有理数及其运算(绝对值)教学设计

合集下载

人教版版七年级上册数学第一章《有理数》1.2.4节《绝对值》教学设计(优质获奖).doc

人教版版七年级上册数学第一章《有理数》1.2.4节《绝对值》教学设计(优质获奖).doc

1.2.4绝对值(第1课时)一、教学内容解析本节课的教学内容是绝对值.绝对值是笫一章有理数的一个重要内容,首先它可以促进学生对数轴、相反数概念的理解,其次它将冇理数的运算归结到了非负数的运算,我们以有理数的加法的知识框图为例,可以发现,如果没有绝对值的概念,则有理数的加法是很难进行运算的.最后绝对值还是有理数比较大小的借助数轴,给出了绝对值的定义,是数形相依的意识的具体体现;由绝对值的定义,归纳出了绝对值的性质,运用了分类讨论的思想;同时,通过观察具体数的绝对值,归纳岀了求任意一个数的绝对值的方法,渗透了从特殊到一般的学习方法;这些对今后的学习其它知识有很大的帮助.在教科书中,绝对■值的概念是借助距离概念加以定义,在数轴上,一个点由方向和距离(长度)确定;相应地,一个实数由符号与绝对值确定•这里,“方向” 与“符号”对应,“距离”与“绝对值”对应,又一次体现了数与形的结合、转化.所以,绝对值可以理解为距离这一几何量的代数表示.因此,在学习绝对值的概念吋,注意从实际问题引入,通过所创设的情境,引入了绝对值的概念•在学习了绝对值的定义后,概括出了绝对值的性质,而其性质将会是以后学生求一个数的绝对值时的首选方法.因此,可以确定本节课的教学重点为:绝对值的定义和性质.学生学情分析北京汇文屮学是北京市示范性屮学,同吋承担了北京市东城区教委创立的小学六年级“少年科学班”的教育教学工作,我所授课班级就是该“少年科学班”, 该班学生数学基础较好,学生个性活泼,思维活跃,积极性高,学习完正数与负数、数轴、相反数的内容后,通过随堂测试,发现该班大部分学生的成绩接近我校初一年级的平均分.但是,学生的抽象概括能力仍相对薄弱,思维过程不够完善,对符号P、"I及其意义的理解存在一定困难.从实际问题引入,抽象出绝对值的概念,有益于学生借助自身的生活经验感知概念.因此,木课的教学教学难点是:抽象出绝对值概念的过程.三、教学目标设置(1)知识技能:了解绝对值的表示方法,理解绝对值的概念,会求有理数的绝对值.(2)数学思考:经历绝对值概念的抽象与形成的过程,和归纳绝对值的性质过程,体会数形相依和分类讨论的观点.(3)问题解决:经丿力将实际问题抽象为数学问题的过程,从几何、代数两个角度得到求一个数的绝对值的方法.(4)情感态度:通过归纳绝对值的性质的过程,获得数学活动的经验.同时,通过实际情境,受到爱国主义教育.四、教学策略分析(1)在学习课标、研读教材的基础上,把绝对値这部分的内容划分为两课吋,第一课吋即木课吋得到绝对值的定义和性质,第二课吋得到有理数比较大小的方法并综合运用绝对值的定义和性质解决问题.(2)本节课采取教师启发引导与学生探究相结合的方式,使学生亲身休验得到绝对值的定义和性质过程.(3)促使学生采取积极主动、勇于探索的学习方式进行学习.(4)根据“以学定教”的原则,及时调整教学方案.五、教学过程1 •创设情境,引入概念情境1通过抗战胜利阅兵视频引出问题.2015年9 JJ 3 H,在北京举行的纪念抗H战争腔利70周年的阅兵活动屮,一个受阅方阵自东向西经过长安街,则该方阵在行进时共冇几次和北京城屮轴线与长安街的交汇处的距离为20米?师生活动:学生先一起回答问题后,教师再建系,引导学生通过数轴解释问题. 请其他学生修止或补充•教师点评.设计意图:通过实际情境,让学生感知距离是只考虑长度,不考虑方向的•同时, 通过建系,让学生体会在数轴上求出表示一个数的点与原点的距离.为Z后学生自己建系、自己举例做好铺垫•同时,在教学中,渗透爱国主义教育.情境2哈利法塔在75层和100层各有一间避难所•如果发生火灾时,一位游客恰好在85层•如果仅从距离的角度考虑,他会选择哪一层的避难所呢?师生活动:学生先一起冋答问题后,教师再建系,引导学生通过数轴解释问题. 请其他学生修止或补充•教师点评.设计意图:通过实际情境,让学生感知在考虑这个问题时,只考虑距离,不考虑方向•同时,再次通过建系,让学生体会在数轴上求出表示一个数的点与原点的距离•为之后学生口己建系、口己举例做好铺垫.情境3小明家正东3千米处有家超市A,正东2 T米处有家超市C ,正西2千米处有家超市B.如呆仅从距离的角度考虑,他会选择哪家超市?小明家正东3千米处有家超市正东2千米处有家超市C,正西2千米处有家超市〃•如果仅从距离的角度考虑,他会选择哪家超市?B OC A匹鰹I号一师生活动:学生先一起回答问题后,再由学生建立数轴解释问题•请其他学生修正或补充•教师点评.设计意图:通过实际情境,再次让学生感知在考虑距离的不用考虑方向的特征,同时•同时,通过自己建系,培养学生的建模能力,并再次体会在数轴上求出表示一个数的点与原点的距离•为之后自己举例、学习绝对值的概念做好铺垫. 提出问题:你能举出类似的例子吗?师生活动:学生自己举例子,自己建系,请其他学生修正或补充.教师点评.设计意图:让学生体会出在实际生活屮,只考虑距离,不考虑方向的事例是大量存在的.已引入绝对值的概念.§1.2.4绝对值一. 定义:一般地,数轴上表示数d的点与原点的距离叫做数d的绝对值•记作|Q|.Ml---- •• ---- o a—>举例:B O■C-34-1 0 123|-2|2.辨识概念,深化认识通过借助绝对值的定义,求出具体数的绝对值.例1・在数轴上画出表示下列各数的点,并求岀下列各数的绝对值.1 33,-2, 2, 1-, -2.5, 0.3 4师生活动:学生现在数轴上画出毎个数对应的点,再依次求出毎个数的绝对值, 并说明理由•教师点评.设计意图:引导学生借助数轴,求出一个数的绝对值,并口述理由,加深学生对绝对值概念的理解•在设计题目时,设计了三个止数,三个负数和零共三种情况, 方便学生之后概括性质.思考观察这七个数的绝对值,你能从中发现什么规律?活动1:请同学们先思考,再相互讨论.设计意图:引导学生通过观察例1屮七个数的绝对值,发现并概括出绝对值的性质•培养学生的观察和概括能力.得岀的结论:(1) 一个正数的绝对值是它本身;(2) 一个负数的绝对值是它的相反数;(3) 0的绝对值是0.师生活动:引导学生利用绝对值的性质,重新计算例1中七个数的绝对值,并说 明理由•教师点评.活动:请学生以一问一答的形式,计算一个数的绝对值,并说明理曲•教师点评. 设计意图:加深学生对绝对值概念的理解的绝对值,并为之后借助符号语言概括 绝对■值的性质提供素材.思考 2: \a\=?活动2:请同学们先思考,再相互讨论.二性质:⑴如果a>09那么|4二a ;(2) 如果 a=O 9 那么|a|= 0;(3) 如果 a<0,那么|a|= -a,小结:回顾所学的绝对值的知识,同时回顾得到绝对值概念的过程.设计意图:回顾所学知识,帮助学生解决Z 后的练习,同时,回顾得到绝对值概 念的过程,让学生体会数形相依、分类讨论的思想方法,以及从特殊到i 般的学 习方法.练习1 •判断下列说法是否正确.(1) 符号相反的数互为相反数;(2) —个数的绝对值越大,表示它的点在数轴上越靠右;(3) —个数的绝对值越大,表示它的点在数轴上离原点越远;⑷当a#0时,|a|总是大于0练习2•判断下列各式是否正确:(3)-5=|-5|.练习3•如图,检测5个排球,其中超过标准的克数记为正数,不足的克数记为负 数,从轻重的角度看,哪个球最接近标准?卜5 师生活动:学生回答问题,并说明理由•教师点评设计意图:引导学生解决不同类型的题目,加深学生对绝对值3•理解应用,巩 概念3.5 +0.7 -2.5 -0.6概念的理解.4•归纳总结,布置作业小结:通过今天这节课,你有哪些收获和感受? 师生活动:学生谈收获和感想,教师点评.作业:教材习题1.2:5, 10, 12.思考题:若|a|=-a,求d的取值范围.设计意图:根据学生的情况,留不同难度的作业,设置一道思考题,让学有余力的同学完成,可以加深学牛对绝对值概念的理解,并提高学牛的学习兴趣.。

