高考数学一轮复习第二章函数第一节函数及其表示夯基提能作业本文
近年届高考数学一轮复习第二章函数第一节函数及其表示夯基提能作业本文(2021年整理)
2019届高考数学一轮复习第二章函数第一节函数及其表示夯基提能作业本文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届高考数学一轮复习第二章函数第一节函数及其表示夯基提能作业本文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届高考数学一轮复习第二章函数第一节函数及其表示夯基提能作业本文的全部内容。
第一节函数及其表示A组基础题组1。
函数g(x)=+log2(6-x)的定义域是( )A.{x|x〉6}B.{x|-3〈x〈6}C.{x|x〉—3}D。
{x|—3≤x<6}2.下列函数中,不满足f(2x)=2f(x)的是( )A.f(x)=|x|B。
f(x)=x-|x|C.f(x)=x+1D.f(x)=—x3。
已知函数f(x)=x|x|,若f(x0)=4,则x0的值为()A.—2 B。
2 C。
-2或2 8 D。
4。
已知g(x)=1-2x, f(g(x))=(x≠0),那么f=( )A.15B.1 C。
3 D.305。
(2017广东广州综合测试(一))已知函数f(x)=则f(f(3))=()A。
B。
C。
— D.—36.若二次函数g(x)满足g(1)=1,g(—1)=5,且图象过原点,则g(x)的解析式为()A。
g(x)=2x2-3xB。
g(x)=3x2—2xC。
g(x)=3x2+2xD。
g(x)=—3x2—2x7。
已知f=2x—5,且f(a)=6,则a等于( )A。
— B。
C.D。
—8。
已知函数f(x)=若f(a)+f(1)=0,则实数a的值等于( )A.-3 B。
—1 C.1 D。
39。
已知函数y=f(x+1)的定义域是[-2,3],则y=f(2x-1)的定义域是()A.[-3,7]B.[-1,4]C。
高考数学一轮复习 第二章 函数 2.1 函数及其表示学案(文,含解析)新人教A版
学习资料第二章函数2.1函数及其表示必备知识预案自诊知识梳理1。
函数与映射的概念2。
函数的有关概念(1)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,叫做函数的定义域;与x的值相对应的y值叫做函数值,叫做函数的值域,显然,值域是集合B的子集.(2)函数的三要素:、和。
(3)相等函数:如果两个函数的相同,并且完全一致,那么我们就称这两个函数相等.3.函数的表示方法表示函数的常用方法有、和。
4。
分段函数(1)定义:如果一个函数,在其定义域内,对于自变量的不同取值区间,有不同的对应方式,则称其为分段函数。
(2)分段函数的相关结论①分段函数虽然由几个部分组成,但是它表示的是一个函数。
②分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集.1。
映射:(1)映射是函数的推广,函数是特殊的映射,A,B为非空数集的映射就是函数;(2)映射问题允许多对一,但不允许一对多。
2.判断两个函数相等的依据是两个函数的定义域和对应关系完全一致。
考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”。
(1)函数是其定义域到值域的映射.()(2)函数y=f(x)的图象与直线x=1有两个交点.()(3)定义域相同,值域也相同的两个函数一定是相等函数。
()(4)对于函数f:A→B,其值域是集合B.()(5)分段函数是由两个或几个函数组成的。
( )2.(2020北京,11)函数f (x )=1x+1+ln x 的定义域是 . 3。
已知f ,g 都是从A 到A 的映射(其中A={1,2,3}),其对应关系如下表:则f (g (3))等于( )A.1B.2C.3D 。
不存在4。
(2020辽宁大连模拟,文2)设函数f (x )={1-x 2,x ≤1,x 2+x -2,x >1,则f1f(2)的值为( )A.1516B 。
-2716C 。
89D 。
185。
如图表示的是从集合A 到集合B 的对应,其中 是映射, 是函数.关键能力学案突破 考点函数及其有关的概念【例1】以下给出的同组函数中,表示相等函数的有 .(只填序号) ①f 1(x )=xx ,f 2(x )=1;②f 1(x )={1,x ≤1,2,1<x <2,3,x ≥2,f 2(x ):③f 1(x )=2x ,f 2(x ):如图所示。
高考数学一轮复习第二章第一节函数及其表示课时作业理含解析北师大版
高考数学一轮复习:第二章 第一节 函数及其表示授课提示:对应学生用书第271页[A 组 基础保分练]1.(2021·宣城模拟)函数y =-x 2+2x +3lg (x +1)的定义域为( ) A.(-1,3] B.(-1,0)∪(0,3]C.[-1,3]D.[-1,0)∪(0,3]解析:由已知得⎩⎪⎨⎪⎧-x 2+2x +3≥0,x +1>0,x +1≠1,解得x ∈(-1,0)∪(0,3].答案:B 2.(2021·吉安模拟)已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74B.-74C.43D.-43解析:令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则f (a )=4a -1=6,解得a =74. 答案:A3.已知定义在[0,+∞)上的函数f (x )=2f (x +1),当x ∈[0,1)时,f (x )=-x 2+x ,则当x ∈[1,2)时,f (x )=( )A.-12 -x 2+3x -2B.12 -x 2+3x -2C.12 x 2-3x +2D.-12x 2-3x +2 解析:根据f (x )=2f (x +1)得f (x -1)=2f (x ).当x ∈[1,2)时,x -1∈[0,1),f (x-1)=-(x -1)2+x -1=-x 2+3x -2,所以f (x )=12f (x -1)=12-x 2+3x -2. 答案:B4.(2021·芜湖模拟)如果函数f (x )=ln (-2x +a )的定义域为(-∞,1),那么实数a 的值为( )A.-2B.-1C.1D.2解析:因为-2x +a >0,所以x <a 2,所以a 2=1,得a =2. 答案:D5.(2021·邢台模拟)下列函数满足f (log 32)=f (log 23)的是( )A.f (x )=2x +2-xB.f (x )=x 2+2xC.f (x )=x 2+1xD.f (x )=x -1x +1解析:由于log 32=1log 23,故问题等价于满足f (x )=f ⎝⎛⎭⎫1x 的函数.对于A 选项,f ⎝⎛⎭⎫1x =21x +2-1x ≠f (x ),不符合题意;对于B 选项,f ⎝⎛⎭⎫1x =1x 2+2x ≠f (x ),不符合题意;对于C 选项,f (x )=x +1x ,f ⎝⎛⎭⎫1x =1x +x =f (x ),符合题意;对于D 选项,f ⎝⎛⎭⎫1x =1x -11x+1=1-x 1+x ≠f (x ),不符合题意. 答案:C6.(2021·揭阳模拟)已知函数f (x )=2x 2-a ,f (3)=14,则f (-2)=( ) A.1 B.-18C.12D.18解析:依题意f (3)=23-a =14=2-2,故3-a =-2,解得a =5.故f (x )=2x 2-5,所以f (-2)=22-5=2-3=18. 答案:D7.已知函数y =f (2x -1)的定义域是[0,1],则函数f (2x +1)log 2(x +1)的定义域是( ) A.[1,2] B.(-1,1]C.⎣⎡⎦⎤-12,0 D.(-1,0) 解析:由f (2x -1)的定义域是[0,1],得0≤x ≤1,故-1≤2x -1≤1,所以函数f (x )的定义域是[-1,1],所以要使函数f (2x +1)log 2(x +1)有意义,需满足⎩⎪⎨⎪⎧-1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0. 答案:D8.设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x ,x ≥1,则满足f [f (a )]=2f (a )的a 的取值范围是( ) A.⎣⎡⎦⎤23,1B.[0,1]C.⎣⎡⎭⎫23,+∞D.[1,+∞) 解析:由f [f (a )]=2f (a )得,f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1; 当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1.综上,a ≥23. 答案:C9.(2021·郴州模拟)已知函数f (x )=⎩⎪⎨⎪⎧a log 3x ,x >0,1-x ,x ≤0,若f (f (-2))=-2,则a =__________. 解析:f (f (-2))=f (3)=a =-2.答案:-210.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7(x <0),x (x ≥0),若f (a )<1,则实数a 的取值范围是__________. 解析:若a <0,则f (a )<1⇔⎝⎛⎭⎫12a -7<1⇔⎝⎛⎭⎫12a <8,解得a >-3,故-3<a <0;若a ≥0,则f (a )<1⇔a <1,解得a <1,故0≤a <1.综上可得-3<a <1.答案:(-3,1)[B 组 能力提升练]1.(2021·聊城模拟)已知函数f (x )=⎩⎪⎨⎪⎧-f (x -2),x >2,e x -1+x 2,x ≤2, 则f (2 019)=( )A.2B.1eC.-2D.e +4解析:因为当x >2时,f (x )=-f (x -2),所以f (x +2)=-f (x ),故f (x +4)=-f (x +2)=f (x ),因此当x >2时,函数f (x )是以4为周期的函数,所以f (2 019)=f (3+4×504)=f (3)=-f (1),又当x ≤2时,f (x )=e x -1+x 2,所以f (2 019)=-f (1)=-(1+1)=-2.答案:C2.设f (x ),g (x )都是定义在实数集上的函数,定义函数(f ·g )(x ):任意x ∈R ,(f ·g )(x )=f (g (x )).若f (x )=⎩⎪⎨⎪⎧x ,x >0,x 2,x ≤0,g (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,则( ) A.(f ·f )(x )=f (x ) B.(f ·g )(x )=f (x )C.(g ·f )(x )=g (x )D.(g ·g )(x )=g (x )解析:对于A 选项,(f ·f )(x )=f (f (x ))=⎩⎪⎨⎪⎧f (x ),f (x )>0,f 2(x ),f (x )≤0,当x >0时,f (x )=x >0,(f ·f )(x )=f (x )=x ;当x <0时,f (x )=x 2>0,(f ·f )(x )=f (x )=x 2;当x =0时,f (x )=0,(f ·f )(x )=f 2(x )=0=f (x ),因此对任意的x ∈R ,都有(f ·f )(x )=f (x ),故A 正确.答案:A3.(2021·大庆模拟)若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y =x 2+1,值域为{1,3}的同族函数有( )A.1个B.2个C.3个D.4个解析:由x 2+1=1得x =0,由x 2+1=3得x =±2,所以函数的定义域可以是{0,2},{0,-2},{0,2,-2},故值域为{1,3}的同族函数共有3个.答案:C4.(2021·乌鲁木齐模拟)函数f (x )=⎩⎪⎨⎪⎧e x -1,x <2,-log 3(x -1),x ≥2,则不等式f (x )>1的解集为( )A.(1,2)B.⎝⎛⎭⎫-∞,43 C.⎝⎛⎭⎫1,43 D.[2,+∞) 解析:当x <2时,不等式f (x )>1即e x -1>1,∴x -1>0,∴x >1,则1<x <2;当x ≥2时,不等式f (x )>1即-log 3(x -1)>1,∴0<x -1<13,∴1<x <43,此时不等式无解. 综上可得,不等式的解集为(1,2).答案:A5.(2021·荆州模拟)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x +1,x <2, 若f (f (1))>3a 2,则a 的取值范围是__________.解析:由题知,f (1)=2+1=3,f (f (1))=f (3)=32+6a ,若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0,解得-1<a <3.答案:(-1,3)6.已知函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,则实数a 的取值范围是__________. 解析:由题意知y =ln x (x ≥1)的值域为[0,+∞),故要使f (x )的值域为R ,则必有y =(1-2a )x +3a 为增函数,且1-2a +3a ≥0,所以1-2a >0,且a ≥-1,解得-1≤a <12. 答案:⎣⎡⎭⎫-1,12 [C 组 创新应用练]1.下列函数中,不满足f (2 018x )=2 018f (x )的是( )A.f (x )=|x |B.f (x )=x -|x |C.f (x )=x +2D.f (x )=-2x解析:若f (x )=|x |,则f (2 018x )=|2 018x |=2 018|x |=2 018f (x );若f (x )=x -|x |,则f (2 018x )=2 018x -|2 018x |=2 018(x -|x |)=2 018f (x );若f (x )=x +2,则f (2 018x )=2 018x +2,而2 018f (x )=2 018x +2 018×2,故f (x )=x +2不满足f (2 018x )=2 018f (x );若f (x )=-2x ,则f (2 018x )=-2×2 018x =2 018×(-2x )=2 018f (x ). 答案:C2.(2021·郑州模拟)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为设x ∈R ,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数.例如:[-2.1]=-3,[3.1]=3,已知函数f (x )=2x +32x +1,则函数y =[f (x )]的值域为( )A.{0,1,2,3}B.{0,1,2}C.{1,2,3}D.{1,2}解析:f (x )=2x +32x +1=2x +1+22x +1=1+22x +1, 因为2x >0,所以1+2x >1,所以0<12x +1<1, 则0<22x +1<2,所以1<1+22x +1<3, 即1<f (x )<3,当1<f (x )<2时,[f (x )]=1,当2≤f (x )<3时,[f (x )]=2.综上,函数y =[f (x )]的值域为{1,2}.答案:D3.设f (x )是定义在R 上的函数,且f (x +2)=2f (x ),f (x )=⎩⎪⎨⎪⎧2x +a ,-1<x <0,b e 2x ,0≤x ≤1,其中a ,b 为正实数,e 为自然对数的底数,若f ⎝⎛⎭⎫92=f ⎝⎛⎭⎫32,则a b的取值范围为__________. 解析:因为f (x +2)=2f (x ),所以f ⎝⎛⎭⎫92=f ⎝⎛⎭⎫12+4=(2)2f ⎝⎛⎭⎫12=2e b ,f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12+2=2f ⎝⎛⎭⎫-12=2⎣⎡⎦⎤2×⎝⎛⎭⎫-12+a =2(a -1),因为f ⎝⎛⎭⎫92=f ⎝⎛⎭⎫32,所以2(a -1)=2e b ,所以a =2e b +1,因为b 为正实数,所以a b =2e b +1b =2e +1b ∈(2e ,+∞).故a b的取值范围为(2e ,+∞).答案:(2e ,+∞)。
2022高考数学一轮总复习第二章函数概念与基本初等函数第1讲函数及其表示学案文(含答案)
