第六章1-4节传感器原理及应用问题综合
《传感器与检测技术》高教(4版) 第六章
差动变压器位移计
当铁芯处于中间位置时,输出电压: UU 21 U 220
当铁芯向右移动时,则输出电压: UU 21 U 220
当铁芯向左移动时,则输出电压: UU 21 U 220
输出电压的方向反映了铁芯的运动方向,大小反映了铁 芯的位移大小。
差动变压器位移计
输出特性如图所示。
差动变压器位移计
角度的精密测量。 光栅的基本结构
1、光栅:光栅是在透明的玻璃上刻有大量平行等宽等 距的刻线构成的,结构如图。
设其中透光的缝宽为a,不透光的缝宽为b,
一般情况下,光栅的透光缝宽等于不透光
的缝宽,即a = b。图中d = a + b 称为光
栅栅距(也称光栅节距或称光栅常数)。
光栅位移测试
2、光栅的分类
1、激光的特性
(1)方向性强
(2)单色性好
(3) 亮度高
(4) 相干性好
2、激光器
按激光器的工作物质可分为以下几类: (1)固体激光器:常用的有红宝石激光器、钕玻 璃激光器等。
(2)气体激光器:常用的为氦氖激光器、二氧化 碳激光器、一氧化碳激光器等。
激光式传感器
(3) 液体激光器:液体激光器分为无机液体激光器 和有机液体激光器等。
数小,对铜的热电势应尽可能小,常用材料有: 铜镍合金类、铜锰合金类、镍铬丝等。 2、骨架:
对骨架材料要求形状稳定表面绝缘电阻高, 有较好的散热能力。常用的有陶瓷、酚醛树脂 和工程塑料等。 3、电刷:
电刷与电阻丝材料应配合恰当、接触电势 小,并有一定的接触压力。这能使噪声降低。
电位器传感器
电位计式位移传感器
6.2.2 差动变压器位移计结构
1-测头; 2-轴套; 3-测杆; 4-铁芯;5-线圈架; 6-导线; 7-屏蔽筒;8-圆片弹簧;9-弹簧; 10-防尘罩
传感器原理及其应用 第6章 磁电式传感器
材料(单晶) N型锗(Ge) N型硅(Si) 锑化铟(InSb)
1/ 2
4000 1840 4200
砷化铟(InAs)
磷砷铟(InAsP) 砷化镓(GaAs)
0.36
0.63 1.47
0.0035
0.08 0.2
25000
10500 8500
100
850 1700
1530
3000 3800
哪种材料制作的霍尔元件灵敏度高
1、8—圆形弹簧片;2—圆环形阻尼器;3—永久磁铁;4—铝架; 5—心轴;6—工作线圈;7—壳体;9—引线 工作频率 固有频率 灵敏度 10~500 Hz 12 Hz 最大可测加速度 5g 可测振幅范围 精度 ≤10% 45mm×160 mm 0.7 kg
0.1~1000 m 外形尺寸 1.9 k 质量
d E N dt
武汉理工大学机电工程学院
第6章 磁电式传感器
磁通量的变化可以通过很多办法来实现,如磁铁与线圈之间作 相对运动;磁路中磁阻的变化;恒定磁场中线圈面积的变化等, 一般可将磁电感应式传感器分为恒磁通式和变磁通式两类。 6.1.1 恒磁通式磁电感应传感器结构与工作原理 恒磁通式磁电感应传感器结构中,工作气隙中的磁通恒定,感 应电动势是由于永久磁铁与线圈之间有相对运动——线圈切割 磁力线而产生。这类结构有动圈式和动铁式两种,如图所示。
武汉理工大学机电工程学院
第6章 磁电式传感器 磁铁与线圈相对运动使线圈切割磁力线,产生与运动速度dx/dt 成正比的感应电动势E,其大小为
dx E NBl dt
式中:N为线圈在工作气隙磁场中的匝数;B为工作气隙磁感应 强度;l为每匝线圈平均长度。 当传感器结构参数确定后,N、B和l均为恒定值,E与dx/dt成正 比,根据感应电动势E的大小就可以知道被测速度的大小。 由理论推导可得,当振动频率低于传感器的固有频率时,这种传 感器的灵敏度(E/v)是随振动频率而变化的;当振动频率远大于 固有频率时,传感器的灵敏度基本上不随振动频率而变化,而近 似为常数;当振动频率更高时,线圈阻抗增大,传感器灵敏度随 振动频率增加而下降。 不同结构的恒磁通磁电感应式传感器的频率响应特性是有差异的, 但一般频响范围为几十赫至几百赫。低的可到10 Hz左右,高的可 达2 kHz左右。
传感器原理及工程应用答案
传感器原理及工程应用答案1—1:测量的定义,答:测量是以确定被测量的值或获取测量结果为目的的一系列操作。
所以, 测量也就是将被测量与同种性质的标准量进行比较,确定被测量对标准量的倍数。
1—2:什么是测量值的绝对误差、相对误差、引用误差,答:绝对误差是测量结果与真值之差,即: 绝对误差=测量值—真值相对误差是绝对误差与被测量真值之比,常用绝对误差与测量值之比,以百分数表示 , 即: 相对误差=绝对误差/测量值×100%引用误差是绝对误差与量程之比,以百分数表示,即: 引用误差=绝对误差/量程×100%1—3什么是测量误差,测量误差有几种表示方法,它们通常应用在什么场合, 答: 测量误差是测得值减去被测量的真值。
测量误差的表示方法:绝对误差、实际相对误差、引用误差、基本误差、附加误差。
当被测量大小相同时,常用绝对误差来评定测量准确度;相对误差常用来表示和比较测量结果的准确度;引用误差是仪表中通用的一种误差表示方法,基本误差、附加误差适用于传感器或仪表中。
2,1:什么是传感器,它由哪几部分组成,它的作用及相互关系如何,答:传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。
通常,传感器由敏感元件和转换元件组成。
其中,敏感元件是指传感器中能直接感受或响应被测量的部分; 转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部分。
2—2:什么是传感器的静态特性,它有哪些性能指标,分别说明这些性能指标的含义, 答:传感器在被测量的各个值处于稳定状态时,输出量和输入量之间的关系称为传感器的静态特性;其主要指标有线性度、灵敏度、精确度、最小检测量和分辨力、迟滞、重复性、零点漂移、温漂。
灵敏度定义是输出量增量Δy与引起输出量增量Δy的相应输入量增量Δx之比。
传感器的线性度是指传感器的输出与输入之间数量关系的线性程度。
输出与输入关系可分为线性特性和非线性特性。
传感器原理和应用习题和答案