北师大版-数学-七年级上册-《绝对值》教学设计

北师大版-数学-七年级上册-《绝对值》教学设计

第二章有理数及其运算3.绝对值一、学生起点分析学生的知识技能基础:学生已经学习了有理数,认识了数轴,能够用数轴上的点来表示有理数,也已经知道数轴上的一个点与原点的距离,会比较这些距离的大小。

并初步体会到了数形结合的思想方法。

学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了归纳、比较、交流等一些活动,解决了一些简单的现实问题,感受到了数学活动的重要性;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

二、学习任务分析1.地位和内容相反数的概念是学习绝对值知识的基础,绝对值知识是解决有理数比较大小、距离等知识的重要依据,同时它也是我们后面学习有理数运算的基础。

本节课借助数轴引出相反数、绝对值的概念,并通过计算、观察、交流,发现绝对值的性质特征,利用绝对值来比较两个负数的大小。

应让学生直观理解绝对值的含义,不要在绝对值符号内部出现多重符号和字母,多鼓励学生通过观察、归纳、验证,加深对绝对值的理解。

2.教学重点和难点教学重点:理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。

教学难点:利用绝对值比较两个负数的大小。

3. 教学目标(1)借助数轴,理解绝对值和相反数的概念(2)知道|a|的含义以及互为相反数的两个数在数轴上的位置关系。

(3)能求一个数的绝对值和相反数,会利用绝对值比较两个负数的大小。

(4)通过应用绝对值解决实际问题,体会绝对值的意义和作用。

三、教学过程设计本节课设计了五个教学环节:第一环节:创设情境,导入新课;第二环节:合作交流,探索新知;第三环节:应用迁移,巩固提高;第四环节:总结反思,知识内化;第五环节:当堂检测,及时反馈;第六环节:拓展延伸,能力提升。

