2015年广东省高考数学真题理科
2015年广东省高考数学试卷(理科)_最新修正版
2015年广东省高考数学试卷(理科)一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)若集合M={x|(x+4)(x+1)=0},N={x|(x﹣4)(x﹣1)=0},则M ∩N=()A.{1,4}B.{﹣1,﹣4}C.{0}D.∅2.(5分)若复数z=i(3﹣2i)(i是虚数单位),则=()A.2﹣3i B.2+3i C.3+2i D.3﹣2i3.(5分)下列函数中,既不是奇函数,也不是偶函数的是()A.y=B.y=x+C.y=2x + D.y=x+e x4.(5分)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为()A .B .C .D.15.(5分)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()A.2x+y+5=0或2x+y﹣5=0 B.2x+y+=0或2x+y ﹣=0C.2x﹣y+5=0或2x﹣y﹣5=0 D.2x﹣y +=0或2x﹣y ﹣=06.(5分)若变量x,y 满足约束条件,则z=3x+2y的最小值为()A.4 B .C.6 D .7.(5分)已知双曲线C :﹣=1的离心率e=,且其右焦点为F2(5,0),则双曲线C的方程为()A .﹣=1B .﹣=1C .﹣=1D .﹣=18.(5分)若空间中n个不同的点两两距离都相等,则正整数n的取值()A.至多等于3 B.至多等于4 C.等于5 D.大于5最新修正版二、填空题(本大题共7小题,考生作答6小题,每小题5分,满分30分.)(一)必做题(11~13题)9.(5分)在(﹣1)4的展开式中,x的系数为.10.(5分)在等差数列{a n}中,若a3+a4+a5+a6+a7=25,则a2+a8=.11.(5分)设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sinB=,C=,则b=.12.(5分)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)13.(5分)已知随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,则P=.14.(5分)已知直线l的极坐标方程为2ρsin(θ﹣)=,点A的极坐标为A (2,),则点A到直线l的距离为.15.如图,已知AB是圆O的直径,AB=4,EC是圆O的切线,切点为C,BC=1.过圆心O作BC的平行线,分别交EC和AC于D和点P,则OD=.三、解答题16.(12分)在平面直角坐标系xOy 中,已知向量=(,﹣),=(sinx,cosx),x∈(0,).(1)若⊥,求tanx的值;(2)若与的夹角为,求x的值.17.(12分)某工厂36名工人年龄数据如图:(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的均值和方差s2;(3)36名工人中年龄在﹣s和+s之间有多少人?所占百分比是多少(精确到0.01%)?18.(14分)如图,三角形△PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3,点E是CD的中点,点F、G分别在线段AB、BC上,且AF=2FB,CG=2GB.(1)证明:PE⊥FG;(2)求二面角P﹣AD﹣C的正切值;(3)求直线PA与直线FG所成角的余弦值.19.(14分)设a>1,函数f(x)=(1+x2)e x﹣a.(1)求f(x)的单调区间;(2)证明f(x)在(﹣∞,+∞)上仅有一个零点;(3)若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP平行,(O是坐标原点),证明:m≤﹣1.20.(14分)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.21.(14分)数列{a n}满足:a1+2a2+…na n=4﹣,n∈N+.(1)求a3的值;(2)求数列{a n}的前n项和T n;(3)令b1=a1,b n=+(1+++…+)a n(n≥2),证明:数列{b n}的前n项和S n满足S n<2+2lnn.2015年广东省高考数学试卷(理科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)若集合M={x|(x+4)(x+1)=0},N={x|(x﹣4)(x﹣1)=0},则M ∩N=()A.{1,4}B.{﹣1,﹣4}C.{0}D.∅【分析】求出两个集合,然后求解交集即可.【解答】解:集合M={x|(x+4)(x+1)=0}={﹣1,﹣4},N={x|(x﹣4)(x﹣1)=0}={1,4},则M∩N=∅.故选:D.【点评】本题考查集合的基本运算,交集的求法,考查计算能力.2.(5分)若复数z=i(3﹣2i)(i是虚数单位),则=()A.2﹣3i B.2+3i C.3+2i D.3﹣2i【分析】直接利用复数的乘法运算法则化简求解即可.【解答】解:复数z=i(3﹣2i)=2+3i,则=2﹣3i,故选:A.【点评】本题考查复数的代数形式的混合运算,复数的基本概念,考查计算能力.3.(5分)下列函数中,既不是奇函数,也不是偶函数的是()A.y=B.y=x+C.y=2x+ D.y=x+e x【分析】直接利用函数的奇偶性判断选项即可.【解答】解:对于A,y=是偶函数,所以A不正确;对于B,y=x+函数是奇函数,所以B不正确;对于C,y=2x+是偶函数,所以C不正确;对于D,不满足f(﹣x)=f(x)也不满足f(﹣x)=﹣f(x),所以函数既不是奇函数,也不是偶函数,所以D正确.故选:D.【点评】本题考查函数的奇偶性的判断,基本知识的考查.4.(5分)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为()A.B.C.D.1【分析】首先判断这是一个古典概型,从而求基本事件总数和“所取的2个球中恰有1个白球,1个红球”事件包含的基本事件个数,容易知道基本事件总数便是从15个球任取2球的取法,而在求“所取的2个球中恰有1个白球,1个红球”事件的基本事件个数时,可利用分步计数原理求解,最后带入古典概型的概率公式即可.【解答】解:这是一个古典概型,从15个球中任取2个球的取法有;∴基本事件总数为105;设“所取的2个球中恰有1个白球,1个红球”为事件A;则A包含的基本事件个数为=50;∴P(A)=.故选:B.【点评】考查古典概型的概念,以及古典概型的求法,熟练掌握组合数公式和分步计数原理.5.(5分)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()A.2x+y+5=0或2x+y﹣5=0 B.2x+y+=0或2x+y﹣=0C.2x﹣y+5=0或2x﹣y﹣5=0 D.2x﹣y+=0或2x﹣y﹣=0【分析】设出所求直线方程,利用圆心到直线的距离等于半径,求出直线方程中的变量,即可求出直线方程.【解答】解:设所求直线方程为2x+y+b=0,则,所以=,所以b=±5,所以所求直线方程为:2x+y+5=0或2x+y﹣5=0故选:A.【点评】本题考查两条直线平行的判定,圆的切线方程,考查计算能力,是基础题.6.(5分)若变量x,y满足约束条件,则z=3x+2y的最小值为()A.4 B.C.6 D.【分析】作出不等式组对应的平面区域,根据z的几何意义,利用数形结合即可得到最小值.【解答】解:不等式组对应的平面区域如图:由z=3x+2y得y=﹣x+,平移直线y=﹣x+,则由图象可知当直线y=﹣x+,经过点A时直线y=﹣x+的截距最小,此时z最小,由,解得,即A(1,),此时z=3×1+2×=,故选:B.【点评】本题主要考查线性规划的应用,根据z的几何意义,利用数形结合是解决本题的关键.7.(5分)已知双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),则双曲线C的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【分析】利用已知条件,列出方程,求出双曲线的几何量,即可得到双曲线方程.【解答】解:双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),可得:,c=5,∴a=4,b==3,所求双曲线方程为:﹣=1.故选:C.【点评】本题考查双曲线方程的求法,双曲线的简单性质的应用,考查计算能力.8.(5分)若空间中n个不同的点两两距离都相等,则正整数n的取值()A.至多等于3 B.至多等于4 C.等于5 D.大于5【分析】先考虑平面上的情况:只有三个点的情况成立;再考虑空间里,只有四个点的情况成立,注意运用外接球和三角形三边的关系,即可判断.