高考数学一轮总复习学案:第1讲函数及其表示1.函数与映射的概念函数映射两集合A,B 设A,B是两个非空的数集设A,B是两个非空的集合对应关系f:A→B 如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应名称称f:A→B为从集合A到集合B的一个函数称对应f:A→B为从集合A到集合B的一个映射记法y=f(x)(x∈A)对应f:A→B是一个映射(1)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.[注意] 分段函数是一个函数,而不是几个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.常用结论1.直线x =a (a 是常数)与函数y =f (x )的图象有0个或1个交点. 2.几个常用函数的定义域(1)分式型函数,分母不为零的实数集合. (2)偶次方根型函数,被开方式非负的实数集合.(3)f (x )为对数式时,函数的定义域是真数为正数、底数为正且不为1的实数集合. (4)若f (x )=x 0,则定义域为{x |x ≠0}.(5)正切函数y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z .一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)函数f (x )=x 2-2x 与g (t )=t 2-2t 是相等函数.( )(2)若两个函数的定义域与值域相同,则这两个函数是相等函数.( )(3)若集合A =R ,B ={x |x >0},f :x →y =|x |,则对应关系f 是从A 到B 的映射.( ) (4)分段函数是由两个或几个函数组成的.( )(5)分段函数的定义域等于各段定义域的并集,值域等于各段值域的并集.( ) 答案:(1)√ (2)× (3)× (4)× (5)√ 二、易错纠偏常见误区| (1)对函数概念理解不透彻; (2)解分段函数不等式时忘记范围; (3)用换元法求解析式,反解时忽视范围.1.已知集合P ={x |0≤x ≤4},Q ={y |0≤y ≤2},下列从P 到Q 的各对应关系f 中不是函数的是________.(填序号)①f :x →y =12x ;②f :x →y =13x ;③f :x →y =23x ;④f :x →y =x .解析:对于③,因为当x =4时,y =23×4=83∉Q ,所以③不是函数.答案:③2.设函数f (x )=⎩⎨⎧(x +1)2,x <1,4-x -1,x ≥1,则使得f (x )≥1的自变量x 的取值范围为________.解析:因为f (x )是分段函数,所以f (x )≥1应分段求解.当x <1时,f (x )≥1⇒(x +1)2≥1⇒x ≤-2或x ≥0,所以x ≤-2或0≤x <1;当x ≥1时,f (x )≥1⇒4-x -1≥1,即x -1≤3,所以1≤x ≤10.综上所述,x ≤-2或0≤x ≤10,即x ∈(-∞,-2]∪[0,10].答案:(-∞,-2]∪[0,10]3.已知f (x )=x -1,则f (x )=________.解析:令t =x ,则t ≥0,x =t 2,所以f (t )=t 2-1(t ≥0),即f (x )=x 2-1(x ≥0). 答案:x 2-1(x ≥0)函数的定义域(多维探究) 角度一 求函数的定义域(1)已知函数f (x )的定义域是[-1,1],则函数g (x )=f (2x -1)ln (1-x )的定义域是( )A .[0,1]B .(0,1)C .[0,1)D .(0,1](2)(2020·高考北京卷)函数f (x )=1x +1+ln x 的定义域是________. 【解析】 (1)由函数f (x )的定义域为[-1,1],得-1≤x ≤1,令-1≤2x -1≤1,解得0≤x ≤1,又由1-x >0且1-x ≠1,解得x <1且x ≠0,所以函数g (x )的定义域为(0,1),故选B .(2)函数f (x )=1x +1+ln x 的自变量满足⎩⎪⎨⎪⎧x +1≠0,x >0,所以x >0,即定义域为(0,+∞).【答案】 (1)B (2)(0,+∞)求解函数定义域的策略(1)求给定函数的定义域往往转化为解不等式(组)的问题.在解不等式组取交集时可借助于数轴,要特别注意端点值的取舍.(2)求抽象函数的定义域:①若y =f (x )的定义域为(a ,b ),则解不等式a <g (x )<b 即可求出y =f [g (x )]的定义域;②若y =f [g (x )]的定义域为(a ,b ),则求出g (x )在(a ,b )上的值域即得y =f (x )的定义域.(3)已知函数定义域求参数范围,可将问题转化成含参数的不等式(组),然后求解. [提醒] (1)求函数定义域时,对函数解析式先不要化简. (2)求出定义域后,一定要将其写成集合或区间的形式. 角度二 已知函数的定义域求参数(1)如果函数f (x )=ln(-2x +a )的定义域为(-∞,1),那么实数a 的值为( )A .-2B .-1C .1D .2(2)若函数y =ax +1ax 2-4ax +2的定义域为R ,则实数a 的取值范围是( )A .⎝ ⎛⎦⎥⎤0,12B .⎝ ⎛⎭⎪⎫0,12C . ⎣⎢⎡⎦⎥⎤0,12 D .⎣⎢⎡⎭⎪⎫0,12 【解析】 (1)因为-2x +a >0, 所以x <a2,所以a2=1,所以a =2.(2)由ax 2-4ax +2>0恒成立, 得a =0或⎩⎪⎨⎪⎧a >0,Δ=(-4a )2-4×a ×2<0,解得0≤a <12. 【答案】 (1)D (2)D已知函数定义域求参数的取值范围,通常是根据已知的定义域将问题转化为方程或不等式恒成立的问题,然后求得参数的值或范围.1.函数f (x )=3xx -1+ln(2x -x 2)的定义域为( )A .(2,+∞)B .(1,2)C .(0,2)D .[1,2]解析:选B .要使函数有意义,则⎩⎪⎨⎪⎧x -1>0,2x -x 2>0, 解得1<x <2. 所以函数f (x )=3xx -1+ln(2x -x 2)的定义域为(1,2).2.已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为________. 解析:因为y =f (x 2-1)的定义域为[-3,3],所以x ∈[-3,3],x 2-1∈[-1,2],所以y =f (x )的定义域为[-1,2].答案:[-1,2] 3.若函数y =mx -1mx 2+4mx +3的定义域为R ,则实数m 的取值范围是________.解析:因为函数y =mx -1mx 2+4mx +3的定义域为R ,所以mx 2+4mx +3≠0,所以m =0或⎩⎪⎨⎪⎧m ≠0,Δ=16m 2-12m <0,即m =0或0<m <34, 所以实数m 的取值范围是⎣⎢⎡⎭⎪⎫0,34.答案:⎣⎢⎡⎭⎪⎫0,34求函数的解析式(师生共研)(1)已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,则f (x )的解析式为________________.(2)已知f ⎝⎛⎭⎪⎫x 2+1x2=x 4+1x4,则f (x )的解析式为________________.(3)若f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2,则f (x )的解析式为________________.(4)已知函数f (x )满足f (-x )+2f (x )=2x ,则f (x )的解析式为______________. 【解析】 (1)(换元法)令2x+1=t ,由于x >0,所以t >1且x =2t -1, 所以f (t )=lg2t -1, 即f (x )的解析式是f (x )=lg2x -1(x >1). (2)(配凑法)因为f ⎝⎛⎭⎪⎫x 2+1x 2=⎝ ⎛⎭⎪⎫x 2+1x 22-2,所以f (x )=x 2-2,x ∈[2,+∞).(3)(待定系数法)设f (x )=ax 2+bx +c (a ≠0), 又f (0)=c =3.所以f (x )=ax 2+bx +3,所以f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2.所以⎩⎪⎨⎪⎧4a =4,4a +2b =2,所以⎩⎪⎨⎪⎧a =1,b =-1,所以函数f (x )的解析式为f (x )=x 2-x +3. (4)(解方程组法)因为2f (x )+f (-x )=2x ,① 将x 换成-x 得2f (-x )+f (x )=-2x ,② 由①②消去f (-x ),得3f (x )=6x , 所以f (x )=2x . 【答案】 (1)f (x )=lg 2x -1(x >1) (2)f (x )=x 2-2,x ∈[2,+∞) (3)f (x )=x 2-x +3 (4)f (x )=2x求函数解析式的4种方法(1)配凑法:由已知条件f [g (x )]=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),得f (x )的表达式.(2)换元法:已知复合函数f [g (x )]的解析式,可用换元法,此时要注意新元的取值范围.(3)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法.(4)解方程组法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 求解析式时要注意新元的取值范围.1.(一题多解)已知二次函数f (2x +1)=4x 2-6x +5,则f (x )=_______. 解析:方法一(换元法):令2x +1=t (t ∈R ),则x =t -12,所以f (t )=4⎝ ⎛⎭⎪⎫t -122-6·t -12+5=t 2-5t +9(t ∈R ),所以f (x )=x 2-5x +9(x ∈R ).方法二(配凑法):因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9,所以f (x )=x 2-5x +9(x ∈R ).方法三(待定系数法):因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R ). 答案:x 2-5x +9(x ∈R )2.已知函数f (x )满足2f (x )+f ⎝ ⎛⎭⎪⎫1x=3x ,则f (x )=________________. 解析:因为2f (x )+f ⎝ ⎛⎭⎪⎫1x=3x ,① 把①中的x 换成1x,得2f ⎝ ⎛⎭⎪⎫1x +f (x )=3x.②联立①②可得⎩⎪⎨⎪⎧2f (x )+f ⎝ ⎛⎭⎪⎫1x =3x ,2f ⎝ ⎛⎭⎪⎫1x +f (x )=3x ,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x(x ≠0)3.已知函数f (x +1)=x +2x ,则f (x )的解析式为________________. 解析:方法一(换元法):设t =x +1,则x =(t -1)2,t ≥1,代入原式得f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1.故f (x )=x 2-1,x ≥1.方法二(配凑法):因为x +2x =(x )2+2x +1-1=(x +1)2-1, 所以f (x +1)=(x +1)2-1,x +1≥1, 即f (x )=x 2-1,x ≥1. 答案:f (x )=x 2-1(x ≥1)分段函数(多维探究) 角度一 分段函数求值(1)设函数f (x )=⎩⎪⎨⎪⎧x 2-2x,x ≤0,f (x -3),x >0,则f (5)的值为( )A .-7B .-1C .0D .12(2)若函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,则f [f (-9)]=________.(3)(2021·广东省七校联考)已知函数f (x )=⎩⎪⎨⎪⎧log 2(3-x ),x ≤02x -1,x >0,若f (a -1)=12,则实数a =________.【解析】 (1)f (5)=f (5-3)=f (2)=f (2-3)=f (-1)=(-1)2-2-1=12.故选D .(2)因为函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,所以f (-9)=lg 10=1,所以f [f (-9)]=f (1)=-2.(3)当a -1≤0,即a ≤1时,log 2(4-a )=12,4-a =212,故a =4-212,不满足a ≤1,舍去.当a -1>0,即a >1时,2a -1-1=12,2a -1=32,解得a =log 23,满足a >1.综上可得a =log 23.【答案】 (1)D (2)-2 (3)log 23分段函数的求值问题的解题思路(1)求函数值:先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f [f (a )]的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.角度二 分段函数与方程(1)已知函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <0,3x ,x ≥0,若f [f (-1)]=9,则实数a =( )A .2B .4C .133D .4或133(2)已知函数f (x )=⎩⎨⎧x +1,-1<x <0,2x ,x ≥0,若实数a 满足f (a )=f (a -1),则f ⎝ ⎛⎭⎪⎫1a =( )A .2B .4C .6D .8【解析】 (1)因为-1<0,所以f (-1)=a -2, 所以f (a -2)=9. 当a -2≥0,即a ≥2时, 3a -2=9,解得a =4.当a -2<0,即a <2时,2(a -2)+a =9,解得a =133(舍去).综上可知a =4.故选B . (2)由题意得a >0.当0<a <1时,由f (a )=f (a -1),即2a =a ,解得a =14,则f ⎝ ⎛⎭⎪⎫1a =f (4)=8.当a ≥1时,由f (a )=f (a -1),得2a =2(a -1),不成立.故选D .【答案】 (1)B (2)D(1)若分段函数中含有参数,则直接根据条件选择相应区间上的解析式代入求参; (2)若是求自变量的值,则需要结合分段区间的范围对自变量进行分类讨论,再求值. 角度三 分段函数与不等式(一题多解)设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)【解析】 方法一:①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x )即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1.所以不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x )即为1<2-2x ,解得x <0.所以不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 故选D .方法二:因为f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,所以函数f (x )的图象如图所示.由图可知,只有当⎩⎪⎨⎪⎧2x <0,x +1≥0或2x <x +1<0时,满足f (x +1)<f (2x ),故x <0,所以不等式f (x +1)<f (2x )的解集为(-∞,0).【答案】 D涉及与分段函数有关的不等式问题,主要表现为解不等式,当自变量取值不确定时,往往要分类讨论求解;当自变量取值确定,但分段函数中含有参数时,只需依据自变量的情况,直接代入相应解析式求解.1.(2021·长沙市统一模拟考试)已知函数f (x )=⎩⎪⎨⎪⎧log 3 x ,x >0,x 2,x ≤0,则f [f (-3)]=( )A .-2B .2C .-1D .1解析:选D .f (-3)=3,则f [f (-3)]=f (3)=log 33=1.故选D .2.设f (x )=⎩⎪⎨⎪⎧3-x+a ,x ≤2,f (x -1),x >2,若f (3)=-89,则实数a =( )A .1B .-1C .19D .0解析:选B .f (3)=f (3-1)=f (2)=3-2+a =-89,解得a =-1.3.(2021·六校联盟第二次联考)已知函数f (x )=⎩⎪⎨⎪⎧1+x 2,x ≤0,1,x >0,若f (x -4)>f (2x -3),则实数x 的取值范围是( )A .(-1,+∞)B .(-∞,-1)C .(-1,4)D .(-∞,1)解析:选C .函数f (x )=⎩⎪⎨⎪⎧1+x 2,x ≤0,1,x >0在(-∞,0]上是减函数,在(0,+∞)上函数值保持不变,若f (x -4)>f (2x -3),则⎩⎪⎨⎪⎧x -4<0,2x -3≥0或x -4<2x -3≤0,解得x ∈(-1,4).故选C .4.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.解析:由题可知,1-a 与1+a 异号,当a >0时,1-a <1,1+a >1, 所以2(1-a )+a =-1-a -2a ,解得a =-32(舍去).当a <0时,1-a >1,1+a <1, 所以-1+a -2a =2+2a +a , 解得a =-34.答案:-34核心素养系列2 数学抽象——函数的新定义问题定义函数问题是指给出阅读材料,设计一个陌生的数学情境,定义一个新函数,并给出新函数所满足的条件或具备的性质;或者给出函数,再定义一个新概念(如不动点),把数学知识与方法迁移到这段阅读材料,考生需捕捉相关信息,通过归纳、探索,发现解题方法,然后解决问题.若函数f (x )满足:在定义域D 内存在实数x 0,使得f (x 0+1)=f (x 0)+f (1)成立,则称函数f (x )为“1的饱和函数”.给出下列四个函数:①f (x )=1x;②f (x )=2x ;③f (x )=lg(x 2+2);④f (x )=cos (πx ).其中是“1的饱和函数”的所有函数的序号为( ) A .①③ B .②④ C .①②D .③④【解析】 对于①,若存在实数x 0,满足f (x 0+1)=f (x 0)+f (1),则1x 0+1=1x 0+1,所以x 20+x 0+1=0(x 0≠0,且x 0≠-1),显然该方程无实根,所以①不是“1的饱和函数”;对于②,若存在实数x 0,满足f (x 0+1)=f (x 0)+f (1),则2x 0+1=2x 0+2,解得x 0=1,所以②是“1的饱和函数”;对于③,若存在实数x 0,满足f (x 0+1)=f (x 0)+f (1),则lg[(x 0+1)2+2]=lg(x 20+2)+lg(12+2),化简得2x 20-2x 0+3=0,显然该方程无实根,所以③不是“1的饱和函数”;对于④,注意到f ⎝ ⎛⎭⎪⎫13+1=cos 4π3=-12,f ⎝ ⎛⎭⎪⎫13+f (1)=cos π3+cos π=-12,即f ⎝ ⎛⎭⎪⎫13+1=f ⎝ ⎛⎭⎪⎫13+f (1),所以④是“1的饱和函数”.综上可知,其中是“1的饱和函数”的所有函数的序号是②④.【答案】 B处理新定义函数问题的常用方法(1)联想背景:有些题目给出的新函数是以熟知的初等函数(如一次函数、二次函数、指数函数、对数函数、三角函数等)为背景定义的,可以通过阅读材料,分析有关信息,联想背景函数及其性质,进行类比,捕捉解题灵感,然后解决问题.(2)紧扣定义:对于题目定义的新函数,通过仔细阅读,分析定义以及新函数所满足的条件,围绕定义与条件来确定解题的方向,然后准确作答.(3)巧妙赋值:如果题目所定义的新函数满足的条件是函数方程,可采用赋值法,即令x ,y 取特殊值,或为某一范围内的值,求得特殊函数值或函数解析式,再结合掌握的数学知识与方程思想来解决问题.(4)构造函数:有些定义型函数可看成是由两个已知函数构造而成的.1.对于函数f (x ),若存在常数a ≠0,使得x 取定义域内的每一个值,都有f (x )=f (2a -x ),则称f (x )为准偶函数,下列函数中是准偶函数的是( )A .f (x )=xB .f (x )=x 2C .f (x )=tan xD .f (x )=cos (x +1)解析:选D .由题意可得准偶函数的图象关于直线x =a (a ≠0)对称,即准偶函数的图象存在不是y 轴的对称轴.选项A ,C 中函数的图象不存在对称轴,选项B 中函数的图象的对称轴为y 轴,只有选项D 中的函数满足题意.2.在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,若函数f (x )的图象恰好经过n (n ∈N *)个整点,则称函数f (x )为n 阶整点函数.给出下列函数:①f (x )=sin 2x ;②g (x )=x 3;③h (x )=⎝ ⎛⎭⎪⎫13x;④φ(x )=ln x .其中是一阶整点函数的是( ) A .①②③④ B .①③④ C .①④D .④解析:选C .对于函数f (x )=sin 2x ,它的图象(图略)只经过一个整点(0,0),所以它是一阶整点函数,排除D ;对于函数g (x )=x 3,它的图象(图略)经过整点(0,0),(1,1),…,所以它不是一阶整点函数,排除A ;对于函数h (x )=⎝ ⎛⎭⎪⎫13x,它的图象(图略)经过整点(0,1),(-1,3),…,所以它不是一阶整点函数,排除B .故选C .。
高考数学(文)一轮复习 2-1函数及其表示
9
板块一
板块二
板块三
板块四板块五高Fra bibliotek一轮总复习 ·数学(文)
2.[2015·重庆高考]函数 f(x)=log2(x2+2x-3)的定义域是( )
A.[-3,1]
B.(-3,1)
C.(-∞,-3]∪[1,+∞) D.(-∞,-3)∪(1,+∞)
解析 由 x2+2x-3>0 得 x<-3,或 x>1,其定义域为(-∞,-3)∪(1,+∞),故选 D.