第一环节创设情境,导入新课活动内容1: 3和-3有什么相同点与不同点?3/2与-3/2,5和-5呢?活动目的:提供几组数让学生进行比较,从而得出相反数的概念。

七年级数学上册第2章有理数及其运算教学案(新版)北师大版

七年级数学上册第2章有理数及其运算教学案(新版)北师大版

第二章有理数及其运算1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小.2.能借助数轴理解相反数和绝对值的意义,知道|a|的含义(这里a表示有理数).3.理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主).4.理解有理数的运算定律,能运用运算律简化计算.5.能运用有理数的运算解决简单的问题.1.在求一个数的相反数和绝对值的过程中,让学生掌握求有理数的相反数和绝对值的方法.2.能按照有理数的运算法则进行有理数的加、减、乘、除及混合运算,掌握计算的方法和技巧.3.能用科学记数法表示数,以及用四舍五入法取近似数,掌握其表示的方法.1.在认识数的过程中,体验知识之间的必然联系,激发学生爱数学、学数学的兴趣.2.培养学生养成认真做题的良好习惯,认识数学是解决实际问题和进行交流的重要工具.3.在解决问题的过程中,能对问题提出自己的猜想,树立学好数学的信心.对于负数的引入,教材借助生活中的实例,引进负数,让学生在活动中体会数概念的扩张,了解负数的本质意义,然后再指出可以用正负数表示现实生活中具有相反意义的量,使学生感受到负数的引入源自实际生活的需要,体会数学知识与现实世界的联系.就学生的学习而言,负数的概念、意义有一定的抽象性,为什么要引进负数正是学生理解的困难所在.从数学的发展进程来看,数的出现的主要原因更多的是由于对实际现象(事物)“表示”的需要.所以教材遵循历史发展的过程,采用这样的线索展开:产生的实际背景——有理数的意义——数的表示.对于有理数运算法则的获得,教材没有采用直接给出的方式而是设置了丰富的现实背景,如足球比赛中的净胜球数、气温变化等,以直观形象地解释、归纳、探索的方式,寻求有理数运算法则和运算律.如有理数的加法法则,仅仅借助数轴理解,学生会有一定的困难,所以教材先从知识竞赛中的答对题数与答错题数入手,使学生首先理解(+1)+( - 1)=0和( - 1)+(+1)=0,然后利用“正负抵消”的思想,讨论整数加法的几种情形,最后再由特例归纳出有理数的加法法则,并借助数轴加深理解.基于有理数运算的学习重点是对法则和运算律的理解,所以为了避免因为小数、分数运算的复杂性而冲淡学习的重点,有理数的运算以整数运算的学习为出发点,然后过渡到含有小数、分数的运算.【重点】理解有理数的意义,掌握有理数的运算法则和运算律,会用科学记数法表示较大的数.【难点】利用有理数的加、减、乘、除、乘方等运算解决简单的实际问题.1.负数是一个比较抽象的概念.在教学中应该让学生充分了解引入负数的必要性和实际背景,通过生活中具有相反意义的量的讲解,让学生接受负数的概念.2.本章的重点内容是有理数的运算,所以一定要让学生有足够的练习的机会,只有通过一定量的计算实践,才能真正体会并熟练掌握有理数计算的一些技巧.让学生通过计算、观察、猜测、归纳等数学活动,自己总结出有理数的运算律.3.对绝对值概念的学习也要有一个循序渐进的过程,与绝对值相关的知识,如数轴上两点之间的距离的表示、绝对值不等式等,都是在后续学习中要专门安排的,因此这里不要涉及.本章安排绝对值概念,目的是为有理数的运算作准备,会求一个数的绝对值就达到了本章的要求.教材中用字母表示求一个数的绝对值的结论,只是给出一个数的绝对值的符号表示,教学时不要对这个符号表示进行变式训练,更不要在绝对值中出现字母并加以讨论.4.计算器是一个既简便又实用的计算工具,让学生通过实际操作,掌握计算器的基本用法.5.在本章的学习中,要注意数形结合思想、转化与化归思想、分类讨论思想的运用.1有理数1课时2数轴1课时3绝对值1课时4有理数的加法2课时5有理数的减法1课时6有理数的加减混合运算3课时7有理数的乘法2课时8有理数的除法1课时9有理数的乘方2课时10科学记数法1课时11有理数的混合运算1课时12用计算器进行运算1课时本章概括整合1课时1有理数1.通过实例理解引入负数的必要性和负数应用的广泛性,理解有理数的含义,体会有理数应用的广泛性.2.能用正数和负数表示具有相反意义的量.3.培养逻辑思维能力,以及按一定规律对事物进行分类整理的能力.会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量,能把有理数合理分类和把具体数正确归类.1.通过实例,使学生深刻体会到有理数和负数的实用性,加深对数的理解.2.让学生体会到数学中的基本概念都来源于实际需要.3.让学生进一步了解学习数学对于解决实际生活中各种问题的必要性,增强学习数学知识的兴趣.【重点】负数的意义、特点及实际应用,有理数的概念,能够对学过的数进行分类.【难点】正确用正、负数表示生活中具有相反意义的量,正确理解有理数的概念,会合理进行有理数的分类和把具体数归类到相应的数集.【教师准备】多媒体课件.【学生准备】预习教材P23~24.导入一:师:同学们小学都学过哪些数?生:整数、小数、分数、奇数、偶数……师:原始社会,从打猎记数开始,首先出现自然数,经过漫长岁月,人们用数“0”表示没有,随着人类的不断进步,在丈量土地进行分配时,又用小数使测量结果更加准确,小数也属于分数.那么小学学过的这些数能否满足社会生产生活及数学自身发展的需要呢?[设计意图]通过介绍数的产生与发展,向学生渗透“实践第一”的辩证唯物主义观点,使同学们感到数的每一次发展都是为了满足社会生产与生活的需要,也为讲述有理数概念及其分类做好铺垫.导入二:观察课本P22的图片.珠穆朗玛峰高出海平面8844 m,记作:+8844 m;吐鲁番盆地低于海平面155 m,记作: - 155 m.教师出示图片,并提出问题:1.生活中我们会遇到用负数表示的量,你能说出一些例子吗?2.你在小学的学习中对负数有什么样的认识?3.有了负数,数的运算与过去相比有什么区别和联系?有了负数,能解决哪些实际问题?本章将在小学学习的基础上,进一步学习负数,研究有理数的有关概念及其运算,并利用有理数的知识解决实际问题.[设计意图]通过提供学生熟悉的情境引导学生回顾小学有关负数的知识,三个问题不仅为本节课成功引入,也为本章的学习做了铺垫.学生在对问题的思考与交流中体会负数在生活中的广泛应用,激发了学生学习本章内容的兴趣.[过渡语]同学们,生活中处处有数学,下面我们一起探究实际问题与数学的联系吧!(出示课件1)(例题讲解)请同学们完成以下问题,并与同伴交流.某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基本分均为0分.两个队答题情况如下表:答题情况第一队第二队如果答对题所得的分数用正数表示,那么你能写出每个队答题得分的情况吗?思路一试完成下表:答对题的得分答错题的得分未回答题的得分第一队+6第二队 - 2思路二提出思考问题:(1)第一队答对几题?是如何表示的?答错几题?又是如何表示的?(2)第二队答对几题?是如何表示的?答错几题?又是如何表示的?(3)如何理解+6和 - 2?(出示课件2)(教材议一议)生活中你见过其他用负数表示的量吗?与同伴进行交流.想一想:根据上面各队分数的计算及2010年全国居民消费价格的上涨情况及温度计上的温度,你能知道正、负数和零的大小关系吗?[处理方式]学生思考交流,完成后再展示说明,学生之间互相补充,教师适时点评.师生总结:“加分与扣分”“上涨量与下跌量”“零上温度与零下温度”等都是具有相反意义的量.为了表示具有相反意义的量,我们把其中一个量规定为正的,用正数来表示,而把与这个意义相反的量规定为负的,用负数来表示.[设计意图]本活动的设计意在引导学生通过自主探究、合作交流,用知识竞赛得分的情境启发学生用正、负数表示相反意义的量.通过练习引导学生举一反三地找出身边可以用正、负数表示的量,从而体会学习负数的必要性.从学生熟悉的情境讨论问题,学生积极参与,在教师的引导下寻找生活实例的过程中充分体会学习负数是生活的需要.[过渡语]我们已经认识了负数,你能顺利的利用正数和负数表示生活中具有相反意义的量吗?请同学们观察教材例题,想一想如何解答.(课件3出示)(1)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(2)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02 g 记作+0.02 g,那么 - 0.03 g表示什么?(3)某大米包装袋上标注着“净含量:10 kg±150 g”,这里的“10 kg±150 g”表示什么?[处理方式]学生先独立思考,再小组交流如何用正、负数表示生活中具有相反意义的量.思路一如果用+5圈表示沿逆时针方向转了5圈,那么和逆时针方向具有相反意义的量是,所以沿顺时针方向转了12圈可表示为; 一只乒乓球超出标准质量0.02 g记作+0.02 g,那么和超出标准质量具有相反意义的量是,所以 - 0.03 g可以表示为;综上所述,“净含量:10 kg±150 g”,这里的“10 kg±150 g”表示.思路二(1)想一想:什么是具有相反意义的量?(2)品一品:如何表示具有相反意义的量?(3)考一考:和逆时针方向具有相反意义的量是,和超出标准质量具有相反意义的量是.【师生活动】学生讨论,教师巡视发现问题,并及时解决.解:(1)沿顺时针方向转了12圈记作 - 12圈.(2) - 0.03 g表示乒乓球的质量低于标准质量0.03 g.(3)每袋大米的标准质量应为10 kg,但实际每袋大米可能有150 g的误差,即每袋大米的净含量最多是[过渡语]同学们,我们已经知道了可以用正数和负数表示具有相反意义的量,那么一起来试一试吧.(出示课件4)(1)在知识竞赛中如果用“+10”表示加10分,那么扣20分记作什么?(2)东、西为两个相反方向,如果 - 4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?(3)某粮库运进面粉7.5吨记作+7.5吨,那么运出3.8吨应记作什么?议一议:你能选定一个高度为标准,用正、负数表示本班每位同学的身高与选定的身高标准的差异吗?你是怎样表示的?与同伴交流.通过例题和练习题的分析,让学生知道用正、负数表示相反意义的量时要明确“基准”.教材例题中各题的基准分别是“转盘静止不动”“一只乒乓球的标准质量”“10 kg”.“议一议”则联系生活实际让学生学会如何选定“基准”.学生认识当用正、负数表示相反意义的量时要考虑“基准”.“0”是常用的基准,但不是所有的基准都必须为0.探究活动3有理数的概念及分类1.新的整数、分数概念:引进负数后,数的范围扩大了.过去我们说整数只包括正整数和零,引进负数后,正整数前加上负号的数叫做负整数,因而整数包括正整数、负整数和零,同样分数包括正分数、负分数.整数和分数统称为有理数.(有理数分类结构图如下)有理数2.有理数的分类.问题:为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同,根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法呢?待学生思考后,请学生回答、评议、补充.教师小结:按有理数的符号分为三类:正有理数、负有理数和零,并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:对有理数的分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.[设计意图]使学生在原有认知结构的基础上,将数扩充到了有理数的范围.通过练习使学生加深理解有理数的意义.[知识拓展]对正数和负数的理解要注意以下几点:(1)并不一定必须将某一种量规定为正,若将其中的一种量规定为正,则与其意义相反的量即为负.(2)零既不是正数,也不是负数,这个数十分特殊,随着我们的学习,对于零这个数将有更深刻的认识.(3)负数前面的“一”号,表示这个数的性质,是性质符号,读作“负”号,但正数前面的“+”可以省略.即时巩固将下列各数填入到相应的数集中: - 2015, - ,,, - 5, - 7.3,3,,0.1,92, - .正数集合{…};负数集合{…};正整数集合{…};负整数集合{…};分数集合{…};负分数集合{…};负有理数集合{…};有理数集合{…}.〔解析〕小数 - 7.3,0.1都属于分数,=4不属于分数.(学生口述解答过程,师总结、板演)1.正数与负数都来自于生活实际,用正、负数可以表示实际问题中具有相反意义的量.2.正数前面添上“ - ”号的数是负数;0既不是正数,也不是负数,它表示正、负数的界限.3.有理数的分类方法不是唯一的,可以按整数和分数分成两大类,也可以按正有理数、零、负有理数分成三大类.1.如果将汽车向东行驶3千米记为+3千米,那么记为 - 3千米表示的是()A.向西行驶3千米B.向南行驶3千米C.向北行驶3千米D.向东南方向行驶3千米解析:先根据向东行驶3千米记为+3千米,可确定向西为负,而 - 3千米表示的应是向西行驶3千米.故选A.2.在0,2, - 7, - 5,3.14, - 3, - 3,+0.75中,负数共有 ()A.1个B.2个C.3个D.4个解析:在正数的前面加上“ - ”号的数即是负数,本题中的 - 7, - 5, - 3, - 3是负数.故选D.3.飞机上升了 - 80米,实际上是()A.上升80米B.下降 - 80米C.先上升80米,再下降80米D.下降80米解析:解题的关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.负号表示与上升意义相反,即下降.故选D.4.举一个能用正数、负数表示生活中的量的实例,并解释其中相关数量的含义.解:本题答案不唯一,只要满足题意即可,如:河道中第一天的水位是 - 0.2米,第二天的水位是+0.3米,其中 - 0.2米表示比正常水位低0.2米,+0.3米表示比正常水位高0.3米.1有理数1.认识生活中的负数.2.用正、负数表示生活中具有相反意义的量.3.有理数的概念及分类.一、教材作业【必做题】教材第26页习题2.1的2,3题.【选做题】教材第26页习题2.1的4,5题.二、课后作业【基础巩固】1.下列结论中正确的是()A.0既是正数,又是负数B.0是最小的正数C.0是最大的负数D.0既不是正数,也不是负数2.向东运动记作“+”,向西运动记作“ - ”,下列说法正确的是()A. - 5米表示向东运动了5米B.向西运动5米表示向东运动了 - 5米C.+5米表示向西运动了5米D.向西运动5米也可以记作向西运动 - 5米3.武汉市夏季气温比较高,若以30 ℃为标准,高出标准的为正,低于标准的为负,则38 ℃与28 ℃分别记作()A.+8 ℃ - 2 ℃B.+8 ℃+2 ℃C. - 8 ℃ - 2 ℃D. - 8 ℃+2 ℃4.某药品说明书上标明药品保存的温度是(20±2)℃,该药品在温度范围内保存才合适.5.请指出下列各数中哪些是正数,哪些是负数.- 18,+,3.1416,0.2011, - , - 0.1010…, - π, - 2,99%.【能力提升】6.如果海平面的高度为0 m,一潜水艇在海平面以下40 m处航行,一条鲨鱼在潜水艇上方10 m处游动,试用正、负数分别表示潜水艇和鲨鱼的高度.7.用正数和负数表示下列具有相反意义的量.(1)钟表的指针逆时针方向旋转20°记作 - 20°,顺时针方向旋转30°记作;(2)运进200箱记作,运出150箱记作 - 150箱.【拓展探究】8.某日小明在一条南北方向的公路上跑步,他从A地出发,如果把向北跑1100 m记作 - 1100 m,那么他向北跑1100 m时向后转又继续跑了1200 m是什么意思?这时他停下来休息,此时他在A地的什么方向?距A地多远?【答案与解析】1.D(解析:根据0既不是正数,也不是负数,可以判断A,B,C都错误,D正确.故选D.)2.B(解析:A. - 5米表示向西运动了5米,故A错误;C.+5米表示向东运动了5米,故C错误;D.向西运动5米记为 - 5米,故D错误.故选B.)3.A (解析:因为以30 ℃为标准,高出标准的为正,低于标准的为负,所以38 ℃与28 ℃分别记作:+8 ℃, - 2 ℃.故选A.)4.18~22 ℃(解析:温度是20 ℃±2℃,表示最低温度是20 ℃ - 2 ℃=18℃,最高温度是20 ℃+2℃=22℃,即18~22 ℃之间是合适温度.)5.解:正数有:+,3.1416,0.2011,99%;负数有: - 18, - , - 0.1010…, - π, - 2.6.解:因为海平面的高度为0 m,所以低于海平面的高度为负数,由于潜水艇和鲨鱼的高度都在海平面的下方,故分别为 - 40 m和 - 30 m.7.(1)+30°(2)+200箱8.解:如果把向北跑1100 m记作 - 1100 m,那么他向北跑1100 m时向后转又继续跑了1200 m,说明小明又向南跑了1200 m,此时他在A地的南边,距A地的距离=1200 - 1100=100(m).本节课从学生较熟悉的珠穆朗玛峰、气温开始,接下来从具体问题情境出发,使学生感受到现有的数确实不够用了,唤起学生的好奇心和求知欲,然后引出负数、正数和零的概念和实际意义,接着引导学生回顾、总结学过的数,告诉学生有理数的意义,和学生一起探讨有理数的分类,这样学生易于接受,在学习过程中,学生经历了观察、比较、归纳、总结,学会了研究问题、解决问题的方法,加深了对所学知识的理解,完成了从数不够用到数可以表示具有相反意义的量的成长过程。

