MSP430FE427IPM中文资料

合集下载

MSP430FW427中文数据手册

MSP430FW427中文数据手册

MSP430 的典型应用包括热量仪表、热水和冷水仪表、气体仪表和工业传感器系统。定时器支持额外 的计数器应用、射频位流操作、IrDA 和 M-Bus 通讯。
—1—
利尔达单片机技术有限公司 杭州市文二路 207 号文欣大厦 301 座 0571-88259199
TA –40°C to 85°C
MSP430xW42x引脚功能
输入/ 序
输出 号


64
电源正端,为SVS,上电复位,振荡器,FLL+,比较器A,I/O端口6和LCD电阻分
压电路供电,不能先于DVCC上电
62
电源负端,为SVS,上电复位,振荡器,FLL+,比较器A,I/O端口6供电,必须外
部连接到DVSS。内部连接到DVSS
1
数字供电电源正端,为除了由AVCC/AVSS供电的所有数字部分供电
可选型号 封装器件
64 脚 QFP 封装(PM) MSP430CW423IPM MSP430CW425IPM MSP430CW427IPM MSP430FW423IPM MSP430FW425IPM MSP430FW427IPM
MSP430xW42x 引脚
—2—
利尔达单片机技术有限公司 杭州市文二路 207 号文欣大厦 301 座 0571-88259199
TDI/TCLK
55
I 测试数据输入或测试时钟输入。芯片保护熔丝连接到TDI/TCLK
TDO/TDI
54 I/O 测试数据输出。TDO/TDI数据输出或者编程数据输入引脚
TMS
56
I 测试模式选择。TMS用于芯片编程和测试的输入端口
XIN
8
I 晶体振荡器XT1的输入端口。可以连接标准或者钟表晶振