24
板块一
板块二
板块三
板块四
板块五
高考一轮总复习 ·数学(文)
求函数解析式的常用方法 (1)配凑法:由已知条件 f[g(x)]=F(x),可将 F(x)改写成关于 g(x)的表达式,然后以 x 替代 g(x),便得 f(x) 的表达式; (2)待定系数法:若已知函数的类型(如一次函数、二次函数等)可用待定系数法; (3)换元法:已知复合函数 f[g(x)]的解析式,可用换元法,此时要注意新元的取值范围; (4)方程思想:已知关于 f(x)与 f1x或 f(-x)的表达式,可根据已知条件再构造出另外一个等式组成方程 组,通过解方程组求出 f(x).
点击观看 考点视频
22
板块一
板块二
板块三
板块四
板块五
高考一轮总复习 ·数学(文)
(2)令2x+1=t 得 x=t-2 1,代入得 f(t)=lgt-2 1,
又 x>0,所以 t>1,
故 f(x)的解析式是 f(x)=lgx-2 1(x>1).
(3)因为 f(x)是一次函数,可设 f(x)=ax+b(a≠0),
6
板块一
板块二
板块三
板块四
2022版高考数学一轮复习第二章函数导数及其应用第一讲函数及其表示学案含解析新人教版
(3)下面各组函数中是同一函数的是( D )
A.y= -2x3与 y=x -2x
3 B.y=
x3与
y=|x|
C.y= x+1· x-1与 y= x+1x-1
D.f(x)=x2-2x-1 与 g(t)=t2-2t-1
[解析] (1)①是映射,也是函数;
②不是映射,更不是函数,因为从 A 到 B 的对应为“一对多”;
4
42
考点突破·互动探究 考点一 函数的概念及表示 考向 1 函数与映射的概念——自主练透
例 1 (1)下列对应是否是从集合 A 到 B 的映射,能否构成函数? ①A={1,2,3},B=R,f(1)=f(2)=3,f(3)=4. ②A={x|x≥0},B=R,f:x→y,y2=4x. ③A=N,B=Q,f:x→y=x12. ④A={衡中高三·一班的同学},B=[0,150],f:每个同学与其高考数学的分数相对应. (2)(2021·河南安阳模拟改编)设集合 M={x|0≤x≤2},N={y|0≤y≤2},那么下面的 4 个 图形中,能表示从集合 M 到集合 N 的函数关系的有( C )
A→B 集合 B 中有__唯一__的数 f(x)和它对 在集合 B 中有__唯一__的元素 y 与之
应
对应
名称
称对应__f:A→B__为从集合 A 到集合 称对应__f:A→B__为从集合 A 到集
B 的一个函数
合 B 的一个映射
记法
y=f(x),x∈A
对应 f:A→B 是一个映射
2.函数
(1)函数实质上是从一个非空数集到另一个非空数集的映射.
A.lg 2
B.lg 32
C.lg 1 32
D.1lg 2 5
1 [解析] 解法一:由题意知 x>0,令 t=x5,则 t>0,x=t5 ,
高考数学一轮复习第二章第一节函数及其表示课时作业文(含解析)
第二章函数、导数及其应用第一节函数及其表示1. 函数g(x) = x+ 3的定义域为()A. {x|x >- 3} B . {x|x >—3}C. {x|x w —3} D . {x|x v—3}解析:由x + 3>0可得x>—3,故选A.答案:A2x, x w 0,2. 已知函数f(x)= 则f(f( —1))=( )log 2x, x>0,A. —2 B . —1C. 1 D . 2答案:B3. 已知函数f(x)的定义域为[—3, 4],在同一坐标系下,函数y = f(x)的图象与直线x =3的交点个数是()A. 0 B . 1C. 2 D . 0 或1答案:Blg x , x> 0,4. 已知函数f(x)= 若f(a) = 0,则实数a的值等于()x + 3, x w 0,A. —3 B . 1C.—3 或1 D . —1 或3解析:当a>0 时,f(a) = lg a= 0,所以a= 1;当a wo 时,f(a) = a+ 3 = 0,解得 a =—3.所以实数a的值为1或—3,故选C.答案:Clog 2(x+ 1) , x> 3,5. (2013 •湖南五市十校联考)已知函数f(x) = x—3 满足f(a) = 3,2 + 1, x w 3,则f(a —5)的值为()17A. log 23B.—c.@ D. 2 或1解析:当a> 3 时,log 2(a + 1) = 3,得a+ 1 = 2 = 8,所以a= 7,于是f(a —5) = f(2) 3=2—1+ 1 = 2.当a<3时,2a—3+ 1 = 3,得a = 4,不符合条件.故选 C.答案:C6•函数f(x) = 2x—4的定义域为解析:由2x—4>0得x>2.因此,所求函数的定义域是{x|x >2}.答案:{x|x > 2}2x + 2x, x>0,7. 已知函数f(x) = 2_________________________________________________________________ 若f(a) < 3,则a的取值范围是.—x + 2x, x v 0,解析:在坐标平面内画出函数y = f(x)的图象,结合图象可知该函数是在R上的增函数, 且f(1) = 3,因此f(a) <3= f(1),得a w 1,即实数a的取值范围是(―® 1].答案:(―汽1]2x3, x v 0,n8. (2013 •福建卷)已知函数f(x) = n 贝U f f — = _____________ .—tan x , 0<xv-^, 4n n 3解析:f f 4 = f —tan 4 = f( —1) = 2( —1) =— 2.答案:—29•下图是一个电子元件在处理数据时的流程图:(1) 试确定y与x的函数关系式;⑵求f( —3) , f(1)的值;⑶若f(x) = 16,求x的值.解析:(1)由流程图可知,当x>1时,y = y? = (x + 2)2;22(x+ 2) , x> 1,当x v 1 时,y = y2 + 2= x + 2.所以y = 2x + 2, x v 1.2 2(2) f( —3) = ( —3) + 2 = 11, f (1) = (1 + 2) = 9.2(3) 若x> 1,则(x + 2) = 16,解得x = 2或x = —6(舍去).2若x<1,则x + 2= 16,解得x = 14(舍去)或x =- 14.综上所述,x= 2或x =- 14.10•甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2 km,甲10时起出发前往乙家•如图所示,表示甲从家出发到达乙家为止经过的路程y(km)与时间x(min)的关系.试写出y = f(x)的函数解析式.解析:当x€ [0 , 30],设y = k1x+ ",b1 = 0, 由已知得30k1 + b = 2.1 1•-k1=亦,b1= 0,y=存.当x€ (30 , 40)时,y= 2;当x€ [40 , 60]时,设y = k?x+ b2.40k2+ b2= 2,由60k2+ b2= 4,1 1•-k 2= 10, b2=- 2, y= 10x一2,115x, x€ [0 , 30],.• f(x) = 2, x€( 30, 40),丄x- 2, x€ [40 , 60].。
高考数学一轮复习第二章第1课时函数及其表示课时作业理新人教版
第二章基本初等函数、导数及其应用第1课时函数及其表示1.函数的基本概念(1)函数的概念:设A,B是非空的,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有的数f(x)和它对应,那么称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的.(2)函数的值域:如果自变量取值a,则由对应关系f确定的值y称为函数在a处的函数值,记作y=f(a),所有函数值构成的集合{f(x)|x∈A}叫做这个函数的值域.(3)函数的三要素:函数的三要素是、和.其中被函数的和对应关系完全确定,所以确定一个函数只需这两个要素即可.2.映射设A,B是两个的集合,如果按照某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射.3.函数的表示方法表示函数的常用方法有:、、.4.分段函数若函数在其定义域的不同子集上,因不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的,其值域等于各段函数的值域的,分段函数虽由几个部分组成,但它表示的是一个函数.1.函数f(x)=lg(4-x2)的定义域为().A. [-2,2]B. (-2,2)C. [0,2]D. (0,2)2.函数y=x2-2x的定义域为{0,1,2,3},那么其值域为().A. {-1,0,3}B. {0,1,2,3}C. {y|-1≤y≤3}D. {y|0≤y≤3}3. (教材改编)设一个函数的关系式为f(x)=2x+3,它的值域为{-1,2,5,8},则此函数的定义域为.4.(教材改编)已知函数f(x)=,则f(f(14))= ;若f(x)=3,则x= .5.设函数f(x)=若f(a)=a,则实数a的值是.1.对映射定义搞清以下几点:(1)映射是特殊的对应,其“特殊性”在于,它只能是“一对一”或“多对一”的对应,不能是“一对多”的对应.(2)“对应关系”重在效果,未必要写出,可以“尽在不言中”;对应关系未必都能用关系式表达.(3)A中的每一个元素都有象,且唯一;B中的元素未必有原象,即使有,也未必唯一.(4)若对应关系为f,则a的象记为f(a).如“某班内的全体学生”与“这次考试的数学成绩”对应,就是一个从“学生集合”到“成绩集合”映射.2.函数与映射的区别与联系.(1)函数是特殊的映射,其特殊性在于集合A与集合B只能是非空数集,即函数是非空数集A 到非空数集B的映射.(2)映射不一定是函数,从A到B的一个映射,A,B若不是数集,则这个映射便不是函数.3.分段函数不能认为是多个函数,仍为一个函数.考向一求简单函数的定义域、值域例1(2014·重庆模拟)函数的定义域为().【审题视点】本题考查函数的定义域.【方法总结】1.简单函数定义域的类型及求法.(1)已知函数的关系式,则构造使关系式有意义的不等式(组)求解.(2)对实际问题:由实际意义及使关系式有意义构成的不等式(组)求解.(3)对抽象函数:①若已知函数f(x)的定义域为[a,b],则复合函数f(g(x))的定义域由不等式a≤g(x)≤b求出.②若已知函数f(g(x))的定义域为[a,b],则f(x)的定义域为g(x)在x∈[a,b]时的值域.2.求简单的函数值域的方法.(1)观察法;(2)图象观察法;(3)单调性法;(4)分离常数法;(5)均值不等式法;(6)换元法.1.已知函数y=f(x)的定义域是[0,2],求函数g(x)=的定义域.考向二分段函数及其应用例2(2014·福建模拟)已知函数f(x)=则f(f(4))的值为().【审题视点】考查分段函数的定义和复合函数的求值问题.【方法总结】首先要确定自变量的值属于哪个区间,其次选定相应关系代入计算求解,特别要注意分段区间端点的取舍,当自变量的值不确定时,要分类讨论.2. (2013·枣庄一模)设f(x)=则f(6)的值为().A. 5B. 6C. 7D. 8考向三求函数的关系式例3(2014·江西)将连续正整数1,2,…,n(n∈N*)从小到大排列构成一个数123…n,F(n)为这个数的位数(如n=12时,此数为123456789101112,共有15个数字,F(12)=15),现从这个数中随机取一个数字,p(n)为恰好取到0的概率.(1)求p(100);(2)当n≤2014时,求F(n)的关系式;(3)令g(n)为这个数中数字0的个数,f(n)为这个数中数字9的个数,h(n)=f(n)-g(n),S={n|h(n)=1,n≤100,n∈N*},求当n∈S时p(n)的最大值.【审题视点】本题主要考查数列实际应用问题,考查认识问题、分析问题、解决问题的能力,综合分析问题的能力,运算求解能力.【方法总结】函数关系式的求法.(1)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的关系式,然后以x替代g(x),便得f(x)的关系式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法;(3)换元法:已知复合函数f(g(x))的关系式,可用换元法,此时要注意新元的取值范围;(4)方程思想:已知关于f(x)与或f(-x)的关系式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f(x).3.已知,求f(x)的关系式.典例(2014·北京模拟)定义一种新运算:已知函数,若函数g(x)=f(x)-k恰有两个零点,则k的取值范围为().A. (1,2]B. (1,2)C. (0,2)D. (0,1)【解题指南】本题考查根的存在性及个数的判断,数形结合是解决问题的关键,属中档题.1. (2014·山东)函数的定义域为().A. (0, 2)B. (0,2]C. (2,+∞)D. [2,+∞)2. (2014·安徽)若函数f(x)(x∈R)是周期为4的奇函数,且在[0,2]上的关系式为f(x)=则.参考答案与解析1. (1) 数集唯一确定定义域(3) 定义域值域对应关系值域定义域2.非空唯一确定3.解析法列表法图象法4.对应关系并集并集1.B2.A3.4.-1105.或-1【例1】B解析:要使函数有意义,则log2(2x-1)≥0,解得x≥1,故函数定义域为[1, +∞),故选择B.【例2】B解析:由于4大于0,把4代入x>0的解析式中得f(4)=-2,所以f(f(4))=f(-2)=,故选B.【例3】(1) 当时,这个数中总共有192个数字,其中数字0的个数为11,所以恰好取到0的概率为p(100)=.1.2. C解析:f(6)=f[f(11)]=f(8)=f[f(13)]=f(10)=7.3.。
2023年高考数学一轮复习第二章函数1函数的概念及其表示练习含解析