1.2.3绝对值教案

1.2.3绝对值教案

沪科版七上1.2.4绝对值教学设计及房子的东边3米处各放了一根骨头,两狗发现后,灰狗跑向西3米处,黄狗跑向东3米处分别衔起了骨头。

问题:1.两只小狗它们所跑的路线相同吗?2.两只小狗它们所跑的路程一样吗?由上图可知,两只小狗所跑的方向不同,但是所跑的距离是一样的.当不考虑方向时,两只小狗跑的距离都可以记作3米.他学生在练习本上画。

画数轴的同时,把相反数的知识进行复习,同时也为绝对值概念的引入奠定了基础,这里老师不包办代替,让学生自己练习.讲授新课【思考】以O为原点,取适当的单位长度画数轴,并在数轴上标出4和-4的位置,则4与-4两点与原点距离分别是多少?+4与-4虽然符号不同,但表示这两个数的点到原点的距离都是4,是相同的.我们把这个距离叫+4与-4的绝对值。

学生思考,得出答案教师引导学生概括、归纳绝对让学生想到表示4,-4的点到原点的距离相同,从而引出了绝对值的概念,这样一环紧扣一环,时而紧张时而轻松,不知不【总结归纳】数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.举例:4、-5、0【例1】利用数轴上点到原点的距离回答下列各数的绝对值。

解:|6|=6 |-6|=6 |4.5|=4.5|-4.5|=4.5 |0|=0【小组讨论】通过观察下面几组数据,你能从中发现什么规律?1.一个正数的绝对值等于它本身.2.一个负数的绝对值等于它的相反数.3.0 的绝对值等于0.如果用字母a 表示一个数(1)当a是正数时,| a |=(2)当a是负数时,| a |=(3)当a=0时,| a |= 值的概念。

思考回答问题分小组讨论,总结规律。

觉学生已获得了知识.通过对例题练习、讲解,增强学生探索的信心,体验到了成功感觉。

“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎练习和讲解例题,帮助学生进行知识的应用。

课堂练习1.写出下列各数的绝对值.415,0,23-,213-,-4.5,-5.答案:415,0,23,213,4.5,5.2.计算:(1)|-9|-|8|;(2)|8-6|;(3)34.2-答案:(1)1,(2)2,(3)0.83.数a,b,c,d在数轴上的对应点的位置如图所示,在这四个数中,绝对值最大的是(A)一般说来,“教师”概念之形成经通过课堂习题练习,进一步理解并掌握新知,训练学生举一反三的能力通过练习巩固本课所学,创设学生活动的机会,及时发现学生掌握新知识的情况,巩固并学习新知识。

2023七年级数学上册第二章有理数及其运算3绝对值教案(新版)北师大版

2023七年级数学上册第二章有理数及其运算3绝对值教案(新版)北师大版
-学生可以加入数学社团或兴趣小组,与志同道合的同学一起学习和探讨数学问题。
-学生可以寻求家长或教师的帮助,解答自己在学习中遇到的困惑和问题。
教学资源拓展旨在提供更多的学习材料和活动,帮助学生巩固和拓展绝对值知识,激发学生的学习兴趣和主动性。同时,通过拓展建议,引导学生合理利用各种资源,提高自己的数学能力和综合素质。
2.拓展建议
-学生可以利用网络资源,搜索有关绝对值的知识,了解绝对值在实际生活中的应用。
-学生可以尝试自己设计一些有关绝对值的数学游戏,与同学一起玩耍,巩固知识。
-学生可以参加数学竞赛或奥数课程,提高自己的数学能力,挑战更高难度的题目。
-学生可以阅读一些数学名著或数学故事书籍,了解数学的发展历程,培养对数学的兴趣。
针对以上问题和不足,我将在今后的教学中进行改进。首先,我将针对不同学生的学习需求,进行分层教学,给予他们个性化的指导和支持。其次,我将加强课堂提问环节的设计,提高学生的主观能动性,培养他们的逻辑思维和数学交流能力。最后,我将不断丰富和更新教学资源,提供更多具有实际意义和挑战性的题目,激发学生的学习兴趣和主动性。
教学过程设计
1.导入环节(5分钟)
-创设情境:通过展示一幅地图,提出问题:“如何在地图上找到两个城市之间的最短距离?”
-引导学生思考和讨论,激发学生对绝对值的兴趣和求知欲。
2.讲授新课(15分钟)
-围绕绝对值的定义和性质进行讲解,强调绝对值的非负性和奇偶性。
-通过示例和图形演示,帮助学生理解和记忆绝对值的概念。
①设计一个简洁的绝对值板书,突出定义、性质和运算规则。
②利用创意字体设计,将“绝对值”三个字以特殊形式呈现,吸引学生的注意力。
③使用色彩,将板书设计得更加生动有趣,如用不同颜色的粉笔标注不同的知识点。

绝对值的几何意义(优秀教学设计)

绝对值的几何意义(优秀教学设计)

【第 6 关】 用绝对值几何意义解绝对值方程
-x =4
- x+1 = 5
x+ 2 + - x+3 =11
【课后练级】
第四环节 x+ 4 + - x+5 = n(n为常数)
教师在讲解
两个绝对值方程
的时候,用了几何
画板,从左往右分
论讨论中,中间一
段是两绝对值和
通过学生来讲解这些 取最小值的时候,
绝对值方程,让学生体会 教师点了一句,这
线段的长度,与第四章基 乏味,所以黄伟整
本平面图形起到了承上启 堂课都贯穿着活
下的作用。
动,而且活动多种
多样!
教师讲解开火车的游
戏规则,并请同学快速抢
队名起的响
答,同时累加记下两队分 亮又文雅,是以
数。
《微微一笑很倾
城》中的主人公
“芦苇微微”和
第二环节 【第 2 关】绝对值几何意义概念的理解

(1)a 的几何意义是什么?
(3)在数轴上,数-4 的点与数 x 的点 的距离用绝对值该怎么表示?
第三环节 典 型
用绝对值几何意义解绝对值方程 【第 3 关】
a =3
a =0

a = -3
题 【第 4 关】

a-5 =1

22
体 系
a-5 =0 2
5 a-
=-1
22
【第 5 关】
a -2 + a+3 =5 a -2 + a+3 =2 a -2 + a+3 =9
“一笑奈何”为队 名,《微微一笑很

(2)在数轴上,数 a 的点到数 2 的点

武汉市实验中学七年级数学上册 第二章 有理数及其运算 2.3 绝对值教学设计2 北师大版

武汉市实验中学七年级数学上册 第二章 有理数及其运算 2.3 绝对值教学设计2 北师大版

绝对值2教学目标知识目标:(1)理解绝对值的概念及表示法。

(2)理解数的绝对值的几何意义。

能力目标:(1)掌握求一个数的绝对值及有关的简单计算,(2)掌握绝对值等于某一正数的有理数的求法,探索绝对值的简单应用。

情感目标:让学生经历绝对值的产生过程,体会数形结合思想。

教学重点、难点重点:绝对值的概念和求一个数的绝对值。

难点:绝对值的几何意义。

教学过程一、新课引入我们已经知道有理数在日常生活中应用广泛,与生产实践联系紧密,用正、负数可以来表示相反意义的量,而数轴使我们直观的感受到有理数中正、负数的区别和数在数轴上相应的位置。

乘城市中的出租车去逛商店是我们经常经历的事,其中的数量关系与我们所学的有理数、数轴有密切联系。

例如有2位同学在书店购买书籍后回家,一位同学乘上甲出租车向东行驶10 Km到达A处,另一位同学乘上乙出租车向西行驶10 Km到达B处。

二、合作学习把全班同学分4---5组分组讨论完成下面的三个问题1:描述请大家用数轴来表示这一过程(记向东行驶的里程数为正)2:思考两位同学付费额度是否一样?为什么?3:结论付费额度与行驶方向有没有关系?然后请各组代表总结发言:(鼓励学生积极参与,并给予高度的评价)这两位同学由于乘车离开书店的距离一样,所以付费额度也是一样的,与行驶方向无关。

