡位置,其位移为0.答案: (1)上 下 下(2)4 0方法归纳对于做简谐运动的质点其位移都是相对平衡位置而言.与起点在何处无关,这一点与运动学中的位移有所不同.例2一列横波在某时刻的波形图象如图12-2-6所示,此时质点F的运动方向向下,则下列说法正确的是( )图12-2-6A.波水平向右传播B.质点H与质点F的运动方向相同C.质点C比质点B先回到平衡位置D.此时刻质点C的加速度为零解析: 由于质点F要追随和它邻近的并且离波源稍近的质点运动,又知道质点F的运动方向是向下的,则与它相邻的离波源稍近的质点的位置应在它的下方,对照图象可以判断出波源在质点F的右方,故波是向左传播的,所以A选项错误;与质点H邻近的并且离波源在质点I的位置在质点H的上方,则质点H的运动方向是向上的,故B选项错误;同理,可判断质点C要向下直接回到平衡位置,而质点B则先向上运动到最大位移后再返回平衡位置,这样质点C要比质点B先回到平衡位置,故C选项正确;质点C此时处于最大位移处,其加速度最大,D选项错误.答案: C方法归纳明确质点间的带动作用及F点的振动方向,判断出波的传播方向,是解题的关键.知识点二波的图象的应用例3一列横波在某时刻的波形图如图12-2-7所示.若此时刻质点a的振动方向向下,则波向什么方向传播?图12-2-7解析: 取和a点相邻的两个点b、c,若a点此时刻向下振动,则b点应是带动a点振动的,c点应是在a点带动下振动的,所以b点先振动,其次是a、c两点.因此,波是向左传播的. 答案: 波向左传播.方法归纳此题是考查波的传播方向与质点振动方向的关系.具体可以采用带动法或对波动图象形状变化的想象法得出答案.巧解提示此类题目也可用平移法,画出下一时刻的波形,进行比较.知识点三波的图象和振动图象例4一列简谐波在t=0时刻的波形图如图12-2-8(a)所示,图(b)表示该波传播的介质中某质点此后一段时间内的振动图象,则( )图12-2-8A.若波沿x 轴正方向传播,(b )图应为a 点的振动图象B.若波沿x 轴正方向传播,(b )图应为b 点的振动图象C.若波沿x 轴正方向传播,(b )图应为c 点的振动图象D.若波沿x 轴正方向传播,(b )图应为d 点的振动图象解析: 在图(b)的振动图象中,t=0时刻质点在平衡位置并向y 轴的正方向运动,而图(a)的波形图却表明在t=0时刻,质点b 、d 在平衡位置,而a 、c 不在平衡位置,故A 、C 选项不可能正确.若波沿x 轴正方向传播,质点b 应向上运动(逆着波的传播方向在它附近找一相邻点,此点正好在它的上方,质点b 就应跟随它向上运动),B 选项正确.若波沿x 轴正方向传播,同理可以确定质点d 应向下运动.D 选项错.答案: B巧解提示 对振动图象中某时刻振动质点运动方向的判断也可用“上坡上,下坡下”方法判断,“上坡”与“下坡”是指沿时间看去,“上坡”区均向上振,“下坡”区均向下振.例5图12-2-9(a )表示一列简谐波在介质中传播时,某一质点a 的振动图象,请你在(b )图中作出这列简谐波在t=0时刻的波形图(质点a 画在坐标原点上).图12-2-9解析: t=0时刻质点a 正处于平衡位置且沿+y 方向运动,经4T 达正向最大位移处,设x 轴正向为波动方向,由波动与振动方向关系的判断方法,得出t=0时刻的波形如图12-2-10.图12-2-10答案: 如图12-2-10所示.方法归纳 解此题关键要抓住t=0时,质点a 的振动方向,这就要求同学们熟练掌握振动图象,知道质点a 的振动方向后,又假设波传播方向为x 轴正向,根据带动法即可得到t=0时的波的图象.知识点四 由已知波形图象画出某一时刻的波形图象例6一列沿x 轴正方向传播的横波在某一时刻的波形图象如图12-2-11所示,已知波的传播速率是16 m/s.图12-2-11(1)指出这列波中质点振动的振幅是多少;(2)画出再经过0.125 s 时的波形图象.解析: 由图象的含义可以直接读出各质点的振幅,利用平移法可画出再经过0.125 s 时的波形图象.答案: (1)由图象可以看出,质点振动的最大位移是10 cm,因此振幅是10 cm.(2)经0.125 s波形沿x轴正方向移动的距离为Δx=vΔt=16×0.125 m=2 m,所以经过0.125 s 后的波形图象如图12-2-12中的虚线所示.图12-2-12方法归纳当波形曲线沿x轴正方向移动2 m后,要注意将0到2 m之间的曲线补齐,画好. 巧妙变式若要画出此时刻前0.125 s时的波形图象,只需沿x轴负方向移动2 m即可.知识点五波形图的周期性以及波传播方向的双向性例7如图12-2-13是一列简谐波某一时刻波的图象,下列说法正确的是( )图12-2-13A.波一定沿x轴正方向传播B.a、b两个质点的振动速度方向相反C.若a点此时的速度方向沿y轴正向,那么波的传播方向是沿x轴的正方向D.若波沿x轴的负向传播,则b质点的振动速度方向沿y轴的负方向解析: x轴是表示在波传播方向上的一系列质点的平衡位置,但x轴指向不表示波的传播方向,故A选项错.根据“坡形”法: 无论波向左还是向右传播,a、b都处于不同“坡区”,即当a 处于下坡路时,b为上坡路,所以两者振动速度方向相反,故B选项正确.同理可判断C选项正确,D选项错误.答案: BC误区警示波的图象问题中,由于波传播的周期性,波形图的周期性以及波传播方向的双向性,常有很多问题会出现多解,部分同学在解答时常会出现漏解现象.问题·探究问题怎样画波的图象?探究思路: 波由介质中的某一点传播到另一点需要一定的时间,即机械波在介质中是以一定的速率v(通常称波速)传播.在单位时间Δt内某一波峰或波谷(密部或疏部)沿波的传播方向移动的距离等于波速.如果已知一列简谐波在t时刻的波形图象及波的传播方向,又知波速,就可以画出经Δt后的波形图象.具体方法是: (1)在已知的某一时刻的波形图象上将波的图象沿波的传播方向移动一段距离Δx=vΔt,即得到t+Δt时刻的波形图象.(2)若要画出t-Δt时刻的波形图象,则要将波形图象逆着波的传播方向移动一段距离Δx=vΔt,即得到t-Δt时刻的波形图象.这种方法称为平移法.探究结论:沿波的传播方向移动一段距离Δx=vΔt.疱丁巧解牛知识·巧学。

相关文档
最新文档