函数的概念及其表示考试要求 1.了解函数的含义,会求简单函数的定义域和值域.2.在实际情景中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并会简单的应用.知识梳理 1.函数的概念一般地,设A ,B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A . 2.函数的三要素(1)函数的三要素:定义域、对应关系、值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为同一个函数. 3.函数的表示法表示函数的常用方法有解析法、图象法和列表法. 4.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数. 常用结论1.直线x =a 与函数y =f (x )的图象至多有1个交点.2.在函数的定义中,非空数集A ,B ,A 即为函数的定义域,值域为B 的子集.3.分段函数虽由几个部分组成,但它表示的是一个函数.分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若两个函数的定义域和值域相同,则这两个函数是同一个函数.( × ) (2)函数y =f (x )的图象可以是一条封闭曲线.( × ) (3)y =x 0与y =1是同一个函数.( × ) (4)函数f (x )=⎩⎪⎨⎪⎧x -1,x ≥0,x 2,x <0的定义域为R .( √ )教材改编题1.下列各曲线表示的y 与x 之间的关系中,y 不是x 的函数的是( )答案 C2.(多选)下列各组函数是同一个函数的是( ) A .f (x )=x 2-2x -1,g (s )=s 2-2s -1B .f (x )=x -1,g (x )=x 2-1x +1C .f (x )=x 2,g (x )=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0D .f (x )=-x 3,g (x )=x -x 答案 AC3.(2022·长沙质检)已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤0,log 3x ,x >0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12等于( )A .-1B .2C.3D.12答案 D解析 ∵f ⎝ ⎛⎭⎪⎫12=log 312<0, ∴f ⎝⎛⎭⎪⎫f⎝ ⎛⎭⎪⎫12=31log 23=12.题型一 函数的定义域例1 (1)(2022·武汉模拟)函数f (x )=1ln x +1+4-x 2的定义域为( ) A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]答案 B解析 要使函数有意义,则需⎩⎪⎨⎪⎧x +1>0,x +1≠1,4-x 2≥0,解得-1<x ≤2且x ≠0, 所以x ∈(-1,0)∪(0,2].所以函数的定义域为(-1,0)∪(0,2].(2)若函数f (x )的定义域为[0,2],则函数f (x -1)的定义域为________. 答案 [1,3]解析 ∵f (x )的定义域为[0,2], ∴0≤x -1≤2,即1≤x ≤3, ∴函数f (x -1)的定义域为[1,3].延伸探究 将本例(2)改成“若函数f (x +1)的定义域为[0,2]”,则函数f (x -1)的定义域为________. 答案 [2,4]解析 ∵f (x +1)的定义域为[0,2], ∴0≤x ≤2, ∴1≤x +1≤3, ∴1≤x -1≤3, ∴2≤x ≤4,∴f (x -1)的定义域为[2,4]. 教师备选1.(2022·西北师大附中月考)函数y =lg(x 2-4)+x 2+6x 的定义域是( ) A .(-∞,-2)∪[0,+∞) B .(-∞,-6]∪(2,+∞) C .(-∞,-2]∪[0,+∞) D .(-∞,-6)∪[2,+∞) 答案 B解析 由题意,得⎩⎪⎨⎪⎧x 2-4>0,x 2+6x ≥0,解得x >2或x ≤-6.因此函数的定义域为(-∞,-6]∪(2,+∞).2.已知函数f (x )=x1-2x ,则函数f x -1x +1的定义域为( )A .(-∞,1)B .(-∞,-1)C .(-∞,-1)∪(-1,0)D .(-∞,-1)∪(-1,1) 答案 D解析 令1-2x>0, 即2x<1,即x <0.∴f (x )的定义域为(-∞,0).∴函数f x -1x +1中,有⎩⎪⎨⎪⎧x -1<0,x +1≠0,解得x <1且x ≠-1.故函数f x -1x +1的定义域为(-∞,-1)∪(-1,1).思维升华 (1)求给定函数的定义域:由函数解析式列出不等式(组)使解析式有意义. (2)求复合函数的定义域①若f (x )的定义域为[m ,n ],则在f (g (x ))中,由m ≤g (x )≤n 解得x 的范围即为f (g (x ))的定义域.②若f (g (x ))的定义域为[m ,n ],则由m ≤x ≤n 得到g (x )的范围,即为f (x )的定义域. 跟踪训练1 (1)函数f (x )=11-4x2+ln(3x -1)的定义域为( )A.⎝ ⎛⎦⎥⎤13,12B.⎝ ⎛⎭⎪⎫13,12C.⎣⎢⎡⎭⎪⎫-12,14 D.⎣⎢⎡⎦⎥⎤-12,12 答案 B解析 要使函数f (x )=11-4x2+ln(3x -1)有意义,则⎩⎪⎨⎪⎧1-4x 2>0,3x -1>0⇒13<x <12. ∴函数f (x )的定义域为⎝ ⎛⎭⎪⎫13,12. (2)已知函数f (x )的定义域为[-2,2],则函数g (x )=f (2x )+1-2x的定义域为__________. 答案 [-1,0]解析 由条件可知,函数的定义域需满足⎩⎪⎨⎪⎧-2≤2x ≤2,1-2x≥0,解得-1≤x ≤0,所以函数g (x )的定义域是[-1,0]. 题型二 函数的解析式例2 (1)(2022·哈尔滨三中月考)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,则f (x )的解析式为________.答案 f (x )=lg2x -1(x >1) 解析 令2x+1=t (t >1),则x =2t -1, 所以f (t )=lg 2t -1(t >1), 所以f (x )=lg2x -1(x >1). (2)已知y =f (x )是二次函数,若方程f (x )=0有两个相等实根,且f ′(x )=2x +2,则f (x )=________. 答案 x 2+2x +1解析 设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b ,∴2ax +b =2x +2, 则a =1,b =2.∴f (x )=x 2+2x +c , 又f (x )=0,即x 2+2x +c =0有两个相等实根. ∴Δ=4-4c =0,则c =1. 故f (x )=x 2+2x +1.(3)已知函数对任意的x 都有f (x )-2f (-x )=2x ,则f (x )=________. 答案 23x解析 ∵f (x )-2f (-x )=2x ,① ∴f (-x )-2f (x )=-2x ,② 由①②得f (x )=23x .教师备选已知f (x )满足f (x )-2f ⎝ ⎛⎭⎪⎫1x =2x ,则f (x )=________.答案 -2x 3-43x解析 ∵f (x )-2f ⎝ ⎛⎭⎪⎫1x =2x ,①以1x代替①中的x ,得f ⎝ ⎛⎭⎪⎫1x -2f (x )=2x,②①+②×2得-3f (x )=2x +4x,∴f (x )=-2x 3-43x.思维升华 函数解析式的求法(1)配凑法;(2)待定系数法;(3)换元法;(4)解方程组法. 跟踪训练2 (1)已知f (1-sin x )=cos 2x ,则f (x )=________. 答案 -x 2+2x ,x ∈[0,2] 解析 令t =1-sin x , ∴t ∈[0,2],sin x =1-t ,∴f (t )=1-sin 2x =1-(1-t )2=-t 2+2t ,t ∈[0,2], ∴f (x )=-x 2+2x ,x ∈[0,2].(2)(2022·黄冈质检)已知f ⎝⎛⎭⎪⎫x 2+1x2=x 4+1x4,则f (x )=__________.答案 x 2-2,x ∈[2,+∞)解析 ∵f ⎝⎛⎭⎪⎫x 2+1x 2=⎝⎛⎭⎪⎫x 2+1x22-2,∴f (x )=x 2-2,x ∈[2,+∞). 题型三 分段函数例3 (1)已知f (x )=⎩⎪⎨⎪⎧cosπx ,x ≤1,f x -1+1,x >1,则f ⎝ ⎛⎭⎪⎫43+f⎝ ⎛⎭⎪⎫-43的值为( ) A.12B .-12C .-1D .1 答案 D解析 f ⎝ ⎛⎭⎪⎫43=f⎝ ⎛⎭⎪⎫43-1+1=f ⎝ ⎛⎭⎪⎫13+1=cosπ3+1=32,f ⎝ ⎛⎭⎪⎫-43=cos ⎝ ⎛⎭⎪⎫-4π3=cos2π3=-12, ∴f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=32-12=1.(2)已知f (x )=⎩⎪⎨⎪⎧2x+3,x >0,x 2-4,x ≤0,若f (a )=5,则实数a 的值是__________;若f (f (a ))≤5,则实数a 的取值范围是__________. 答案 1或-3 [-5,-1]解析 ①当a >0时,2a+3=5,解得a =1; 当a ≤0时,a 2-4=5, 解得a =-3或a =3(舍). 综上,a =1或-3.②设t =f (a ),由f (t )≤5得-3≤t ≤1. 由-3≤f (a )≤1,解得-5≤a ≤-1. 教师备选1.已知函数f (x )=⎩⎪⎨⎪⎧sin ⎝ ⎛⎭⎪⎫πx +π6,x >1,⎝ ⎛⎭⎪⎫12x,x <1,则f (f (2022))等于( )A .-32B.22C.32D. 2 答案 B解析 f (2022)=sin ⎝ ⎛⎭⎪⎫2022π+π6=sin π6=12,∴f (f (2022))=f ⎝ ⎛⎭⎪⎫12=1212⎛⎫ ⎪⎝⎭=22. 2.(2022·百校联盟联考)已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≥0,-x 2,x <0,若对于任意的x ∈R ,|f (x )|≥ax ,则a =________. 答案 0解析 当x ≥0时,|f (x )|=x 3≥ax ,即x (x 2-a )≥0恒成立,则有a ≤0; 当x <0时,|f (x )|=x 2≥ax ,即a ≥x 恒成立, 则有a ≥0,所以a =0.思维升华 分段函数求值问题的解题思路(1)求函数值:当出现f (f (a ))的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.跟踪训练3 (1)(2022·河北冀州一中模拟)设f (x )=⎩⎪⎨⎪⎧x +2x-3,x ≥1,x 2+1,x <1.则f (f (-1))=________,f (x )的最小值是________. 答案 0 22-3 解析 ∵f (-1)=2,∴f (f (-1))=f (2)=2+22-3=0,当x ≥1时,f (x )=x +2x-3≥22-3,当且仅当x =2时取等号,f (x )min =22-3, 当x <1时,f (x )=x 2+1≥1,x =0时取等号, ∴f (x )min =1,综上有f (x )的最小值为22-3.(2)(2022·重庆质检)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >1,x 2-1,x ≤1,则f (x )<f (x +1)的解集为________.答案 ⎝ ⎛⎭⎪⎫-12,+∞解析 当x ≤0时,x +1≤1,f (x )<f (x +1), 等价于x 2-1<(x +1)2-1, 解得-12<x ≤0;当0<x ≤1时,x +1>1, 此时f (x )=x 2-1≤0,f (x +1)=log 2(x +1)>0,∴当0<x ≤1时,恒有f (x )<f (x +1);当x >1时,f (x )<f (x +1)⇔log 2x <log 2(x +1)恒成立.综上知,不等式f (x )<f (x +1)的解集为⎝ ⎛⎭⎪⎫-12,+∞.课时精练1.(2022·重庆模拟)函数f (x )=3-xlg x的定义域是( ) A .(0,3) B .(0,1)∪(1,3) C .(0,3] D .(0,1)∪(1,3]答案 D解析 ∵f (x )=3-xlg x,∴⎩⎪⎨⎪⎧3-x ≥0,lg x ≠0,x >0,解得0<x <1或1<x ≤3,故函数的定义域为(0,1)∪(1,3].2.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )答案 B解析 A 中函数定义域不是[-2,2];C 中图象不表示函数;D 中函数值域不是[0,2]. 3.(2022·安徽江淮十校联考)设函数f (x )=⎩⎪⎨⎪⎧4x -12,x <1,a x ,x ≥1,若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫78=8,则a 等于( ) A.12 B.34 C .1 D .2答案 D解析 f ⎝ ⎛⎭⎪⎫78=4×78-12=3,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫78=f (3)=a 3,得a 3=8,解得a =2.4.设函数f ⎝ ⎛⎭⎪⎫1-x 1+x =x ,则f (x )的表达式为( )A.1+x1-x(x ≠-1) B.1+xx -1(x ≠-1) C.1-x1+x(x ≠-1) D.2xx +1(x ≠-1) 答案 C解析 令t =1-x 1+x ,则x =1-t1+t ,∴f (t )=1-t 1+t ,即f (x )=1-x1+x(x ≠-1).5.如图,点P 在边长为1的正方形的边上运动,M 是CD 的中点,当P 沿A -B -C -M 运动时,设点P 经过的路程为x ,△APM 的面积为y ,则函数y =f (x )的图象大致是( )答案 A解析 由题意可得y =f (x )=⎩⎪⎨⎪⎧12x ,0≤x <1,34-x4,1≤x <2,54-12x ,2≤x ≤52.画出函数f (x )的大致图象,故选A.6.(多选)下列函数中,与y =x 是同一个函数的是( ) A .y =3x 3B .y =x 2C .y =lg10xD .y =10lg x答案 AC解析 y =x 的定义域为x ∈R ,值域为y ∈R ,对于A 选项,函数y =3x 3=x 的定义域为x ∈R ,故是同一函数;对于B 选项,函数y =x 2=||x ≥0,与y =x 的解析式、值域均不同,故不是同一函数;对于C 选项,函数y =lg10x=x ,且定义域为R ,故是同一函数;对于D 选项,y =10lg x=x 的定义域为(0,+∞),与函数y =x 的定义域不相同,故不是同一函数.7.(多选)(2022·张家界质检)设函数f (x )=⎩⎪⎨⎪⎧1-x ,x ≤a ,2x,x >a ,若f (1)=2f (0),则实数a可以为( ) A .-1B .0C .1D .2 答案 AB 解析 若a <0,则f (0)=1,f (1)=2,f (1)=2f (0)成立; 若0≤a <1,则f (0)=1,f (1)=2,f (1)=2f (0)成立; 若a ≥1,则f (0)=1,f (1)=0,f (1)=2f (0)不成立. 综上所述,实数a 的取值范围是(-∞,1).8.(多选)具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数满足“倒负”变换的函数的是( ) A .f (x )=x -1xB .f (x )=ln1-x1+xC .f (x )=1ex x-D .f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1答案 AD解析 对于A ,f (x )=x -1x,f ⎝ ⎛⎭⎪⎫1x =1x-x =-f (x ),满足题意; 对于B ,f (x )=ln1-x1+x,则f ⎝ ⎛⎭⎪⎫1x =ln x -1x +1≠-f (x ),不满足; 对于C ,f ⎝ ⎛⎭⎪⎫1x =111e xx -=ex -1,-f (x )=1ex x--≠f ⎝ ⎛⎭⎪⎫1x ,不满足;对于D ,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,则f ⎝ ⎛⎭⎪⎫1x =-f (x )满足“倒负”变换,故选AD.9.已知f (x 5)=lg x ,则f (100)=________. 