说明在数轴上的A(+10)、B(-10)两点到原点(书店)的距离是一样的,都是10。

同样数轴上+5和-5两点到原点的距离也是一样的。

我们把一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。

(注意是离开原点的距离)如数轴上表示-5的点到原点的距离是5,所以-5的绝对值是5,记作55=- ;+5的绝对值也是5,记作55=+ 。

其实际意义是:数轴上+5这个点到原点的距离为5。

(强调绝对值符号的书写格式) 三、课内练习1、求下列各数的绝对值: -1.6 580 -10 +10 同时说出它们的几何意义。

2、说出下列各数的绝对值: -7 -2.05 0 1000 97 97-由上述两题可概括出:(在教师的引导下让学生得出结论)一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零,互为相反的两个数的绝对值相等。

绝对值教学设计

绝对值教学设计

绝对值教学设计第二章有理数及其运算3.绝对值一、学生起点分析学生的知识技能基础:学生已经学习了有理数,认识了数轴,能够用数轴上的点来表示有理数,也已经知道数轴上的一个点与原点的距离,会比较这些距离的大小。

并初步体会到了数形结合的思想方法。

学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了归纳、比较、交流等一些活动,解决了一些简单的现实问题,感受到了数学活动的重要性;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

二、学习任务分析1.地位和内容相反数的概念是学习绝对值知识的基础,绝对值知识是解决有理数比较大小、距离等知识的重要依据,同时它也是我们后面学习有理数运算的基础。

本节课借助数轴引出相反数、绝对值的概念,并通过计算、观察、交流,发现绝对值的性质特征,利用绝对值来比较两个负数的大小。

应让学生直观理解绝对值的含义,不要在绝对值符号内部出现多重符号和字母,多鼓励学生通过观察、归纳、验证,概念。

并让学生理解消化相反数的概念。

活动内容2:点将游戏一。

A同学任意说出一个有理数,再随意地点另一个同学B回答它的相反数。

B同学回答后,也任意说出一个有理数,再点另一个同学C回答它的相反数……以此类推,约有一半的学生参与后,游戏结束。

活动目的:利用游戏的形式巩固相反数的概念。

活动内容3:将上面三组数用数轴上的点表示出来,每组数所对应的点在数轴上的位置有什么关系?活动目的:从形的角度进一步理解相反数。

实际效果:通过数、游戏、形多个方面让学生认识相反数,学生很快理解相反数,全体学生都能顺利的说出一个数的相反数。

第二环节合作交流,探索新知活动内容:让学生观察图画,并回答问题,“两只狗分别距原点多远?”1. 引入绝对值概念在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值。

一个数a 的绝对值记作│a │.如│+3│=3,│-3│=3,│0│=0.2.例1 求下列各数的绝对值:- 7.8, 7.8, - 21, 21,-94,94, 0 (学生充分思考后,让学生回答,老师板书)3.议一议:(1)互为相反数的两个数的绝对值有什么关系?(2)一个数的绝对值与这个数有什么关系?(给学生充分的时间思考、探究,老师个别指导;然后小组交流)4.通过上面例子,引导学生归纳总结出:互为相反数的两个数的绝对值相等.正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.)5.点将游戏二.A 同学任意说出一个有理数,再随意地点另一个同学B 回答它的绝对值。

七年级数学上册第二章有理数及其运算3绝对值优秀教案(新版)北师大版

七年级数学上册第二章有理数及其运算3绝对值优秀教案(新版)北师大版

教课要点与难点教课要点: 1.借助数轴认识相反数的看法,会求一个数的相反数.2.借助数轴理解绝对值的看法.教课难点:1.会求一个数的相反数.2.会求一个数的绝对值.3.会用绝对值比较两个负数的大小.学情剖析经过上节课的学习学生已经认识数轴;能够用数轴上的点来表示有理数;会比较有理数的大小;初步领会到了数形联合的思想方法.在前方的学习过程中,学生经历了归纳、比较、沟通等活动,解决了一些简单的现实问题,感觉到了数学活动的重要性;在从前的数学学习中学生经历了合作学习的过程,拥有了必定的合作学习的经验和合作沟通的能力.教课目的1.借助数轴,初步理解相反数和绝对值的看法,能求一个数的相反数和绝对值,会利用绝对值比较两个负数的大小.2.经过应用绝对值解决本质问题,领会绝对值的意义和作用.教课方法借助数轴利用数形联合思想,经过教材问题,培育学生踊跃参加数学活动,并在数学活动中体验成功,锻炼学生战胜困难的意志,发展学生清楚地论述自己看法的能力以及培育学生合作研究、沟通、学习的新式学习方式.教课过程一、创建情境,引入新课设计说明利用生动的图例将学生引入问题情境,使学生易获取对绝对值的感性认识,激发学生的学习兴趣和踊跃主动性.问题 1:图中的三个小动物到原点的距离分别是多少?学生简单回答出距离分别是3,3,5 ,在此基础上教师进一步提出问题 2.问题 2:你知道这个距离在数学中叫什么吗?这个问题学生回答不上来,教师给出绝对值的定义,经过问题的形式使学生加强对看法的理解.二、合作沟通,研究新知1.看法引入33(1)3 与- 3 有什么同样点?与-,5与-5呢?你还可以列举两个这样的数吗?与伙伴2 2进行沟通.将三组数用数轴上的点表示出来,每组数所对应的点在数轴上的地点有什么关系?假如两个数只有符号不一样,那么称此中一个数为另一个数的相反数,也称这两个数互为相反数.特别地, 0 的相反数是 0.在数轴上,表示互为相反数的两个点,位于原点的双侧,且与原点的距离相等.(2)在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.用符号“ || ”表示,+ 2 的绝对值等于2,记作 | + 2| = 2,-3 的绝对值等于 3,记作 | - 3| = 3.教课说明关于绝对值符号的书写教师应重视板书的规范性.2.沟通研究问题 1:说出以下各数的绝对值:114,- 4,2,-2, 0,- 0.25,0.25.问题 2:以上各组数都是什么关系?他们的绝对值又有什么关系?在学生进行充足的思虑议论过程后,教师指引学生得出结论:互为相反数的两个数的绝对值相等, 0 的相反数是 0.9例 1求出以下各数的绝对值:-21,+4, 0,- 7.8.9答案: 21,4, 0,7.8教课说明问题 1 让学生到黑板演示,这样做既检查了学生关于绝对值看法的理解掌握,同时又检查了书写的规范程度;问题 2 在学习了相反数看法的基础长进一步引申研究互为相反数的两个数的绝对值之间的关系,该问题教师可先让学生充足议论,勇敢讲话,同时关注学生数形联合思想的领悟程度,在学生经历了研究议论过程后结论的得出便理所应当了.最后例题的设计使学生关于所得结论进行充足的练习.3.比比练练,又探新知问题 1:请两个同学相互给对方随意写出两个正数、两个负数和零,而后要求对方求出它们的绝对值.问题 2:在以上练习中你可否总结出一个数的绝对值与这个数自己的关系吗?正数的绝对值是它自己;负数的绝对值是它的相反数;0 的绝对值是0.教课说明问题 1 是关于绝对值看法的应用,教课时可采纳学生相互出题竞猜的方式,易激发学生的学习兴趣,能够让一名同学在下边出题,另一名同学到黑板上板演示,其余同学当裁判,调换全体同学的踊跃性;问题 2 的设计使学生的思想空间又上涨了一个层次,在知识的理解水平上又加深了一步,教师可在学生充足发布自己的看法后,再与学生一同归纳总结出结论.4.深入思虑,再探新知问题 1:在数轴上表示以下各数,并比较它们的大小:- 1.5 ,- 3,- 1,- 5;问题 2:求出上述各数的绝对值,并比较它们的大小;问题 3:你发现了什么?两个负数比较大小,绝对值大的反而小.教课说明问题 1 是关于上节课知识的复习回首,在此基础上提出问题 2 意在指引学生利用比较绝对值大小的方法比较两个负数的大小,本环节是本节课的教课难点,在实现以上教课活动的过程中,学生有较好的参加意识和学习兴趣,本质问题与学生生活亲密联系,绝大部分学生能够很快的得出结论,并跟着教师问题的提出而不停进行更深入的思虑,体验看法的形成过程.三、应用迁徙,稳固提升例 2比较以下每组数的大小:5(1) -1 和- 5;(2) -6和- 2.7.5答案: (1) - 1>- 5(2) -6>- 2.7教课说明关于该例题的解决方式建议让学生充足思虑、研究不一样解法,经过用绝对值或数轴对两个负数的大小进行比较,让学生学会试试评论两种不一样方法之间的差别.中考链接若- 2 的绝对值是a,则以下结论正确的选项是()11A.a=2B.a=2C.a=- 2D.a=-2答案: A四、总结反省,拓展升华经过本节课的学习,我们都学到了哪些数学知识和方法?1.这节课我们学到了相反数和绝对值的看法;会求一个数的相反数和绝对值;会利用绝对值比较两个负数的大小.2.这节课的知识我们借助于数轴去理解,进一步领会数形联合思想.3.学生易疑惑的地方:用字母表示一个有理数的绝对值是学生理解掌握的难点.评论与反省本节课的设计旨在为学生供给兴趣性强、切近学生生活本质的背景资料,供给逻辑性强思想周密的问题串,供给沟通合作的学习环境,使学生踊跃主动地投入到学习之中,激发学生参加学习的踊跃性,使本来乏味、抽象的相反数和绝对值看法变得简单;此外,本节课还给学生供给了研究问题的时间和空间,并让学生自己归纳和总结获取新知识,锻炼了学生在与别人沟通中学会表达自己思想的能力.一个数的绝对值本质上是数轴上该数所对应的点到原点的距离的数值,而这类几何解说反应了看法的本质.本节课设计先让学生对看法进行理解,再归纳上涨到定义上来,这类理解问题的次序切合从感性认识上涨到理性认识的规律,同时使得绝对值看法的非负性拥有较扎实的基础.在教授知识的同时,必定要重视学科基本思想方法的教课,假如把数学思想和方法学好了,在数学思想和方法的指导下运用数学方法驾御数学知识,就能逐渐形成和发展学生的数学能力.。