【解答】解:考虑平面上,3个点两两距离相等,构成等边三角形,成立;4个点两两距离相等,三个点在圆上,一个点是圆心,圆上的点到圆心的距离都相等,则不成立;n大于4,也不成立;在空间中,4个点两两距离相等,构成一个正四面体,成立;若n>4,由于任三点不共线,当n=5时,考虑四个点构成的正四面体,第五个点,与它们距离相等,必为正四面体的外接球的球心,且球的半径不等于边长,即有球心与正四面体的底面的中心重合,但显然球的半径不等于棱长,故不成立;同理n>5,不成立.故选:B.【点评】本题考查空间几何体的特征,主要考查空间两点的距离相等的情况,注意结合外接球和三角形的两边与第三边的关系,属于中档题和易错题.二、填空题(本大题共7小题,考生作答6小题,每小题5分,满分30分.)(一)必做题(11~13题)9.(5分)在(﹣1)4的展开式中,x的系数为6.【分析】根据题意二项式(﹣1)4的展开式的通项公式为T r=•(﹣1)r•,+1分析可得,r=2时,有x的项,将r=2代入可得答案.=•(﹣1)r•,【解答】解:二项式(﹣1)4的展开式的通项公式为T r+1令2﹣=1,求得r=2,∴二项式(﹣1)4的展开式中x的系数为=6,故答案为:6.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题10.(5分)在等差数列{a n}中,若a3+a4+a5+a6+a7=25,则a2+a8=10.【分析】根据等差数列的性质,化简已知的等式即可求出a5的值,然后把所求的式子也利用等差数列的性质化简后,将a5的值代入即可求答案.【解答】解:由a3+a4+a5+a6+a7=(a3+a7)+(a4+a6)+a5=5a5=25,得到a5=5,则a2+a8=2a5=10.故答案为:10.【点评】本题主要考查了等差数列性质的简单应用,属于基础题.11.(5分)设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sinB=,C=,则b=1.【分析】由sinB=,可得B=或B=,结合a=,C=及正弦定理可求b【解答】解:∵sinB=,∴B=或B=当B=时,a=,C=,A=,由正弦定理可得,则b=1当B=时,C=,与三角形的内角和为π矛盾故答案为:1【点评】本题考查了正弦、三角形的内角和定理,熟练掌握定理是解本题的关键12.(5分)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了1560条毕业留言.(用数字作答)【分析】通过题意,列出排列关系式,求解即可.【解答】解:某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了=40×39=1560条.故答案为:1560.【点评】本题考查排列数个数的应用,注意正确理解题意是解题的关键.13.(5分)已知随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,则P=.【分析】直接利用二项分布的期望与方差列出方程求解即可.【解答】解:随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,可得np=30,npq=20,q=,则p=,故答案为:.【点评】本题考查离散型随机变量的分布列的期望以及方差的求法,考查计算能力.14.(5分)已知直线l的极坐标方程为2ρsin(θ﹣)=,点A的极坐标为A(2,),则点A到直线l的距离为.【分析】把极坐标方程转化为直角坐标方程,然后求出极坐标表示的直角坐标,利用点到直线的距离求解即可.【解答】解:直线l的极坐标方程为2ρsin(θ﹣)=,对应的直角坐标方程为:y﹣x=1,点A的极坐标为A(2,),它的直角坐标为(2,﹣2).点A到直线l的距离为:=.故答案为:.【点评】本题考查极坐标与直角坐标方程的互化,点到直线的距离公式的应用,考查计算能力.15.如图,已知AB是圆O的直径,AB=4,EC是圆O的切线,切点为C,BC=1.过圆心O作BC的平行线,分别交EC和AC于D和点P,则OD=8.【分析】连接OC,确定OP⊥AC,OP=BC=,Rt△OCD中,由射影定理可得OC2=OP•OD,即可得出结论.【解答】解:连接OC,则OC⊥CD,∵AB是圆O的直径,∴BC⊥AC,∵OP∥BC,∴OP⊥AC,OP=BC=,Rt△OCD中,由射影定理可得OC2=OP•OD,∴4=OD,∴OD=8.故答案为:8.【点评】本题考查圆的直径与切线的性质,考查射影定理,考查学生的计算能力,比较基础.三、解答题16.(12分)在平面直角坐标系xOy中,已知向量=(,﹣),=(sinx,cosx),x∈(0,).(1)若⊥,求tanx的值;(2)若与的夹角为,求x的值.【分析】(1)若⊥,则•=0,结合三角函数的关系式即可求tanx的值;(2)若与的夹角为,利用向量的数量积的坐标公式进行求解即可求x的值.【解答】解:(1)若⊥,则•=(,﹣)•(sinx,cosx)=sinx ﹣cosx=0,即sinx=cosxsinx=cosx,即tanx=1;(2)∵||=,||==1,•=(,﹣)•(sinx,cosx)=sinx ﹣cosx,∴若与的夹角为,则•=||•||cos =,即sinx ﹣cosx=,则sin(x ﹣)=,∵x∈(0,).∴x ﹣∈(﹣,).则x ﹣=即x=+=.【点评】本题主要考查向量数量积的定义和坐标公式的应用,考查学生的计算能力,比较基础.17.(12分)某工厂36名工人年龄数据如图:(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的均值和方差s 2;(3)36名工人中年龄在﹣s和+s之间有多少人?所占百分比是多少(精确到0.01%)?【分析】(1)利用系统抽样的定义进行求解即可;(2)根据均值和方差公式即可计算(1)中样本的均值和方差s2;(3)求出样本和方差即可得到结论.【解答】解:(1)由系统抽样知,36人分成9组,每组4人,其中第一组的工人年龄为44,所以其编号为2,∴所有样本数据的编号为:4n﹣2,(n=1,2,…,9),其数据为:44,40,36,43,36,37,44,43,37.(2)由平均值公式得=(44+40+36+43+36+37+44+43+37)=40.由方差公式得s2=[(44﹣40)2+(40﹣40)2+…+(37﹣40)2]=.(3)∵s2=.∴s=∈(3,4),∴36名工人中年龄在﹣s和+s之间的人数等于区间[37,43]的人数,即40,40,41,…,39,共23人.∴36名工人中年龄在﹣s和+s之间所占百分比为≈63.89%.【点评】本题主要考查统计和分层抽样的应用,比较基础.18.(14分)如图,三角形△PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3,点E是CD的中点,点F、G分别在线段AB、BC上,且AF=2FB,CG=2GB.(1)证明:PE⊥FG;(2)求二面角P﹣AD﹣C的正切值;(3)求直线PA与直线FG所成角的余弦值.【分析】(1)通过△PDC为等腰三角形可得PE⊥CD,利用线面垂直判定定理及性质定理即得结论;(2)通过(1)及面面垂直定理可得PG⊥AD,则∠PDC为二面角P﹣AD﹣C的平面角,利用勾股定理即得结论;(3)连结AC,利用勾股定理及已知条件可得FG∥AC,在△PAC中,利用余弦定理即得直线PA与直线FG所成角即为直线PA与直线AC所成角∠PAC的余弦值.【解答】(1)证明:在△PDC中PO=PC且E为CD中点,∴PE⊥CD,又∵平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,PE⊂平面PCD,∴PE⊥平面ABCD,又∵FG⊂平面ABCD,∴PE⊥FG;(2)解:由(1)知PE⊥平面ABCD,∴PE⊥AD,又∵CD⊥AD且PE∩CD=E,∴AD⊥平面PDC,又∵PD⊂平面PDC,∴AD⊥PD,又∵AD⊥CD,∴∠PDC为二面角P﹣AD﹣C的平面角,在Rt△PDE中,由勾股定理可得:PE===,∴tan∠PDC==;(3)解:连结AC,则AC==3,在Rt△ADP中,AP===5,∵AF=2FB,CG=2GB,∴FG∥AC,∴直线PA与直线FG所成角即为直线PA与直线AC所成角∠PAC,在△PAC中,由余弦定理得cos∠PAC===.【点评】本题考查线线垂直的判定、二面角及线线角的三角函数值,涉及到勾股定理、余弦定理等知识,注意解题方法的积累,属于中档题.19.(14分)设a>1,函数f(x)=(1+x2)e x﹣a.(1)求f(x)的单调区间;(2)证明f(x)在(﹣∞,+∞)上仅有一个零点;(3)若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP平行,(O是坐标原点),证明:m≤﹣1.【分析】(1)利用f′(x)>0,求出函数单调增区间.(2)证明只有1个零点,需要说明两个方面:①函数单调;②函数有零点.(3)利用导数的最值求解方法证明,思路较为复杂.【解答】解:(1)f′(x)=e x(x2+2x+1)=e x(x+1)2,∴f′(x)≥0,∴f(x)=(1+x2)e x﹣a在(﹣∞,+∞)上为增函数.(2)证明:∵f(0)=1﹣a,a>1,∴1﹣a<0,即f(0)<0,∵f()=(1+a)﹣a=+a(﹣1),a>1,∴>1,﹣1>0,即f()>0,且由(1)问知函数在(﹣∞,+∞)上为增函数,∴f(x)在(﹣∞,+∞)上有且只有一个零点.