msp430各功能模块的介绍

msp430各功能模块的介绍

各个时钟信号源介绍如下:1、LFXT1CLK:低频/高频时钟源。

可以外接32768Hz的时钟芯片或频率为450KHz~8MHz的标准警惕或共振器。

2、XT2CLK:高频时钟源。

需要外接两个震荡电容器。

可以外接32768Hz的时钟芯片或频率为450KHz~8MHz的标准警惕或共振器和外部时钟输入。

较常用的晶体是8MHz的。

3、DCOCLK:内部数字可控制的RC振荡器。

MSP430单片机时钟模块提供3个时钟信号以供给片内各部分电路使用,这3个时钟信号分别是:(1)ACLK:辅助时钟信号。

ACLK是从LFXT1CLK信号由1/2/4/8分频器分频后得到的。

由BCSCTL1寄存器设置DIV A相应位来决定分频因子。

ACLK可提供给CPU外围功能模块做时钟信号使用。

(2)MCLK:主时钟信号。

MCLK是由3个时钟源所提供的。

它们分别是:LFXT1CLK、XT2CLK、和DCO时钟源信号。

MCLK主要用于MCU和相关模块做时钟。

同样可设置相关寄存器来决定分频因子及相关设置。

(3)SMCLK:子系统时钟。

SMCLK由2个时钟源信号提供,他们分别是XT2CLK 和DCO。

如果是F11或F11X1系列单片机,则由LFXT1CLK代替XT2CLK。

同样可设置相关寄存器来决定分频因子及相关的设置。

低频振荡器LFXT1:LFXT1支持超低功耗,它在低频模式下使用一个32768Hz的晶体。

不需要任何电容因为在低频模式下内部集成了电容。

低频振荡器也支持高频模式和高速晶体,但连接时每端必须加电容。

电容的大小根据所接晶体频率的高低来选择。

低频振荡器在低频和高频模式下都可以选择从XIN引脚接入一个外部输入时钟信号,但所接频率必须根据所设定的工作模式来选择,并且OSCOFF位必须复位。

高频振荡器LFXT2:LFXT2作为MSP430的第二晶体振荡器。

与低频相比,其功耗更大。

高频晶体真大气外接在XIN2和XOUT2两个引脚,并且必须外接电容。

MSP430资料

MSP430资料

D Wake-Up From Standby Mode in 6 µs D 16-Bit RISC Architecture,125-ns Instruction Cycle Time D 12-Bit A/D Converter With InternalReference, Sample-and-Hold and Autoscan FeatureD 16-Bit Timer_B With SevenCapture/Compare-With-Shadow Registers D 16-Bit Timer_A With Three Capture/Compare Registers D On-Chip ComparatorDSerial Onboard Programming,No External Programming Voltage Needed Programmable Code Protection by Security FuseDevicesDFamily Members Include:– MSP430F133:8KB+256B Flash Memory,256B RAM– MSP430F135:16KB+256B Flash Memory,512B RAM– MSP430F147:32KB+256B Flash Memory,1KB RAM– MSP430F148:48KB+256B Flash Memory,2KB RAM– MSP430F149:60KB+256B Flash Memory,2KB RAMD Available in 64-Pin Quad Flat Pack (QFP)DFor Complete Module Descriptions, See the MSP430x1xx Family User’s Guide ,Literature Number SLAU049descriptionThe Texas Instruments MSP430 family of ultralow-power microcontrollers consist of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low power modes is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that attribute to maximum code efficiency.The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 6µs.The MSP430x13x and the MSP430x14x series are microcontroller configurations with two built-in 16-bit timers,a fast 12-bit A/D converter, one or two universal serial synchronous/asynchronous communication interfaces (USART), and 48 I/O pins.Typical applications include sensor systems that capture analog signals, convert them to digital values, and process and transmit the data to a host system. The timers make the configurations ideal for industrial control applications such as ripple counters, digital motor control, EE-meters, hand-held meters, etc. The hardware multiplier enhances the performance and offers a broad code and hardware-compatible family solution.Copyright 2000 – 2003, Texas Instruments IncorporatedPRODUCTION DATA information is current as of publication date.Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.pin designation, MSP430F133, MSP430F135171819P5.4/MCLK P5.3P5.2P5.1P5.0P4.7/TBCLK P4.6P4.5P4.4P4.3P4.2/TB2P4.1/TB1P4.0/TB0P3.7P3.6P3.5/URXD0484746454443424140393837363534332012345678910111213141516DV CC P6.3/A3P6.4/A4P6.5/A5P6.6/A6P6.7/A7V REF+XINXOUT/TCLKVe REF+V REF –/Ve REF –P1.0/TACLK P1.1/TA0P1.2/TA1P1.3/TA2P1.4/SMCLK21222324P 5.6/A C L K T D O /T D I 63626160596458A V P 6.2/A 2P 6.1/A 1P 6.0/A 0R S T /N M I T C K T M S P 2.6/A D C 12C L K P 2.7/T A 0P 3.0/S T E 0P 3.1/S I M O 0P 1.7/T A 2P 2.1/T A I N C L K P 2.2/C A O U T /T A 0P 2.3/C A 0/T A 1P 2.4/C A 1/T A 2P 2.5/R o s c 5655545725262728295352P 1.5/T A 0X T 2I N X T 2O U T 515049303132P 3.2/S O M I 0P 3.3/U C L K 0P 3.4/U T X D 0P 5.7/T B o u t HT D I P 5.5/S M C L KA V D V PM PACKAGE (TOP VIEW)P 1.6/T A 1P 2.0/A C L K C CS SS Spin designation, MSP430F147, MSP430F148, MSP430F149171819P5.4/MCLK P5.3/UCLK1P5.2/SOMI1P5.1/SIMO1P5.0/STE1P4.7/TBCLK P4.6/TB6P4.5/TB5P4.4/TB4P4.3/TB3P4.2/TB2P4.1/TB1P4.0/TB0P3.7/URXD1P3.6/UTXD1P3.5/URXD0484746454443424140393837363534332012345678910111213141516DV CC P6.3/A3P6.4/A4P6.5/A5P6.6/A6P6.7/A7V REF+XINXOUT/TCLKVe REF+V REF –/Ve REF –P1.0/TACLK P1.1/TA0P1.2/TA1P1.3/TA2P1.4/SMCLK21222324P 5.6/A C L K T D O /T D I 63626160596458A V P 6.2/A 2P 6.1/A 1P 6.0/A 0R S T /N M I T C K T M S P 2.6/A D C 12C L K P 2.7/T A 0P 3.0/S T E 0P 3.1/S I M O 0P 1.7/T A 2P 2.1/T A I N C L K P 2.2/C A O U T /T A 0P 2.3/C A 0/T A 1P 2.4/C A 1/T A 2P 2.5/R o s c 5655545725262728295352P 1.5/T A 0X T 2I N X T 2O U T 515049303132P 3.2/S O M I 0P 3.3/U C L K 0P 3.4/U T X D 0P 5.7/T B o u t HT D I P 5.5/S M C L KA V D V PM PACKAGE (TOP VIEW)P 1.6/T A 1P 2.0/A C L K C CS SS Sfunctional block diagrams MSP430x13xRoscXT2INXT2OUTTMSTCKTDITDO/TDIMSP430x14xRoscXT2INXT2OUTTMSTCKTDITDO/TDITerminal FunctionsTerminal Functions (Continued)General-Purpose Register Program Counter Stack Pointer Status Register Constant Generator General-Purpose Register General-Purpose Register General-Purpose Register PC/R0SP/R1SR/CG1/R2CG2/R3R4R5R12R13General-Purpose Register General-Purpose Register R6R7General-Purpose Register General-Purpose Register R8R9General-Purpose Register General-Purpose Register R10R11General-Purpose Register General-Purpose RegisterR14R15short-form descriptionCPUThe MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions,are performed as register operations in conjunc-tion with seven addressing modes for source operand and four addressing modes for destina-tion operand.The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock.Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register,and constant generator respectively. The remain-ing registers are general-purpose registers.Peripherals are connected to the CPU using data,address, and control buses, and can be handled with all instructions.instruction setThe instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data.Table 1 shows examples of the three types of instruction formats; the address modes are listed in Table 2.Table 1. Instruction Word FormatsTable 2. Address Mode Descriptionsoperating modesThe MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request and restore back to the low-power mode on return from the interrupt program.The following six operating modes can be configured by software:D Active mode AM;–All clocks are activeD Low-power mode 0 (LPM0);–CPU is disabledACLK and SMCLK remain active. MCLK is disabledD Low-power mode 1 (LPM1);–CPU is disabledACLK and SMCLK remain active. MCLK is disabledDCO’s dc-generator is disabled if DCO not used in active modeD Low-power mode 2 (LPM2);–CPU is disabledMCLK and SMCLK are disabledDCO’s dc-generator remains enabledACLK remains activeD Low-power mode 3 (LPM3);–CPU is disabledMCLK and SMCLK are disabledDCO’s dc-generator is disabledACLK remains activeD Low-power mode 4 (LPM4);–CPU is disabledACLK is disabledMCLK and SMCLK are disabledDCO’s dc-generator is disabledCrystal oscillator is stoppedinterrupt vector addressesThe interrupt vectors and the power-up starting address are located in the address range 0FFFFh – 0FFE0h.The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.2.Interrupt flags are located in the module.3.Nonmaskable: neither the individual nor the general interrupt-enable bit will disable an interrupt event.4.(Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable can not disableit.5.Timer_B7 in MSP430x14x family has 7 CCRs; Timer_B3 in MSP430x13x family has 3 CCRs. In Timer_B3 there are only interruptflags TBCCR0, 1, and 2 CCIFGs and the interrupt-enable bits TBCCTL0, 1, and 2 CCIEs.special function registersMost interrupt and module-enable bits are collected in the lowest address space. Special-function register bits not allocated to a functional purpose are not physically present in the device. This arrangement provides simple software access.interrupt enable 1 and 2Address 0hWDTIE:Watchdog-timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog timer is configured in interval timer mode.OFIE:Oscillator-fault-interrupt enable NMIIE:Nonmaskable-interrupt enable ACCVIE:Flash access violation interrupt enableURXIE0:USART0, UART, and SPI receive-interrupt enable UTXIE0:USART0, UART, and SPI transmit-interrupt enablerw-0rw-0Address 01hURXIE1:USART1, UART, and SPI receive-interrupt enable UTXIE1:USART1, UART, and SPI transmit-interrupt enableinterrupt flag register 1 and 2Address 02hWDTIFG:Set on watchdog timer overflow (in watchdog mode) or security key violation. Reset on V CC OFIFG:Flag set on oscillator fault NMIIFG:Set via RST/NMI pinURXIFG0:USART0, UART, and SPI receive flag UTXIFG0:USART0, UART, and SPI transmit flagrw-1rw-0Address 03hURXIFG1:USART1, UART, and SPI receive flag UTXIFG1:USART1, UART, and SPI transmit flagmodule enable registers 1 and 2rw-0rw-0Address 04hURXE0:USART0, UART receive enable UTXE0:USART0, UART transmit enableUSPIE0:USART0, SPI (synchronous peripheral interface) transmit and receive enablerw-0rw-0Address 05hURXE1:USART1, UART receive enable UTXE1:USART1, UART transmit enableUSPIE1:USART1, SPI (synchronous peripheral interface) transmit and receive enableLegend: rw:Bit Can Be Read and WrittenBit Can Be Read and Written. It Is Reset by PUC.SFR Bit Not Present in Devicememory organizationbootstrap loader (BSL)The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the features of the BSL and its implementation, see the Application report Features of the MSP430Bootstrap Loader , Literature Number SLAA089.flash memoryThe flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:D Flash memory has n segments of main memory and two segments of information memory (A and B) of 128bytes each. Each segment in main memory is 512 bytes in size.D Segments 0 to n may be erased in one step, or each segment may be individually erased.D Segments A and B can be erased individually, or as a group with segments 0–n.Segments A and B are also called information memory.D New devices may have some bytes programmed in the information memory (needed for test duringmanufacturing). The user should perform an erase of the information memory prior to the first use.Main MemoryInformation Memory8 kB 0FFFFh 0FE00h 0FDFFh 0FC00h 0FBFFh 0FA00h 0F9FFh16 kB 0FFFFh 0FE00h 0FDFFh 0FC00h 0FBFFh 0FA00h 0F9FFh32 kB 0FFFFh 0FE00h 0FDFFh 0FC00h 0FBFFh 0FA00h 0F9FFh48 kB 0FFFFh 0FE00h 0FDFFh 0FC00h 0FBFFh 0FA00h 0F9FFh60 kB 0FFFFh 0FE00h 0FDFFh 0FC00h 0FBFFh 0FA00h 0F9FFh0E400h 0E3FFh 0E200h 0E1FFh 0E000h 010FFh 01080h 0107Fh 01000h0C400h 0C3FFh 0C200h 0C1FFh 0C000h 010FFh 01080h 0107Fh 01000h08400h 083FFh 08200h 081FFh 08000h 010FFh 01080h 0107Fh 01000h04400h 043FFh 04200h 041FFh 04000h 010FFh 01080h 0107Fh 01000h01400h 013FFh01200h 011FFh01100h 010FFh01080h 0107Fh01000hperipheralsPeripherals are connected to the CPU through data, address, and control busses and can be handled using all instructions.digital I/OThere are six 8-bit I/O ports implemented—ports P1 through P6:D All individual I/O bits are independently programmable.D Any combination of input, output, and interrupt conditions is possible.D Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2.D Read/write access to port-control registers is supported by all instructions.oscillator and system clockThe clock system in the MSP430x13x and MSP43x14x family of devices is supported by the basic clock module that includes support for a 32768-Hz watch crystal oscillator, an internal digitally-controlled oscillator (DCO) anda high frequency crystal oscillator. The basic clock module is designed to meet the requirements of both lowsystem cost and low-power consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 µs. The basic clock module provides the following clock signals:D Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high frequency crystal.D Main clock (MCLK), the system clock used by the CPU.D Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.watchdog timerThe primary function of the watchdog timer (WDT) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals.multiplication (MSP430x14x Only)The multiplication operation is supported by a dedicated peripheral module. The module performs 1616, 168, 816, and 88 bit operations. The module is capable of supporting signed and unsigned multiplication as well as signed and unsigned multiply and accumulate operations. The result of an operation can be accessed immediately after the operands have been loaded into the peripheral registers. No additional clock cycles are required.USART0The MSP430x13x and the MSP430x14x have one hardware universal synchronous/asynchronous receive transmit (USART0) peripheral module that is used for serial data communication. The USART supports synchronous SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered transmit and receive channels.USART1 (MSP430x14x Only)The MSP430x14x has a second hardware universal synchronous/asynchronous receive transmit (USART1) peripheral module that is used for serial data communication. The USART supports synchronous SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered transmit and receive channels.Operation of USART1 is identical to USART0.timer_A3Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities.Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.timer_B7 (MSP430x14x Only)Timer_B7 is a 16-bit timer/counter with seven capture/compare registers. Timer_B7 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B7 also has extensive interrupt capabilities.Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.timer_B3 (MSP430x13x Only)Timer_B3 is a 16-bit timer/counter with three capture/compare registers. Timer_B3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B3 also has extensive interrupt capabilities.Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.comparator_AThe primary function of the comparator_A module is to support precision slope analog–to–digital conversions, battery–voltage supervision, and monitoring of external analog signals.ADC12The ADC12 module supports fast, 12-bit analog-to-digital conversions. The module implements a 12-bit SAR core, sample select control, reference generator and a 16 word conversion-and-control buffer. The conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without any CPU intervention.peripheral file mapperipheral file map (continued)peripheral file map (continued)peripheral file map (continued)absolute maximum ratings over operating free-air temperature (unless otherwise noted)†. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Voltage applied at V CC to V SS–0.3 V to + 4.1 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Voltage applied to any pin (referenced to V SS) –0.3 V to V CC+0.3 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Diode current at any device terminal . ±2 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Storage temperature (unprogrammed device) –55°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Storage temperature (programmed device) –40°C to 85°C †Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.NOTE:All voltages referenced to V SS.recommended operating conditionsNOTES: 1.In LF mode, the LFXT1 oscillator requires a watch crystal and the LFXT1 oscillator requires a 5.1-M Ω resistor from XOUT to V SS when V CC <2.5 V. In XT1 mode, the LFXT1. and XT2 oscillators accept a ceramic resonator or a 4-MHz crystal frequency at V CC ≥ 2.2 V. In XT1 mode, the LFXT1 and XT2 oscillators accept a ceramic resonator or an 8-MHz crystal frequency at V CC ≥ 2.8V.2.In LF mode, the LFXT1 oscillator requires a watch crystal. In XT1 mode, FXT1 accepts a ceramic resonator or a crystal.3.The cumulative program time must not be exceeded during a block-write operation. This parameter is only relevant if segment write option is used.4.The mass erase duration generated by the flash timing generator is at least 11.1 ms. The cummulative mass erase time needed is 200 ms. This can be achieved by repeating the mass erase operation until the cumulative mass erase time is met (a minimum of 19 cycles may be required).f (MHz)8.0 MHzSupply Voltage – V’F13x/’F14x,Figure 1. Frequency vs Supply Voltage, MSP430F13x or MSP430F14xelectrical characteristics over recommended operating free-air temperature (unless otherwise noted)+ DV excluding external currentsupply current into AVCC2.Timer_B is clocked by f(ACLK) = 32,768 Hz. All inputs are tied to 0 V or to V CC. Outputs do not source or sink any current. The currentconsumption in LPM2 and LPM3 are measured with ACLK selected.electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)Current consumption of active mode versus system frequency, F-versionI(AM) = I(AM) [1 MHz]× f(System) [MHz]Current consumption of active mode versus supply voltage, F-versionI(AM) = I(AM)[3V]+ 175 µA/V × (V CC– 3 V)SCHMITT-trigger inputs – Ports P1, P2, P3, P4, P5, and P6standard inputs – RST/NMI; JTAG: TCK, TMS, TDI, TDO/TDIOH(max)OL(max),specified voltage drop.2.The maximum total current, I OH(max) and I OL(max), for all outputs combined, should not exceed ±24 mA to satisfy the maximumspecified voltage drop.outputs – Ports P1, P2, P3, P4, P5, and P6 (continued)Figure 2V OL – Low-Level Output Voltage – V 02468101214160.00.5 1.0 1.5 2.0 2.5TYPICAL LOW-LEVEL OUTPUT CURRENTvsLOW-LEVEL OUTPUT VOLTAGEO L I – L o w -L e v e l O u t p u t C u r r e n t – m AFigure 3V OL – Low-Level Output Voltage – V05101520250.00.5 1.0 1.5 2.0 2.5 3.03.5TYPICAL LOW-LEVEL OUTPUT CURRENTvsLOW-LEVEL OUTPUT VOLTAGEO L I – L o w -L e v e l O u t p u t C u r r e n t – m AFigure 4V OH – High-Level Output Voltage – V–14–12–10–8–6–4–200.00.51.01.52.02.5TYPICAL HIGH-LEVEL OUTPUT CURRENTvsHIGH-LEVEL OUTPUT VOLTAGEO H I – H i g h -L e v e l O u t p u t C u r r e n t – m AFigure 5V OH – High-Level Output Voltage – V–30–25–20–15–10–50.00.5 1.0 1.5 2.0 2.5 3.03.5TYPICAL HIGH-LEVEL OUTPUT CURRENTvsHIGH-LEVEL OUTPUT VOLTAGEO H I – H i g h -L e v e l O u t p u t C u r r e n t – m Aelectrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)output frequencyfrequencies can be different.(int)trigger signals shorter than t(int). Both the cycle and timing specifications must be met to ensure the flag is set. t(int) is measured in MCLK cycles.2.The external capture signal triggers the capture event every time the minimum t(cap) cycle and time parameters are met. A capturemay be triggered with capture signals even shorter than t(cap). Both the cycle and timing specifications must be met to ensure a correct capture of the 16-bit timer value and to ensure the flag is set.3.Seven capture/compare registers in ’x14x and three capture/compare registers in ’x13x.electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)leakage current (see Note 1)SS CC 2.The port pin must be selected as input and there must be no optional pullup or pulldown resistor.should take place during this supply voltage condition.lkg(Px.x)2.The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements.The two successive measurements are then summed together.electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)T A – Free-Air Temperature – °C 400450500550600650–45–25–51535557595Figure 6. V (RefVT) vs Temperature, V CC = 3 VV (R E F V T )– R e f e r e n c e V o l t s –m VFigure 7. V (RefVT) vs Temperature, V CC = 2.2 VT A – Free-Air Temperature – °C400450500550600650–45–25–51535557595V (R E F V T )– R e f e r e n c e V o l t s –m VV+τ ≈ 2.0 µsTo Internal ModulesSet CAIFG FlagCAOUT V –Figure 8. Block Diagram of Comparator_A ModuleV Figure 9. Overdrive Definitionelectrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)PORVVVFigure 10. Power-On Reset (POR) vs Supply Voltage1.20.800.20.40.60.811.21.41.61.82–40–2020406080T A – Temperature – °CV P O R – VFigure 11. V POR vs Temperatureelectrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)DCO (see Note 1)(System)2.This parameter is not production tested.f DCO_0f DCO_7–F r e q u e n c y V a r i a n c eFigure 12. DCO Characteristicselectrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)main DCO characteristicsD Individual devices have a minimum and maximum operation frequency. The specified parameters forf DCOx0 to f DCOx7 are valid for all devices.D All ranges selected by Rsel(n) overlap with Rsel(n+1): Rsel0 overlaps with Rsel1, ... Rsel6 overlaps withRsel7.D DCO control bits DCO0, DCO1, and DCO2 have a step size as defined by parameter S DCO.D Modulation control bits MOD0 to MOD4 select how often f DCO+1 is used within the period of 32 DCOCLKcycles. The frequency f(DCO) is used for the remaining cycles. The frequency is an average equal to f(DCO) × (2MOD/32 ).(t) URXS flip-flop is set. The URXS flip-flop is set with negative pulses meeting the minimum-timing condition of t(t). The operating conditions to set the flag must be met independently from this timing constraint. The deglitch circuitry is active only on negative transitions on the URXD0/1 line.electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)12-bit ADC, power supply and input range conditions (see Note 1)‡Not production tested, limits verified by designNOTES: 1.The leakage current is defined in the leakage current table with P6.x/Ax parameter.2.The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reducedaccuracy requirements.3.The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reducedaccuracy requirements.4.The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied withreduced accuracy requirements.5.The analog input voltage range must be within the selected reference voltage range V R+ to V R– for valid conversion results.6.The internal reference supply current is not included in current consumption parameter I ADC12.7.The internal reference current is supplied via terminal AV CC. Consumption is independent of the ADC12ON control bit, unless aconversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion.electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)12-bit ADC, built-in reference (see Note 1)‡Not production tested, limits verified by designNOTES: 1.The voltage source on V eREF+ and V REF–/V eREF–) needs to have low dynamic impedance for 12-bit accuracy to allow the charge to settle for this accuracy.2.The external reference is used during conversion to charge and discharge the capacitance array. The dynamic impedance shouldfollow the recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.3.The internal buffer operational amplifier and the accuracy specifications require an external capacitor.4.The input capacitance is also the dynamic load for an external reference during conversion. The dynamic impedance of the referencesupply should follow the recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy. All INL and D NL t ests u ses t wo c apacitors b etween p ins V REF+a nd A V SS a nd V REF–/V eREF–a nd A V SS: 10 µF t antalum a nd 100nF c eramic.electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)12-bit ADC, timing parameters‡Not production tested, limits verified by designNOTES: 1.The condition is that the error in a conversion started after t REF(ON) is less than ±0.5 LSB. The settling time depends on the externalcapacitive load.2.The condition is that the error in a conversion started after t ADC12ON is less than ±0.5 LSB. The reference and input signal are alreadysettled.3.Ten Tau (τ) are needed to get an error of less than ±0.5 LSB. t Sample = 10 x (Ri + Zi) x Ci+ 800 nsC 1 µ in µF100 µ10 µFigure 13. Typical Settling Time of Internal Reference t REF(ON) vs External Capacitor on V REF +electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)12-bit ADC, linearity parameters。