答案 25解析 令x 5=100, 则x =15100=2510, ∴f (100)=25lg 10=25.10.函数f (x )=ln(x -1)+4+3x -x 2的定义域为________. 答案 (1,4]解析 依题意⎩⎪⎨⎪⎧x -1>0,4+3x -x 2≥0,解得1<x ≤4,∴f (x )的定义域为(1,4].11.(2022·广州质检)已知函数f (x )=⎩⎪⎨⎪⎧1-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,则实数a的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫-1,12 解析 ∵当x ≥1时,f (x )=ln x ≥ln1=0, 又f (x )的值域为R ,故当x <1时,f (x )的值域包含(-∞,0).故⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥0,解得-1≤a <12.12.设函数f (x )=⎩⎪⎨⎪⎧x ,x <0,1,x >0,则不等式xf (x )+x ≤2的解集是________.答案 [-2,0)∪(0,1] 解析 当x <0时,f (x )=x , 代入xf (x )+x ≤2得x 2+x -2≤0, 解得-2≤x <0; 当x >0时,f (x )=1,代入xf (x )+x ≤2,解得0<x ≤1. 综上有-2≤x <0或0<x ≤1.13.设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( ) A .(-∞,-1] B .(0,+∞) C .(-1,0) D .(-∞,0)答案 D解析 当x ≤0时,函数f (x )=2-x是减函数,则f (x )≥f (0)=1.作出f (x )的大致图象如图所示,结合图象知,要使f (x +1)<f (2x ),当且仅当⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0,解得x <-1或-1≤x <0,即x <0.14.设函数f (x )=⎩⎪⎨⎪⎧-x +λ,x <1λ∈R,2x,x ≥1,若对任意的a ∈R 都有f (f (a ))=2f (a )成立,则λ的取值范围是______. 答案 [2,+∞) 解析 当a ≥1时,2a≥2. ∴f (f (a ))=f (2a)=22a=2f (a )恒成立.当a <1时,f (f (a ))=f (-a +λ)=2f (a )=2λ-a ,∴λ-a ≥1,即λ≥a +1恒成立, 由题意λ≥(a +1)max ,∴λ≥2, 综上,λ的取值范围是[2,+∞).15.(多选)若函数f (x )满足:对定义域内任意的x 1,x 2(x 1≠x 2),有f (x 1)+f (x 2)>2f ⎝ ⎛⎭⎪⎫x 1+x 22,则称函数f (x )具有H 性质.则下列函数中具有H 性质的是( )A .f (x )=⎝ ⎛⎭⎪⎫12xB .f (x )=ln xC .f (x )=x 2(x ≥0) D .f (x )=tan x ⎝ ⎛⎭⎪⎫0≤x <π2 答案 ACD解析 若对定义域内任意的x 1,x 2(x 1≠x 2),有f (x 1)+f (x 2)>2f ⎝ ⎛⎭⎪⎫x 1+x 22,则点(x 1,f (x 1)),(x 2,f (x 2))连线的中点在点⎝⎛⎭⎪⎫x 1+x 22,f ⎝ ⎛⎭⎪⎫x 1+x 22的上方,如图⎝⎛⎭⎪⎫其中a =f⎝ ⎛⎭⎪⎫x 1+x 22,b =f x 1+f x 22.根据函数f (x )=⎝ ⎛⎭⎪⎫12x ,f (x )=ln x ,f (x )=x 2(x ≥0),f (x )=tan x ⎝⎛⎭⎪⎫0≤x <π2的图象可知,函数f (x )=⎝ ⎛⎭⎪⎫12x ,f (x )=x 2(x ≥0),f (x )=tan x ⎝⎛⎭⎪⎫0≤x <π2具有H 性质,函数f (x )=ln x 不具有H 性质.16.设f (x )是定义在R 上的函数,且f (x +2)=2f (x ),f (x )=⎩⎪⎨⎪⎧2x +a ,-1<x <0,b e 2x,0≤x ≤1,其中a ,b 为正实数,e 为自然对数的底数,若f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫32,则a b 的取值范围为________. 答案 (2e ,+∞)解析 因为f (x +2)=2f (x ),所以f ⎝ ⎛⎭⎪⎫92=f⎝ ⎛⎭⎪⎫12+4=(2)2f ⎝ ⎛⎭⎪⎫12=2e b ,f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12+2=2f ⎝ ⎛⎭⎪⎫-12 =2⎣⎢⎡⎦⎥⎤2×⎝ ⎛⎭⎪⎫-12+a =2(a -1), 因为f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫32,所以2(a -1)=2e b , 所以a =2e b +1, 因为b 为正实数, 所以a b=2e b +1b=2e +1b∈(2e ,+∞),故a b的取值范围为(2e ,+∞).。
高考数学一轮复习 第二章 函数、导数及其应用 第1节 函数的概念及其表示练习 新人教A版-新人教A版
第二章 第 1 节 函数的概念及其表示[基础训练组]1.(导学号14577082)已知a 、b 为实数,集合M =⎩⎨⎧⎭⎬⎫ba,1,N ={a,0},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .-1B .0C .1D .±1解析:C [a =1,b =0,∴a +b =1.]2.(导学号14577083)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )解析:B [可以根据函数的概念进行排除,使用筛选法得到答案.]3.(导学号14577084)(理科)(2018·某某市一模)函数y =-x 2-x +2ln x 的定义域为( )A .(-2,1)B .[-2,1]C .(0,1)D .(0,1]解析:C [由题意得⎩⎪⎨⎪⎧-x 2-x +2≥0x >0且ln x ≠0,解得0<x <1.故选C.]3.(导学号14577085)(文科)(2016·高考新课标全国卷Ⅱ)下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x解析:D [函数y =10lg x的定义域和值域均为(0,+∞);函数y =x 的定义域和值域均为R ,不满足要求;函数y =lg x 的定义域为(0,+∞),值域为R ,不满足要求;函数y =2x的定义域为R ,值域为(0,+∞),不满足要求;函数y =1x的定义域和值域均为(0,+∞),满足要求.故选D.] [学生用书 课时冲关四 文P251 理P290][基础训练组]1.(导学号14577082)已知a 、b 为实数,集合M =⎩⎨⎧⎭⎬⎫b a,1,N ={a,0},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .-1B .0C .1D .±1解析:C [a =1,b =0,∴a +b =1.]2.(导学号14577083)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )解析:B [可以根据函数的概念进行排除,使用筛选法得到答案.]3.(导学号14577084)(理科)(2018·某某市一模)函数y =-x 2-x +2ln x 的定义域为( )A .(-2,1)B .[-2,1]C .(0,1)D .(0,1]解析:C [由题意得⎩⎪⎨⎪⎧-x 2-x +2≥0x >0且ln x ≠0,解得0<x <1.故选C.]3.(导学号14577085)(文科)(2016·高考新课标全国卷Ⅱ)下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x解析:D [函数y =10lg x的定义域和值域均为(0,+∞);函数y =x 的定义域和值域均为R ,不满足要求;函数y =lg x 的定义域为(0,+∞),值域为R ,不满足要求;函数y =2x的定义域为R ,值域为(0,+∞),不满足要求;函数y =1x的定义域和值域均为(0,+∞),满足要求.故选D.]4.(导学号14577086)已知f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x ,则f (x )=( )A .(x +1)2(x ≠1) B .(x -1)2(x ≠1) C .x 2-x +1(x ≠1)D .x 2+x +1(x ≠1) 解析:C [f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x =x +12x 2-x +1x +1,令x +1x=t ,得f (t )=t 2-t +1(t ≠1),即f (x )=x 2-x +1(x ≠1).故选C.]5.(导学号14577087)已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈2,5],则方程f (x )=1的解是( )A.2或2B.2或3C.2或4D .±2或4解析:C [当x ∈[-1,2]时,由3-x 2=1⇒x = 2. 当x ∈(2,5]时,由x -3=1⇒x =4. 综上所述,f (x )=1的解为2或4.故选C.]6.(导学号14577090)(2015·高考新课标卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2x +1,x >1,且f (a )=-3,则f (6-a )=( )A .-74B .-54C .-34D .-14解析:A [当a ≤1时,2a -1-2=-3,无解;当a >1时,-log 2(a +1)=-3,得a =7,所以f (6-a )=f (-1)=2-2-2=-74,故选A.]7.(导学号14577088)图中的图象所表示的函数的解析式f (x )= ________ .解析:由图象知每段为线段.设f (x )=ax +b ,把(0,0),⎝ ⎛⎭⎪⎫1,32和⎝ ⎛⎭⎪⎫1,32,(2,0)分别代入求解⎩⎪⎨⎪⎧a =32,b =0,⎩⎪⎨⎪⎧a =-32,b =3.答案:f (x )=⎩⎪⎨⎪⎧32x ,0≤x ≤13-32x ,1<x ≤28.(导学号14577089)若函数y =f (x )的值域是[1,3],则函数F (x )=1-2f (x +3)的值域是 ________ .解析:∵1≤f (x )≤3,∴-6≤-2f (x +3)≤-2, ∴-5≤1-2f (x +3)≤-1,即F (x )的值域为[-5,-1]. 答案: [-5,-1]9.(导学号14577091)二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x .∴2ax +a +b =2x . ∴a =1,b =-1. ∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4或x <-1}.10.(导学号14577092)已知函数f (x )=x ·|x |-2x . (1)求函数f (x )=0时x 的值;(2)画出y =f (x )的图象,并结合图象写出f (x )=m 有三个不同实根时,实数m 的取值X 围.解:(1)由f (x )=0可解得x =0,x =±2,所以函数f (x )=0时x 的值为-2,0,2. (2)f (x )=x |x |-2x ,即f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0.图象如图,由图象可得实数m ∈(-1,1).[能力提升组]11.(导学号14577093)(2018·某某市一模)若函数y =f (x )的定义域是[-1,1],则函数y =f (log 2x )的定义域是( )A .[-1,1] B.⎣⎢⎡⎦⎥⎤12,2 C .[2,4]D .[1,4]解析:B [∵y =f (x )的定义域是[-1,1],∴函数y =f (log 2x )有意义⇔-1≤log 2x ≤1,∴12≤x ≤2.∴函数y =f (log 2x )的定义域是{x |12≤x ≤2}.故选B.]12.(导学号14577094)已知f (x )=⎩⎪⎨⎪⎧1x +2,-1≤x ≤0,x 2-2x ,0<x ≤1,若f (2m -1)<12,则m 的取值X 围是( )A .m >12B .m <12C .0≤m <12 D.12<m ≤1解析:D [由题得⎩⎪⎨⎪⎧ -1≤2m -1≤0,12m +1<12,或⎩⎪⎨⎪⎧0<2m -1≤1,2m -12-22m -1<12,解得12<m ≤1,故选D.]13.(导学号14577095)若函数f (x )=x 2+2ax -a 的定义域为R ,则a 的取值X 围为 ________ .解析:由题意知x 2+2ax -a ≥0恒成立, ∴Δ=4a 2+4a ≤0,∴-1≤a ≤0. 答案:[-1,0]14.(导学号14577096)行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度. 解:(1)由题意及函数图象,得⎩⎪⎨⎪⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x ≥0, ∴0≤x ≤70.故行驶的最大速度是70千米/时.[学生用书 课时冲关四 文P251 理P290][基础训练组]1.(导学号14577082)已知a 、b 为实数,集合M =⎩⎨⎧⎭⎬⎫b a ,1,N ={a,0},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .-1B .0C .1D .±1解析:C [a =1,b =0,∴a +b =1.]2.(导学号14577083)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )解析:B [可以根据函数的概念进行排除,使用筛选法得到答案.]3.(导学号14577084)(理科)(2018·某某市一模)函数y =-x 2-x +2ln x 的定义域为( )A .(-2,1)B .[-2,1]C .(0,1)D .(0,1]解析:C [由题意得⎩⎪⎨⎪⎧-x 2-x +2≥0x >0且ln x ≠0,解得0<x <1.故选C.]3.(导学号14577085)(文科)(2016·高考新课标全国卷Ⅱ)下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x解析:D [函数y =10lg x的定义域和值域均为(0,+∞);函数y =x 的定义域和值域均为R ,不满足要求;函数y =lg x 的定义域为(0,+∞),值域为R ,不满足要求;函数y =2x的定义域为R ,值域为(0,+∞),不满足要求;函数y =1x的定义域和值域均为(0,+∞),满足要求.故选D.]4.(导学号14577086)已知f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x ,则f (x )=( )A .(x +1)2(x ≠1) B .