《第一章传感器的一般特性》11)该测速发电机的灵敏度.2)该测速发电机的线性度.2.已知一热电偶的时间常数τ=10s,若用它来测量一台炉子的温度,炉内温度在540οC和500οC 之间按近似正弦曲线波动,周期为80s,静态灵敏度k=1,试求该热电偶输出的最大值和最小值,以与输入与输出信号之间的相位差和滞后时间.3.用一只时间常数为0.355s 的一阶传感器去测量周期分别为1s、2s和3s的正弦信号,问幅值误差为多少?4.若用一阶传感器作100Hz正弦信号的测试,如幅值误差要求限制在5%以内,则时间常数应取多少?若在该时间常数下,同一传感器作50Hz正弦信号的测试,这时的幅值误差和相角有多大?5.已知某二阶系统传感器的固有频率f0=10kHz,阻尼比ξ=0.1,若要求传感器的输出幅值误差小于3%,试确定该传感器的工作频率范围.6.某压力传感器属于二阶系统,其固有频率为1000Hz,阻尼比为临界值的50%,当500Hz的简谐压力输入后,试求其幅值误差和相位滞后.《第二章应变式传感器》1.假设某电阻应变计在输入应变为5000με时电阻变化为1%,试确定该应变计的灵敏系数.又若在使用该应变计的过程中,采用的灵敏系数为 1.9,试确定由此而产生的测量误差的正负和大小.2.如下图所示的系统中:①当F=0和热源移开时,R l=R2=R3=R4,与U0=0;②各应变片的灵敏系数皆为+2.0,且其电阻温度系数为正值;③梁的弹性模量随温度增加而减小;④应变片的热膨胀系数比梁的大;⑤假定应变片的温度和紧接在它下面的梁的温度一样.在时间t=0时,在梁的自由端加上一向上的力,然后维持不变,在振荡消失之后,在一稍后的时间t1打开辐射源,然后就一直开着,试简要绘出U0和t的关系曲线的一般形状,并通过仔细推理说明你给出这种曲线形状的理由.3.一材料为钢的实心圆柱形试件,直径d=10 mm,材料的弹性模量E=2 ×1011N/m2,泊松比μ=0.285,试件上贴有一片金属电阻应变片,其主轴线与试件加工方向垂直,如图1所示,若已知应变片的轴向灵敏度k x =2,横向灵敏度C=4%,当试件受到压缩力F=3×104N作用时.应变片的电阻相对变化ΔR/R为多少.4.在材料为钢的实心圆柱形试件上,沿轴线和圆周方向各粘贴一片电阻120 Ω的金属电阻应变片,如图2所示,把这两片应变片接入差动电桥,已知钢的泊松比μ=0.285,应变片的灵敏系数k0=2,电桥电源电压U sr=6V〔d.C.〕,当试件受轴向拉伸时,测得应变片R1的电阻变化值ΔR1=0.48 Ω,试求电桥的输出电压.图1 图25.一台采用等强度梁的电子秤,在梁的上下两面各贴有二片电阻应变片,做成秤重传感器,如下图所示.已知l=100 mm,b=11 mm,t=3 mm,E=2.1×104N/mm2,k0=2,接入直流四臂差动电桥,供桥电压6 V,当秤重0.5 kg时,电桥的输出电压U sc为多大.6.今在〔110〕晶面的〈001〉〈110〉晶面上各放置一电阻条,如下图所示,试求:l〕在0.1MPa 压力作用下电阻条的σr和σt各为何值?2〕此两电阻条为P型电阻条时ΔR/R=?3〕若为N型电阻条时其ΔR/R?4〕若将这两电阻条改为安置在距膜中心为4.l 7mm处,电阻条上的平均应力σr和σt各为多少?7.现有基长为10 mm与20 mm的两种丝式应变片,欲测钢构件频率为10kHz的动态应力,若要求应变波幅测量的相对误差小于0.5%,试问应选用哪一种?为什么?8.已知一测力传感器的电阻应变片的阻值R=120Ω,灵敏度系数k0= 2,若将它接入第一类对称电桥,电桥的供电电压U sr=10V〔d.c.〕,要求电桥的非线性误差e f<0.5%,试求应变片的最大应变εmax应小于多少,并求最大应变时电桥的输出电压.9.一个量程为10kN的应变式测力传感器,其弹性元件为薄壁圆筒轴向受力,外径20mm,内径18mm,在其表面粘贴八各应变片,四个沿周向粘贴,应变片的电阻值均为120Ω,灵敏度为2.0,波松比为0.3,材料弹性模量E=2.1×1011Pa.要求:1>绘出弹性元件贴片位置与全桥电路;2>计算传感器在满量程时,各应变片电阻变化;3>当桥路的供电电压为10V时,计算传感器的输出电压.10.如图所示电路是电阻应变仪中所用的不平衡电桥的简化电路,图中R2=R3=R是固定电阻,R1与R4是电阻应变片,工作时R1受拉,R4受压,ΔR表示应变片发生应变后,电阻值的变化量.当应变片不受力,无应变时ΔR=0,桥路处于平衡状态,当应变片受力发生应变时,桥路失去了平衡,这时,就用桥路输出电压U cd表示应变片应变后的电阻值的变化量.试证明: U cd=-<E/2><ΔR/R>《第三章电容式传感器》1.试计算带有固定圆周膜片电容压力传感器的灵敏度〔ΔC/C〕/p,如下图.已知在半径r处的偏移量y可用下式表示:式中P——压力;a——圆膜片半径;t——膜片厚度;μ——膜片材料的泊松比.2.在压力比指示系统中采用的电容传感元件与其电桥测量线路如图所示.已知:δ0=0.25mm,D=38.2mm,R=5.1kΩ,U=60V〔A.C〕,f=400Hz.试求.1)该电容传感器的电压灵敏度〔单位为V/m〕k u?2)当电容传感器活动极板位移Δδ=10μm时,输出电压U0的值.3.如图所示为油量表中的电容传感器简图,其中1、2为电容传感元件的同心圆筒〔电极〕:3为箱体.已知:R1=15mm,R2=12mm;油箱高度H=2m,汽油的介电常数εr=2.1.求:同心圆套筒电容传感器在空箱和注满汽油时的电容量.4.一只电容位移传感器如图所示,由四块置于空气中的平行平板组成.板A,C和D是固定极板.板B是活动极板,其厚度为t,它与固定极板的间距为d.B,C和D极板的长度均为b,A板的长度为2 b,各板宽度为l,忽略板C和D的间隙与各板的边缘效应,试推导活动极板B从中间位置移动x=±b/2时电容C AC和C AD的表达式〔x=0时为对称位置〕.5.试推导下图所示变电介质电容式位移传感器的特性方程C=f<x>.设真空的介电系数为ε0,ε2>ε1,以与极板宽度为W.其他参数如图所示.《第四章电感式传感器》1.一个铁氧体环形磁心,平均长度为12cm,截面积为1.5cm2,平均相对磁导率μr=2 000,求:1〕均匀绕线5 00匝时的电感;2> 匝数增加1倍时的电感.2.有一只螺管形差动式电感传感器,已知电源电压U=4V,f=400HZ,传感器线圈铜电阻和电感量分别为R=40Ω,L=30mH,用两只匹配电阻设计成4臂等阻抗电桥,如图1所示,试求:1〕匹配电阻R1和R2的值为多大才能使电压灵敏度达到最大;2>当ΔZ=10Ω时,分别接成单臂和差动电桥后的输出电压值;3>用矢量图表明输出电压U0与电源电压U之间的相位差;4〕假设该传感器的两个线圈铜电阻不相等R4≠R3,在机械零位时便存在零位电压,用矢量图分析能否用调整衔铁位置的方法使U0=0.图1 图2a图2 b3.试计算图2a所示差动变压器式传感器接入桥式电路〔顺接法〕时的空载输出电压U0,一、二次侧线圈间的互感为M1、M2,两个二次侧线圈完全相同.又若同一差动变压器式传感器接成图2b所示反串电路〔对接法〕,问两种方法哪一种灵敏度高,高几倍?