《绝对值的定义》教学设计

《绝对值的定义》教学设计

《绝对值的定义》教学设计《绝对值的定义》教学设计1一、学习与导学目标:知识与技能:会求出一个数的绝对值,能利用数轴及绝对值的知识,比较两个有理数的大小;过程与方法:经历绝对值概念的形成,初步体会数形结合的思想方法,丰富解决问题的策略;情感态度:通过创设情境,初步感悟学习绝对值的必要性,促进责任心的形成。

二、学程与导程活动:A、创设情境(幻灯片或挂图)1、两辆汽车,其一向东行驶10km,另一向西行驶8km。

为了区别,可规定向东行驶为正,则分别记作+10km和-8km。

但在计算出租车收费,汽车行驶所耗的汽油,起主要作用的是汽车行驶的路程,而不是行驶的方向。

此时,行驶路程则分别记作10km 和8km。

再如测量误差问题、排球重量谁更接近标准问题……2、在讨论数轴上的点与原点的距离时,只需要观察它与原点相隔多少个单位长度,与位于原点何方无关。

B、学习概念:1、我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作︱a︱(幻灯片)。

因此,上述+10,-8的绝对值分别是10,8。

如在数轴上表示数-6的点和表示数6的点与原点的距离都是6,所以,-6和6的绝对值都是6,记作︱-6︱=6,︱6︱=6。

(互为相反数的两个数的绝对值相同)2、尝试回答(1)︱+2︱= ,︱1/5︱= ,︱+8.2︱= ;(2)︱-3︱= ,︱-0.2︱= ,︱-8.2︱= ;(3)︱0︱= 。

(幻灯片)思考:你能从中发现什么规律?引导学生得出:(幻灯片)性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。

如果用字母a表示有理数,上述性质可表述为:当a是正数时,︱a︱=a;当a是负数时,︱a︱=-a;当a=0时,︱a︱=0。

解答课本P19/7及P15练习,由P19/7体会绝对值在实际中的应用,由练习1体会上面的三个等式,由练习2中提到的绝对值大小、数轴,引出问题:在引入负数以后,如何比较两个数的大小,尤其是两个负数的大小?3、让我们仍然回到实际中去看看有怎样的启发,引导阅读P16(幻灯片)。

绝对值 教学设计

绝对值 教学设计

华师大版七年级上 2.4《绝对值》第一课时教学设计【课程标准分析】本节课要求学生借助数轴,初步理解绝对值的概念,能求一个数的绝对值,并能够利用绝对值的非负性进行相关计算。

通过应用绝对值养成解决实际问题的能力;通过渗透数形结合的思想方法,注意培养学生的概括能力。

最终帮助学生体会绝对值的意义和作用,感受数学在生活中的价值。

【教材分析】1.地位与作用:绝对值是有理数的重要概念之一,在学习绝对值之前,学生已经学习了负数、数轴和相反数,学生在小学学习了非负有理数,了解了非负有理数的概念、性质及运算,为学习绝对值奠定了基础。

绝对值与初等数学的许多知识和方法相联系,有着广泛和重要的应用:①有理数的大小比较,有了绝对值的概念后,有理数之间的大小比较就方便多了,特别是两个负数的比较,只比较绝对值即可,不必在数轴上表示负数后再比较。

②求数轴上的两点间的距离,数a 在数轴上表示的点到原点的距离为|a|,在数轴上表示a和b两点间的距离为|a-b|。

③有理数的运算,一个有理数实质包含两部分:一是符号,二是绝对值;有理数的运算在确定了结果的正负号后,剩下的问题就是绝对值的运算了。

④应用绝对值的非负性,一个有理数的绝对值是一个非负数,这一性质有着重要的作用。

如已知|a-3|+|b+2|=0,求a-b的值,就是这一性质的直接应用。

从前面四点的分析中,不难看出,绝对值在整个数与代数部分有着重要的地位,应用非常的广泛,是后继学习的重要基础,有着承上启下的作用。

2.重点与难点:本节的重点是让学生直观理解绝对值的含义;本节的难点是正确理解绝对值的代数意义及其应用。

通过生活引例,自然导出绝对值的几何定义,再通过尝试、归纳,进而得出常用的代数定义,要引导学生参与这一过程,并对|a|≥0这一性质有初步的直观认识。

教学中要让学生了解一个有理数应由符号和绝对值两部分组成,为有理数的运算作准备,结合绝对值的学习,可以引导学生重新认识相反数的意义:绝对值相等符号相反的两个数互为相反数;零的相反数是零。

乐亭县第一中学七年级数学上册 第二章 有理数及其运算 3 绝对值教案 北师大版

乐亭县第一中学七年级数学上册 第二章 有理数及其运算 3 绝对值教案 北师大版

3 绝对值1.了解相反数的概念,会求一个数的相反数.2.理解绝对值的含义,会求一个数的绝对值.3.会利用绝对值比较两个负数的大小.重点理解绝对值的含义,会求一个数的绝对值.难点能利用绝对值比较两个负数的大小.一、情境导入教师:3与-3有什么相同点?32与-32,5与-5呢? 学生:每组数中的两个数只有符号不同.教师:对!像这样,如果两个数只有符号不同,那么称其中一个数为另一个数的相反数,也称这两个数互为相反数.特别地,0的相反数是0.二、探究新知1.绝对值的定义教师:将上面三组数用数轴上的点表示出来,每组数对应的点,在数轴上有什么关系?学生小组讨论交流,教师点评,并进一步讲解:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值.例如,+2的绝对值等于2,记作|+2|=2;-3的绝对值等于3,记作|-3|=3. 教师:想一想,互为相反数的两个数的绝对值有什么关系?学生思考后举手回答,教师点评.2.绝对值的性质课件出示填空题:|5|=________;|-5|=________;|+7|=________;|-7|=________;|4|=________;|-4|=________;|+1.7|=________;|-1.7|=________;|0|=________.让学生完成填空,并提出问题:同学们能从中得到什么规律吗?教师引导学生思考:通过对具体数的绝对值的讨论,观察正数的绝对值有什么特点,负数的绝对值有什么特点.学生分类讨论,归纳出数a 的绝对值的一般规律:(1)一个正数的绝对值是它本身;(2)负数的绝对值是它的相反数;(3)0的绝对值是0.即:若a>0,则|a|=a ;若a<0,则|a|=-a ;若a =0,则|a|=0.总结:由绝对值的定义可知:不论有理数a取何值,它的绝对值总是正数或0(通常也称非负数),绝对值具有非负性,即|a|≥0.3.利用绝对值比较两个负数的大小教师:利用数轴我们已经会比较有理数的大小了,同学们试比较-8和-3的大小.学生完成后举手回答.教师:我们能否用今天所学的绝对值来比较这两个数的大小呢?学生思考后回答问题,教师引导学生得出结论:两个负数比较大小,绝对值大的反而小.三、举例分析例1(课件出示教材第30页例1)学生独立完成后汇报答案,教师点评.例2(课件出示教材第31页例2)学生独立完成后汇报答案,教师点评.教师进一步提问:此例题能用别的方法进行比较吗?学生分小组讨论后汇报答案,教师要求写出解题过程.四、练习巩固教材第32页“随堂练习”第1~3题.五、小结这节课学习的主要内容有哪些?你有哪些收获?六、课外作业教材第32页习题2.3第1~3题.本节课是在认识了数轴及如何把一个有理数在数轴上表示出来的基础上学习的.首先通过相反数知识,引入绝对值概念,理解相反数、绝对值之间的联系;进而讲解绝对值的相关性质,并能用符号语言来表示,即讨论︱a︱与a之间的关系;最后利用绝对值比较两个负数的大小.教学中初步渗透了数形结合的重要数学思想.教师思路清晰,让学生形成环环相扣的知识系统,轻松地接受新知识.有理数大小的比较说课稿一、教材分析(一)地位与作用有理数大小的比较是紧接在有理数、数轴、相反数和绝对值之后学习的。