(3)证明:f′(x)=e x(x+1)2,设点P(x0,y0)则)f'(x)=e x0(x0+1)2,∵y=f(x)在点P处的切线与x轴平行,∴f′(x0)=0,即:e x0(x0+1)2=0,∴x0=﹣1,将x0=﹣1代入y=f(x)得y0=.∴,∴,要证m≤﹣1,即证(m+1)3≤a﹣,需要证(m+1)3≤e m(m+1)2,即证m+1≤e m,因此构造函数g(m)=e m﹣(m+1),则g′(m)=e m﹣1,由g′(m)=0得m=0.当m∈(0,+∞)时,g′(m)>0,当m∈(﹣∞,0)时,g′(m)<0,∴g(m)的最小值为g(0)=0,∴g(m)=e m﹣(m+1)≥0,∴e m≥m+1,∴e m(m+1)2≥(m+1)3,即:,∴m≤.【点评】本题考查了导数在函数单调性和最值上的应用,属于综合应用,在高考中属于压轴题目,有较大难度.20.(14分)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.【分析】(1)通过将圆C1的一般式方程化为标准方程即得结论;(2)设当直线l的方程为y=kx,通过联立直线l与圆C1的方程,利用根的判别式大于0、韦达定理、中点坐标公式及参数方程与普通方程的相互转化,计算即得结论;(3)通过联立直线L与圆C1的方程,利用根的判别式△=0及轨迹C的端点与点(4,0)决定的直线斜率,即得结论.【解答】解:(1)∵圆C1:x2+y2﹣6x+5=0,整理,得其标准方程为:(x﹣3)2+y2=4,∴圆C1的圆心坐标为(3,0);(2)设当直线l的方程为y=kx、A(x1,y1)、B(x2,y2),联立方程组,消去y可得:(1+k2)x2﹣6x+5=0,由△=36﹣4(1+k2)×5>0,可得k2<由韦达定理,可得x1+x2=,∴线段AB的中点M的轨迹C的参数方程为,其中﹣<k<,∴线段AB的中点M的轨迹C的方程为:(x﹣)2+y2=,其中<x≤3;(3)结论:当k∈(﹣,)∪{﹣,}时,直线L:y=k(x﹣4)与曲线C只有一个交点.理由如下:联立方程组,消去y,可得:(1+k2)x2﹣(3+8k2)x+16k2=0,令△=(3+8k2)2﹣4(1+k2)•16k2=0,解得k=±,又∵轨迹C的端点(,±)与点(4,0)决定的直线斜率为±,∴当直线L:y=k(x﹣4)与曲线C只有一个交点时,k的取值范围为[﹣,]∪{﹣,}.【点评】本题考查求轨迹方程、直线与曲线的位置关系问题,注意解题方法的积累,属于难题.21.(14分)数列{a n}满足:a1+2a2+…na n=4﹣,n∈N+.(1)求a3的值;(2)求数列{a n}的前n项和T n;(3)令b1=a1,b n=+(1+++…+)a n(n≥2),证明:数列{b n}的前n项和S n满足S n<2+2lnn.【分析】(1)利用数列的递推关系即可求a3的值;(2)利用作差法求出数列{a n}的通项公式,利用等比数列的前n项和公式即可求数列{a n}的前n项和T n;(3)利用构造法,结合裂项法进行求解即可证明不等式.【解答】解:(1)∵a1+2a2+…na n=4﹣,n∈N+.∴a1=4﹣3=1,1+2a2=4﹣=2,解得a2=,∵a1+2a2+…+na n=4﹣,n∈N+.=4﹣,n∈N+.∴a1+2a2+…+(n﹣1)a n﹣1两式相减得na n=4﹣﹣(4﹣)=,n≥2,则a n=,n≥2,当n=1时,a1=1也满足,∴a n=,n≥1,则a3=;(2)∵a n=,n≥1,∴数列{a n}是公比q=,则数列{a n}的前n项和T n==2﹣21﹣n.(3)b n=+(1+++…+)a n,∴b1=a1,b2=+(1+)a2,b3=(1++)a3,∴b n=+(1+++…+)a n,∴S n=b1+b2+…+b n=(1+++…+)a1+(1+++…+)a2+…+(1+++…+)a n=(1+++…+)(a1+a2+…+a n)=(1+++…+)T n=(1+++…+)(2﹣21﹣n)<2×(1+++…+),设f(x)=lnx+﹣1,x>1,则f′(x)=﹣.即f(x)在(1,+∞)上为增函数,∵f(1)=0,即f(x)>0,∵k≥2,且k∈N•时,,最新修正版∴f()=ln+﹣1>0,即ln>,∴ln,,…,即=lnn,∴2×(1+++…+)=2+2×(++…+)<2+2lnn,即S n<2(1+lnn)=2+2lnn.【点评】本题主要考查数列通项公式以及前n项和的计算,以及数列和不等式的综合,利用作差法求出数列的通项公式是解决本题的关键.考查学生的计算能力,综合性较强,难度较大.。
2015年高考广东卷理科数学
绝密★启用前 试卷类型:A2015年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、若集合()(){}410M x x x =++=,()(){}410N x x x =--=,则M N =( )A .{}1,4B .{}1,4--C .{}0D .∅2、若复数()32z i i =-(i 是虚数单位),则z =( )A .23i - B .23i + C .32i + D .32i - 3、下列函数中,既不是奇函数,也不是偶函数的是( )A.y = B .1y x x =+ C .122x x y =+ D .x y x e =+ 4、袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )A .521B .1021C .1121D .1 5、平行于直线210x y ++=且与圆225x y +=相切的直线的方程是( )A .250x y ++=或250x y +-= B.20x y +=或20x y +=C .250x y -+=或250x y --= D.20x y -=或20x y -=6、若变量x ,y 满足约束条件4581302x y x y +≥⎧⎪≤≤⎨⎪≤≤⎩,则32z x y =+的最小值为( )A .4B .235C .6D .315 7、已知双曲线C :22221x y a b-=的离心率54e =,且其右焦点为()2F 5,0,则双曲线C 的方程为( )A .22143x y -=B .221916x y -=C .221169x y -=D .22134x y -= 8、若空间中n 个不同的点两两距离都相等,则正整数n 的取值( )A .至多等于3B .至多等于4C .等于5D .大于5二、填空题(本大题共7小题,考生作答6小题,每小题5分,满分30分.)(一)必做题(11~13题)9、在)41的展开式中,x 的系数为 . 10、在等差数列{}n a 中,若3456725a a a a a ++++=,则28a a += .11、设C ∆AB 的内角A ,B ,C 的对边分别为a ,b ,c .若a =1sin 2B =,C 6π=,则b = .12、某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)13、已知随机变量X 服从二项分布(),n p B ,若()30E X =,()D 20X =,则p = .(二)选做题(14、15题,考生只能从中选作一题)14、(坐标系与参数方程选做题)已知直线l 的极坐标方程为2sin 4πρθ⎛⎫-= ⎪⎝⎭A 的极坐标为74π⎛⎫A ⎪⎝⎭,则点A 到直线l 的距离为 . 15、(几何证明选讲选做题)如图1,已知AB 是圆O 的直径,4AB =,C E 是圆O 的切线,切点为C ,C 1B =.过圆心O 作C B 的平行线,分别交C E 和C A 于点D 和点P ,则D O = .三、解答题16.(本小题满分12分)在平面直角坐标系xOy 中,已知向量22(,),(sin ,cos ),(0,)222m n x x x π=-=∈ (1) 若m n ⊥,求tan x 的值;(2) 若m 与n 的夹角为3π,求x 的值. 17. (本小题满分12分)某工厂36名工人年龄数据如下表(1) 用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2) 计算(1)中样本的均值x 和方差2s ;(3) 36名工人中年龄在x s -和x s +之间有多少人?所占百分比是多少(精确到0.01%)? 18.(本小题满分14分)如图2,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,4,6,3PD PC AB BC ====,点E 是CD 的中点,点、F G 分别在线段、AB BC 上,且2,2AF FB CG GB ==.(1) 证明:PE FG ⊥;(2) 求二面角P AD C --的正切值;(3) 求直线PA 与直线FG 所成角的余弦值.19. (本小题满分14分)设1a >,函数2()(1)x f x x e a =+-(1) 求()f x 的单调区间;(2) 证明()f x 在(,)-∞+∞上仅有一个零点;(3) 若曲线()y f x =在点P 处的切线与x 轴平行,且在点M (m,n )处的切线与直线OP 平行,(O 是坐标原点),证明:1m ≤-.20. (本小题满分14分) 已知过原点的动直线l 与圆221:650C x y x +-+=相交于不同的两点A 、B.(1) 求圆1C 的圆心坐标; (2) 求线段AB 的中点M 的轨迹C 的方程;(3) 是否存在实数k,使得直线:(4)l y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.21. (本小题满分14分)数列{a }n 满足:*12122......3,2n n n a a na n N -+++=-∈. (1) 求3a 的值;(2) 求数列{a }n 的前 n 项和n T ;(3) 令111111,(1......)(2),23n n n T b a b a n n n-==+++++≥证明:数列{}n b 的前n 项和S n 满足22ln n S n <+。