提示:①将图a所示的二次侧绕组边电路图简化如图2c所示等效电路〔根据已知条件Z1=Z2;②求出图b 空载输出电压与图a计算的结果进行比较.〕图2 c图34.试推导图3所示差动型电感传感器电桥的输出特性U0=f〔ΔL〕,已知电源角频率为ω,Z1、Z2为传感器两线圈的阻抗,零位时Z1=Z2= r+jωL,若以变间隙式传感器接入该电桥,求灵敏度表达式k=U0/Δδ多大〔本题用有效值表示〕.5.图4中两种零点残余电压的补偿方法对吗?为什么?图中R为补偿电阻.图46.某线性差动变压器式传感器采用的频率为100HZ、峰一峰值为6V的电源激励,假设衔铁的输入运动是频率为10Hz的正弦运动,它的位移幅值为±3mm,已知传感器的灵敏度为2V/mm,试画出激励电压、输入位移和输出电压的波形.7.使用电涡流式传感器测量位移或振幅时对被测物体要考虑哪些因素,为什么?《第五章压电式传感器》1.分析压电式加速度传感器的频率响应特性.又若测量电路的总电容C=1000PF,总电阻R=500 MΩ,传感器机械系统固有频率f0=30 kHz,相对阻尼系数ξ=0.5,求幅值误差在2%以内的使用频率范围.2.用石英晶体加速度计与电荷放大器测量机器的振动,已知:加速度计灵敏度为5 pC/g,电荷放大器灵敏度为50 mV/pC,当机器达到最大加速度值时相应的输出电压幅值等于2 V,试计算该机器的振动加速度.3.在某电荷放大器的说明书中有如下技术指标:输出电压为±10V,输入电阻大于1014Ω,输出电阻为0.1kΩ,频率响应:0~150kHz,噪声电压〔有效值〕最大为2mV〔指输入信号为零时所出现的输出信号值〕,非线性误差:0.l%,温度漂移:±0.lmV/ºC.l〕如果用内阻为10 kΩ的电压表测量电荷放大器的输出电压,试求由于负载效应而减少的电压值.2〕假设用一输入电阻为2MΩ的示波器并接在电荷放大器的输入端,以便观察输入信号波形,此时对电荷放大器有何影响?3〕噪声电压在什么时候会成为问题?4〕试求当环境温度变化十15o C时,电荷放大器输出电压的变化值,该值对测量结果有否影响?5〕当输入信号频率为180kHZ时,该电荷放大器是否适用?4.试用直角坐标系画出AT型,GT型,DT型,X-30º的晶体切型的方位图.5.压电传感元件的电容为1000PF,k q=2.5C/cm,连接电缆电容C c=300 pF,示波器的输入阻抗为1MΩ和并联电容为50pF,试求:1〕压电元件的电压灵敏度多大?2>测量系统的高频响应<V/cm〕.3>如系统测量的幅值误差为5%,最低频率是多少?4〕如f j=10HZ,允许误差为5 %,用并联连接方式,电容量C值是多大?6.石英晶体压电传感元件,面积为1cm2,厚度为0.lcm,固定在两个金属板之间,用来测量通过晶体两面力的变化.材料的杨氏模量为9×1010Pa,电荷灵敏度为2pC/N,相对介质常数为5,lcm2材料相对两面间电阻为1014Ω.一个20pF的电容和一个100MΩ的电阻与极板并联.如果所加力是F=0.01sin〔103t〕N.求:1〕两个极板间电压峰一峰值;2〕晶体厚度的最大变化.<0.758mv,1.516mv;1.1×10-10cm>7.已知电压前置放大器的输入电阻为100 MΩ,测量回路的总电容为100pF,试求用压电式加速度计相配测量1Hz低频振动时产生的幅值误差.<94%>8.用压电式传感器测量最低频率为1Hz 的振动,要在1Hz 时灵敏度下降不超过5%,若测量回路的总电容为500pF,求所用电压前置放大器的输入电阻为多大?9.已知压电式加速度传感器的阻尼比是ξ=0.1,其无阻尼固有频率f=32kHz,若要求传感器的输出幅值误差在5%以内,试确定传感器的最高响应频率.10.有一压电式加速度计,供它专用的电缆长度为1.2m,电缆电容为100pF,压电片本身的电容为1000pF,据此出厂时标定的电压灵敏度为100mV/g.若使用中改为另一根电缆,其电容为300pF,长为2.9m,问其电压灵敏度作如何改变.<60mv/g>《第六章数字式传感器》1.数字式传感器的特点?根据工作原理数字式传感器可分为那几类?2.光栅传感器的基本原理?莫尔条纹如何形成?有何特点?3.分析光栅传感器具有较高测量精度的原因.《第七章固态传感器》1.霍尔元件能够测量哪些物理参数?霍尔元件的不等位电势的概念是什么?温度补偿的方法有哪几种?2.简述霍尔效应与构成以与霍尔传感器可能的应用场合.3.光电效应可分为几类?说明其原理并指出相应的光电元件.4.试拟定用光敏二极管控制,用交流电源供电照明的明通与暗通直流继电器电路原理图,并说明之.《第八章光纤传感器》1.说明光纤的组成并分析其传光原理,指出光纤传光的必要条件?2.光纤损耗是如何产生的?它对光纤传感器有哪些影响?。
电容式传感器的工作原理和结构
C0
1A d
式中:ε1——介电常数。
(6-6)
当θ≠0时,则
C1
1 A1
d
C0
C0
(6-7)
可以看出,这种形式的传感器电容量C与角位移θ是成线性关
系的。
上一页 下一页 返回
第一节 电容式传感器的工作原理和 结构
图6-6为圆柱式电容式位移传感器。在初始的位置(即 a=0) 时,动、定极板相互覆盖,此时电容量为
的条件相同。
上一页 返回
第三节 电容式传感器的测量电路
一、调频电路
调频测量电路把电容式传感器作为振荡器谐振回路的一部分。 当输入量导致电容量发生变化时,振荡器振荡频率就发生变 化,将频率的变化在鉴频中变换为振幅的变化,经过放大后 就可以用仪表指示或用记录仪器记录下来。
调频接收系统可以分直放式调频和外差式调频两种类型。外 差式调频线路比较复杂,但是性能远优于直放式调频电路。 其主要优点是选择性高,特性稳定,抗干扰性能强,灵敏度 高。
一般来说,差动式要比单组式的传感器好。差动式传感器不 但灵敏度高而且线性范围大,并且有较高的稳定性。
绝大多数电容式传感器可制成一极多板的形式。几层重叠板 组成的多片型电容传感器具有类似的单片电容器的(n-1) 倍电容量。多片型相当于一个大面积的单片电容传感器,但 是它能缩小尺寸。
上一页 下一页 返回
上一页 下一页 返回
第一节 电容式传感器的工作原理和 结构
二、变极距型电容式传感器
由式(6-1)可知,电容量C与极板距离d不是线性关系,而
是如图6-2所示的曲线关系。若电容器极板距离由初始值d0
缩小△d,极板距离分别为d0和d0—△d,其电容量分别为
C0和C1,即
第六章 电感式传感器
0
3
灵敏度:
L2
L0
0
1
0
0
2
0
3
K
L / L0
1 2
0
L
L1
L2
2L0
0
1
0
2
实际上由于线圈内部的磁场是不均匀的,电感量的增 量ΔL与△x存在着一定的非线性。
