2018年八年级数学因式分解检测卷练习课件新版北师大版
北师大版2018-2019学年下学期八年级数学《因式分解》培优检测试题
2018-2019学年下学期八年级数学《因式分解》培优检测试题姓名:班级:______________________ 考号:一、单选题(共10题;共30分)1.下列多项式中能用平方差公式分解因式的是( )A. a2+ (-b) 2 ।B. 5m2-20mn 9.-x2-y2 । D. -x2+92.下列多项式能因式分解的是( )A. x2-yB. x2+1C. x2+xy+y2D. x2-4x+43.因式分解2x2-8的结果是( )A. (2x+4) (x-4) FB. (x+2) ( x-2)C. 2 (x+2) ( x-2) 卜D. 2 (x+4) (x-4)4.下列因式分解中正确的是( )-J 1 1 1A.串—8工+16=B.-仃2+口-彳三=三(2仃-1),C. x ( a- b) - y (b - a) = (a- b) ( x - y)D. b" = ।fr > )5.把代数式ab:- 6ab十9n分解因式,下列结果中正确的是A. B. C'-Q T■-「I; .,) C.,屋8 T厂 D.6.下列各式中,不能用完全平方公式分解的个数为( )① x2-10x+25;② 4a2+4a - 1 ;③ x2-2x-1;④-m2+m-;;⑤ 4x4-x2+1 .A. 1个B. 2个C. 3个D. 4个7.若X-+tm-15=,,则mn 的值为()A. 5B. -5C. 10D. -108.若a , b , c是三角形的三边之长,则代数式a; -2ac+c二-b2的值()A.小于0B.大于0C.等于0 "D.以上三种情况均有可能9.下列多项式中能用提公因式法分解的是( )A. x2+y2B. x 2-y2C. x2+2x+1D. x 2+2x10.已知:a=2014x+2015, b=2014x+2016 , c=2014x+2017 ,则a2+b2+c2-ab- ac- bc 的值是( )A. 0B. 1C. 2D. 3二、填空题(共8题;共24分)11.因式分解:一疝一/4忸一〃)=12.已知x- 2y= - 5, xy= — 2,贝U 2x2y - 4xy2= .13.分解因式:a3 - 4a2+4a=.14.若屋_a + l = U,那么屋叫1 一屋飒十型颊二.15.如果x+y=5 , xy=2 ,贝U x2y+xy 2=.16.已知= 而=2,求;门取岫'的值为17.多项式2ax2-12axy中,应提取的公因式是18.若x+y= 1,贝U x4+5x3y+x2y+8x2y2+xy2+5xy 3+y4的值等于。
(新)北师大版八年级数学下册《因式分解》练习(含答案)
(新)北师大版八年级数学下册《因式分解》练习(含答案)《分解因式》练习卷一、选择题1.下列各式由左边到右边的变形中,是因式分解的为( )A.23()33a a b a ab +=+B.2(2)(3)6a a a a +-=--C.221(2)1x x x x -+=-+D.22()()a b a b a b -=+-2.下列多项式中,能用提公因式法分解因式的是( )A.2x y -B.22x x +C.22x y +D.22x xy y -+3.把多项式(1)(1)(1)m m m +-+-提取公因式(1)m -后,余下的部分是( )A.1m +B.2mC.2D.2m +4.分解因式:24x -=( )A.2(4)x -B.2(2)x - C.(2)(2)x x +- D .(4)(4)x x +- 5.(3)(3)a y a y -+是下列哪一个多项式因式分解的结果( ).A.229a y +B. -229a y +C.229a y -D.-229a y -6.若 4a b +=,则222a ab b ++的值是( )A.8B.16C.2D.47.因式分解2a ab -,正确的结果是( )A.2(1)a b -B.(1)(1)a b b -+C.2()a b -D.2(1)a b -8.把多项式244x x -+分解因式的结果是( )A.2(2)x -B.(4)4x x -+C.(2)(2)x x +-D.2(2)x +9.若215(3)()x mx x x n +-=++,则m 的值为( )A.-5B.5C.-2D.210.下列因式分解中,错误的是( )A. 219(13)(13)x x x -=+-B.2211()42a a a -+=- C.()mx my m x y -+=-+ D.()()ax ay bx by ab x y --+=--二、填空题11.多项式2232128x xy xy ++各项的公因式是______________.12. 已知x +y=6,xy=4,则x 2y +xy 2的值为 . 13.一个长方形的面积是2(9)x -平方米,其长为(3)x +米,用含有x 的整式表示它的宽为________米.14. (1)x +( )21x =-.15.若多项式4a 2+M 能用平方差公式分解因式,则单项式M=____(写出一个即可).16. 在多项式241x +加上一个单项式后,能成为一个整式的完全平方式,那么所添加的单项式还可以是 .17. 已知:x +y =1,则222121y xy x ++的值是___________. 18. 若512x 3,04422-+=-+x x x 则的值为_____________.20. 如图所示,边长为a 米的正方形广场,扩建后的正方形边长比原来的长2米,则扩建后的广场面积增加了_______米2.三、解答题21.分解因式:(1)222a ab -; (2)2x 2-18;(3)22242x xy y -+; (4)2242x x ++.22.请你从下列各式中,任选两式作差,并将得到的式子进行因式分解.2224()19a x y b +, , ,.23.设n 为整数.求证:(2n+1)2-25能被4整除.24.在直径D 1=1 8mm 的圆形零件上挖出半径为D 2=14mm 的圆孔,则所得圆环形零件的底面积是多少?(结果保留整数).27. 先阅读下列材料,再分解因式:(1)要把多项式am an bm bn +++分解因式,可以先把它的前两项分成一组,并提出a ;把它的后两项分成一组,并提出b .从而得到()()a m n b m n +++.这时由于()a m n +与()b m n +又有公因式()m n +,于是可提出公因式()m n +,从而得到()()m n a b ++.因此有()()am an bm bn am an bm bn +++=+++()()a m n b m n =+++()()m n a b =++.这种分解因式的方法叫做分组分解法.如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来分解因式了.(2)请用(1)中提供的方法分解因式:①2a ab ac bc -+-;②255m n mn m +--.(1)(1)x y x y =++--. =(2a+x+y)(2a -x -y).23. 提示:判断(2n+1)2-25能否被4整除,主要看其因式分解后是否能写成4与另一个因式积的形式,因(2n+1)2-25=4(n+3)(n -2),由此可知该式能被4整除.24.解:环形面积就是大圆面积减去小圆面积,于是S 环=π21R 一π22R=π212D ⎛⎫ ⎪⎝⎭一π222D ⎛⎫ ⎪⎝⎭=π12122222D D D D ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭ =π×(9+7)(9—7)=126π≈396(mm 2)故所得圆环形零件的底面积约为396mm 2.25. 用一张图①、5张图②、4张图③拼成下图矩形,由图形的面积可将多项式a 2+5ab +4b 2分解为(a +b )(a +4b ).26. 解:(1)132-92=8⨯11,172-32=8⨯35.(2)规律:任意两个奇数的平方差是8的倍数.(3)证明:设m 、n 为整数,两个奇数可表示为2m+1和2n+1,则(2m+1)2-(2n+1)2=[(2m+1)+(2n+1)][(2m+1)-(2n -1)]=4(m -n)(m+n+1).当m 、n 同是奇数或偶数时,m -n 一定为偶数,所以4(m -n)一定是8的倍数;当m 、n 一奇一偶时,m+n+1一定为偶数,所以4(m+n+1)一定是8的倍数.所以任意两个奇数的平方差是8的倍数.27. ①()()a b a c -+;②(5)()m m n --.。