2015年广东高考理科数学试题及答案(完整版)
2015年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、若集合()(){}410M x x x =++=,()(){}410N x x x =--=,则M N =( )A .{}1,4B .{}1,4--C .{}0D .∅2、若复数()32z i i =-(i 是虚数单位),则z =( )A .23i -B .23i +C .32i +D .32i -3、下列函数中,既不是奇函数,也不是偶函数的是( )A.y = B .1y x x =+ C .122x x y =+ D .x y x e =+ 4、袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )A .521B .1021C .1121D .1 5、平行于直线210x y ++=且与圆225x y +=相切的直线的方程是( )A .250x y ++=或250x y +-= B.20x y ++=或20x y +=C .250x y -+=或250x y --= D.20x y -+=或20x y -=6、若变量x ,y 满足约束条件4581302x y x y +≥⎧⎪≤≤⎨⎪≤≤⎩,则32z x y =+的最小值为( )A .4B .235C .6D .3157、已知双曲线C:22221x y a b -=的离心率54e =,且其右焦点为()2F 5,0,则双曲线C 的方程为( ) A .22143x y -= B .221916x y -= C .221169x y -= D .22134x y -= 8、若空间中n 个不同的点两两距离都相等,则正整数n 的取值( )A .至多等于3B .至多等于4C .等于5D .大于5二、填空题(本大题共7小题,考生作答6小题,每小题5分,满分30分.)(一)必做题(11~13题)9、在)41的展开式中,x 的系数为 . 10、在等差数列{}n a 中,若3456725a a a a a ++++=,则28a a += .11、设C ∆AB 的内角A ,B ,C 的对边分别为a ,b ,c .若3a =,1sin 2B =,C 6π=,则b = .12、某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言.(用数字作答)13、已知随机变量X 服从二项分布(),n p B ,若()30E X =,()D 20X =,则p = .(二)选做题(14、15题,考生只能从中选作一题)14、(坐标系与参数方程选做题)已知直线l 的极坐标方程为2sin 24πρθ⎛⎫-= ⎪⎝⎭,点A 的极坐标为722,4π⎛⎫A ⎪⎝⎭,则点A 到直线l 的距离为 . 15、(几何证明选讲选做题)如图1,已知AB 是圆O 的直径,4AB =,C E 是圆O 的切线,切点为C ,C 1B =.过圆心O 作C B 的平行线,分别交C E 和C A 于点D 和点P ,则D O = .三、解答题16.(本小题满分12分)在平面直角坐标系xOy 中,已知向量(1) 若m n ⊥,求tan x 的值;(2) 若m 与n 的夹角为3π,求x 的值. 17. (本小题满分12分)某工厂36名工人年龄数据如下表(1) 用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2) 计算(1)中样本的均值x 和方差2s ;(3) 36名工人中年龄在x s -和x s +之间有多少人?所占百分比是多少(精确到0.01%)?18.(本小题满分14分)如图2,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,4,6,3PD PC AB BC ====,点E 是CD 的中点,点、F G 分别在线段、AB BC 上,且2,2AF FB CG GB ==.(1) 证明:PE FG ⊥; (2) 求二面角P AD C --的正切值;(3) 求直线PA 与直线FG 所成角的余弦值.19. (本小题满分14分)设1a >,函数2()(1)x f x x e a =+-(1) 求()f x 的单调区间; (2) 证明()f x 在(,)-∞+∞上仅有一个零点;(3) 若曲线()y f x =在点P 处的切线与x 轴平行,且在点M (m,n )处的切线与直线OP 平行,(O 是坐标原点),证明:1m ≤-.20. (本小题满分14分)已知过原点的动直线l 与圆221:650C x y x +-+=相交于不同的两点A 、B.(1) 求圆1C 的圆心坐标;(2) 求线段AB 的中点M 的轨迹C 的方程;(3) 是否存在实数k,使得直线:(4)l y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.21. (本小题满分14分) 数列{a }n 满足:*12122......3,2n n n a a na n N -+++=-∈. (1) 求3a 的值;(2) 求数列{a }n 的前 n 项和n T ;(3) 令111111,(1......)(2),23n n n T b a b a n n n-==+++++≥证明:数列{}n b 的前n 项和S n 满足22ln n S n <+2015年普通高等学校招生全国统一考试(广东卷)数学(理科)参考答案。
2015年高考理科数学广东卷(含答案解析)
数学试卷 第1页(共16页) 数学试卷 第2页(共16页)绝密★启用前2015年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:样本数据1x ,2x ,⋅⋅⋅,n x 的方差2222121()()()n s x x x x x x n⎡⎤=-+-+⋅⋅⋅+-⎣⎦,其中x 表示样本均值.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则M N = ( )A .∅B .{1,4}--C .{0}D .{1,4} 2.若复数i(32i)z =-(i 是虚数单位),则z =( )A .32i -B .32i +C .2+3iD .23i - 3.下列函数中,既不是奇函数,也不是偶函数的是( )A .x y x e =+B .1y x x=+C .122x xy =+D.y 4.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )A .1B .1121C .1021 D .5215.平行于直线210x y ++=且与圆225x y +=相切的直线的方程是( )A.20x y -=或20x y -= B.20x y +或20x y += C .250x y -+=或250x y --=D .250x y ++=或250x y +-=6.若变量x ,y 满足约束条件458,13,02,x y x y +⎧⎪⎨⎪⎩≥≤≤≤≤则32z x y =+的最小值为( )A .315B .6C .235D .47.已知双曲线C :22221x y a b -=的离心率54e =,且其右焦点为2(5,0)F ,则双曲线C 的方程为( )A .22143x y -=B .221169x y-= C .221916x y -=D .22134x y -= 8.若空间中n 个不同的点两两距离都相等,则正整数n 的取值( )A .大于5B .等于5C .至多等于4D .至多等于3二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.在41)的展开式中,x 的系数为 .10.在等差数列{}n a 中,若3456725a a a a a ++++=,则28a a += . 11.设ABC △的内角A ,B ,C 的对边分别为a ,b ,c .若a =,1sin 2B =,π6C =,则b = .12.某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言(用数字作答).13.已知随机变量X 服从二项分布(,)B n p .若()30E X =,()20D X =,则p = . (二)选做题(14-15题,考生只能从中选做一题) 14.