为提高灵敏度和线性度,螺线管型自感式传感器常 采用差动结构。
6.1 自感式传感器
广西大学电气工程学院
双螺管型差动型
L1
L2
u
x
特性曲线
等效电路
将传感器两线圈接于电桥 的相邻桥臂时,其输出灵 敏度可提高一倍,并改善 了非线性特性,还能减少 干扰影响。
• 对电源采取稳压、稳频、屏蔽、加滤波电容等 措施,可减弱或消除电源的影响。
• 铁芯磁感应强度的工作点一定要选在磁化曲线 的线性段,以免在电源电压波动时,铁芯磁感 应强度进入饱和区而使导磁率发生很大变动。
6.1 自感式传感器
零点残余电压及其补偿
在电桥预平衡时,无法实 现平衡,最后总要存在着 某个输出值ΔU0,这称为 零点残余电压
应在设计制造时采取措施, 保证两电感线圈的对称。
减少电源中的谐波成分 在测量电桥中接入可调电
位器 采用相敏整流电路
广西大学电气工程学院
理想状态
ΔU0
实际状态
uo
理想状态
实际状态
第六章 电感式传感器
广西大学电气工程学院
传感器原理及工程应用作业
目录第三章 (5)3-1.什么是应变效应?什么是压阻效应?利用应变效应和压阻效应解释金属电阻应变片和半导体应变片的工作原理。
(5)3-2.试述应变片温度误差的概念,产生原因和补偿方法。
(5)3.试用应变片传感器实现一种应用。
(6)第四章 (6)4-1.说明差动变隙式电感传感器的主要组成、工作原理和基本特征。
(6)4 -3.差动变压器式传感器有哪几种结构形式?各有什么特点? (6)4-10.何为涡流效应?怎用利用涡流效应进行位移测量? (7)4-11.电涡流的形成范围包括哪些内容?他们的主要特点是什么? (7)5.用电感式传感器设计应用 (8)第五章 (8)5-1.根据工作原理可以将电容式传感器分为哪几类?每种类型各有什么特点?各适用于什么场合? (8)5-9.简述差动式电容测厚传感器系统的工作原理。
(8)第六章 (9)6-1.什么叫正压电效应和逆压电效应?什么叫纵向压电效应和横向压电效应? (9)6-3.简述压电陶瓷的结构及其特性。
(9)3.利用压电式传感器设计一个应用系统 (10)第七章 (10)7-4.什么是霍尔效应?霍尔电势与哪些因素有关? (10)7-6.温度变化对霍尔元件输出电势有什么影响?怎样补偿? (10)第八章 (11)8-1.光电效应有哪几种?相对应的光电器件有哪些? (11)8-2.试述光敏电阻、光敏二极管、光敏晶体管和光电池的工作原理,在实际应用时各有什么特点? (11)8-6.光在光纤中是怎样传输的?对光纤及入射光的入射角有什么要求? (12)8-7.试用光电开关设计一个应用系统。
(13)第九章 (13)9-1.简述气敏元件的工作原理 (13)9-2.为什么多数气敏元件都附有加热器 (13)9-3.什么叫湿敏电阻?湿敏电阻有哪些类型?各有什么特点? (14)第十章 (14)10-1.超声波在介质中传播具有哪些特性? (14)10-2.图10-3中,超声波探头的吸收块作用是什么? (15)10-3.超声波物位测量有几种方式?各有什么特点? (15)10-5.已知超声波探头垂直安装在被测介质底部,超声波在被猜测介质中的传播速度为1460m/s,测得时间间隔为28μs,试求物位高度? (15)第十一章 (15)11-1.简述微波传感器的测量机理。
第六章-自感式传感器
L0
L10
L20
m
0W
2
mr
rc
l2 c
l2
k1
k2
m0W 2mr rc2
l2
综上所述,螺管式自感传感器的特点: ①结构简单,制造装配容易; ②由于空气间隙大,磁路的磁阻高,因此灵敏度低 ,但线性范围大; ③由于磁路大部分为空气,易受外部磁场干扰; ④由于磁阻高,为了达到某一自感量,需要的线圈 匝数多,因而线圈分布电容大; ⑤要求线圈框架尺寸和形状必须稳定,否则影响其 线性和稳定性。
2
3
(2)单线圈是忽略
0
以上高次项,差动式是忽略
0
以上偶次项,
因此差动式自感式传感器线性度得到明显改善。
*另一种形式: Π型
6 自感式传感器
6.1 工作原理 6.2 变气隙式自感传感器 6.3 变面积式自感传感器 6.4 螺线管式自感传感器 6.5 自感式传感器测量电路 6.6 自感式传感器应用举例
第6章 电感式传感器
电感式传感器是建立在电磁感应基础上,利用 线圈自感或互感的改变来实现测量的一种装置。它 可对直线位移和角位移进行直接测量,也可通过一 定的敏感元件把振动、压力、应变、流量等转换成 位移量而进行测量。通常可由下列方法使线圈的电 感变化:
(1)改变几何形状; (2)改变磁路的磁阻; (3)改变磁芯材料的导磁率; (4)改变一组线圈的两部分或几部分间的耦合度。
1. 交流电桥 2. 变压器电桥 3. 自感传感器的灵敏度
(一)交流电桥式测量电路
分析:
• 衔铁在初始位置时,电桥平衡
L1
L2
L0
W 2m0S 20
• 若衔铁上移,则:
1 0 ,2 0
传感器原理及应用
传感器原理及应用传感器是一种能够感知、检测某种特定物理量并将其转化为可供人们观测或处理的信号的装置。
它在现代科技领域中起着至关重要的作用,广泛应用于工业控制、环境监测、医疗诊断、智能家居等领域。
本文将从传感器的原理及其应用展开介绍。
首先,传感器的原理是基于物理效应或化学效应实现的。
常见的传感器类型包括光电传感器、压力传感器、温度传感器、湿度传感器、气体传感器等。
光电传感器利用光电效应,将光信号转化为电信号,常用于光电开关、光电编码器等设备中。
压力传感器则是利用压电效应或电阻应变效应来检测压力变化,广泛应用于汽车制动系统、工业自动化等领域。
温度传感器则是利用热电效应、热敏电阻效应等原理来感知温度变化,常见于电子设备、空调系统等。
湿度传感器则是利用介电常数变化或电阻变化来检测湿度变化,应用于气象观测、农业温室等领域。
气体传感器则是利用气体的化学反应来检测气体浓度,常见于环境监测、工业安全等领域。
其次,传感器的应用非常广泛。
在工业控制领域,传感器常用于测量温度、压力、流量、液位等参数,用于实现自动化生产、设备监测等功能。
在环境监测领域,传感器被广泛应用于大气污染监测、水质监测、土壤湿度监测等方面,为环保工作提供重要数据支持。
在医疗诊断领域,传感器被用于测量体温、血压、心率等生理参数,为医生提供诊断依据。
在智能家居领域,传感器被用于感知人体活动、光照强度、温湿度等信息,实现智能灯光、智能门锁、智能空调等功能。
总之,传感器作为现代科技的重要组成部分,其原理和应用已经深入到人们的生活和工作中。
随着科技的不断发展,传感器的种类和性能将会不断提升,应用领域也将会不断拓展,为人们的生活和生产带来更多便利和可能。