绝对值说课稿

绝对值说课稿

绝对值说课稿绝对值说课稿1一、说教材(五)教材的地位和作用《绝对值》是选自人教版初一数学第一章第二节第四部分的内容。

这部分内容之前已经学习了有理数、数轴、相反数的内容,这是本节课学习的基础。

绝对值的内容主要包括含义及有理数之间的大小比较,这也为后面学习有理数的加减法奠定了基础。

(六)教学目标根据对教材内容的分析,以及在新课改理念的指导下,制定了如下三维目标:(一)知识与技能理解、掌握绝对值的含义,并且会比较有理数之间的大小。

(二)过程与方法运用数轴来推理数的绝对值,并在推理的过程中清晰的阐述自己的观点,从而逐步发展发生的抽象思维。

(三)情感态度与价值观体验数学活动的探索性和创造性,感受数学的严谨性以及数学结论的`确定性。

教学重难点通过以上对教材内容及教学目标的分析,以及学生已有的知识水平,本节课的教学重难点如下:重点:绝对值的理解以及有理数的比较难点:负数的绝对值的理解及比较二、说学情以上就是我对教材的分析,由于教学目标及重难点的确定也是在学生情况的基础上进行的,所以下面我对学情进行分析。

初一学生的抽象思维开始有了一定的发展,但还需一定的感性材料作支撑,同时思维比较活跃和积极,所以教学过程中会注重直观材料的运用,然后引导学生自主思考并理解知识,以激发学生的学习兴趣,调动学生的积极性和主动性。

三、说教材基于以上对教材、学情的分析,以及新课改的要求,我在本课中采用的教法有:讲授法、演示法和引导归纳法。

演示法中需要的教具有多媒体和温度计。

四、说教法新课改理念告诉我们,学生不仅要学到具体的知识,更重要的是学生要学会怎样自己学习,为终身学习奠定扎实的基础。

所以本课中我将引导学生通过自主探究、合作交流的学法来更好的掌握本节课的内容。

五、说教学程序为了更好的实现三维目标、突破重难点,我将本课的教学程序设计为以下五个环节:(一)情境导入出示温度计,"北方某一城市的温度是零下15摄氏度,南方某一城市的温度是15摄氏度",学生在稿纸上画一条数轴,标出这两个温度,并请一位学生画在黑板上。

浙教版数学七年级上册《1.3 绝对值》教学设计

浙教版数学七年级上册《1.3 绝对值》教学设计

浙教版数学七年级上册《1.3 绝对值》教学设计一. 教材分析浙教版数学七年级上册《1.3 绝对值》是学生在学习了有理数的基础上进一步探究绝对值的概念。

绝对值是数学中的一个基本概念,它表示一个数在数轴上所对应的点与原点的距离。

这一节内容通过具体的例子让学生理解绝对值的定义,掌握绝对值的性质,并能够运用绝对值解决实际问题。

二. 学情分析学生在进入七年级之前,已经对有理数有了初步的认识,能够理解有理数的加减乘除等基本运算。

但是,对于绝对值这一概念,他们可能是初次接触,因此需要通过具体的例子和实际操作来理解和掌握。

同时,学生可能对数轴有一定的了解,但可能不熟悉如何利用数轴来理解和解决问题。

三. 教学目标1.知识与技能:让学生理解绝对值的定义,掌握绝对值的性质,并能够运用绝对值解决实际问题。

2.过程与方法:通过具体例子和实际操作,让学生体验绝对值的含义,培养学生的抽象思维能力。

3.情感态度价值观:激发学生对数学的兴趣,培养学生积极思考、合作探索的学习态度。

四. 教学重难点1.重点:绝对值的定义,绝对值的性质。

2.难点:如何运用绝对值解决实际问题。

五. 教学方法采用讲授法、引导法、实践法、讨论法等多种教学方法,以学生为主体,教师为指导,通过具体的例子和实际操作,引导学生理解和掌握绝对值的概念和性质,培养学生的抽象思维能力。

六. 教学准备1.教具准备:黑板、粉笔、数轴图示、实际问题案例。

2.教学环境:安静、整洁、舒适的课堂环境。

七. 教学过程1.导入(5分钟)通过一个实际问题引出绝对值的概念,例如:小明从家出发,向正北方向走了3公里,又向正南方向走了5公里,他现在离家有多远?引导学生思考和讨论,引出绝对值的概念。

2.呈现(10分钟)通过数轴图示,向学生讲解绝对值的定义,即一个数在数轴上所对应的点与原点的距离。

同时,给出绝对值的性质,如正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0等。

3.操练(10分钟)让学生在数轴上标出给定数的绝对值,并找出符合绝对值性质的例子。

北师大版七年级数学上册第二章有理数及其运算3绝对值教学课件(共18张)

北师大版七年级数学上册第二章有理数及其运算3绝对值教学课件(共18张)

新课讲授
知识点3 比较两个负数大小
讨论 互为相反数的两个数的绝对值有什么关系?
原点
-4 -3
-2
-1
0
1
2
3
-3到原点的距离是3
+3到原点 的距离是3
结论
互为相反数的两个数的绝对值相等。
新课讲授
用数轴比较两数的大小: 1. 在数轴上表示两个数,右边的数总比左边的数大. 2. 利用数轴比较大小关键有两步:
相反数的求法: 求一个数的相反数就是在这个数的前面加上“-”号,
即a的相反数是-a,其实质是改变这个数的符号.
新课讲授
典例分析
例 1.下列说法正确的是( D )
1
A.2 与-2是相反数
B.-
1 2
与-2互为相反数
C.-3与+2互为相反数
D.

1 2
与0.5互为相反数
(1)相反数不能单独存在, 前提是“互为”; (2)判断两个数是否互为相 反数,要从两个方面看,
新课导入
两只小狗分别距原点多 远?
-3 -2 -1
0 12 3 4
大象距原点多远?
新课讲授
知识点1 相反数的定义 讨论 在数轴上找到表示-2,2和-3 ,3的点.
结论
表示每组中两个数的点都位于原点的两旁, 且与原点的距离相等.
新课讲授
定义
只有符号不同的两个数叫做互为相反数. 特别地,0的相反数是0.
一是符号不能相同; 二是数字一定要相同.
新课讲授
知识点2 绝对值的定义
定义
几何定义:一般地,数轴上表示数a的点与原点的距离叫做数
a的绝对值,记作 a .
代数定义:一个正数的绝对值是它本身;一个负数的绝对值是 它的相反数;0的绝对值是0;任意一个数的绝对值为唯一非负 数.

七年级数学上册第二章有理数及其运算2.3绝对值教学

七年级数学上册第二章有理数及其运算2.3绝对值教学

-5到原点的距离(jùlí)是5,
所以-5的绝对值是5,
记做|-5|=5
0到原点的距离是0, 所以0的绝对值是0, 记做|0|=0
4到原点的距离(jùlí)是 4,所以4的绝对值是4,
记做|4|=4
│-5│=5
│4│=4
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
第九页,共三十一页。
3米

3米
A
3
O
3
B
-3
-2
-1
问题:
1.它们所跑的路线相同吗?
0
1
2
路线(lùxiàn) 不同,正 负性
3 路程一样,到原 点的距离相等(不
管(bùguǎn)方向)
2.它们所跑的路程(lùchéng)(线段OA、OB的长度)一样吗?
第八页,共三十一页。
知识要点
我们(wǒ men)把一个数在数轴上对应的点到原点的距离叫做 这个数的绝对值,用“| |”表示.
4.|-6|的相反数是_____-_6
5.+7.2的相反数的绝对值是___7_.2__
第二十五页,共三十一页。
6.判断:
(1)一个数的绝对值是 2 ,则这数是2 . (2)|5|=|-5|. (3)|-0.3|=|0.3|. (4)|3|>0. (5)|-1.4|>0. (6)有理数的绝对值一定是正数. (7)若a=b,则|a|=|b|. (8)若|a|=|b|,则a=b. (9)若|a|=-a,则a必为负数(fùshù).
第二十三页理数的绝对值一定(D )
A.大于0
B.小于0
C.小于或等于0 D.大于或等于0
2.若|a|+|b-1|=0,则a=____0_, b=_____. 1