msp430fe427单片机LCD驱动程序

msp430fe427单片机LCD驱动程序
0xff,//低7位:小字左6,高位:温度计图标
0xff,//低7位:小字左5,高位:mmol/L
0xff,//低7位:小字左4,高位:电池图标
0xff,//低7位:小字左3,高位:小数点
// 外部设定要显示的数据
void delay(unsigned int i)
{
while(i--);
}
/*******************************************************
0x07,//7
0x7f,//8
0x3f,//9
0xff
};
unsigned char lcd_Buf[11]={1,2,3,4,5,6,7,8,9,0,1}; // 自定义显示缓冲区,用于
while(1)
{
lcd_Display_smallword(1989,2011); //显示数据到LCD
lcd_Display_bigword(temp++);
lcd_smallpoint(off);
// lcd_colon();
LCDCTL = LCD4MUX+LCDSG0_3+LCDON; // LCD4MUX 模式
for (tmpv = 0;tmpv<11;tmpv++)
{
LCDMEM[tmpv] = 0x00; //clear LCD
number_0=right%10;
number_1=right/10%10;
number_2=right/100%10;
number_3=right/1000%10;
number_4=left%10;

msp430

msp430

MSP430单片机系列种类
非基于LCD
MSP430x1xx: : 基于闪存/ ROM的MCU提供 伏至3.6伏的工作电压, 基于闪存 的 提供1.8伏至 伏的工作电压, 提供 伏至 伏的工作电压 高达60kB和8MIPS(带有基本时钟 带有基本时钟) 高达 和 带有基本时钟 MSP430F2xx: : 基于闪存的MCU 提供 提供1.8 伏至 伏至3.6 伏工作电压,掉电复位及 伏工作电压, 基于闪存的 16MIPS(带有基本时钟 带有基本时钟) 带有基本时钟 MSP430F5XX: : 基于闪存的MCU 提供 提供1.8 伏至 伏至3.6 伏工作电压,掉电复位及 伏工作电压, 基于闪存的 18MIPS(带有基本时钟 带有基本时钟) 带有基本时钟
各模块简要介绍— 5,Msp430f247的基准时钟系统
系统复位后: 系统复位后: MCLK和SMCLK由DCO提供, 提供, 和 由 提供 ACLK由LFXT1提供 由 提供
以下是DCO设置程序: //设定DCO为16MHZ : BCSCTL1 =CALBC1_16MHZ; DCOCTL =CALDCO_16MHZ; 可选频率1M,8M,12M,16M 读取0x10f9和0x10f8两 个地址里面 16MHzDCO常数分别 装入BCSCTL1和 DCOCTL两个寄存器
MSP430单片机的应用领域
日常公用测量 水表,气表,自动抄表, 水表,气表,自动抄表,先进电 表网络基础设施, 表网络基础设施,热分配表 便携式消费 无线鼠标和键盘,触摸按键, 无线鼠标和键盘,触摸按键, 手机,数码相机, 手机,数码相机,MP3 电动牙刷,剃须刀, 电动牙刷,剃须刀,运动手表等
主要内容
Msp430单片机简介 Msp430单片机简介 Msp430单片机的结构及主要模块 Msp430单片机的结构及主要模块 Msp430单片机的具体应用 Msp430单片机的具体应用 —位移测量装置 位移测量装置

MSP430简介_中文

MSP430简介_中文

Energia中极为丰富的示例程序:
包括数字量、模拟 量、串口通信、集 成传感器等例程
插上Lauchpad能够自 动生成虚拟的串口
MSP430 | Ultra-Low Power is in our DNA
更简易的编程方式:
基于Energia和ArduBlock的图形编程
从左端的工具框中 拖出逻辑模块和外 设模块,按照接口 的对接完成程序流 程的构建
LaunchPad 开发板初探:
USB 仿真连接
嵌入式仿真 6-pin eZ430 Connector Crystal Pads Chip Pinouts Part and Socket
P1.3 Button LEDs and Jumpers P1.0 & P1.6
Power Connector Reset Button
MSP430 | Ultra-Low Power is in our DNA
The TI Development Programme
MSP430 Launchpad 基于 Arduino系统的介绍
——上海交通大学
Shanghai Jiaotong university
MSP430 | Ultra-Low Power is in our DNA
—— Launchpad的扩展
基于Launchpad的简易收音机
基于Launchpad的空中鼠标
基于Launchpad的简易播放器
像Arduino系统一样添加传感器
MSP430 | Ultra-Low Power is in our DNA
—— Launchpad的扩展
模拟电压的测量
像Arduino系统一样添加传感器

利尔达单片机 FE427单项多功能电表demo 说明书

利尔达单片机 FE427单项多功能电表demo 说明书

FE427单相多功能电表DEMO板使用说明书产品名称:FE427单相多功能电表DEMO型号:JS04-DD-E42X-LSD01版本号:V1.0编制:利尓达技术部日期:2004.08.28杭州利尔达单片机技术有限公司目录1 板面布局 (3)2 显示说明 (4)3 简易校表方式 (5)4 DEMO软件解析 (5)Foreground.c (5)Background.c (6)ESP.C (7)LCD.C (8)温度补偿RTC.C (8)TOOL.C (8)MSP430FE42X单相多功能电能表DEMO硬件上已经是一个完整的电表方案,具备485和红外通信,具备有功、无功校表脉冲输出、具备时段指示,并外部已扩展了I2C E2PROM。

用户可直接在我们的DEMO板上实现一个完整的单相多功能电能表。

1 板面布局如图1-1,电表的板面说明如下:1、时段指示灯:D101,D102,D1032、有功脉冲指示:LED4013、有功脉冲输出口:J4034、无功脉冲指示:LED4025、无功脉冲输出口:J4026、 38K载波红外接收头:B3007、红外发射器:B3018、 485通信接口:RS4859、 FE42X内部电能计量模块电流通道I1输入回路接口:J40010、 FE42X内部电能计量模块电流通道I2输入回路接口:J40111、 FE42X内部电能计量模块电压通道V1输入回路接口:J200我们知道FE42X的内置计量模块ESP具有两个电流通道,可同时测量火线和零线电流实现防窃电电表。

在DEMO中我们需要短接电流通道I2,如图1-1。

由于电流通道I2回路接口在外部短接,所以电流通道I1RMS始终大于电流通道I2RMS,因此在DEMO程序中,我们不再关心两个通道的电流大小,始终以电流通道I1作为计算依据。

当然,只要你喜欢,你完全可以把电流通道I2的短接去掉,利用两个电流通道实现防窃电电表。

这里有一点需要注意,我们在两个电流通道上都添加了CT的负载电阻,电流通道I1(R400),电流通道I2(R401)。

以MSP430FW427为核心的远程数字水表设计[1]

以MSP430FW427为核心的远程数字水表设计[1]

第22卷 第3期 2007年09月 西 南 科 技 大 学 学 报 Journal of South west University of Science and Technol ogy Vol .22No .3 Sep.2007 收稿日期:2007-03-07 基金项目:国家863计划项目(2005AA121520),西南科技大学重点科研基金项目(06zx2130)。

 作者简介:周金治(1971-),男,硕士,讲师。

研究方向为网络体系结构与协议分析、DSP 技术及应用。

E -mail:zhoujinzhi@s wust .edu .cn 。

以MSP430F W427为核心的远程数字水表设计周金治 范富宏(西南科技大学信息工程学院 四川绵阳 621010)摘要:介绍了以M SP430为核心的低功耗远程数字水表设计。

以M SP430F W 427为微处理器,采集处理水流量信号;内嵌简化的T CP /I P 协议,采用CS8900A 的I/O SP ACE 模式实现数据的传输。

分析了LC 振荡电路检测流量信号的原理,给出了流量信号的检测、处理、显示及网络通信等模块的软硬件设计及流程。

实验表明,该水表具有低功耗、高精度等优点,测得的水流量既可本地显示,也可通过网络实现远程抄表。

关键词:数字水表 流量检测 MSP430F W 427微处理器 网络通信中图分类号:T M932 文献标识码:A 文章编号:1671-8755(2007)03-0079-04D esi gn of Rem ote D i g ita l W a ter M eter Ba sed on M SP 430F W 427Zhou J in 2zhi,Fan Fu 2hong(School of Infor m a tion Eng ineering,S outhw est U niversity of Science and Technology,M ianyang 621010,S ichuan,China )Abstract:The re mote l ow power consump ti on digital water meter based on MSP430was intr oduced .It can be used t o collect and p r ocess fluid signal with MSP430F W 427as MCU.Data 2trans porting was car 2ried out with I/O SP ACE mode of CS8900A by TCP /I P p r ot ocol .On analyzing the p rinci p le and p r ocess of fluid signals ’detecti on,hard ware and s oft w are design of signal ’s gathering,p r ocessing and net w ork communicati on were given .Experi m ental result shows that the water meter has the characteristic of l ow power and high p recisi on,the fluid signal can dis p lay l ocally and be accessed by I nternet .Key words:digital water meter;fluid signal detecting;MSP430F W 427MCU;net w ork communicati on随着电子通信与计算机网络技术的发展,远程抄表技术在水、电和煤气计量方面的应用已经逐渐发展起来,基于网络通信的水表已经成为水表的发展趋势。