希望本文能够为读者对传感器有更深入的了解提供一些帮助。
传感器原理及应用第六章 磁电式传感器
两者工作原理是完全相同的。 当壳体随被测振动体一起 振动时, 由于弹簧较软, 运动部件质量相对较大。当振动频率 足够高(远大于传感器固有频率)时, 运动部件惯性很大, 来 不及随振动体一起振动, 近乎静止不动, 振动能量几乎全被弹 簧吸收, 永久磁铁与线圈之间的相对运动速度接近于振动体振 动速度, 磁铁与线圈的相对运动切割磁力线, 从而产生感应电 势为
(一)磁电感应式传感器的工作原理
电磁式传感器工作原理
当一个W匝线圈相对静止地处于随时间变化的磁场中时,设穿 过线圈的磁通为Ф,则整个线圈中所产生的感应电动势e为
e W d dt
(二)磁电感应式传感器的结构及特点
1、磁电感应式传感器的结构
磁电式传感器基本上由以下三部分组成: ①磁路系统:它产生一个恒定的直流磁场,为了减小传感器 体积,一般都采用永久磁铁; ②线圈:它与磁铁中的磁通相交产生感应电动势; ③运动机构:它感受被测体的运动使线圈磁通发生变化。
式(7 - 7)可得近似值:
γt ≈(-4.5%)/10 ℃
(Hale Waihona Puke - 8)这一数值是很可观的, 所以需要进行温度补偿。 补偿通常采
用热磁分流器。热磁分流器由具有很大负温度系数的特殊磁
性材料做成。它在正常工作温度下已将空气隙磁通分路掉一
小部分。当温度升高时, 热磁分流器的磁导率显著下降, 经它
分流掉的磁通占总磁通的比例较正常工作温度下显著降低, 从
而保持空气隙的工作磁通不随温度变化, 维持传感器灵敏度为
常数。
(三)磁电感应式传感器的转换电路
磁电式传感器直接输出感应电势, 且传感器通常具有较高 的灵敏度, 所以一般不需要高增益放大器。但磁电式传感器是 速度传感器, 若要获取被测位移或加速度信号, 则需要配用积 分或微分电路。 图为一般测量电路方框图
传感器与自动检测技术重难点学习指导
《传感器与自动检测技术》重难点及学习指导第一章传感器与自动检测技术的基本概念重难点:测量误差与精度学习指导:掌握绝对误差和相对误差的定义和物理意义,理解精度等级的确定,能对测量误差进行估算和对仪表的精度等级及量程进行正确的选用。
第二章电阻式传感器重难点1:应变效应和桥式测量转换电路学习指导:在理解纵向应变和横向应变的基础上掌握应变效应,理解各类电桥工作方式和性能,注意“相邻臂相减、相对臂相加”的原则,通过不同的组合方式,可提高灵敏度,消除非线性误差及温度效应的影响。
重难点2:压阻式传感器测量转换电路与温度补偿学习指导:测量转换电路恒压源与恒流源供电方式的比较,选择合适的供电方式;提高测量精度减小零点漂移和灵敏度温度漂移的问题,进行零点温度补偿和灵敏度温度补偿。
第三章变阻抗式传感器重难点1:差分变压器的工作原理和测量转换电路的作用学习指导:差分变压器把被测位移量转换为线圈间的互感变化,输出交流电压,通过测量转换电路,可消除零点残余电压,并判别位移方向。
重难点2:电涡流式传感器的工作原理学习指导:在理解涡流效应的基础上,掌握传感器把被测量转换为线圈的阻抗,最大特点是非接触测量。
重难点3:电容式传感器的测量电路学习指导:变间隙式电容传感器采用差分接法的桥式电路(即变压器电桥电路)后,位移量与电容的非线性关系转换为位移量与输出交流电压的线性关系,但还应经过相敏检波才能判别位移方向;脉冲宽度调制电路的输出直流电压与电容变化量成线性关系,不论是对于变面积式或变极距式电容传感器均能获得线性输出,也能判别位移方向。
第四章光电式传感器重难点1:光电效应和光电传感器的工作原理学习指导:理解光电效应和对应光电元件的特性及使用场合,掌握光电传感器的四种应用类型,注意光源与光电元件在光谱特性上应基本一致,及在模拟量的检测中如何削弱或消除背景光及温度等因素的影响。
重难点2:光纤传感器的工作原理及使用学习指导:了解光纤的传光原理,功能型光纤传感器和非功能型光纤传感器的区别,光纤传感器的实际应用。
第六章 压电式传感器
1 CR
2
i
d 33 Fm C
2
arctan RC
当R无限大时 电压幅值比:
U im Um
Um
RC
1 1 RC
CR 2 1
U im 1 2 Um 1 1 i arctan 1 2
第六章:压电式传感器
主讲人:贾鹤萍
压电式传感器是一种自发电式传感器。它以某些 电介质的压电效应为基础,在外力作用下,在电介质 表面产生电荷,从而实现非电量电测的目的。
压电传感元件是力敏感元件,它可以测量最终能 变换为力的那些非电物理量,例如动态力、动态压力 、振动加速度等,但不能用于静态参数的测量。 压电式传感器具有体积小、质量轻、频响高、信 噪比大等特点。由于它没有运动部件,因此结构坚固 、可靠性、稳定性高。
1、工作原理--压电效应
图6-1 压电转换元件受力变形的几种基本形式
返回
1、工作原理--压电效应 压电传感器中的压电元件材料一般有三类: 压电晶体(如上述的石英晶体); 经过极化处理的压电陶瓷; 高分子压电材料。
1、工作原理----石英晶体 天然结构的石英晶体呈六角形晶柱,
Z轴为光轴,是晶体的对称轴,光线沿Z轴通过晶体 不产生双折射现象。
q1 q11 q12 q13 q14 q15 q16
q1 d111 d12 2 d13 3 d14 4 d15 5 d16 6 q2 d211 d22 2 d23 3 d24 4 d25 5 d26 6 q3 d311 d32 2 d33 3 d34 4 d35 5 d36 6 [D] 1
2023大学_传感器原理及应用(王化祥著)课后答案下载
2023传感器原理及应用(王化祥著)课后答案下载2023传感器原理及应用(王化祥著)课后答案下载前言绪论第一章传感器及其基本特性第一节传感器的定义、组成及分类第二节传感器的基本特性__小结习题与思考题第二章电阻应变式传感器第一节应变式传感器第二节应变式传感器的测量电路第三节压阻式传感器第四节应变式传感器的应用__小结习题与思考题第三章电容式传感器第一节电容式传感器的'工作原理与类型第二节电容式传感器的测量电路第三节电容式传感器的误差分析及补偿第四节电容式传感器的应用__小结习题与思考题第四章电感式传感器第一节自感式传感器第二节差动变压器式传感器第三节电涡流式传感器__小结习题与思考题第五章压电式传感器第一节压电效应与压电材料第二节压电传感器的等效电路和测量电路第三节引起/玉,E9式传感器测量误差的因素第四节压电传感器的应用__小结习题与思考题第一节磁电感应式传感器第二节霍尔传感器第三节磁敏电阻器第四节磁敏二极管和磁敏三极管第五节磁电传感器的应用__小结习题与思考题第七章热电式传感器第一节热电偶传感器第二节热电阻式传感器第三节半导体式热敏电阻第四节热电式传感器的应用__小结习题与思考题第八章光电传感器第一节光电效应第二节光电器件及其特性第三节红外传感器__小结习题与思考题第九章常用其他新型传感器第一节气体传感器第二节湿敏传感器第三节超声传感器第四节超导传感器第五节仿生传感器__小结习题与思考题第十章智能传感器第一节智能传感器概述第二节智能传感器的实现方式第三节智能传感器的应用第四节智能传感器的发展方向本?小结习题与思考题……第十一章传感器的标定与选用传感器原理及应用(王化祥著):基本信息点击此处下载传感器原理及应用(王化祥著)课后答案传感器原理及应用(王化祥著):目录作者:王桂荣,李宪芝主编出版社:中国电力出版社版次:1字数:500000印刷时间:-5-1ISBN:9787512304109。