(坐标系与参数方程)已知直线l的极坐标方程为π2sin()4ρθ-,点A的极坐标为7π)4A ,则点A 到直线l 的距离为 .姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共16页) 数学试卷 第4页(共16页)15.(几何证明选讲)如图,已知AB 是圆O 的直径,4AB =,EC 是圆O 的切线,切点为C ,1BC =.过圆心O 作BC 的平行线,分别交EC 和AC 于点D 和点P ,则OD = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)在平面直角坐标系xOy 中,已知向量m (22=,n (sin ,cos )x x =,π(0,)2x ∈. (Ⅰ)若m ⊥n ,求tan x 的值; (Ⅱ)若m 与n 的夹角为π3,求x 的值.17.(本小题满分12分)(Ⅰ)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据; (Ⅱ)计算(Ⅰ)中样本的均值x 和方差2s ;(Ⅲ)36名工人中年龄在x s -与x s +之间有多少人?所占的百分比是多少(精确到0.01%)?18.(本小题满分14分)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,4PD PC ==,6AB =,3BC =.点E 是CD 边的中点,点F ,G 分别在线段AB ,BC 上,且2AF FB =,2CG GB =.(Ⅰ)证明:PE FG ⊥;(Ⅱ)求二面角P AD C --的正切值; (Ⅲ)求直线PA 与直线FG 所成角的余弦值.19.(本小题满分14分)设1a >,函数2()(1)x f x x e a =+-. (Ⅰ)求()f x 的单调区间;(Ⅱ)证明:()f x 在(,)-∞+∞上仅有一个零点;(Ⅲ)若曲线()y f x =在点P 处的切线与x 轴平行,且在点(,)M m n 处的切线与直线OP 平行(O 是坐标原点),证明:1m .20.(本小题满分14分)已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B . (Ⅰ)求圆1C 的圆心坐标;(Ⅱ)求线段AB 的中点M 的轨迹C 的方程;(Ⅲ)是否存在实数k ,使得直线L :(4)y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,请说明理由.21.(本小题满分14分)数列{}n a 满足:1212242n n n a a na -+++⋅⋅⋅+=-,*n ∈Ν. (Ⅰ)求3a 的值;(Ⅱ)求数列{}n a 的前n 项和n T ; (Ⅲ)令11b a =,1111(1)(2)23n n n T b a n n n-=++++⋅⋅⋅+≥,证明:数列{}n b 的前n 项和n S 满足22ln n S n <+.数学试卷 第5页(共16页) 数学试卷 第6页(共16页)2015年普通高等学校招生全国统一考试(广东卷)数学(理科)答案解析一、选择题 1.【答案】D【解析】由题意可得{1,4}{1,4}M N M N =--==∅I ,,. 【提示】求出两个集合,然后求解交集即可. 【考点】交集及其运算 2.【答案】B【解析】由题意可得i(32i)23i z =-=-,因此23i z =+. 【提示】直接利用复数的乘法运算法则化简求解即可. 【考点】复数的基本计算以及共轭复数的基本概念 3.【答案】D【解析】A 选项,()()f x f x -===,偶函数;B 选项,()11()f x x x f x x x ⎛⎫-=-+=-+=- ⎪-⎝⎭,奇函数; C 选项,11()22()22x x x x f x f x ---=+=+=,偶函数;D 选项,1()e ()()ex x f x x x f x f x --=-+=-+=≠≠-,因此选D .【提示】直接利用函数的奇偶性判断选项即可. 【考点】函数的奇偶性的判定 4.【答案】B【解析】任取两球一共有215151415712C ⨯==⨯⨯种情况,其中一个红球一个白球一共有11105105C C =⨯g ,因此概率为1051015721⨯=⨯. 【提示】首先判断这是一个古典概型,从而求基本事件总数和“所取的2个球中恰有1个白球,1个红球”事件包含的基本事件个数,容易知道基本事件总数便是从15个球任取2球的取法,而在求“所取的2个球中恰有1个白球,1个红球”事件的基本事件个数时,可利用分步计数原理求解,最后带入古典概型的概率公式即可. 【考点】古典概型及其概率计算公式 5.【答案】A【解析】与直线210x y ++=平行的直线可以设为20x y m ++=,= ∴||5m =,解得5m =±,因此我们可以得到直线方程为:250x y ++=或250x y +-=.【提示】设出所求直线方程,利用圆心到直线的距离等于半径,求出直线方程中的变量,即可求出直线方程.【考点】解析几何中的平行,圆的切线方程 6.【答案】B【解析】依据题意,可行域如右图所示,初始函数为032l y x =- :,当0l 逐渐向右上方平移的过程中,32z x y =+不断增大,因此我们可以得到当l 过点41,5E ⎛⎫⎪⎝⎭的时候,min 235z =.【提示】作出不等式组对应的平面区域,根据z 的几何意义,利用数形结合即可得到最小值.【考点】线性规划问题 7.【答案】C数学试卷 第7页(共16页) 数学试卷 第8页(共16页)【解析】已知双曲线22221x y C a b-=:,54c e a ==,又由焦点为()25,0F,因此45435c a c b =⇒==⇒=,因此双曲线方程为221169x y -=.【提示】利用已知条件,列出方程,求出双曲线的几何量,即可得到双曲线方程. 【考点】圆锥曲线的离心率求解问题 8.【答案】B【解析】解:考虑平面上,3个点两两距离相等,构成等边三角形,成立; 4个点两两距离相等,由三角形的两边之和大于第三边,则不成立;n 大于4,也不成立;在空间中,4个点两两距离相等,构成一个正四面体,成立;若4n >,由于任三点不共线,当5n =时,考虑四个点构成的正四面体,第五个点,与它们距离相等,必为正四面体的外接球的球心,由三角形的两边之和大于三边,故不成立; 同理5n >,不成立. 故选:B .【提示】先考虑平面上的情况:只有三个点的情况成立;再考虑空间里,只有四个点的情况成立,注意运用外接球和三角形三边的关系,即可判断. 【考点】棱锥的结构特征 二、填空题 9.【答案】6【解析】展开通式为144(1)m m m C ---,令2m =可得14124244(1)(1)4m m m C C x ----=-=,因此系数为6.【提示】根据题意二项式41)的展开的通式为144(1)m m m C ---,分析可得,2m =时,有x 的项,将2m =代入可得答案. 【考点】二项式定理的运用 10.【答案】10【解析】根据等差中项可得:345675525a a a a a a ++++==,55a =,因此285210a a a +==.【提示】根据等差数列的性质,化简已知的等式即可求出5a 的值,然后把所求的式子也利用等差数列的性质化简后,将5a 的值代入即可求出值. 【考点】等差中项的计算 11.【答案】1【解析】由1sin 2B =,得π6B =或者5π6B =,又因为π6C =,因此π6B =,2π3A =,根据正弦定理可得sin sin a bA B =1sin 1sin 2a b B A ===g g . 【提示】由1sin 2B =,可得π6B =或者5π6B =,结合a ,π6C =及正弦定理可求b .【考点】正弦定理,两角和与差的正弦函数 12.【答案】1560【解析】某高三毕业班有40人,每人给彼此写一条留言,因此每人的条数为39,故而一共有40391560⨯=条留言.【提示】通过题意,列出排列关系式,求解即可. 【考点】排列与组合的实际应用 13.【答案】13【解析】根据随机变量X服从二项分布(,)B n p ,根据()30()(1E X n p D X n p p===-=,,可得()21()3D X p E X -==,化简后可得13p =. 【提示】直接利用二项分布的期望与方差列出方程求解即可. 【考点】离散型随机变量的期望与方差 14.【答案】2【解析】考察基本的极坐标和直角坐标的化简以及点到直线距离问题.由数学试卷 第9页(共16页) 数学试卷 第10页(共16页)2sin 4πρθ⎛⎫- ⎪⎝⎭l 的直角坐标系方程为10x y --=,由7π4A ⎛⎫ ⎪⎝⎭可得它的直角坐标为()2,2A -, 因此,点A 到直线l的距离为d ==. 【提示】把极坐标方程转化为直角坐标方程,然后求出极坐标表示的直角坐标,利用点到直线的距离求解即可. 【考点】简单曲线的极坐标方程 15.【答案】8 【解析】连接OC ,根据AOC △为等腰三角形可得CAO ACO ∠=∠,又因为AB 为直径, 因此可得90CAO B ∠+∠=︒,90ACO B ∠+∠=︒, ∵OP BC ∥∴90AC OP ACO COP ⊥∠+∠=︒,, 因此可得COP B ∠=∠,因此Rt Rt DOC ABC △∽△, 故而可得21OD OC AB BC ==,∴8OD =. 