MSP430单片机原理解读

MSP430单片机原理解读

第 2 章MSP430 单片机原理与 C 语言基础MSP430系列超低功耗单片机有200多种型号,TI公司用3~ 4位数字表示其型号。

其中第一位数字表示大系列,如MSP430F1xx系列、MSP430F2xx系列、MSP430F4xx系列、MSP430F5xx系列等。

在每个大系列中,又分若干子系列,单片机型号中的第二位数字表示子系列号,一般子系列越大,所包含的功能模块越多。

最后1~2 位数字表示存储容量,数字越大表示RAM 和ROM 容量越大。

430 家族中还有针对热门应用而设计的一系列专用单片机。

如SP430FW4xx 系列水表专用单片机、MSP430FG4xx 系列医疗仪器专用单片机、MSP430FE4xx 系列电能计量专用单片机等。

这些专用单片机都是在同型号的通用单片机上增加专用模块而构成的。

最新的MSP430型号列表可以通过TI公司网站下载。

在开发单片机应用系统时,第一步就是单片机的选型,选择合适的单片机型号往往就能事半功倍。

单片机选型基本方法是选择功能模块最接近项目需求的系列,然后根据程序复杂程度估算存储器和RAM 空间,并留有适当的余量,最终决定选用的单片机型号。

本章节以MSP430F249单片机为学习目标,介绍单片机的基本结构和工作原理,读者可以举一反三、触类旁通,而不必每种型号都去学习却无法深入掌握。

2.1 MSP430F249单片机基本结构与原理2.1.1MSP430F249的主要结构特点供电电压范围1.8V~3.6V 。

超低功耗:活动状态270uA(1MHz,2.2V);待机模式0.3uA;关机模式0.1uA。

16位RISC精简指令集处理器。

时钟系统:多种时钟源,可灵活使用。

时钟频率达到16MHz ;具有内部振荡器;可外接32kHz 低频晶振;外接时钟输入。

12位A/D转换器,内部参考电压,采用保持电路。

16位定时器A,3个捕获/比较寄存器。

16 位定时器B,7 个捕获/比较寄存器。

基于MSP430系列单片机的多功能电能表设计

基于MSP430系列单片机的多功能电能表设计

智能小区武永鑫(1970—),男,副教授,研究方向为电器工程。

基于M SP430系列单片机的多功能电能表设计武永鑫(阜阳职业技术学院,安徽阜阳 236031)摘 要:针对电能计量系统的现状,研发了一种新型的电能计量装置,其中增加了防窃电解决方案。

对基于M SP 430系列单片机的多功能电能表的软硬件设计作了详细介绍。

该电能表克服了同类产品的一些缺陷,有效增强了系统的抗干扰能力,提高了电能计量的自动化水平。

关键词:多功能电能表;单片机;电能计量;防窃电功能中图分类号:TP216 文献标识码:B 文章编号:167428417(2010)022*******0 引 言在现代社会中,电能已广泛应用于社会生产的各个领域和社会生活的各个方面。

电能表是当前电能计量和经济结算的主要工具。

随着电子技术、自动控制技术和计算机技术的迅猛发展,电能计量装置也发生了巨大变革。

新型电子式电能表的研制日益成为电力行业的迫切需求。

本文提出的电能表设计特点是系统将数据采集、电量计算、通信、显示、数据运算、存储集于一体,为实现低成本开发要求,充分利用CP U 的外设功能,使外部电路精简,解决了对CP U 资源以及外部电路进行有序、有效管理的难点问题。

本文的创新之处在于有效地增强了系统的抗干扰能力,对电表增加了防窃电解决方案。

1 硬件结构多功能电能表就是指除计量有功电能、无功电能外,还具有分时、测量需量等两种以上功能,并能显示、存储和输出数据的电能表。

本文的设计任务是完成集数据采集、电能计量、通信控制、输出显示等功能于一体的多功能电能表。

以MSP430FE427为例设计的多功能电能表的硬件结构框图如图1所示。

它由MSP430单片机单元、电源管理单元、显示单元、通信单元和外围接口等部分组成。

图1 M S P430F E427单相电能表功能框图2 软件设计2.1 系统软件设计单片机应用系统的软件设计和一般的程序软件不同,须在熟悉硬件的基础上进行设计。

MSP430简介(超详细·)

MSP430简介(超详细·)

msp430简介MSP430是德州公司新开发的一类具有16位总线的带FLASH 的单片机,由于其性价比和集成度高,受到广大技术开发人员的青睐.它采用16位的总线,外设和内存统一编址,寻址范围可达64K,还可以外扩展存储器.具有统一的中断管理,具有丰富的片上外围模块,片内有精密硬件乘法器、两个16位定时器、一个14路的12位的模数转换器、一个看门狗、6路P口、两路USART通信端口、一个比较器、一个DCO内部振荡器和两个外部时钟,支持8M 的时钟.由于为FLASH型,则可以在线对单片机进行调试和下载,且JTAG口直接和FET(FLASH EMULATION TOOL)的相连,不须另外的仿真工具,方便实用,而且,可以在超低功耗模式下工作对环境和人体的辐射小,测量结果为100mw左右的功耗(电流为14mA左右),可靠性能好,加强电干扰运行不受影响,适应工业级的运行环境,适合与做手柄之类的自动控制的设备.我们相信MSP430单片机将会在工程技术应用中得以广泛应用,而且,它是通向DSP系列的桥梁,随着自动控制的高速化和低功耗化, MSP430系列将会得到越来越多人的喜爱.一、IO口(一)、P口端口寄存器:1、PxDIR 输入/输出方向寄存器(0:输入模式 1:输出模式)2、PxIN 输入寄存器输入寄存器是只读寄存器,用户不能对其写入,只能通过读取该寄存器的内容知道I/O口的输入信号。

3、PxOUT 输出寄存器寄存器内的内容不会受引脚方向改变的影响。

4、PxIFG 中断标志寄存器(0:没有中断请求 1:有中断请求)该寄存器有8个标志位,对应相应的引脚是否有待处理的中断请求;这8个中断标志共用一个中断向量,中断标志不会自动复位,必须软件复位;外部中断事件的时间必须>=1.5倍的MCLK的时间,以保证中断请求被接受;5、PxIES 中断触发沿选择寄存器(0:上升沿中断 1:下降沿中断)6、PxSEL 功能选择寄存器(0:选择引脚为I/O端口 1:选择引脚为外围模块功能)7、PxREN 上拉/下拉电阻使能寄存器(0:禁止 1:使能)(二)、常用特殊P口:1、P1和P2口可作为外部中断口。

MSP430F427IPM资料

MSP430F427IPM资料

元器件交易网IMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,enhancements, improvements, and other changes to its products and services at any time and to discontinueany product or service without notice. Customers should obtain the latest relevant information before placingorders and should verify that such information is current and complete. All products are sold subject to TI’s termsand conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its hardware products to the specifications applicable at the time of sale inaccordance with TI’s standard warranty. T esting and other quality control techniques are used to the extent TIdeems necessary to support this warranty. Except where mandated by government requirements, testing of allparameters of each product is not necessarily performed.TI assumes no liability for applications assistance or customer product design. Customers are responsible fortheir products and applications using TI components. T o minimize the risks associated with customer productsand applications, customers should provide adequate design and operating safeguards.TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or processin which TI products or services are used. Information published by TI regarding third-party products or servicesdoes not constitute a license from TI to use such products or services or a warranty or endorsement thereof.Use of such information may require a license from a third party under the patents or other intellectual propertyof the third party, or a license from TI under the patents or other intellectual property of TI.Reproduction of information in TI data books or data sheets is permissible only if reproduction is withoutalteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproductionof this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable forsuch altered documentation.Resale of TI products or services with statements different from or beyond the parameters stated by TI for thatproduct or service voids all express and any implied warranties for the associated TI product or service andis an unfair and deceptive business practice. TI is not responsible or liable for any such statements.Following are URLs where you can obtain information on other Texas Instruments products and applicationsolutions:Products ApplicationsAmplifiers Audio /audioData Converters Automotive /automotiveDSP Broadband /broadbandInterface Digital Control /digitalcontrolLogic Military /militaryPower Mgmt Optical Networking /opticalnetworkMicrocontrollers Security /securityTelephony /telephonyVideo & Imaging /videoWireless /wirelessMailing Address:Texas InstrumentsPost Office Box 655303 Dallas, Texas 75265Copyright 2004, Texas Instruments Incorporated。

基于MSP430FE427多功能电能表设计

基于MSP430FE427多功能电能表设计

:!虹!里:!!andTechnolosyConaultingHerald基于MSP430FE427多功能电能表设计武永鑫1杨梅z(1.阜阳职业技术学院安徽阜阳236031:2.山东淄博市广播电视信息网络中心)学术论坛摘要:电能表是当前电能计量和经济结算的主要工具,它的准确与否直接关系到国家与用户的经济利益。

文章以MSP430FE427芯片为基础,设计的单相多功能电能表。

此表能适应工业现代化和电能管理现代化飞速发展的需求。

关键词:多功能电能表单片机电能计量MSP430FE427中图分类号:TU1文献标识码:A文章编号:1673一0534(2007)04(a)一0196一031设计背景电能表是当前电能计量和经济结算的主要工具,它的准确与否直接关系到国家与用户的经济利益。