传感器原理与应用习题第6章压电式传感器 (1)
《传感器原理与应用》习题集与部分参考答案教材:传感器技术(第3版)贾伯年主编,及其他参考书第6章 压电式传感器6-1 何谓压电效应?何谓纵向压电效应和横向压电效应?答:一些离子型晶体的电介质不仅在电场力作用下,而且在机械力作用下,都会产生极化现象。
且其电位移D(在MKS 单位制中即电荷密度σ)与外应力张量T 成正比: D = dT 式中 d —压电常数矩阵。
当外力消失,电介质又恢复不带电原状;当外力变向,电荷极性随之而变。
这种现象称为正压电效应,或简称压电效应。
若对上述电介质施加电场作用时,同样会引起电介质内部正负电荷中心的相对位移而导致电介质产生变形,且其应变S 与外电场强度E 成正比: S=d t E 式中 d t ——逆压电常数矩阵。
这种现象称为逆压电效应,或称电致伸缩。
6-2 压电材料的主要特性参数有哪些?试比较三类压电材料的应用特点。
答:主要特性:压电常数、弹性常数、介电常数、机电耦合系数、电阻、居里点。
压电单晶:时间稳定性好,居里点高,在高温、强辐射条件下,仍具有良好的压电性,且机械性能,如机电耦合系数、介电常数、频率常数等均保持不变。
此外,还在光电、微声和激光等器件方面都有重要应用。
不足之处是质地脆、抗机械和热冲击性差。
压电陶瓷:压电常数大,灵敏度高,制造工艺成熟,成形工艺性好,成本低廉,利于广泛应用,还具有热释电性。
新型压电材料:既具有压电特性又具有半导体特性。
因此既可用其压电性研制传感器,又可用其半导体特性制作电子器件;也可以两者合一,集元件与线路于一体,研制成新型集成压电传感器测试系统。
6-3 试述石英晶片切型(︒︒+45/50yxlt )的含意。
6-4 为了提高压电式传感器的灵敏度,设计中常采用双晶片或多晶片组合,试说明其组合的方式和适用场合。
答:(1)并联:C ′=2C ,q ′=2q,U ′=U,因为输出电容大,输出电荷大,所以时间常数,适合于测量缓变信号,且以电荷作为输出的场合。
传感器原理及应用习题答案完整版
传感器原理及应用习题答案习题1 (3)习题2 (5)习题3 (9)习题4 (11)习题5 (13)习题6 (15)习题7 (18)习题8 (21)习题9 (24)习题10 (26)习题11 (27)习题12 (29)习题13 (33)习题11-1 什么叫传感器?它由哪几部分组成?并说出各部分的作用及其相互间的关系。
答:传感器是能感受规定的被测量并按照一定的规律将其转换成可用输出信号的器件或装置。
通常传感器由敏感元件和转换元件组成。
敏感元件是指传感器中能直接感受或响应被测量的部分,转换元件是指传感器中将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部分。
由于传感器的输出信号一般都很微弱, 因此需要有信号调节与转换电路对其进行放大、运算调制等。
随着半导体器件与集成技术在传感器中的应用,传感器的信号调节与转换电路可能安装在传感器的壳体里或与敏感元件一起集成在同一芯片上。
此外,信号调节转换电路以及传感器工作必须有辅助的电源,因此信号调节转换电路以及所需的电源都应作为传感器组成的一部分。
1-2 简述传感器的作用和地位及其传感器技术的发展方向。
答:传感器位于信息采集系统之首,属于感知、获取及检测信息的窗口,并提供给系统赖以进行处理和决策所必须的原始信息。
没有传感技术,整个信息技术的发展就成了一句空话。
科学技术越发达,自动化程度越高,信息控制技术对传感器的依赖性就越大。
发展方向:开发新材料,采用微细加工技术,多功能集成传感器的研究,智能传感器研究,航天传感器的研究,仿生传感器的研究等。
1-3 传感器的静态特性指什么?衡量它的性能指标主要有哪些?答:传感器的静态特性是指被测量的值处于稳定状态时的输出—输入关系。
与时间无关。
主要性能指标有:线性度、灵敏度、迟滞和重复性等。
1-4 传感器的动态特性指什么?常用的分析方法有哪几种?答:传感器的动态特性是指其输出与随时间变化的输入量之间的响应特性。
常用的分析方法有时域分析和频域分析。
高中物理 第六章 传感器 第1节 传感器及其工作原理(含解析)2
第1节传感器及其工作原理1.传感器按照一定的规律把非电学量转化为电学量,可以很方便地进行测量、传输、处理和控制。
2.光敏电阻能够把光照强弱这个光学量转换为电阻这个电学量。
3.热敏电阻和金属热电阻能把温度这个热学量转换为电阻这个电学量。
4.电容式位移传感器能把物体位移这个力学量转换为电容这个电学量。
5.霍尔元件能把磁感应强度这个磁学量转换为电压这个电学量。
一、传感器1.传感器的定义能够感受诸如力、温度、光、声、化学成分等物理量,并能把它们按照一定的规律转换为便于传送和处理的另一个物理量(通常是电压、电流等电学量),或转换为电路的通断的元件。
2.非电学量转换为电学量的意义把非电学量转换为电学量,可以方便地进行测量、传输、处理和控制。
二、光敏电阻1.特点光照越强,电阻越小。
2.原因无光照时,载流子极少,导电性能不好;随着光照的增强,载流子增多,导电性变好。
3.作用把光照强弱这个光学量转换为电阻这个电学量。
三、热敏电阻和金属热电阻1.热敏电阻热敏电阻由半导体材料制成,其电阻值随温度的变化明显,温度升高电阻减小,如图所示为某一热敏电阻的电阻值随温度变化的特性曲线。
2.金属热电阻有些金属的电阻率随温度的升高而增大,这样的电阻也可以制作温度传感器,称为热电阻,如图所示为某金属导线电阻的温度特性曲线。
四、霍尔元件1.霍尔元件如图所示,在一个很小的矩形半导体(例如砷化铟)薄片上,制作四个电极E 、F 、M 、N ,它就成为一个霍尔元件。
霍尔元件能够把磁感应强度这个磁学量转换为电压这个电学量。
2.霍尔电压U H =k IB d(1)其中d 为薄片的厚度,k 为霍尔系数,其大小与薄片的材料有关。