【提示】连接OC ,根据AOC △为等腰三角形可得CAO ACO ∠=∠,AB 为直径以及OP BC ∥得出Rt Rt DOC ABC △∽△即可求出OD 的值.【考点】相似三角形的判定 三、解答题16.【答案】(Ⅰ)tan 1x =(Ⅱ)5π12x =【解析】∵m n ⊥u r r,π(sin ,cos )sin 22224m n x x x x x ⎛⎛⎫=-=-=- ⎪ ⎝⎭⎝⎭u r r g g , ∴||1||1m n ==u r r, ,因此:(Ⅰ)若m n ⊥u r r ,可得πsin 04m n x ⎛⎫=-= ⎪⎝⎭u r r g ,∴ππππ44x k x k -=⇒=+,又∵π0,2x ⎛⎫∈ ⎪⎝⎭,π04k x ==,,因此可得πtan tan 14x ==.(Ⅱ)若m u r 和n r 的夹角为π3,可得ππ1sin ||||cos 432m n x m n ⎛⎫=-== ⎪⎝⎭u r r u r r g g, ∴ππ2π46x k -=+或π5π2π46x k -=+, 又∵π0,2x ⎛⎫∈ ⎪⎝⎭,∴πππ,444x ⎛⎫⎛⎫-∈- ⎪ ⎪⎝⎭⎝⎭,∴ππ46x -=,解得5π12x =.【提示】(Ⅰ)若m n ⊥u r r ,则0m n =u r rg ,结合三角函数的关系式即可求tan x 的值.(Ⅱ)若m u r 和n r 的夹角为π3,利用向量的数量积的坐标公式进行求解即可求x 的值.【考点】平面向量数量积的运算,数量积表示两个向量的夹角 17.【答案】(Ⅰ)444036433637444337, , , , , , , , (Ⅱ)40x =21009s =(Ⅲ)23人63.89%.【解析】(Ⅰ)根据系统抽样的方法,抽取9个样本,因此分成9组,每组4人.又因为第一组中随机抽样可抽到44,因此按照现有的排序分组.故而每组中抽取的都是第二个数,因此我们可得样本数据为第2个,第6个,第10个,第14个,第18个,第22个,第26个,第30个,第34个, 分别为:444036433637444337, , , , , , , , (Ⅱ)由平均值公式得444036433637444337409x ++++++++==,由方差公式得数学试卷 第11页(共16页) 数学试卷 第12页(共16页)22222212291100()()()(994440)(4040)(3740)s x x x x x x ⎡⎤=-+-+⋅⋅⋅+-=⎣⎦-+-=+-+.(Ⅲ)103s ===,因此可得21364333x s x s -=+=,,因此在x s -和x s +之间的数据可以是444036433637444337, , , , , , , , ,因此数据一共有23人,占比为23100%63.89%36⨯≈.【提示】(Ⅰ)利用系统抽样的定义进行求解即可.(Ⅱ)根据均值和方差公式即可计算(Ⅰ)中样本的均值x 和方差2s . (Ⅲ)求出样本和方差即可得到结论. 【考点】极差,方差与标准差,分层抽样方法 18.【答案】(Ⅰ)见解析(Ⅱ)【解析】(Ⅰ)证明:由PD PC =可得三角形PDC 是等腰三角形, 又因为点E 是CD 边的中点,因此可得PE CD ⊥,又因为三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,而且相交于CD ,因此PE ⊥平面ABCD ,又因为FG 在平面ABCD 内,因此可得PE FG ⊥,问题得证.(Ⅱ)因为四边形ABCD 是矩形,因此可得AD CD ⊥, 又因为PE ⊥平面ABCD ,故而PE AD ⊥, 又PECD E =,因此可得AD ⊥平面PDC ,因此,AD PD AD CD ⊥⊥,所以P AD C PDE ∠--=∠.在等腰三角形PDC 中,46PD CD AB ===,,132DE CD==.因此可得PE ==tan 3PE PDE DE ∠==. (Ⅲ)如图所示,连接AC AE ,.∵22AF FB CG GB ==,, ∴BF BGAB BC=,BFG BAC △∽△,GF AC ∥, 因此,直线PA 与直线FG 所成角即为直线PA 与直线AC 所成角PAC ∠, 在矩形ABCD 中,点E 为CD中点,因此AE ==,而且AC =.又PE ⊥面ABCD ,三角形PAE 为直角三角形,故5PA ==,因此在PAC △中,54PA PC AC ===,,,因此可得222cos 2PA AC PC PAC PA AC +-∠==g .【提示】(Ⅰ)通过等腰三角形PDC 可得PE CD ⊥,利用线面垂直判定定理及性质定理即得结论.(Ⅱ)通过(Ⅰ)及面面垂直定理可得PE AD ⊥,则PDE ∠为二面角P AD C ∠--的平面角,利用勾股定理即得结论.(Ⅲ)连结连接AC AE ,,利用勾股定理及已知条件可得GF AC ∥,在PAC △中,利用余弦定理即得直线PA 与直线FG 所成角即为直线PA 与直线FG 所成角PAC ∠的余弦值.【考点】二面角的平面角及求法,异面直线及其所成的角,直线与平面垂直的性质 19.【答案】(Ⅰ)单调增区间为R (Ⅱ)见解析 (Ⅲ)见解析【解析】()()()()2222e 1e 12e 1e x x x xf x x x x x x '=++=++=+Qg ,因此:(Ⅰ)求导后可得函数的导函数()()21e 0x f x x '=+≥恒成立,因此函数在(,)-∞+∞上是增函数.数学试卷 第13页(共16页) 数学试卷 第14页(共16页)故而单调增区间为R .(Ⅱ)证明:令2()(1)e 0x f x x a =+-=可得2(1)e xx a +=,设212(1)e x y x y a =+=,,对函数21(1)e xy x =+, 求导后可得21(1)e 0x y x '=+≥恒成立,因此函数21(1)e xy x =+单调递增,因此可以得到函数图像. 函数2()(1)e x f x x a =+-有零点,即方程2(1)e xx a +=有解, 亦即函数212(1)e xy x y a =+=,,图像有交点.当0x =时,11y =,因此根据函数的图像可得:212(1)e xy x y a =+=,有且只有一个交点,即2()(1)e xf x x a =+-有且只有一个零点.(Ⅲ)证明:设点P 的坐标为00(,)x y ,故而在点P 处切线的斜率为:0200()(1)e 0xf x x '=+=,01x =-,因此21,1e P ⎛⎫-- ⎪⎝⎭.在点M 处切线的斜率为:22()(1)e em OP f m m k a '=+==-, 因为1a >,因此20ea ->.欲证1m ≤-,即证322(1)(1)e e m m a m +≤-=+,1e m m +≤,设()e 1x g x x =--,求导后可得()e 1xg x '=-,0x =,令()e 10xg x '=-=,因此函数在(,0)-∞上单调递减,在(0,)+∞上单调递增.因此可得()(0)0g x g ≥=,所以()e 10xg x x =--≥,e 1x x ≥+,e 1m m ≥+问题得证.【提示】(Ⅰ)利用()0f x '≥,求出函数单调增区间.(Ⅱ)证明只有1个零点,需要说明两个方面:函数单调以及函数有零点. (Ⅲ)利用导数的最值求解方法证明.【考点】利用导数研究函数的单调性,利用导数研究曲线上某点切线方程 20.【答案】(Ⅰ)1(3,0)C(Ⅱ)2230x y x +-=,其中5,33x ⎛⎤∈ ⎥⎝⎦(Ⅲ)存在34k ⎛⎧⎫∈± ⎨⎬ ⎩⎭⎝⎭【解析】依题意得化成标准方程后的圆为:22(3)4x y -+=,因此:(Ⅰ)根据标准方程,圆心坐标为1(3,0)C . (Ⅱ)数形结合法:①当动线l 的斜率不存在是,直线与圆不相交. ②设动线l 的斜率为m ,因此l y mx =:, 联立22650y mxx y x =⎧⎨+-+=⎩,则22(1)650m x x +-+=根据有两个交点可得:()22224362010056151A B A B m m x x m x x m ⎧∆=-+>⇒≤<⎪⎪⎪+=⎨+⎪⎪=⎪+⎩,故而点M 的坐标为2233,11m m m ⎛⎫ ⎪++⎝⎭,令223131x m m y m ⎧=⎪⎪+⎨⎪=⎪+⎩,因此由此可得2230x y x +-=,其中235,313x m ⎛⎤=∈ ⎥+⎝⎦. (Ⅲ)证明:联立2230(4)x y x y k x ⎧+-=⎨=-⎩,所以,2222(1)(83)160k x k x k +-++=因此,当直线L 与曲线相切时,可得29160k ∆=-=,解得34k =±. 设2230x y x +-=,5,33x ⎛⎤∈ ⎥⎝⎦的两个端点是C D 、,设直线L 恒过点(4,0)E数学试卷 第15页(共16页) 数学试卷 第16页(共16页)因此可得53C ⎛ ⎝⎭,5,3D ⎛ ⎝⎭,故而可得77CE DE k k ==-, 由图像可得当直线L 与曲线有且只有一个交点的时候,34k ⎛⎧⎫∈± ⎨⎬ ⎩⎭⎝⎭.【提示】(Ⅰ)通过将圆1C 的一般式方程化为标准方程即得结论(Ⅱ)设当直线l 的方程为y mx =,通过联立直线l 与圆1C 的方程,利用根的判别式大于0、韦达定理、中点坐标公式及参数方程与普通方程的相互转化,计算即得结论. (Ⅲ)通过联立直线L 与圆1C 的方程,利用根的判别式0∆=及轨迹C 的端点与点(4,0)E 决定的直线斜率,即得结论.