随着电子技术,自动控制技术和计算机技术的迅猛发展,电能计量装置也发生了巨大变革。

由于电力系统的不断扩大以及对电能合理利用的探索,使市场上原来的感应系电能表暴露出准确度低、适用频率范围窄,功能单一等缺点。

为使电能计量仪器仪表适应工业现代化和电能管理现代化飞速发展的需求,新型电子式电能表的研制也日益成为电力行业的迫切需求。

微电子技术和计算机技术的高速发展是电子式电能表迅速进步,日益成熟的主要技术支撑。

准确度高,可靠性高的元器件以及大规模集成电路等的采用,使电子式电能表的使用寿命,准确度,稳定度等技术指标均显著改善。

随着自动抄表技术和综合配电自动化技术的发展,还要求新型电能表具有存储信息和交换数据的能力等。

电子式电能表以数字方式处理采集到一的信息,由此能够带来诸多优点,并使得上述功能很容易在一块表上实现。

2硬件结构多功能电能表就是指除计量有功电能、无功电能外,还具有分时、测量需量等两种以上功能,并能显示,储存和输出数据的电能表。

本系统的设计要求:完成数据采集、电能计量、通讯控制、输出显示等功能。

图l为多功能电能表的硬件结构框图。

它由MsP430单片机单元、电源管理单元、显示单元,通讯单元和外围接口等几部分组成。

msp430f系列中文资料

msp430f系列中文资料

超低功耗微控制器MSP430F40xi n de s i g n x31xLCD92x32xLCD84ADC14x33xLCD120Timer_A USART MPY8-bit T/Cx11x1Comp_AX12x USARTi n de s i g n F13xTimer_B ADC12USART Comp_AF14xTimer_B ADC122 USART MPY Comp_ANewNewF41xi n de s i g n F42xi n de s i g n F44xi n de s i g nUltra -low power design withM S P430August 00 / 11FLASH 型的时钟系统(F13x,F14x)2 个晶振, 1 个DCO, 适应不同频率需要采样/转换控制可编程参考源选择片内温度传感器Ultra -low power design withM S P430August 00 / 34F11x 应用实例)Floating Point Package)Starter Kit MSP-STK430X320TI 软件包仿真器评估板TI 软件库C-编译器编程器)TI Programming AdapterAugust 00 / 37New电源的高效率y电池缩减/ 电池寿命延长y电源电路简化/ 可远程供电硬件简化y外部元件极少y集成实时钟y集成LCD 驱动电路y集成ADC加速产品开发y用Flash 或OTP 型可快速制作样机y用Flash 型可作现场更新y容易学习和设计程序y代码效率高廉价的微控制器MSP430和开发工具FET/sc/docs/products/micro/msp430E-mail: lierda@ (wzptt)/sc/docs/products/micro/msp430E-mail: lierda@ (wzptt)。

MSP430中文资料

MSP430中文资料
3-SMCLK: 子 系 统 时 钟 , SMCLK 是 由 2 个 时 钟 源 信 号 所 提 供 . 他 们 分 别 是 XT2CLK(F13、F14)和 DCO,如果是 F11、F11X1 则由 LFXT1CLK 代替 TX2CLK。同样 可设置相关寄存器来决定分频因子及相关的设置。
MSP430X1X1 系列产品中,其中 XT1 时钟源引脚接法有如 3 种应用。F13、14 的 XT1 相 同。需要注意的是,LFXT1 只有工作在高频模式下才需要外接电容。 对以引脚较少的 MSPX1XX 系列产品中有着不同时基模块,具体如下:
MSP430X11X1:LFXT1CLK , DCO
MSP430F12X: LFXT1CLK , DCO
MSP430F13X/14X/15X/16X:LFXT1CLK , DCO , XT2CLK
MSP430F4XX: LFXT1CLK , DCO , XT2CLK , FLL+
时钟发生器的原理说明: 问题的提出:1、高频、以便能对系统硬件请求和事件作出快速响应
微控设计网
微控设计网 中国 MSP430 单片机专业网站 MSP430F 常用模块应用原理
微控设计网 版主 DC 策划 原创于:2006-3-7
最后更新:2008-5-31 V8.2
微控设计网为你准备的 MSP430F 单片机入门必修课
XT5V 此位设置为 0。
Resl1.0,Resl1.1,Resl1.2 三位控制某个内部电阻以决定标称频率。
Resl=0,选择最低的标称频率。 …….. Resl=7,选择最高的标称频率。
BCSCTL2 基本时钟系统控制寄存器 2
7
6
54ຫໍສະໝຸດ SELM.1 SELM.0 DIVM.1 DIVM.0