(x -1)2(x ≠1) C .x 2-x +1(x ≠1)D .x 2+x +1(x ≠1) 解析:C [f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x =x +12x 2-x +1x +1,令x +1x=t ,得f (t )=t 2-t +1(t ≠1),即f (x )=x 2-x +1(x ≠1).故选C.]5.(导学号14577087)已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈2,5],则方程f (x )=1的解是( )A.2或2B.2或3C.2或4D .±2或4解析:C [当x ∈[-1,2]时,由3-x 2=1⇒x = 2. 当x ∈(2,5]时,由x -3=1⇒x =4. 综上所述,f (x )=1的解为2或4.故选C.]6.(导学号14577090)(2015·高考新课标卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2x +1,x >1,且f (a )=-3,则f (6-a )=( )A .-74B .-54C .-34D .-14解析:A [当a ≤1时,2a -1-2=-3,无解;当a >1时,-log 2(a +1)=-3,得a =7,所以f (6-a )=f (-1)=2-2-2=-74,故选A.]7.(导学号14577088)图中的图象所表示的函数的解析式f (x )= ________ .解析:由图象知每段为线段.设f (x )=ax +b ,把(0,0),⎝ ⎛⎭⎪⎫1,32和⎝ ⎛⎭⎪⎫1,32,(2,0)分别代入求解⎩⎪⎨⎪⎧a =32,b =0,⎩⎪⎨⎪⎧a =-32,b =3.答案:f (x )=⎩⎪⎨⎪⎧32x ,0≤x ≤13-32x ,1<x ≤28.(导学号14577089)若函数y =f (x )的值域是[1,3],则函数F (x )=1-2f (x +3)的值域是 ________ .解析:∵1≤f (x )≤3,∴-6≤-2f (x +3)≤-2, ∴-5≤1-2f (x +3)≤-1,即F (x )的值域为[-5,-1]. 答案: [-5,-1]9.(导学号14577091)二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x .∴2ax +a +b =2x . ∴a =1,b =-1.∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4或x <-1}.10.(导学号14577092)已知函数f (x )=x ·|x |-2x . (1)求函数f (x )=0时x 的值;(2)画出y =f (x )的图象,并结合图象写出f (x )=m 有三个不同实根时,实数m 的取值X 围.解:(1)由f (x )=0可解得x =0,x =±2,所以函数f (x )=0时x 的值为-2,0,2. (2)f (x )=x |x |-2x ,即f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0.图象如图,由图象可得实数m ∈(-1,1).[能力提升组]11.(导学号14577093)(2018·某某市一模)若函数y =f (x )的定义域是[-1,1],则函数y =f (log 2x )的定义域是( )A .[-1,1] B.⎣⎢⎡⎦⎥⎤12,2C .[2,4]D .[1,4]解析:B [∵y =f (x )的定义域是[-1,1],∴函数y =f (log 2x )有意义⇔-1≤log 2x ≤1,∴12≤x ≤2.∴函数y =f (log 2x )的定义域是{x |12≤x ≤2}.故选B.]12.(导学号14577094)已知f (x )=⎩⎪⎨⎪⎧1x +2,-1≤x ≤0,x 2-2x ,0<x ≤1,若f (2m -1)<12,则m 的取值X 围是( )A .m >12B .m <12C .0≤m <12 D.12<m ≤1解析:D [由题得⎩⎪⎨⎪⎧ -1≤2m -1≤0,12m +1<12,或⎩⎪⎨⎪⎧0<2m -1≤1,2m -12-22m -1<12,解得12<m ≤1,故选D.]13.(导学号14577095)若函数f (x )=x 2+2ax -a 的定义域为R ,则a 的取值X 围为 ________ .解析:由题意知x 2+2ax -a ≥0恒成立, ∴Δ=4a 2+4a ≤0,∴-1≤a ≤0. 答案:[-1,0]14.(导学号14577096)行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度. 解:(1)由题意及函数图象,得⎩⎪⎨⎪⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x ≥0, ∴0≤x ≤70.故行驶的最大速度是70千米/时.4.(导学号14577086)已知f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x ,则f (x )=( )A .(x +1)2(x ≠1) B .(x -1)2(x ≠1) C .x 2-x +1(x ≠1)D .x 2+x +1(x ≠1) 解析:C [f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x =x +12x 2-x +1x +1,令x +1x=t ,得f (t )=t 2-t +1(t ≠1),即f (x )=x 2-x +1(x ≠1).故选C.]5.(导学号14577087)已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈2,5],则方程f (x )=1的解是( )A.2或2B.2或3C.2或4D .±2或4解析:C [当x ∈[-1,2]时,由3-x 2=1⇒x = 2. 当x ∈(2,5]时,由x -3=1⇒x =4. 综上所述,f (x )=1的解为2或4.故选C.]6.(导学号14577090)(2015·高考新课标卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2x +1,x >1,且f (a )=-3,则f (6-a )=( )A .-74B .-54C .-34D .-14解析:A [当a ≤1时,2a -1-2=-3,无解;当a >1时,-log 2(a +1)=-3,得a =7,所以f (6-a )=f (-1)=2-2-2=-74,故选A.]7.(导学号14577088)图中的图象所表示的函数的解析式f (x )= ________ .解析:由图象知每段为线段.设f (x )=ax +b ,把(0,0),⎝ ⎛⎭⎪⎫1,32和⎝ ⎛⎭⎪⎫1,32,(2,0)分别代入求解⎩⎪⎨⎪⎧a =32,b =0,⎩⎪⎨⎪⎧a =-32,b =3.答案:f (x )=⎩⎪⎨⎪⎧32x ,0≤x ≤13-32x ,1<x ≤28.(导学号14577089)若函数y =f (x )的值域是[1,3],则函数F (x )=1-2f (x +3)的值域是 ________ .解析:∵1≤f (x )≤3,∴-6≤-2f (x +3)≤-2, ∴-5≤1-2f (x +3)≤-1,即F (x )的值域为[-5,-1]. 答案: [-5,-1]9.(导学号14577091)二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x .∴2ax +a +b =2x . ∴a =1,b =-1. ∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4或x <-1}.10.(导学号14577092)已知函数f (x )=x ·|x |-2x . (1)求函数f (x )=0时x 的值;(2)画出y =f (x )的图象,并结合图象写出f (x )=m 有三个不同实根时,实数m 的取值X 围.解:(1)由f (x )=0可解得x =0,x =±2,所以函数f (x )=0时x 的值为-2,0,2. (2)f (x )=x |x |-2x ,即f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0.图象如图,由图象可得实数m ∈(-1,1).[能力提升组]11.(导学号14577093)(2018·某某市一模)若函数y =f (x )的定义域是[-1,1],则函数y =f (log 2x )的定义域是( )A .[-1,1] B.⎣⎢⎡⎦⎥⎤12,2C .[2,4]D .[1,4]解析:B [∵y =f (x )的定义域是[-1,1],∴函数y =f (log 2x )有意义⇔-1≤log 2x ≤1,∴12≤x ≤2.∴函数y =f (log 2x )的定义域是{x |12≤x ≤2}.故选B.]12.(导学号14577094)已知f (x )=⎩⎪⎨⎪⎧1x +2,-1≤x ≤0,x 2-2x ,0<x ≤1,若f (2m -1)<12,则m 的取值X 围是( )A .m >12B .m <12C .0≤m <12 D.12<m ≤1解析:D [由题得⎩⎪⎨⎪⎧ -1≤2m -1≤0,12m +1<12,或⎩⎪⎨⎪⎧0<2m -1≤1,2m -12-22m -1<12,解得12<m ≤1,故选D.]13.(导学号14577095)若函数f (x )=x 2+2ax -a 的定义域为R ,则a 的取值X 围为 ________ .解析:由题意知x 2+2ax -a ≥0恒成立, ∴Δ=4a 2+4a ≤0,∴-1≤a ≤0. 答案:[-1,0]14.(导学号14577096)行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度. 解:(1)由题意及函数图象,得⎩⎪⎨⎪⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x ≥0, ∴0≤x ≤70.故行驶的最大速度是70千米/时.。
2023版高考数学一轮总复习2-1函数及其性质习题
专题二函数的概念与基本初等函数2.1 函数及其性质基础篇固本夯基考点一函数的概念及表示1.(2020西藏山南二中一模,3)若函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数y=f(x)的图象可能是( )答案 B2.(2021陕西榆林一模,4)下列四个函数:①y=2x+3;②y=1x;③y=2x;④y=x12,其中定义域与值域相同的函数的个数为( )A.1B.2C.3D.4答案 C3.(2022届昆明第一中学检测,4)给出下列三个条件:①函数是奇函数;②函数的值域为R;③函数图象经过第一象限.则下列函数中满足上述三个条件的是( )A.f(x)=x14B.f(x)=x+1xC.f(x)=sinxD.f(x)=2x-2-x答案 D4.(2022届江西新余第一中学二模,13)已知函数f(x)的定义域为(-1,1),则函数g(x)=f(x2)+f(x-1)的定义域是.答案(0,2)5.(2020北京,11,5分)函数f(x)=1x+1+lnx的定义域是.答案(0,+∞)考点二分段函数1.(2021河南安阳4月模拟,4)已知函数f(x)={3x-1-1,x≥1,-1-log3(x+7),x<1且f(m)=-2,则f(8+m)=( )A.-16B.16C.24D.26答案 D2.(2020四川双流中学模拟,5)已知函数f(x)={e x -3,x <1,ln x ,x ≥1,则关于函数f(x)的说法不正确的是( )A.定义域为RB.值域为(-3,+∞)C.在R 上为增函数D.只有一个零点 答案 B3.(2021安徽蚌埠三模,7)已知函数f(x)={e 2−x ,x ≤1,lg (x +2),x >1,则不等式f(x+1)<1的解集为( )A.(1,7)B.(0,7)C.(1,8)D.(-∞,7) 答案 B4.(2021浙江,12,4分)已知a∈R,函数f(x)={x 2-4,x >2,|x -3|+x ,x ≤2.若f(f(√6))=3,则a= .答案 25.(2022届河南重点中学调研一,14)已知f(x)={x 2-ax,x >0,-x +x +1,x ≤0,若方程f(x)=-x 有实根,则a 的取值范围是 . 答案 {a|a=-1或a>1}6.(2022届山西长治第八中学阶段测,13)已知函数f(x)={ln (−x ),x <0,2x (x -3),x ≥0,则f(1)= . 答案 2ln2考点三 函数的单调性与最值1.(2022届广西玉林育才中学10月月考,8)函数g(x)=2x-√x +1的最小值为( ) A.-178B.-2C.-198D.-94答案 A2.(2022届黑龙江八校期中联考,8)已知函数f(x)=x·|x|-2x,则下列结论正确的是( ) A.f(x)是偶函数,单调增区间是(-∞,0) B.f(x)是偶函数,单调减区间是(-∞,1) C.f(x)是奇函数,单调减区间是(-1,1)D.f(x)是奇函数,单调增区间是(0,+∞) 答案 C3.(2020四川宜宾四中月考,7)下列函数中,同时满足:①图象关于y 轴对称;②∀x 1,x 2∈(0,+∞)(x 1≠x 2),x (x 2)-f(x 1)x 2-x 1>0的是( )A.f(x)=x -1B.f(x)=log 2|x|C.f(x)=cosxD.f(x)=2x+1答案 B4.(2021广州番禺象贤中学期中,4)已知函数f(x)={(2x -1)x -1,x ≤1,log x x +1,x >1,若函数f(x)在定义域R 上单调递增,则实数a 的取值范围为( ) A.{x |1<a <32} B.{x |1<a ≤32}C.{x |a >32}D.{x |a ≥32} 答案 B5.(2017课标Ⅰ,5,5分)函数f(x)在(-∞,+∞)单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x -2)≤1的x 的取值范围是( ) A.[-2,2] B.[-1,1] C.[0,4] D.[1,3] 答案 D6.(2021河南十所名校阶段检测,5)已知函数f(x)=1x x +1-12(a>0,且a≠1),则f(x)是( ) A.偶函数,值域为(0,12) B.非奇非偶函数,值域为(-12,12) C.奇函数,值域为(-12,12) D.奇函数,值域为(0,12) 答案 C7.(2021江西重点中学协作体联考,7)已知f(x)=(35)|x -1|,则下列不等关系正确的是( )A.f(log 27)<f(log 0.52.5)<f(1)B.f(log 0.52.5)<f(log 27)<f(1)C.f(1)<f(log0.52.5)<f(log27)D.f(1)<f(log27)<f(log0.52.5)答案 B8.(2021全国百强名校“领军考试”,13)函数f(x)=√2−x+√x2-6x+10的值域为. 答案[√2,+∞)考点四函数的奇偶性1.(2022届成都蓉城名校联盟联考一,3)已知定义在R上的函数f(x)的部分图象如图所示,则下列说法正确的是( )A.f(x)有极小值B.f(x)有最大值C.f(x)是奇函数D.f(x)是偶函数答案 A2.