(2)一个霍尔元件的厚度d 、霍尔系数k 为定值,再保持I 恒定,则U H 的变化就与B 成正比,因此霍尔元件又称磁敏元件。
1.自主思考——判一判(1)所有传感器的材料都是由半导体材料做成的。
(×)(2)传感器是把非电学量转换为电学量的元件。
传感器原理及应用复习题库
传感器原理及应用复习题库第一章 概述1、传感器一般由敏感元件、转换元件、基本电路三部分组成。
62、传感器图用图形符号由符号要素正方形和等边三角形组成,正方形表示转换元件,三角形表示敏感元件,“X ”表示被测量,“*”表示转换原理。
7第二章 传感器的基本特性1、传感器动态特性的主要技术指标有哪些?它们的意义是什么?答:1)传感器动态特性主要有:时间常数τ;固有频率n ω;阻尼系数ξ。
2)含义:τ越小系统需要达到稳定的时间越少;固有频率n ω越高响应曲线上升越快;当n ω为常数时响应特性取决于阻尼比ξ,阻尼系数ξ越大,过冲现象减弱,1ξ≥时无过冲,不存在振荡,阻尼比直接影响过冲量和振荡次数。
2、有一温度传感器,微分方程为30/30.15dy dt y x +=,其中y 为输出电压(mV) , x 为输入温度(℃)。
试求该传感器的时间常数和静态灵敏度。
解:对微分方程两边进行拉氏变换,Y(s)(30s+3)=0.15X(s)则该传感器系统的传递函数为: ()0.150.05()()303101Y s H s X s s s ===++ 该传感器的时间常数τ=10,灵敏度k=0.053、测得某检测装置的一组输入输出数据如下:试用最小二乘法原理拟合直线,求其线性度和灵敏度。
(10-12)1、解: b kx y +=)(b kx y i i i +-=∆22)(i i ii i i x x n y x y x n k ∑-∑∑∑-∑=222)()(i i i i i i i x x n y x x y x b ∑-∑∑∑-∑∑=代入数据求得68.0=k 25.0=b ∴ 25.068.0+=x y238.01=∆ 35.02-=∆ 16.03-=∆ 11.04-=∆ 126.05-=∆ 194.06-=∆ x0.9 2.5 3.3 4.5 5.7 6.7 y 1.1 1.6 2.6 3.2 4.0 5.0%7535.0%100max ±=±=⨯∆±=FS L y L γ 第三章 电阻式传感器1、何为电阻应变效应?怎样利用这种效应制成应变片?答:导体在受到拉力或压力的外界力作用时,会产生机械变形,同时机械变形会引起导体阻值的变化,这种导体材料因变形而使其电阻值发生变化的现象称为电阻应变效应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
年级 高二 学 科 物理版 本人教新课标版课程标题 第六章1-4节传感器原理及应用问题综合编稿老师 张子厚 一校 黄楠二校林卉审核王新丽一、学习目标:1、知道常见传感器的工作原理,能结合已学知识,分析传感器在生产生活中的应用实例。
2、了解传感器的应用,如温度传感器与光传感器在实际生活中的应用实例。
二、重点、难点:重点:常见传感器的工作原理及各种敏感元件的特性;难点:各种传感器与实际问题的综合,及这类问题的分析方法。
三、考点分析:内容和要求 考点细目 出题方式 传感器传感器的定义 选择题传感器的组成及原理 传感器的分类 常见传感器的工作原理 热敏电阻和金属热电阻选择题光传感器 霍尔效应与霍尔元件 电容传感器的工作原理 传感器的应用传感器工作的一般原理选择、计算题常见传感器的应用实例 温度传感器与光传感器的应用传感器的应用实验 光控开关选择题温度报警器 一些元器件的原理和使用知识点1:压力传感器的应用问题:例:压敏电阻的阻值随所受压力的增大而减小,有位同学利用压敏电阻设计了判断小车运动状态的装置,其工作原理如图甲所示,将压敏电阻和一块挡板固定在绝缘小车上,中间放置一个绝缘重球,小车向右做直线运动过程中,电流表示数变化与时间t 的关系如图乙所示,下列判断正确的是( )A. 从1t 到2t 时间内,小车做匀速直线运动B. 从1t 到2t 时间内,小车做匀加速直线运动C. 从2t 到3t 时间内,小车做匀速直线运动D. 从2t 到3t 时间内,小车做匀加速直线运动 答案:D变式题: 如图是某同学在科技制作活动中自制的电子秤原理图。
利用电压表(内电阻很大)的示数指示物体的质量。
托盘与电阻可忽略的金属弹簧相连,托盘与弹簧的质量均不计。
滑动变阻器的滑动端与弹簧上端连接,当托盘中没有放物体时,电压表示数为零。
设变阻器总电阻为R ,总长度为L ,电源电动势为E ,内阻为r ,限流电阻阻值为0R ,弹簧劲度系数为0k 。
若不计一切摩擦和其他阻力。
(1)求出电压表示数x U 与所称物体质量m 的关系式x U =__________________;(2)由(1)的计算结果可知,电压表示数与待测物体质量不成正比,不便于制作刻度。
为使电压表示数与待测物体质量成正比,请利用原有器材进行改进,在上图的基础上完成改进后的电路原理图,并得出电压表示数x U 与待测物体质量m 的关系式为x U =____________。
答案:(1)()mgRr R kL mgER++0(2)()LkR r R ERgm++0解析:由胡克定律知kx mg =,R 连入电路中的有效电阻kL mgR x L R R x =⋅=,根据闭合电路的欧姆定律可知xR r R EI ++=0,则()mgR r R kL mgER IR U x x ++==0。
(2)改进后的电路图如图所示。
()Lk R r R ERgmkmg L R R r R E U x ++=⋅⋅++=00知识点2: 敏感元件的特性的测定实验:例:热敏电阻是传感电路中常用的电子元件,现用伏安法研究热敏电阻在不同温度下的伏安特性曲线,要求特性曲线尽可能完整。
已知常温下待测热敏电阻的阻值约4Ω~5Ω。
热敏电阻和温度计插入带塞子的保温杯中,杯内有一定量的冷水,其他备用的仪表和器具有:盛有热水的热水瓶(图中未画出)、电源(3V ,内阻可忽略)、直流电流表(内阻约1Ω)、直流电压表(内阻约为5k Ω)、滑动变阻器(0~20Ω),开关、导线若干。
(1)在方框中画出实验电路图,要求测量误差尽可能小。
(2)根据电路图,在下图中的实物图上连线。
(3)简要写出完成连线后的主要实验步骤_______________________________________ ______________________________________________________________________________。