mps430手册

mps430手册

msp430芯片选型中文手册指南F1XX系列Vcc1.8V-3.6V型号MSP430F1101A参数说明1KBflash,128BRam;slopeA/D;14个I/O口;16位WDT;1个16位Timer_A(3个捕获/比较寄存器),比较器_A;20DW、PW封装型号MSP430F1111A参数说明2KBflash,128BRam;slopeA/D;14个I/O口;16位WDT;1个16位Timer_A(3个捕获/比较寄存器),比较器_A;20DW、PW封装型号MSP430F1121A参数说明4KBflash,256BRam;slopeA/D;14个I/O口;16位WDT;1个16位Timer_A(3个捕获/比较寄存器),比较器_A;20DW、PW封装型号MSP430F1122参数说明4KBflash,256BRam;5通道10bitA/D;14个I/O口;16位WDT;1个16位Timer_A(3个捕获/比较寄存器),温度传感器;20DW、PW封型号MSP430F1132参数说明8KBflash,256BRam;5通道10bitAD;14个I/O口;16位WDT;1个16位Timer_A(3个捕获/比较寄存器);温度传感器;20DW、PW封型号MSP430F122参数说明4KBflash,256BRam;slopeA/D;22个I/O口;16位WDT;1个16位Timer_A(3个捕获/比较寄存器);1个USART接口,比较器A;28DW、PW封装型号MSP430F123参数说明8KBflash,256BRam;slopeA/D;22个I/O口;16位WDT;1个16位Timer_A(3个捕获/比较寄存器);1个USART接口,比较器A;28DW、PW封装型号MSP430F1222参数说明4KBflash,256BRam;8通道10bitA/D;22个I/O口;16位WDT;1个16位Timer_A(3个捕获/比较寄存器);1个USART接口;温度传感器;28DW、PW封装型号MSP430F1232参数说明8KBflash,256BRam;8通道10bitA/D;22个I/O口;16位WDT;1个16位Timer_A(3个捕获/比较寄存器);1个USART接口;温度传感器;28DW、PW封装型号MSP430F133参数说明8KBflash,256BRam;8通道12bitA/D;48个I/O口;16位WDT;1个16位Timer_A(3个捕获/比较寄存器)_A;1个16位Timer_B(3个捕获/比较寄存器);1个USART接口;比较器_A;温度传感器;64PM封装型号MSP430F135参数说明16KBflash,512BRam;8通道12bitA/D;48个I/O口;16位WDT;1个16位Timer_A(3个捕获/比较寄存器)_A;1个16位Timer_B(3个捕获/比较寄存器);1个USART接口;比较器_A;温度传感器;64PM封装型号MSP430F147参数说明32KBflash,1024BRam;8通道12bitA/D;48个I/O口;16位WDT;1个16位Timer_A(3个捕获/比较寄存器);1个16位Timer_B(7个捕获/比较寄存器);2个USART接口;MPY;比较器_A;温度传感器;64PM封装型号MSP430F1471参数说明32KBflash,1024BRam;slopeA/D;48个I/O口;16位WDT;1个16位Timer_A(3个捕获/比较寄存器)_A;1个16位Timer_B(7个捕获/比较寄存器);2个USART接口;MPY;比较器_A;64PM封装型号MSP430F148参数说明48KBflash,2048BRam;8通道12bitA/D;48个I/O口;16位WDT;1个16位Timer_A(3个捕获/比较寄存器)_A;1个16位Timer_B(7个捕获/比较寄存器);2个USART接口;MPY;比较器_A;温度传感器;64PM封装型号MSP430F1481参数说明48KBflash,2048BRam;slopeA/D;48个I/O口;16位WDT;1个16位Timer_A(3个捕获/比较寄存器)_A;1个16位Timer_B(7个捕获/比较寄存器);2个USART接口;MPY;比较器_A;64PM封装型号MSP430F149参数说明60KBflash,2048BRam;8通道12bitA/D;48个I/O口;16位WDT;1个16位Timer_A(3个捕获/比较寄存器)_A;1个16位Timer_B(7个捕获/比较寄存器);2个USART接口;MPY;比较器_A;温度传感器;64PM封装型号MSP430F1491参数说明60kflash,2048BRam;slopeA/D;48个I/O口;16位WDT;1个16位Timer_A(3个捕获/比较寄存器)_A;1个16位Timer_B(7个捕获/比较寄存器);2个USART接口;MPY;比较器_A;64PM封装型号MSP430F155参数说明16KBflash,512BRam;8通道12bitA/D;双12bitD/A;DMA;48个I/O口;16位WDT;1个16位Timer_A(3个捕获/比较寄存器)_A;1个16位Timer_B(3个捕获/比较寄存器);1个USART接口;I2C;比较器_A;温度传感器;64PM封装型号MSP430F156参数说明24KBflash,512BRam;8通道12bitA/D;双12bitD/A;DMA;48个I/O口;16位WDT;1个16位Timer_A(3个捕获/比较寄存器)_A;1个16位Timer_B(3个捕获/比较寄存器);1个USART接口;I2C;比较器_A;温度传感器;64PM封装型号MSP430F157参数说明32KBflash,1024BRam;8通道12bitA/D;双12bitD/A;DMA;48个I/O口;16位WDT;1个16位Timer_A(3个捕获/比较寄存器);1个16位Timer_B(3个捕获/比较寄存器);1个USART接口;I2C;比较器_A;温度传感器;64PM封装型号MSP430F167参数说明32KBflash,1024BRam;8通道12bitA/D;双12bitD/A;DMA;48个I/O口;16位WDT;1个16位Timer_A(3个捕获/比较寄存器);1个16位Timer_B(7个捕获/比较寄存器);2个USART接口;I2C;MPY;比较器_A;温度传感器;64PM封装型号MSP430F168参数说明48KBflash,2048BRam;8通道12bitA/D;双12bitD/A;DMA;48个I/O口;16位WDT;1个16位Timer_A(3个捕获/比较寄存器);1个16位Timer_B(7个捕获/比较寄存器);2个USART接口;I2C;MPY;比较器_A;温度传感器;64PM封装型号MSP430F169参数说明60KBflash,2048BRam;8通道12bitA/D;双12bitD/A;DMA;48个I/O口;16位WDT;1个16位Timer_A(3个捕获/比较寄存器);1个16位Timer_B(7个捕获/比较寄存器);2个USART接口;I2C;MPY;比较器_A;温度传感器;64PM封装型号MSP430F1610参数说明32KBflash,5120BRam;8通道12bitA/D;双12bitD/A;DMA;48个I/O口;16位WDT;1个16位Timer_A(3个捕获/比较寄存器);1个16位Timer_B(7个捕获/比较寄存器);2个USART接口;I2C;MPY;比较器_A;温度传感器;64PM封装型号MSP430F1611参数说明48KBflash,10240BRam;8通道12bitA/D;双12bitD/A;DMA;48个I/O口;16位WDT;1个16位Timer_A(3个捕获/比较寄存器);1个16位Timer_B (7个捕获/比较寄存器);2个USART接口;I2C;MPY;比较器_A;温度传感器;64PM封装型号MSP430F1612参数说明55kBflash,5120BRam;8通道12bitA/D;双12bitD/A;DMA;48个I/O口;16位WDT;1个16位Timer_A(3个捕获/比较寄存器);1个16位Timer_B(7个捕获/比较寄存器);2个USART接口;I2C;MPY;比较器_A;温度传感器;64PM封装F21X1系列Vcc1.8V-3.6V型号MSP430F2101参数说明1KBflash,128BRam;slopeA/D;16个I/O口;15/16位WDT;1个16位Timer_A(3个捕获/比较寄存器);比较器_A;BrownoutProtection;20DW、PW、DGV封装型号MSP430F2111参数说明2KBflash,128BRam;slopeA/D;16个I/O口;15/16位WDT;1个16位Timer_A(3个捕获/比较寄存器);比较器_A;BrownoutProtection;20DW、PW、DGV封装型号MSP430F2121参数说明4KBflash,256BRam;slopeA/D;16个I/O口;15/16位WDT;1个16位Timer_A(3个捕获/比较寄存器);比较器_A;BrownoutProtection;20DW、PW、DGV封装型号MSP430F2131参数说明8KBflash,256BRam;slopeA/D;16个I/O口;15/16位WDT;1个16位Timer_A(3个捕获/比较寄存器);比较器_A;BrownoutProtection;20DW、PW、DGV封装F4XX系列Vcc1.8V-3.6VWithLCD驱动型号MSP430F412参数说明4KBflash,256BRam;slopeA/D;48个I/O口;96段LCD;16位WDT;8bit基本定时器;1个16位Timer_A(3个捕获/比较寄存器);比较器_A;64PM封装型号MSP430F413参数说明8KBflash,256BRam;slopeA/D;48个I/O口;96段LCD;16位WDT;8bit基本定时器;1个16位Timer_A(3个捕获/比较寄存器);比较器_A;64PM封装型号MSP430F415参数说明16kBflash,512BRam;slopeA/D;48个I/O口;96段LCD;16位WDT;8bit基本定时器;1个16位Timer_A(3或5个捕获/比较寄存器);比较器_A;64PM 封装型号MSP430F417参数说明32kBflash,1024BRam;slopeA/D;48个I/O口;96段LCD;16位WDT;8bit基本定时器;1个16位Timer_A(3或5个捕获/比较寄存器);比较器_A;64PM 封装型号MSP430FE423参数说明8KBflash,256BRam;SD16A/D;Emeter计量模块;14个I/O口;128段LCD;16位WDT;8bit基本定时器;1个16位Timer_A(3个捕获/比较寄存器);1个USART接口;温度传感器;64PM封装型号MSP430FE425参数说明16KBflash,512BRam;SD16A/D;Emeter计量模块;14个I/O口;128段LCD;16位WDT;8bit基本定时器;1个16位Timer_A(3个捕获/比较寄存器);1个USART接口;温度传感器;64PM封装型号MSP430FE427参数说明32KBflash,1KBRam;SD16A/D;Emeter计量模块;14个I/O口;128段LCD;16位WDT;8bit基本定时器;1个16位Timer_A(3个捕获/比较寄存器);1个USART接口;比较器_A;温度传感器;64PM封装型号MSP430F4250参数说明16KBflash,256BRam;32个I/O口;56段LCD;SD16位ADC (具有内部参考电压);12位DAC,1个16位Timer_A(3个捕获/比较寄存器);温度传感器模块;电源检测功能;48DL封装型号MSP430F4260参数说明24KBflash,256BRam;32个I/O口;56段LCD;SD16位ADC (具有内部参考电压);12位DAC,1个16位Timer_A(3个捕获/比较寄存器);温度传感器模块;电源检测功能;48DL封装型号MSP430F4270参数说明32KBflash,256BRam;32个I/O口;56段LCD;SD16位ADC (具有内部参考电压);12位DAC,1个16位Timer_A(3个捕获/比较寄存器);温度传感器模块;电源检测功能;48DL封装型号MSP430FG437参数说明32KBflash,1024BRam;12通道12bitA/D;双12bitD/A;48个I/O口;DMA;128段LCD;16位WDT;8bit基本定时器;1个16位Timer_A(3个捕获/比较寄存器);1个16位Timer_B(3个捕获/比较寄存器);1个USART接口;温度传感器;80PN 封装型号MSP430FG438参数说明48KBflash,2048BRam;12通道12bitA/D;双12bitD/A;48个I/O口;DMA;128段LCD;16位WDT;8bit基本定时器;1个16位Timer_A(3个捕获/比较寄存器);1个16位Timer_B(3个捕获/比较寄存器);1个USART接口;温度传感器;80PN 封装型号MSP430FG439参数说明60KBflash,2048BRam;12通道12bitA/D;双12bitD/A;48个I/O口;DMA;128段LCD;16位WDT;8bit基本定时器;1个16位Timer_A(3个捕获/比较寄存器);1个16位Timer_B(3个捕获/比较寄存器);1个USART接口;温度传感器;80PN 封装型号MSP430FW423参数说明8KBflash,256BRam;slopeA/D;流量测量ScanIF模块;48个I/O口;96段LCD;16位WDT;8bit基本定时器;1个16位Timer_A(3或5个捕获/比较寄存器);比较器_A;64PM封装型号MSP430FW425参数说明16KBflash,512BRam;slopeA/D;流量测量ScanIF模块;48个I/O口;96段LCD;16位WDT;8bit基本定时器;1个16位Timer_A(3或5个捕获/比较寄存器);比较器_A;64PM封装型号MSP430FW427参数说明32KBflash,1024BRam;slopeA/D;流量测量ScanIF模块;48个I/O口;96段LCD;16位WDT;8bit基本定时器;1个16位Timer_A(3或5个捕获/比较寄存器);比较器_A;64PM封装型号MSP430F435参数说明16KBFlash,512BRam;8通道12bitA/D;48个I/O口;128/160段LCD;16位WDT;8bit基本定时器;16位Timer_A(3个捕获/比较寄存器)_A;16位Timer_B(3个捕获/比较寄存器)_B;1个USART接口;比较器_A;温度传感器;80PN/100PZ封装型号MSP430F436参数说明24KBFlash,1024KRam;8通道12bitA/D;48个I/O口;128/160段LCD;16位WDT;8bit基本定时器;1个16位Timer_A(3个捕获/比较寄存器)_A;1个16位Timer_B(3个捕获/比较寄存器)_B;1个USART接口;比较器_A;温度传感器;80PN/100PZ封装型号MSP430F437参数说明32KBFlash,1024KRam;8通道12bitA/D;48个I/O口;128/160段LCD;16位WDT;8bit基本定时器;1个16位Timer_A(3个捕获/比较寄存器)_A;1个16位Timer_B(3个捕获/比较寄存器)_B;1个USART接口;比较器_A;温度传感器;80PN/100PZ封装型号MSP430F447参数说明32KBFlash,1024KRam;8通道12bitA/D;48个I/O口;160段LCD;16位WDT;8bit基本定时器;1个16位Timer_A(3个捕获/比较寄存器);1个16位Timer_B(7个捕获/比较寄存器);2个USART接口;MPY;比较器_A;温度传感器;100PZ 封装型号MSP430F448参数说明48KBflash,2048BRam;8通道12bitA/D;48个I/O口;160段LCD;16位WDT;8bit基本定时器;1个16位Timer_A(3个捕获/比较寄存器);1个16位Timer_B(7个捕获/比较寄存器);2个USART接口;MPY;比较器_A;温度传感器;100PZ 封装型号MSP430F449参数说明60KBflash,2048BRam;8通道12bitA/D;48个I/O口;160段LCD;16位WDT;8bit基本定时器;1个16位Timer_A(3个捕获/比较寄存器);1个16位Timer_B(7个捕获/比较寄存器);2个USART接口;MPY;比较器_A;温度传感器;100PZ 封装型号TSS721AD参数说明M-BUS总线型号TRF6901PT参数说明无线射频率收发芯片。