【考点】轨迹方程,直线与圆的位置关系 21.【答案】(Ⅰ)14(Ⅱ)1122n n T -=- (Ⅲ)见解析【解析】由给出的递推公式可得: ①当1n =时,1431a =-=②当2n ≥时,121122(1)42n n n n a a n a na --+++⋅⋅⋅+-+=-, 121212(1)42n n n a a n a --+++⋅⋅⋅+-=-, 所以12n n n na -=,112n n a -⎛⎫= ⎪⎝⎭其中1n =也成立,因此可得11()2n n a n -⎛⎫=∈ ⎪⎝⎭*N(Ⅰ)因此231124a ⎛⎫== ⎪⎝⎭.(Ⅱ)∵11()2n n a n -⎛⎫=∈ ⎪⎝⎭*N ,所以数列{}n a 的公比12q =,利用等比数列的求和公式可得: 111121*********n nn n T -⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎡⎤⎢⎥⎛⎫⎣⎦==-=- ⎪⎢⎥⎝⎭⎣⎦-. (Ⅲ)因为()11111223n n n T b a n n n -⎛⎫=++++⋅⋅⋅+≥ ⎪⎝⎭11b a =,1221122a b a ⎛⎫=++ ⎪⎝⎭,1233111323a a b a +⎛⎫=+++ ⎪⎝⎭, 123111123n n n a a a a b a n n +++⋅⋅⋅+⎛⎫=++++⋅⋅⋅+ ⎪⎝⎭,因此,欲证22ln n S n <+,即证1111112122ln ln 2323n n n n ⎛⎫+++⋅⋅⋅+<+⇐++⋅⋅⋅+< ⎪⎝⎭,将ln n 化简为132l n l n l n l n l n1221n n n n n -=++⋅⋅⋅++--,即证1111l n l n l n 11n n n n n n n-⎛⎫>⇐-=--> ⎪-⎝⎭, 令()ln 1g x x x =-+,所以11()1xg x x x-'=-=,因此函数在(0,1)上单调递增,在(1,)+∞上单调递减,因此()(1)0g x g ≤=, 又因为111n-<,因此11111()0l l n1g g x nnn n⎛⎫⎛⎫⎛-<=⇒⇒-- ⎪ ⎪ ⎝⎭⎝⎭⎝, 问题得证.【提示】(Ⅰ)利用数列的递推关系即可求3a 的值.(Ⅱ)利用作差法求出数列{}n a 的通项公式,利用等比数列的前n 项和公式即可求数列{}n a 的前n 项和n T .(Ⅲ)利用构造法,结合裂项法进行求解即可证明不等式.【考点】数列与不等式的综合,数列的求和。
【精校】2015年普通高等学校招生全国统一考试(广东卷)数学理
2015年普通高等学校招生全国统一考试(广东卷)数学理一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2015•广东)若集合M={x|(x+4)(x+1)=0},N={x|(x﹣4)(x﹣1)=0},则M∩N=()A.{1,4}B.{﹣1,﹣4}C.[0}D.∅解析:集合M={x|(x+4)(x+1)=0}={﹣1,﹣4},N={x|(x﹣4)(x﹣1)=0}={1,4},则M∩N=∅.答案:D2.(5分)(2015•广东)若复数z=i(3﹣2i)(i是虚数单位),则=()A.2﹣3iB.2+3iC.3+2iD.3﹣2i解析:复数z=i(3﹣2i)=2+3i,则=2﹣3i,答案:A3.(5分)(2015•广东)下列函数中,既不是奇函数,也不是偶函数的是()A. y=B. y=x+C. y=2x+D. y=x+e x解析:对于A,y=是偶函数,所以A不正确;对于B,y=x+函数是奇函数,所以B不正确;对于C,y=2x+是奇函数,所以C不正确;对于D,不满足f(﹣x)=f(x)也不满足f(﹣x)=﹣f(x),所以函数既不是奇函数,也不是偶函数,所以D正确.答案:D4.(5分)(2015•广东)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为()A.B.C.D. 1解析:这是一个古典概型,从15个球中任取2个球的取法有;∴基本事件总数为105;设“所取的2个球中恰有1个白球,1个红球”为事件A;则A包含的基本事件个数为=50;∴P(A)=.答案:B5.(5分)(2015•广东)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()A.2x+y+5=0或2x+y﹣5=0B.2x+y+=0或2x+y﹣=0C. 2x﹣y+5=0或2x﹣y﹣5=0D. 2x﹣y+=0或2x﹣y﹣=0解析:设所求直线方程为2x+y+b=0,则,所以=,所以b=±5,所以所求直线方程为:2xy+5=0或2x+y﹣5=0.答案:A6.(5分)(2015•广东)若变量x,y满足约束条件,则z=3x+2y的最小值为()A. 4B.C. 6D.解析:不等式组对应的平面区域如图:由z=3x+2y得y=﹣x+,平移直线y=﹣x+,则由图象可知当直线y=﹣x+,经过点A时直线y=﹣x+的截距最小,此时z最小,由,解得,即A(1,),此时z=3×1+2×=.答案:B7.(5分)(2015•广东)已知双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),则双曲线C的方程为()A. ﹣=1B. ﹣=1C. ﹣=1D. ﹣=1解析:双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),可得:,c=5,∴a=4,b==3,所求双曲线方程为:﹣=1.答案:C8.(5分)(2015•广东)若空间中n个不同的点两两距离都相等,则正整数n的取值()A. 至多等于3B. 至多等于4C. 等于5D. 大于5解析:考虑平面上,3个点两两距离相等,构成等边三角形,成立;4个点两两距离相等,由三角形的两边之和大于第三边,则不成立;n大于4,也不成立;在空间中,4个点两两距离相等,构成一个正四面体,成立;若n>4,由于任三点不共线,当n=5时,考虑四个点构成的正四面体,第五个点,与它们距离相等,必为正四面体的外接球的球心,由三角形的两边之和大于三边,故不成立;同理n>5,不成立.答案:B二、填空题(本大题共7小题,考生作答6小题,每小题5分,满分30分.)(一)必做题(11~13题)9.(5分)(2015•广东)在(﹣1)4的展开式中,x的系数为 6 .解析:二项式(﹣1)4的展开式的通项公式为T r+1=•(﹣1)r•,令2﹣=1,求得r=2,∴二项式(﹣1)4的展开式中x的系数为=6,答案:610.(5分)(2015•广东)在等差数列{a n}中,若a3+a4+a5+a6+a7=25,则a2+a8= 10 . 解析:由a3+a4+a5+a6+a7=(a3+a7)+(a4+a6)+a5=5a5=25,得到a5=5,则a2+a8=2a5=10.答案:1011.(5分)(2015•广东)设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sinB=,C=,则b= 1 .解析:∵sinB=,∴B=或B=当B=时,a=,C=,A=,由正弦定理可得,则b=1当B=时,C=,与三角形的内角和为π矛盾答案:112.(5分)(2015•广东)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了1560 条毕业留言.(用数字作答)解析:某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了=40×39=1560条.答案:156013.(5分)(2015•广东)已知随机变量X服从二项分布B(n,p),若E(X)=30,D (X)=20,则P= .解析:随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,可得np=30,npq=20,q=,则p=,答案:14.(5分)(2015•广东)已知直线l的极坐标方程为2ρsin(θ﹣)=,点A的极坐标为A(2,),则点A到直线l的距离为.解析:直线l的极坐标方程为2ρsin(θ﹣)=,对应的直角坐标方程为:y﹣x=1,点A的极坐标为A(2,),它的直角坐标为(2,﹣2).点A到直线l的距离为:=.答案:15.(2015•广东)如图,已知AB是圆O的直径,AB=4,EC是圆O的切线,切点为C,BC=1.过圆心O作BC的平行线,分别交EC和AC于D和点P,则OD= 8 .解析:连接OC,则OC⊥CD,∵AB是圆O的直径,∴BC⊥AC,∵OP∥BC,∴OP⊥AC,OP=BC=,Rt△OCD中,由射影定理可得OC2=OP•OD,∴4=OD,∴OD=8.答案:8三、解答题16.(12分)(2015•广东)在平面直角坐标系xOy中,已知向量=(,﹣),=(sinx,cosx),x∈(0,).(1)若⊥,求tanx的值;(2)若与的夹角为,求x的值.