(2022届江西新余第一中学模拟,3)已知f(x)是R上的奇函数,g(x)是R上的偶函数,且f(x)+g(x)=2x3+x2+3x+1,则f(1)+g(2)=( )A.5B.6C.8D.10答案 D3.(2021陕西渭南一模,4)已知函数f(x)=3-x+a·3x是奇函数,则f(2)=( )A.829B.-829C.809D.-809答案 D4.(2020课标Ⅱ,10,5分)设函数f(x)=x3-1x3,则f(x)( )A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减答案 A5.(2021银川重点高中一模,6)已知g(x)是定义在R上的奇函数,f(x)=g(x)+x2,若f(a)=2,f(-a)=2a+2,则a的值为( )A.2B.-1C.2或-1D.2或1答案 C,则下列函数中为奇函数的是( )6.(2021全国乙,4,5分)设函数f(x)=1−x1+xA.f(x-1)-1B.f(x-1)+1C.f(x+1)-1D.f(x+1)+1答案 B7.(2020江苏,7,5分)已知y=f(x)是奇函数,当x≥0时,f(x)=x23,则f(-8)的值是.答案-48.(2021新高考Ⅰ,13,5分)已知函数f(x)=x3·(a·2x-2-x)是偶函数,则a= .答案 1考点五函数的周期性1.(2021吉林调研三,2)若f(x)是定义在R上的奇函数,且f(x+2)=-f(x),则f(8)的值为( )A.1B.2C.0D.-1答案 C2.(2020江西鹰潭二模,7)偶函数f(x)的图象关于点(1,0)对称,当-1≤x≤0时,f(x)=-x2+1,则f(2020)=( )A.2B.0C.-1D.1答案 D3.(2021广西名校联考三,9)已知f(x)是定义在R上的奇函数,满足f(1+x)=f(1-x),f(1)=2,则f(2)+f(3)+f(4)=( )A.0B.-2C.2D.6答案 B4.(2018江苏,9,5分)函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(-2,2]上,f(x)={cos πx2,0<x ≤2,|x +12|,-2<x ≤0, 则f(f(15))的值为 . 答案√22综合篇 知能转换考法一 函数定义域的求法1.(2021湖北荆州中学四模,4)定义域是函数的三要素之一,已知函数Jzzx(x)的定义域为[211,985],则函数shuangyiliu(x)=Jzzx(2018x)+Jzzx(2021x)的定义域为( ) A.[2112018,9852021] B.[2112021,9852018] C.[2112018,9852018] D.[2112021,9852021]答案 A2.(2021山西临汾一中期中,5)若函数f(x)的定义域为[-1,2],则函数g(x)=√x -1的定义域是( )A.[1,4]B.(1,4]C.[1,2]D.(1,2] 答案 B3.(2021黑龙江省实验中学测试,3)若函数f(x 2+1)的定义域为[-1,1],则f(lgx)的定义域为( )A.[-1,1]B.[1,2]C.[10,100]D.[0,lg2] 答案 C4.(2022届湖北襄阳五中10月月考,2)已知函数y=f(x)的定义域为(-1,1),则函数F(x)=f(|2x-1|)的定义域为( ) A.(-∞,1) B.(-1,1) C.(0,+∞) D.[0,1) 答案 A5.(2022届河南重点中学调研一,9)若函数f(x)=2x2+1+aln (2x 2+1+a)的定义域为R,则实数a 的取值范围是( )A.(-2,+∞)B.(-1,+∞)C.(-2,-1)D.(-2,-1)∪(-1,+∞)答案 B考法二函数解析式的求法1.(2022届湖南名校10月联考,7)已知函数f(x)满足2f(x)+f(-x)=3x2+2x+6,则( )A.f(x)的最小值为2B.∃x∈R,2x2+4x+3x(x)>2C.f(x)的最大值为2D.∀x∈R,2x2+4x+5x(x)>2答案 D2.(2022届宁夏青铜峡第一次月考,11)已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点(1,f(1))处的切线方程是( )A.y=2x-1B.y=xC.y=3x-2D.y=-2x+3答案 A3.(2021东北三省四市联考,8)已知f(x)是定义域为R的奇函数,f(1+x)=f(1-x),当0≤x≤1时,f(x)=e x-1,则2≤x≤3时,f(x)的解析式为( )A.f(x)=1-e x-2B.f(x)=e x-2-1C.f(x)=1-e x-1D.f(x)=e x-1-1答案 A4.(2021天津南开中学模拟,13)已知函数f(x)的定义域为(0,+∞),且f(x)=2f(1x)√x-1,则f(x)= .答案23√x+13考法三分段函数问题的解题策略1.(2022届江西新余重点高中第二次月考,5)已知函数f(x)={x2-ax+14,x≥1,log x x,0<x<1是(0,+∞)上的单调函数,则实数a的取值范围是( )A.(1,2]B.(1,54]C.[54,2) D.(1,+∞) 答案 B2.(2022届广西玉林育才中学10月月考,7)已知函数f(x)={-x 3+2,x <0,-x +3,x ≥0,g(x)=kx+5-2k(k>0),若对任意的x 1∈[-1,1],总存在x 2∈[-1,1]使得f(x 1)≤g(x 2)成立,则实数k 的取值范围为( )A.(0,2]B.(0,23] C.(0,3] D.(1,2] 答案 A3.(2021黑龙江顶级名校一模,12)已知定义在R 上的函数f(x)满足:f(x)={-x 2,x ≤0,x (x -1)-x (x -2),x >0,则f(2020)+f(2021)的值等于( )A.-5B.-4C.-3D.-2 答案 D4.(2021贵州毕节期末,11)已知函数f(x)={(4-x )x +3x ,x <1,log 3x,x ≥1的值域为R,则实数a 的取值范围是( ) A.(-2,4) B.[-2,4) C.(-∞,-2] D.{-2} 答案 B5.(2017课标Ⅲ,15,5分)设函数f(x)={x +1,x ≤0,2x ,x >0,则满足f(x)+f (x -12)>1的x 的取值范围是 . 答案 (-14,+∞)考法四 函数单调性的判断及应用1.(2022届江西新余第一中学模拟,7)已知函数f(x)在定义域R 上单调,且x∈(0,+∞)时均有f(f(x)+2x)=1,则f(-2)的值为( ) A.3 B.1 C.0 D.-1 答案 A2.(2022届安徽安庆怀宁中学模拟一,10)定义:[x]表示不大于x 的最大整数,已知函数f(x)=[x ]x 2-2x+1,x∈[0,3],则( ) A.函数f(x)在(0,1]上单调递增B.函数f(x)的最大值为0C.函数f(x)在(0,3]上单调递减D.函数f(x)的最小值为-203答案 B3.(2021东北三省三校联合模拟,9)下列函数中,既是奇函数,又在(0,1)上单调递减的是( )A.f(x)=ln(e x+e -x)-ln(e x-e -x) B.f(x)=sinx+1sin xC.f(x)=ln(1+x)-ln(1-x)D.f(x)=e x-1ex答案 B4.(2021河南南阳期末,9)已知函数g(x)=e x-e -x+sinx,若不等式g(2x+a)+g(x 2-1)>0对任意x∈[-1,1]恒成立,则a 的取值范围为( ) A.[2,+∞) B.(2,+∞) C.(-2,+∞) D.[-2,+∞) 答案 B5.(2020课标Ⅱ,9,5分)设函数f(x)=ln|2x+1|-ln|2x-1|,则f(x)( ) A.是偶函数,且在(12,+∞)单调递增 B.是奇函数,且在(-12,12)单调递减C.是偶函数,且在(-∞,-12)单调递增D.是奇函数,且在(-∞,-12)单调递减 答案 D6.(2021江西五市九校协作体联考,9)已知函数f(x)是定义在R 上的奇函数,对任意两个不相等的正数x 1,x 2,都有x 2f(x 1)-x 1f(x 2)x 1-x 2<0,记a=x (3)3,b=f(1),c=-x (-2)2,则( )A.b<c<aB.a<b<cC.c<b<aD.a<c<b 答案 D7.(2022届安徽淮南第一中学月考三,14)已知f(x)为定义在[-1,1]上的偶函数,且在[-1,0]上单调递减,则满足不等式f(a)<f(2a-1)的a的取值范围是.(用区间表示)答案[0,13)8.(2017浙江,17,4分)已知a∈R,函数f(x)=|x+4x-a|+a在区间[1,4]上的最大值是5,则a 的取值范围是.答案(-∞,92]考法五函数奇偶性的判断及应用1.(2020海南第一次联考,3)已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a x-a-x+2(a>0且a≠1),若g(2)=a,则函数f(x2+2x)的单调递增区间为( ) A.(-1,1) B.(-∞,1)C.(1,+∞)D.(-1,+∞)答案 D2.(2021山西晋中二模,8)定义在(-1,1)上的函数f(x)满足f(x)=g(x)-g(-x)+2,对任意的x1,x2∈(-1,1),x1≠x2,恒有[f(x1)-f(x2)](x1-x2)>0,则关于x的不等式f(3x+1)+f(x)>4的解集为( )A.(-14,+∞) B.(-14,0)C.(-∞,-14) D.(-23,0)答案 B3.(2020新高考Ⅰ,8,5分)若定义在R的奇函数f(x)在(-∞,0)单调递减,且f(2)=0,则满足xf(x-1)≥0的x的取值范围是( )A.[-1,1]∪[3,+∞)B.[-3,-1]∪[0,1]C.[-1,0]∪[1,+∞)D.[-1,0]∪[1,3]答案 D4.(2019课标Ⅲ,11,5分)设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则( )A.f(log314)>f(2-32)>f(2-23)B.f(log314)>f(2-23)>f(2-32)C.f(2-32)>f(2-23)>f(log314)D.f(2-23)>f(2-32)>f (log 314) 答案 C5.(2021内蒙古赤峰二中月考,12)定义在R 上的偶函数f(x)满足f(x+2)=f(x),且在[-3,-2]上是减函数,若A,B 是锐角三角形ABC 的两个内角,则下列各式一定成立的是( )A.f(sinA)>f(cosB)B.f(sinA)<f(cosB)C.f(sinA)>f(sinB)D.f(cosA)>f(cosB)答案 A6.(2022届长春重点高中月考一,10)对于任意的实数a 、b,记max{a,b}={x (x ≥x ),x (x <x ).设F(x)=max{f(x),g(x)}(x∈R),其中g(x)=13x,y=f(x)是奇函数.当x≥0时,y=f(x)的图象与y=g(x)的图象如图所示.则下列关于函数y=F(x)的说法中,正确的是( )A.y=F(x)有极大值F(-1)且无最小值B.y=F(x)为奇函数C.y=F(x)的最小值为-2且最大值为2D.y=F(x)在(-3,0)上为增函数答案 A7.(2022届湖南名校10月联考,15)已知偶函数f(x)满足f(x)+f(4-x)=16,且当x∈(0,1]时,2f(2x)=[f(x)]2,则f(-3)= .答案 12考法六 函数周期性的判断及应用1.(2021河南新乡二模,10)已知y=f(x)的图象关于坐标原点对称,且对任意的x∈R,f(x+2)=f(-x)恒成立,当-1≤x<0时,f(x)=2x ,则f(2021)=( )A.-1B.-12C.12D.1答案 B2.(2021全国甲,12,5分)设函数f(x)的定义域为R,f(x+1)为奇函数,f(x+2)为偶函数,当x∈[1,2]时,f(x)=ax 2+b.若f(0)+f(3)=6,则f (92)=( )A.-94B.-32C.74D.52答案 D3.(2022届乌鲁木齐第二十中学月考一,12)已知定义在R 上的函数f(x)满足①f(x+2)=f(x);②f(x -2)为奇函数;③当x∈[0,1)时,x (x 1)-f(x 2)x 1-x 2>0(x 1≠x 2)恒成立.则f (-152)、f(4)、f (112)的大小关系正确的是( ) A.f (112)>f(4)>f (-152) B.f(4)>f (112)>f (-152) C.f (-152)>f(4)>f (112)D.f (-152)>f (112)>f(4)答案 C创新篇 守正出奇创新 “新定义型”函数1.(2022届云南大理统一检测,5数学成就)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石.简单地讲就是对于满足一定条件的连续函数f(x),存在一个点x 0,使得f(x 0)=x 0,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是( )A.f(x)=lnx-1B.f(x)=e x +1C.f(x)=x+1xD.f(x)=x 2+2x-1 答案 D2.(2021陕西宝鸡渭滨二模,情境创新)设定义在R 上的函数y=f(x),对于任一给定的正数p,定义函数f p (x)={x (x ), x (x )≤x ,x , x (x )>x ,则称函数f p (x)为f(x)的“p 界函数”.关于函数f(x)=x 2-2x-1的2界函数,结论不成立的是( )A.f 2(f(0))=f(f 2(0))B.f 2(f(1))=f(f 2(1))C.f 2(f(2))=f(f 2(2))D.f 2(f(3))=f(f 2(3))答案 B3.(2021山西怀仁期末,14情境创新)黎曼函数是一个特殊函数,由德国数学家黎曼发现并提出,黎曼函数定义在[0,1]上,其定义为R(x)={ 1x ,当x =x x (p,q 都是正整数,xx 是不可以再约分的真分数)时,0,当x =0,1或者[0,1]上的无理数时.若函数f(x)是定义在R 上的奇函数,且f(x)+f(2-x)=0,当x∈[0,1]时,f(x)=R(x),则f (103)+f (√33)= .答案 -134. (2021上海虹口二模,8情境创新)设函数f(x)的定义域为D.若对于D 内的任意x 1,x 2(x 1≠x 2),都有(x 2-x 1)[f(x 2)-f(x 1)]>0,则称函数f(x)为“Z 函数”.有下列函数:①f(x)=1;②f(x)=-2x+1;③f(x)=x 3;④f(x)=lgx.其中“Z 函数”的序号是 (写出所有的正确序号). 答案 ③④。
高三数学(理)一轮复习夯基提能作业本:第二章 函数第一节 函数及其表示 Word版含解析