数学第2章单元有理数的运算教学设计

数学第2章单元有理数的运算教学设计

单元主题第二章有理数及其运算
单元教学目标1.掌握有理数加、减、乘、除、乘方及简单的混合运算;理解有理数的运算律,并能用运算律简化运算。

掌握科学计数法。

能用计算器进行有理数的四则运算。

3.在具体情境中,经历探索有理数运算法则和运算律的过程,理解有理数运算的意义。

通过丰富的数学活动,体验分类、转化、归纳等数学思想方法,并能初步运用这些思想方法解决简单的实际问题。

单元教学时数及课时分配分21课时完成,
1.有理数,数轴,绝对值。

共3课时
2.有理数的加减及加减混合运算。

共6课时
3.有理数的乘法,除法,乘方。

共5课时
4.科学记数法,有理数的混合运算,用计算器计算。

共3课时
5.单元复习篇,4课时
单元教学重、难点重点:有理数的加法和乘法的法则以及运算律是本章的重点.
难点:有理数的加法特别是异号两数相加的法则,以及把有理数的加减混合算式省略加号后写成和的形式是本节的难点用严谨的几何语言进行推理证明。

单元整体教学思路:。

初中数学北师大七年级上册 有理数及其运算探索绝对值的最值问题的规律—教学设计

初中数学北师大七年级上册 有理数及其运算探索绝对值的最值问题的规律—教学设计

探索绝对值的最值问题的规律—教学设计一、教学目标1、知识与技能(1)借助数轴,进一步理解绝对值的几何意义。

(2)通过不同的方法,解决多个绝对值和的最值问题。

2、过程与方法目标(1)通过运用“| |”来表示一个数或两个数差的绝对值,培养学生的数感和符号感。

(2)通过探索求绝对值的最值问题的规律,让学生学会通过观察,发现规律,总结方法,发展学生的实践能力,培养创新意识;3、情感态度与价值观借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想。

通过零点分段法培养学生分类讨论的数学思想。

并在独立解决问题中体验成功,锻炼学生克服困难的意志,建立自信心。

二、教学重点进一步理解绝对值的几何意义。

三、教学难点结合绝对值的几何意义以及数形结合的思想探索绝对值最值问题的规律。

四、教学过程:1、回顾绝对值的几何意义。

(约1分钟)|a|的几何意义:如图,数轴上表示数a的点到原点的距离.|a-b|的几何意义:如图,数轴上的表示数a的点到数b的点之间的距离.2、用零点分段法讨论两个绝对值和的最值情况。

(约1分钟)求|x+1|+|x-2|的最小值以及此时x的取值.结论为:当-1≤x≤2时,|x+1|+|x-2|取得最小值为3.即两个绝对值相加,在两个零点以及两个零点之间取值时,绝对值的和取得最小值.3、分别用零点分段法和捆绑法讨论三个、四个、五个绝对值和的最值情况。

(约3分钟)①求||+|x+1|+|x-2|的最小值以及此时x的取值.结论为:当x=时,||+|x+1|+|x-2|取得最小值为3.即三个绝对值相加,在中间点取值时,绝对值的和取得最小值.②求||+2|x+1|+|x-2|的最小值以及此时x的取值.结论为:-1≤x≤时,||+2|x+1|+|x-2|的最小值为.即四个绝对值相加,在中间两点及两点之间取值时,绝对值的和取得最小值.③求|x|+|x+2|+||+|x+1|+|x-2|的最小值以及此时x的取值.结论为:在x=0取得最小值,为.即五个绝对值相加,在中间点取值时,绝对值的和取得最小值.4、总结已得出的结论,通过结论进一步猜想n 个绝对值相加时,绝对值和的情况,并验证猜想。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数及其运算(绝对值)教学设计
(一) 教学目标
知识与技能目标:
(1)、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小。

(2)、通过应用绝对值解决实际问题,体会绝对值的意义和作用。

过程与方法目标:
(1)、通过运用“| |”来表示一个数的绝对值,培养学生的数感和符号感,达到发展学生抽象思维的目的;
(2)、通过探索求一个数绝对值的方法和两个负数比较大小方法的过程,让学生学会通过观察,发现规律、总结方法,发展学生的实践能力,培养创新意识;
(3)、通过对“议一议”的思考和讨论,培养学生有条理地用语言表达解决问题的方法;通过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。

情感态度与价值观:
借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想。

通过“想一想”“议一议”“做一做”问题的思考及回答,培养学生积极参与数学活动,并在数学活动中体验成功,锻炼学生克服困难的意志,建立自信心,发展学生清晰地阐述自己观点的能力以及培养学生合作探索、合作交流、合作学习的新型学习方式。

(二)教学重点和难点
理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。

(三) 、教学过程设计:
第一环节 创设情境,导入新课
活动内容:让学生观察图画,并回答问题,“大象和两只小狗分别距离原点多远?”利用图画将学生引入一定的问题情境,学生积极思考问题,解决问题,进入主题的重要环节。

活动目的:利用动画展示,让学生在有趣的问题情境中获取对绝对值概念的感性认识.并激发学生学习的积极性与主动性。

0 1 2 3 4 -1 -2 -3 5
大象距原点多远?
两只小狗分别
距原点多远?
活动的实际效果:小动物的形象符合学生心理,学生兴趣很高,踊跃发言,全体学生都能顺利的解决该问题。

第二环节 合作交流,解读探究
活动内容:
1. 引入绝对值概念
在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值。

2.给出几对相反数,让学生求出它们的绝对值后,引导学生思考:互为相反数的两个数的绝对值有什么关系?
(给学生充分的时间思考、探究,老师个别指导)
例1 求下列各数的绝对值:
-21, 49+, 0, -7.8。

(学生充分思考后,让学生回答,老师板书)
3.每两个同学相互给对方任意写出三个正数、三个负数和零,然后要求对方求出它们的绝对值。

(给学生充分时间,让学生相互出题、答题)
4.通过上面例子,引导学生归纳总结出一个数的绝对值与这个数的关系。

(老师可在学生充分发表自己的观点后,再与学生一起归纳总结出:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.)
5.“做一做”:
(1)在数轴上表示下列各数,并比较它们的大小:
-1.5,-3,-1,-5;
(2)求出(1)中各数的绝对值,并比较它们的大小;
(3)你发现了什么?
(老师可引导学生多举一些例子,让学生合作讨论完成)
活动目的:学生根据情境感知,初步认知绝对值,并通过对其概念的理解求解一个数的绝对值。

通过学生举例思考,对互为相反数的两个数的绝对值进行观察对比,从而得到它们的关系。

学生从“特殊——一般”分类归纳绝对值的代数意义,并通过归纳,总结出绝对值的内在涵义,体现学生的主体性。

探索用绝对值比较两负数的方法,体验概念的形成过程。

实际效果:同桌之间举例,效果良好,体现了“自主——协作”学习。

积极调动学生的思维,使学生在协商、讨论中将问题逐渐明朗化、具体化,在共享集体思维成果的基础上达到对当前所学内容比较全面、正确的理解。

第三环节:应用迁移,巩固提高
活动内容:
例2 比较下列每组数的大小:
(1)-1和-5;(2)65
- 和-2.7。

(给学生充分的时间思考、探究不同解法,并评价不同方法之间的差异。

)
随堂练习:
1. 一个数的绝对值是它本身,那么这个数一定是 。

2.绝对值小于3的整数有 个,分别是 。

3.如果一个数的绝对值等于 4,那么这个数等于 。

4.用>、<、=号填空
│-5│ 0 , │+3│ 0,
│+8│ │-8│ , │-5│ │-8│.
5.在数轴上表示下列各数,并求它们的绝对值: ,6 ,-3 , ;
6.比较下列各组数的大小:
(1) (2) (3) (4) 活动目的:对本节知识进行巩固训练,进一步培养学生分析问题、解决问题的能力。

通 过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。

实际效果:通过以上题组训练,学生对本节知识有了更深一步的理解,并进一步明确了绝对值的内涵与意义,解决问题的能力得到了大大提高。

第四环节:总结反思,拓展升华
活动内容:总结:1.本节学习的数学知识;2.本节学习的数学方法。

(老师可先鼓励学生描述出自己的认识与收获,然后再作进一步归纳总结。

)
反思:两个负数比较大小,方法有几种?请举例说明。

拓展:1.字母 a 表示一个数,-a 表示什么?-a 一定是负数吗?
2.已知: ,求2x+3y 的值。

活动目的:通过对绝对值定义,代数意义及数学思想方法的归纳总结,充分发挥学生的
自主归纳能力,使学生能够系统的、完全的理解知识点。

并明确在数学思想和方法的指导下,运用数学方法解决数学问题的重要性。

在反思与拓展中使学生的认识得到经一步升华。

实际效果:学生能够互相点评,共同归纳,并做进一步反思与拓展,这样既发展了学生自主学习能力,又强化了协作精神,同时使知识得到了进一步完善与升华。

第五环节:布置作业
必做题:
习题2.3,知识技能第2,3,4题.
选做题:
若 则a 0; 若 则a 0.
23-45;,72101--;,5.032--;
,032-.7,7-0231
=-+-y x ,a a -=,
a a =。

相关文档
最新文档