msp430 百科介绍

msp430 百科介绍

MSP430MSP430系列单片机是美国德州仪器(TI)1996年开始推向市场的一种16位超低功耗的混合信号处理器(Mixed Signal Processor)。

称之为混合信号处理器,主要是由于其针对实际应用需求,把许多模拟电路、数字电路和微处理器集成在一个芯片上,以提供“单片”解决方案。

1、MSP430 单片机的发展MSP430 系列是一个16 位的、具有精简指令集的、超低功耗的混合型单片机,在1996 年问世,由于它具有极低的功耗、丰富的片内外设和方便灵活的开发手段,已成为众多单片机系列中一颗耀眼的新星。

回忆MSP430 系列单片机的发展过程,可以看出有这样三个阶段:开始阶段从1996 年推出MSP430 系列开始到2000 年初,这个阶段首先推出有33X 、32X 、31X 等几个系列,而后于2000 年初又推出了11X 、11X1 系列。

MSP430 的33X 、32X 、31X 等系列具有LCD 驱动模块,对提高系统的集成度较有利。

每一系列有ROM 型( C )、OTP 型(P)、和EPROM 型( E )等芯片。

EPROM 型的价格昂贵,运行环境温度范围窄,主要用于样机开发。

这也表明了这几个系列的开发模式,即:用户可以用EPROM 型开发样机;用OTP型进行小批量生产;而ROM 型适应大批量生产的产品。

2000 年推出了11X/11X1 系列。

这个系列采用20 脚封装,内存容量、片上功能和I/O 引脚数比较少,但是价格比较低廉。

这个时期的MSP430 已经显露出了它的特低功耗等的一系列技术特点,但也有不尽如人意之处。

它的许多重要特性,如:片内串行通信接口、硬件乘法器、足够的I/O 引脚等,只有33X 系列才具备。

33X 系列价格较高,比较适合于较为复杂的应用系统。

当用户设计需要更多考虑成本时,33X 并不一定是最适合的。

而片内高精度A/D 转换器又只有32X 系列才有。

寻找突破,引入Flash技术随着Flash 技术的迅速发展,TI 公司也将这一技术引入MSP430 系列中。

基于MSP430F427单片机高精度智能语音数字温度计的设计

基于MSP430F427单片机高精度智能语音数字温度计的设计
4
系统主程序流程图
系统 主程 序流 程 图 如 图 2 所示。
5
结语
本设计充分利用了单片机的语音播报功能,并采用了高智
2010-08-23 收稿日期: 作者简介: 杨效春 (1976- , 江苏盐城人, ) 女, 高校讲师, 研究方向: 电工电子技术应用。
[参考文献] [1] 靳达.单片机应用系统开发实例导航.北京: 人民邮电出版社, 2003 [2] 魏小龙.MSP430 系列单片机接口技术及系统设计实例 [M] .北京: 北京航空航天大学出版社, 2002 [3] 金伟正.单线数字温度传感器的原理与应用 [J] .仪表技术与传感 器, 2000 (7 )
1
前言
温度控制是科研和实际生产中经常用到的一类控制系统, 为 保障生产的安全进行, 提高产品的质量和数量, 降低工人的劳动强 度, 节省人力、 节约能源等, 常常要实现温度的自动控制。然而, 要 实现高精度的温度自动控制就必须采用计算机控制系统,它可以 实现温度信号的采集、显示及控制等,并可用计算机软件实现升 温、 降温和闭环自动控制。
DS 18B20 测温模块 采用单总线数字温度传感器 DS18B20 测量温度, 直接输出数 节省硬件电路。且该芯片的物理 字信号。便于单片机处理及控制, 化学性很稳定, 此元件线形性能好, 0~100 ℃时, 在 最大线形偏差 小于 1 ℃。DS18B20 的最大特点之一是采用了单总线的数据传输, 它直接输出温度的数字信号到微控制器。每只 DS18B20 具有一个 独有的不可修改的 64 位序列号,根据序列号可访问不同的器件。 这样一条总线上可以挂接多个 DS18B20 传感器,实现多点温度测 量, 轻松的组建传感网络。 DS18B20 温度传感器是美国 DALLAS 半导体公司最新推出 体积小、 使用方 的一种改进型智能温度传感器, 具有耐磨耐碰性、 便、 封装形式多样, 与传统的热敏电阻等测温元件相比, 它能直接 读出被测温度,并且可根据实际要求通过简单的编程实现 9~12 位的数字值读数方式。 3.3 音频模块 ISD1420 为美国 ISD 公司出品的优质单片语音录放电路, 由 语音存储单元、 前置放大器、 自动增益控制电路、 抗干扰滤 振荡器、 波器、输出放大器组成。一个最小的录放系统仅由 1 个麦克风、 1 个喇叭、 个按钮、 个电源、 2 1 少数电阻电容组成。录音内容存入永 久存储单元, 提供零功率信息存储, 这个独一无二的方法是借助于 美国 ISD 公司的专利—— —直接模拟存储技术 (DAST TM 实现的。 ) 利用它,语音和音频信号被直接存储,以其原本的模拟形式进入 EEPROM 存储器, 直接模拟存储允许使用一种单片固体电路方法 完成其原本语音的再现, 仅语音质量优胜, 而且断电语音保护。 3.4 时钟模块 DS1302 是美国 DALLAS 公司推出的具有涓细电流充电能力 的低功耗实时时钟电路。 主要特点是采用串行数据传输, 可为掉电 保护电源提供可编程的充电功能, 并且可以关闭充电功能。 采用普 通 32.768 kHz 晶振。 电路的主要功能是向单片机提供时间的信息, 包括年、 日、 月、 星期及具体的时、 秒值等信息。可编程芯片 分、 DS1302 内 部 有 寄 存 器 及 RAM, 通 过 编 程 可 由 单 片 机 完 成 对 DS1302 内部的时钟 / 日历提供的秒、 时及年、 日、 分、 月、 星期等信 息进行读出, 并可根据需要进行修改。 3.5 按键设计 该系统中用到 8 个按键的功能分别是: SW1 设定时间; SW2 设定温度上下限用; SW3 确认; SW4 实时播报时间、温度; SW5 加 l; SW6 减 l; SW7 切换屏幕显示; SW8 保留扩展。P0 的 8 个 I/O 口 接 8 个独立式按键即可满足需要。 按下其中一个按键, 则可由单片 机准确判断, 去执行相应的程序。 3.6 显示模块 采用 RT1602 两行 16 个字符的显示, 能同时显示日期、 时间、 星 期、 温度。 采用液晶显示器件, 可使显示平稳、 省电、 美观, 对后续的功 能兼容性高, 只需将软件作修改即可, (下转第 136 页) 3.2
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

元器件交易网
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. T esting and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. T o minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products Applications
Amplifiers Audio /audio
Data Converters Automotive /automotive
DSP Broadband /broadband
Interface Digital Control /digitalcontrol
Logic Military /military
Power Mgmt Optical Networking /opticalnetwork
Microcontrollers Security /security
Telephony /telephony
Video & Imaging /video
Wireless /wireless
Mailing Address:Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright 2004, Texas Instruments Incorporated。

相关文档
最新文档