第一节函数及其表示A组基础题组1.(2017四川巴中中学月考)下列哪个函数与y=x是同一个函数( )A.y=B.y=C.y=D.y=()32.(2016安徽六校联考)已知函数f(x)=x|x|,若f(x0)=4,则x0的值为( )A.-2B.2C.-2或2D.3.函数f(x)=ln+的定义域为( )A.(-1,1]B.(0,1]C.0,1]D.1,+∞)4.已知函数f(x)=且f(0)=2,f(-1)=3,则f(f(-3))=( )A.-2B.2C.3D.-35.已知函数f(x)对任意x∈R都有f(x+3)-f(x)=1,且f(-1)=3,则f(2015)=( )A.674B.675C.4D.56.函数f(x)=的定义域为.7.(2017安徽芜湖一中期末)已知a,b为两个不相等的实数,集合M={a2-4a,-1},N={b2-4b+1,-2},f:x→x表示把M中的元素x映射到集合N中仍为x,则a+b等于.8.若函数f(x)在闭区间-1,2]上的图象如图所示,则此函数的解析式为.9.设函数f(x)=且f(-2)=3,f(-1)=f(1).(1)求f(x)的解析式;(2)在如图所示的直角坐标系中画出f(x)的图象.10.已知f(x)是二次函数,若f(0)=0,且f(x+1)=f(x)+x+1.(1)求函数f(x)的解析式;(2)求函数y=f(x2-2)的值域.B组提升题组11.(2017沈阳五中期中)已知实数a≠0,函数f(x)=若f(1-a)=f(1+a),则a的值为( )A.-B.-C.-或-D.或-12.如果函数f(x)满足:对任意实数a,b都有f(a+b)=f(a)·f(b),且f(1)=1,则++++…+= .13.已知函数y=f(x2-1)的定义域为-,],则函数y=f(x)的定义域为.14.(2015浙江,10,6分)已知函数f(x)=则f(f(-3))= ,f(x)的最小值是.15.行驶中的汽车在刹车时由于惯性作用要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y(米)与汽车的车速x(千米/时)满足以下关系:y=+mx+n(m,n是常数).如图是根据多次试验数据绘制的刹车距离y(米)与汽车的车速x(千米/时)的关系图.(1)求出y关于x的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.答案全解全析A组基础题组1.D y=x的定义域为R.而y=的定义域为{x|x∈R且x≠0},y=的定义域为{x|x∈R,且x>0},排除A、B;y==|x|的定义域为R,但对应关系与y=x的对应关系不同,排除C;y=()3=x 的定义域、对应关系与y=x的均相同,故选D.2.B当x≥0时,f(x)=x2,此时f(x 0)=4即=4,解得x0=2(舍负).当x<0时,f(x)=-x2,此时f(x0)=4即-=4,无解.所以x0=2,故选B.3.B由条件知即则x∈(0,1].∴原函数的定义域为(0,1].4.B f(0)=a0+b=1+b=2,解得b=1.f(-1)=a-1+b=a-1+1=3,解得a=.故f(-3)=+1=9,f(f(-3))=f(9)=log39=2.5.B因为f(x+3)=f(x)+1,所以f(x+3×2)=f(x+3)+1=f(x)+2,f(x+3×3)=f(x+3×2)+1=f(x)+3,则当n∈N*时,有f(x+3n)=f(x)+n,故f(2015)=f(2+3×671)=f(2)+671=f(-1)+672=675.6.答案(0,1)∪(1,4]解析要使函数有意义,应满足:解得0<x≤4且x≠1,所以函数的定义域为(0,1)∪(1,4].7.答案4解析由已知可得M=N,故⇒所以a,b是方程x 2-4x+2=0的两根,故a+b=4.8.答案f(x)=解析由题图可知,当-1≤x<0时,f(x)=x+1;当0≤x≤2时,f(x)=-x,所以f(x)=9.解析(1)由f(-2)=3,f(-1)=f(1)得解得a=-1,b=1,所以f(x)=(2)f(x)的图象如图.10.解析(1)设f(x)=ax2+bx+c(a≠0),由题意可知整理得∴解得∴f(x)=x2+x.(2)由(1)知y=f(x2-2)=(x2-2)2+(x2-2)=(x4-3x2+2)=-,当x2=时,y取最小值-,故函数y=f(x2-2)的值域为.B组提升题组11.B分类讨论:(1)当a>0时,1-a<1,1+a>1.这时f(1-a)=2(1-a)+a=2-a,f(1+a)=-(1+a)-2a=-1-3a.由f(1-a)=f(1+a)得2-a=-1-3a,解得a=-,不符合题意,舍去.(2)当a<0时,1-a>1,1+a<1,这时f(1-a)=-(1-a)-2a=-1-a,f(1+a)=2(1+a)+a=2+3a,由f(1-a)=f(1+a)得-1-a=2+3a,解得a=-,符合题意.综合(1)(2)知a的值为-.12.答案2016解析由f(a+b)=f(a)f(b),令b=1,结合f(1)=1,得f(a+1)=f(a),即=1,由于a是任意实数,所以当a取1,2,3,…,2016时,==…==1.故++++…+=2016.13.答案-1,2]解析∵y=f(x2-1)的定义域为-,],∴x∈-,],x2-1∈-1,2],∴y=f(x)的定义域为-1,2].14.答案0;2-3解析∵-3<1,∴f(-3)=lg(-3)2+1]=lg10=1,∴f(f(-3))=f(1)=1+-3=0.当x≥1时,f(x)=x+-3≥2-3(当且仅当x=时取“=”);当x<1时,x2+1≥1,∴f(x)=lg(x2+1)≥0.又∵2-3<0,∴f(x)min=2-3.15.解析(1)由题意及函数图象,得解得m=,n=0,所以y=+(x≥0).(2)令+≤25.2,得-72≤x≤70.∵x≥0,∴0≤x≤70.故行驶的最大速度是70千米/时.。
数学一轮复习第二章函数导数及其应用第一讲函数及其表示学案含解析
第二章函数、导数及其应用第一讲函数及其表示知识梳理·双基自测错误!错误!错误!错误!知识点一函数的概念及表示1.函数与映射的概念函数映射两集合A,B 设A,B是两个__非空数集__设A,B是两个__非空集合__对应关系f:A→B 如果按照某种确定的对应关系f,使对于集合A中的__任意__一个数x,在集合B中有__唯一__的数f(x)和它对应如果按某一个确定的对应关系f,使对于集合A中的__任意__一个元素x在集合B中有__唯一__的元素y与之对应名称称对应__f:A→B__为从集合A到集合B的一个函数称对应__f:A→B__为从集合A到集合B的一个映射记法y=f(x),x∈A对应f:A→B是一个2。
函数(1)函数实质上是从一个非空数集到另一个非空数集的映射.(2)函数的三要素:__定义域、值域、对应法则__。
(3)函数的表示法:__解析法、图象法、列表法__。
(4)两个函数只有当__定义域和对应法则__都分别相同时,这两个函数才相同.知识点二分段函数及应用在一个函数的定义域中,对于自变量x的不同取值范围,有着不同的对应关系,这样的函数叫分段函数,分段函数是一个函数而不是几个函数.错误!错误!错误!错误!1.映射:(1)映射是函数的推广,函数是特殊的映射,A,B为非空数集的映射就是函数;(2)映射的两个特征:第一,在A中取元素的任意性;第二,在B中对应元素的唯一性;(3)映射问题允许多对一,但不允许一对多.2.判断两个函数相等的依据是两个函数的定义域和对应关系完全一致.3.分段函数虽由几个部分组成,但它表示的是一个函数.4.与x轴垂直的直线和一个函数的图象至多有1个交点.双错误!错误!错误!题组一走出误区1.判断下列结论是否正确(请在括号中打“√"或“×”)(1)f(x)=错误!+错误!是一个函数.(×)(2)函数f(x)的图象与直线x=1的交点只有1个.(×)(3)已知f(x)=m(x∈R),则f(m3)等于m3.(×)(4)y=ln x2与y=2ln x表示同一函数.(×)(5)f(x)=错误!则f(-x)=错误!(√)题组二走进教材2.(必修P23T2改编)下列所给图象是函数图象的个数为(B)A.1 B.2C.3 D.4[解析]①中当x〉0时,每一个x的值对应两个不同的y值,因此不是函数图象,②中当x=x0时,y的值有两个,因此不是函数图象,③④中每一个x的值对应唯一的y值,因此是函数图象.3.(必修1P24T4改编)已知f(x5)=lg x,则f(2)等于(D) A.lg 2 B.lg 32C.lg 错误!D.错误!lg 2[解析]解法一:由题意知x〉0,令t=x5,则t〉0,x=t错误!,∴f(t)=lg t错误!=错误!lg t,即f(x)=错误!lg x(x>0),∴f(2)=错误!lg 2,故选D.解法二:令x5=2,则x=2错误!,∴f(2)=lg 2错误!=错误!lg 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节函数及其表示
A组基础题组
1.函数g(x)=log2(6x)的定义域是( )
A.{x|x>6}
B.{x|3<x<6}
C.{x|x>3}
D.{x|3≤x<6}
2.下列函数中,不满足f(2x)=2f(x)的是( )
A.f(x)=|x|
B.f(x)=x|x|
C.f(x)=x1
D.f(x)=x
3.已知函数f(x)=x|x|,若f(x0)=4,则x0的值为( )
A.2
B.2
C.2或2 8
D.
4.已知g(x)=12x, f(g(x))=(x≠0),那么f=( )
A.15
B.1
C.3
D.30
5.(2017广州综合测试(一))已知函数f(x)=则f(f(3))=( )
A. B. C. D.3
6.若二次函数g(x)满足g(1)=1,g(1)=5,且图象过原点,则g(x)的解析式为( )
A.g(x)=2x23x
B.g(x)=3xx
C.g(x)=3xx
D.g(x)=3xx
7.已知f=2x5,且f(a)=6,则a等于( )
A. B. C. D.
8.已知函数f(x)=若f(a)f(1)=0,则实数a的值等于( )
A.3
B.-1
C.1
D.3
9.已知函数y=f(x1)的定义域是[2,3],则y=f(2x1)的定义域是( )
A.[3,7]
B.[1,4]
C.[5,5]
D.
10.设x∈R,定义符号函数sgn x=则( )
A.|x|=x|sgn x |
B.|x|=xsgn|x|
C.|x|=|x|sgn x
D.|x|=xsgn x
11.(2018惠州质检)已知f(x)=则f f 的值等于.
12.函数f(x),g(x)的部分对应值分别由下表给出.
x 1 2 3
f(x) 1 3 1
x 1 2 3
g(x) 3 2 1
则f(g(1))的值为满足f(g(x))>g(f(x))的x的值是.
13.若f(x)对于任意实数x恒有2f(x)f(x)=3x1,则f(1)= .
14.根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为f(x)=(a,c为常数).已知此工人组装第4件产品用时30分钟,组装第a件产品用时15分钟,那么c和a的值分别
是, .
15.已知函数f(x)满足对任意的x∈R都有f f=2成立,则f f …f = .
B组提升题组
1.(2017河北石家庄质量检测(一))设函数f(x)=若f=2,则实数n的值为( )
A. B. C. D.
2.(2017河北石家庄质量检测(一))已知函数f(x)=则f(f(x))<2的解集为( )
A.(1ln 2,∞)
B.(∞,1ln 2)
C.(1ln 2,1)
D.(1,1ln 2)
3.具有性质f =f(x)的函数,我们称为满足“倒负”变换的函数,下列函
数:①y=x②y=x③y=f(x)=中满足“倒负”变换的函数是( )
A.①②
B.②③
C.①③
D.只有①
4.如果函数f(x)满足:对任意实数a,b都有f(ab)=f(a)f(b),且f(1)=1,则
…= .
5.已知f(x)是二次函数,若f(0)=0,且f(x1)=f(x)x1.
(1)求函数f(x)的解析式
(2)求函数y=f(x)的值域.
6.已知函数f(x)对任意实数x均有f(x)=-2f(x1),且f(x)在区间[0,1]上有表达式f(x)=x2.
(1)求f(1), f(1.5)
(2)写出f(x)在区间[2,2]上的表达式.
答案精解精析
A组基础题组
1.D
2.C 将f(2x)表示出来,看与2f(x)是否相等.
对于A, f(2x)=|2x|=2|x|=2f(x)
对于B, f(2x)=2x|2x|=2(x|x|)=2f(x)
对于C, f(2x)=2x1≠2f(x)
对于D, f(2x)=2x=2f(x),所以只有C不满足f(2x)=2f(x),故选C.
3.B 当x≥0时, f(x)=x2,
此时f(x0)=4,即=4,解得x0=2(舍负).
当x<0时, f(x)=x2,此时f(x0)=4,即=4,无解.所以x0=2,故选B.
4.A 令g(x)=12x=,得x=,∴f==1
5.故选A.
5.A 因为f(3)=1log23=log2<0,所以f(f(3))=f===.故选A.
6.B 设g(x)=ax2bxc(a≠0),
∵g(1)=1,g(1)=5,且图象过原点,
∴解得
∴g(x)=3xx.
7.B 令t=x1,则x=2t2,
∴f(t)=2(2t2)5=4t1,∴f(a)=4a1=6,∴a=.
8.A 因为f(1)=2,所以f(a)=f(1)=2,
当a>0时, f(a)=2a=2,无解
当a≤0时, f(a)=a1=2,所以a=3.
综上,a=3,故选A.
9.D x∈[2,3]⇒x1∈[1,4],则2x1∈[1,4],解得x∈.
10.D 由已知可知xsgn x=而|x|=所以|x|=xsgn x,故选D.
11.答案 3
解析f=cos=cos=, f=f1=f2=cos2=2=,故f f=3.
12.答案12
解析∵g(1)=3, f(3)=1,
∴f(g(1))=1.
当x=1时, f(g(1))=f(3)=1,g(f(1))=g(1)=3,不符合题意.
当x=2时, f(g(2))=f(2)=3,g(f(2))=g(3)=1,符合题意.
当x=3时, f(g(3))=f(1)=1,g(f(3))=g(1)=3,不符合题意.
13.答案 2
解析令x=1,得2f(1)f(1)=4,①
令x=1,得2f(1)f(1)=2,②
联立①②得f(1)=2.
14.答案6016
解析因为组装第a件产品用时15分钟,所以=15,①所以必有a>4,且==30.②
联立①②得c=60,a=16.
15.答案7
解析由f f=2,
得f f=2,f f=2,f f=2,
又f==×2=1,∴f f…f=2×31=7.
B组提升题组
1.D 因为f=2×n=n,当n<1,即n<时, f=2n=2,解得n=,不符合题意当n≥1,即n≥
时, f=log2=2,即n=4,解得n=.故选D.
2.B 因为当x≥1时, f(x)=x3x≥2,当x<1时, f(x)=2e x1<2,所以f(f(x))<2等价于f(x)<1,即2e x1<1,解得x<1ln 2,所以f(f(x))<2的解集为(∞,1ln 2).故选B.
3.C 易知①满足条件②不满足条件对于③,易知f=满足f=f(x),故③满足“倒负”变换,故选C.
4.答案 2 016
解析已知f(ab)=f(a)f(b),
令b=1,∵f(1)=1,∴f(a1)=f(a),
即=1,由于a是任意实数,
所以当a取1,2,3,…,2 016时,==…==1.
故…=2 016.
5.解析(1)设f(x)=ax2bxc(a≠0),
由题意可知
整理得
∴解得
∴f(x)=x2x.
(2)由(1)知y=f(x)=(x)2(x)=(x43x)=,
当x2=时,y取最小值,故函数y=f(x)的值域为.
6.解析(1)由题意知f(1)=-2f(11)=-2f(0)=0,
f(1.5)=f(10.5)=f(0.5)=×=.
(2)当x∈[0,1]时, f(x)=x2
当x∈(1,2]时,x1∈(0,1], f(x)=f(x1)=(x1)2
当x∈[1,0)时,x1∈[0,1),
f(x)=-2f(x1)=2(x1)2
当x∈[2,1)时,x1∈[1,0),
f(x)=-2f(x1)=2×[2(x11)2]=4(x2)2.
综上, f(x)=。