解析:(1)如图所示。
(2)如图所示。
(3)①往保温杯中加入一些热水,待温度稳定时读出温度计的数值;②调节滑动变阻器,快速测出几组电流表和电压表的值;③重复①~②步骤,测量不同温度下的数据;④绘出各测量温度下热敏电阻的伏安特性曲线。
【母题迁移】如图为某一热敏电阻(电阻值随温度的改变而改变,且对温度很敏感)的UI 关系曲线图。
(1)为了通过测量得到下图乙所示U I -关系的完整曲线,在图甲(a )和(b )两个电路图中应选择的是图____,简要说明理由__________________(电源电动势为9V ,滑动变阻器的阻值为0~100Ω)。
(2)在图乙所示电路中,电源电压恒为9V ,电流表读数为70 mA ,定值电阻Ω=2501R ,由热敏电阻的U I -关系曲线可知,热敏电阻两端的电压为__________V ,电阻2R 的阻值为_________________Ω。
(3)举出一个应用热敏电阻的例子。
答案:(1)(a )电压可从0调到所需电压,电压调节范围大 (2)5.2 111.8(111.6~112.0均可)(3)恒温箱(自动孵化器、热敏温度计等)。
知识点3:温度传感器在实际问题中的应用:例1:如图所示,是电饭煲的电路图。
1S 是一个温控开关,手动闭合后,当此开关温度达到居里点(103℃)时,会自动断开。
2S 是一个自动温控开关,当温度低于70℃时,会自动闭合;当温度高于80℃时,会自动断开。
红灯是加热时的指示灯,黄灯是保温时的指示灯。
分流电阻Ω==50021R R ,加热电阻丝Ω=503R ,两灯电阻不计。
(1)分析电饭煲的工作原理;(2)计算在加热和保温两种状态下,电饭煲消耗的电功率之比; (3)简要回答,如果不闭合开关1S ,能将饭煮熟吗?解析:(1)电饭煲盛上待煮食物后,接上电源,2S 自动闭合,同时手动闭合1S 。
这时黄灯短路,红灯亮,电饭煲处于加热状态。
加热到80℃时,2S 自动断开,1S 仍闭合;温度升高到103℃时,开关1S 自动断开,这时饭已煮熟,黄灯亮,电饭煲处于保温状态。
由于散热,等温度降至70℃时,2S 自动闭合,电饭煲进入加热状态,温度达到80℃时,2S 又自动断开,电饭煲再次处于保温状态。
(2)加热时电饭煲消耗的电功率并R U P 21=,保温时电饭煲消耗的电功率122R R U P +=并,Ω=+⋅=115003232R R R R R 并。
从而有=+=+=11/50011/500500121并并R R R P P1:12。
(3)如果不闭合开关1S ,开始2S 是闭合的,1R 被短路,当温度上升到80℃时,2S 自动断开。
温度降低到70℃时,2S 自动闭合……温度只能在70℃~80℃之间变化,不能把水烧开,故不能将饭煮熟。
变式题:图甲为在温度为10℃左右的环境中工作的某自动恒温箱原理简图,箱内的电阻Ω=k 201R ,Ω=k 102R ,Ω=k 403R ,t R 为热敏电阻值,它的电阻随温度变化的图线如图乙所示。
当a 、b 端电压0<ab U 时,电压鉴别器会令开关S 接通,恒温箱内的电热丝发热,使箱内温度升高;当0>ab U 时,电压鉴别器会令开关S 断开,停止加热,恒温箱内的温度恒定在________℃。
解析:本题考查了自动恒温箱的工作原理,应抓住0=ab U 的临界状态进行研究。
设电路路端电压为U ,当0=ab U 时,有3321R R R UR R R U tt ⋅+=+,解得Ω=k 20t R 。
由图乙可知,当Ω=k 201R 时,35=t ℃。
答案:35℃传感器在测量、自动控制等技术上有很重要的应用,与现代生产和生活息息相关,同学们在学习中要熟记各种敏感元件的特性,同时要结合具体的实例去体会传感器在实际问题当中的应用,通过了解电饭锅的工作原理,进一步认识传感器的应用。
传感器的问题涉及的知识面广,综合性强,可与力学、电学等内容综合在一起,突出考查学生对于实际物理模型的理解与抽象想象能力,弄清传感器的工作原理及对物理模型的过程分析是解决该类问题的关键。
一、预习新知期中复习二、预习点拨探究任务一:电磁感应问题:【反思】(1)感应电动势大小的计算有哪些重要方法?(2)解决电磁感应与电路、图象、能量等综合问题的分析方法是什么?探究任务二:交流电知识回顾:【反思】(1)理想变压器的重要规律有哪些?(2)处理远距离输电问题的方法是什么?(答题时间:45分钟)1. 如图所示是会议室和宾馆房间的天花板上装有的火灾报警器的结构原理图:罩内装有发光二极管LED、光电三极管和不透明的挡板。
平时光电三极管接收不到LED发出的光,呈现高电阻状态。
发生火灾时,下列说法正确的是()。
A. 进入罩内的烟雾遮挡了光线,使光电三极管电阻增大,检测电路检测出变化发出警报B. 光电三极管温度升高,电阻变小,检测电路检测出变化发出警报C. 进入罩内的烟雾对光有散射作用,部分光线照到光电三极管上,电阻变小,发出警报D. 以上说法均不正确2. 在信息技术高速发展、电子计算机广泛应用的今天,担负着信息采集任务的传感器在自动控制、信息处理技术中发挥着越来越重要的作用,其中热电传感器是利用热敏电阻将热信号转换成电信号的元件。
某学习小组的同学在用多用电表研究热敏电阻特性实验中,安装好如图所示装置。
向杯内加入冷水,温度计的示数为20℃,多用电表选择适当的倍率,读R,然后向杯内加入热水,温度计的示数为60℃,发现多用电表的指针出热敏电阻的阻值1偏转角度较大,则下列说法正确的是()。
A. 应选用电流挡,温度升高换用大量程测量B. 应选用电流挡,温度升高换用小量程测量C. 应选用电阻挡,温度升高时换用倍率大的挡D. 应选用电阻挡,温度升高时换用倍率小的挡3. 如图是电饭锅结构示意图,关于电饭锅下列说法正确的是( )。
A. 电饭锅中的传感器磁体是一种半导体材料B. 开始煮饭时,压下开关按钮的原因是克服弹簧的弹力使永磁体一端上升,上下触点接触接通电路C. 用电饭锅煮米饭,饭熟后水分被大米吸收,锅底的温度会升高,当升高到“居里温度”时,电饭锅会自动断电D. 用电饭锅烧水,水沸腾后也可以自动断电4. 如图所示,21R R 、为定值电阻,L 为小灯泡,3R 为光敏电阻,当照射光强度增大时( )。
A. 电压表的示数增大B. 2R 中电流减小C. 小灯泡的功率增大D. 电路的路端电压降低5. 如图所示为一实验小车中利用光电脉冲测量车速和行程的装置示意图,A 为光源,B 为光电接收器,B A 、均固定在车身上,C 为小车的车轮,D 为与C 同轴相连的齿轮。
车轮转动时,A 发出的光束通过旋转齿轮上齿的间隙后变成脉冲光信号,被B 接收并转换成电信号,由电子电路记录和显示。