答案:(1)若⊥,则•=(,﹣)•(sinx,cosx)=sinx﹣cosx=0,即sinx=cosxsinx=cosx,即tanx=1;(2)∵||=1,||=1,•=(,﹣)•(sinx,cosx)=sinx﹣cosx,∴若与的夹角为,则•=||•||cos=,即sinx﹣cosx=,则sin(x﹣)=,∵x∈(0,).∴x﹣∈(﹣,).则x﹣=即x=+=.17.(12分)(2015•广东)某工厂36名工人年龄数据如图:工人编号年龄工人编号年龄工人编号年龄工人编号年龄1 2 3 4 5 6 7 8 40444041334045421011121314151617363138394345393819202122232425262743413734423744282930313233343534394338425337499 43 18 36 27 42 36 39(1)用分层抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的均值和方差s2;(3)36名工人中年龄在﹣s和+s之间有多少人?所占百分比是多少(精确到0.01%)?解析:(1)利用分层抽样的定义进行求解即可;(2)根据均值和方差公式即可计算(1)中样本的均值和方差s2;(3)求出样本和方差即可得到结论.答案:(1)由分层抽样知,36人分成9组,每组4人,其中第一组的工人年龄为44,所以其编号为2,∴所有样本数据的编号为:4n﹣2,(n=1,2,…,9),其数据为:44,40,36,43,36,37,44,43,37.(2)由平均值公式得=(44+40+36+43+36+37+44+43+37)=40.由方差公式得s2=[(44﹣40)2+(40﹣40)2+…+(37﹣40)2]=.(3)∵s2=.∴s=∈(3,4),∴36名工人中年龄在﹣s和+s之间的人数等于区间[37,43]的人数,即40,40,41,…,39,共23人.∴36名工人中年龄在﹣s和+s之间所占百分比为≈63.89%.18.(14分)(2015•广东)如图,三角形△PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3,点E是CD的中点,点F、G分别在线段AB、BC上,且AF=2FB,CG=2GB.(1)证明:PE⊥FG;(2)求二面角P﹣AD﹣C的正切值;(3)求直线PA与直线FG所成角的余弦值.解析:(1)通过△POC为等腰三角形可得PE⊥CD,利用线面垂直判定定理及性质定理即得结论;(2)通过(1)及面面垂直定理可得PG⊥AD,则∠PDC为二面角P﹣AD﹣C的平面角,利用勾股定理即得结论;(3)连结AC,利用勾股定理及已知条件可得FG∥AC,在△PAC中,利用余弦定理即得直线PA与直线FG所成角即为直线PA与直线FG所成角∠PAC的余弦值.答案:(1)证明:在△POC中PO=PC且E为CD中点,∴PE⊥CD,又∵平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,PE⊂平面PCD,∴PE⊥平面ABCD,又∵FG⊂平面ABCD,∴PE⊥FG;(2)由(1)知PE⊥平面ABCD,∴PE⊥AD,又∵CD⊥AD且PE∩CD=E,∴AD⊥平面PDC,又∵PD⊂平面PDC,∴AD⊥PD,又∵AD⊥CD,∴∠PDC为二面角P﹣AD﹣C的平面角,在Rt△PDE中,由勾股定理可得:PE===,∴tan∠PDC==;(3)连结AC,则AC==3,在Rt△ADP中,AP===5,∵AF=2FB,CG=2GB,∴FG∥AC,∴直线PA与直线FG所成角即为直线PA与直线FG所成角∠PAC,在△PAC中,由余弦定理得cos∠PAC===.19.(14分)(2015•广东)设a>1,函数f(x)=(1+x2)e x﹣a.(1)求f(x)的单调区间;(2)证明f(x)在(﹣∞,+∞)上仅有一个零点;(3)若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP 平行,(O是坐标原点),证明:m≤﹣1.解析:(1)利用f'(x)≥0,求出函数单调增区间.(2)证明只有1个零点,需要说明两个方面:①函数单调;②函数有零点.(3)利用导数的最值求解方法证明,思路较为复杂.答案:(1)f'(x)=e x(x2+2x+1)=e x(x+1)2∴f′(x)≥0,∴f(x)=(1+x2)e x﹣a在(﹣∞,+∞)上为增函数. (2)证明:由(1)问可知函数在(﹣∞,+∞)上为增函数. 又f(0)=1﹣a,∵a>1.∴1﹣a<0…5分∴f(0)<0.当x→+∞时,f(x)>0成立.∴f(x)在(﹣∞,+∞)上有且只有一个零点(3)证明:f'(x)=e x(x+1)2,设点P(x0,y0)则)f'(x)=e x0(x0+1)2,∵y=f(x)在点P处的切线与x轴平行,∴f'(x0)=0,即:e x0(x0+1)2=0,∴x0=1将x0=1代入y=f(x)得y0=.∴,∴令;g(m)=e m﹣(m+1)g(m)=e m﹣(m+1),则g'(m)=em﹣1,由g'(m)=0得m=0.当m∈(0,+∞)时,g'(m)>0当m∈(﹣∞,0)时,g'(m)<0∴g(m)的最小值为g(0)=0∴g(m)=e m﹣(m+1)≥0∴e m≥m+1∴e m(m+1)2≥(m+1)3即:∴m≤20.(14分)(2015•广东)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数 k,使得直线L:y=k(x﹣4)与曲线 C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.解析:(1)通过将圆C1的一般式方程化为标准方程即得结论;(2)设当直线l的方程为y=kx,通过联立直线l与圆C1的方程,利用根的判别式大于0、韦达定理、中点坐标公式及参数方程与普通方程的相互转化,计算即得结论;(3)通过联立直线L与圆C1的方程,利用根的判别式△=0及轨迹C的端点与点(4,0)决定的直线斜率,即得结论.答案:(1)∵圆C1:x2+y2﹣6x+5=0,整理,得其标准方程为:(x﹣3)2+y2=4,∴圆C1的圆心坐标为(3,0);(2)设当直线l的方程为y=kx、A(x1,y1)、B(x2,y2),联立方程组,消去y可得:(1+k2)x2﹣6x+5=0,由△=36﹣4(1+k2)×5>0,可得k2<由韦达定理,可得x1+x2=,∴线段AB的中点M的轨迹C的参数方程为,其中﹣<k<,∴线段AB的中点M的轨迹C的方程为:(x﹣)2+y2=,其中<x≤3;(3)结论:当k∈(﹣,)∪{﹣,}时,直线L:y=k(x﹣4)与曲线C只有一个交点.理由如下:联立方程组,消去y,可得:(1+k2)x2﹣(3+8k)x+16k2=0,令△=(3+8k)2﹣4(1+k2)•16k2=0,解得k=±,又∵轨迹C的端点(,±)与点(4,0)决定的直线斜率为±,∴当直线L:y=k(x﹣4)与曲线C只有一个交点时,k的取值范围为(﹣,)∪{﹣,}.21.(14分)(2015•广东)数列{a n}满足:a1+2a2+…na n=4﹣,n∈N+.(1)求a3的值;(2)求数列{a n}的前 n项和T n;(3)令b1=a1,b n=+(1+++…+)a n(n≥2),证明:数列{b n}的前n项和S n满足S n<2+2lnn.解析:(1)利用数列的递推关系即可求a3的值;(2)利用作差法求出数列{a n}的通项公式,利用等比数列的前n项和公式即可求数列{a n}的前 n项和T n;(3)利用构造法,结合裂项法进行求解即可证明不等式.答案:(1)∵a1+2a2+…na n=4﹣,n∈N+.∴a1=4﹣3=1,1+2a2=4﹣=2,解得a2=,∵a1+2a2+…+na n=4﹣,n∈N+.∴a1+2a2+…+(n﹣1)a n﹣1=4﹣,n∈N+.两式相减得na n=4﹣﹣(4﹣)=,n≥2,则a n=,n≥2,当n=1时,a1=1也满足,∴a n=,n≥1,则a3=;(2)∵a n=,n≥1,∴数列{a n}是公比q=,则数列{a n}的前 n项和T n==2﹣21﹣n.(3)b n=+(1+++…+)a n,∴b1=a1,b2=+(1+)a2,b3=(1++)a3,∴S n=b1+b2+…+b n=(1+++…+)(a1+a2+…+a n)=(1+++…+)T n =(1+++…+)(2﹣21﹣n)<2×(1+++…+),设f(x)=lnx+﹣1,x>1,则f′(x)=﹣.即f(x)在(1,+∞)上为增函数,∵f(1)=0,即f(x)>0,∵k≥2,且k∈N•时,,∴f()=ln+﹣1>0,即ln>,∴ln,,…,即=lnn,∴2×(1+++…+)<2+lnn,即S n<2(1+lnn)=2+2lnn.考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。
2015年广东省高考数学试卷(理科)及答案
2015年广东省高考数学试卷(理科)一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)若集合M={x|(x+4)(x+1)=0},N={x|(x﹣4)(x﹣1)=0},则M ∩N=()A.{1,4}B.{﹣1,﹣4}C.{0}D.∅2.(5分)若复数z=i(3﹣2i)(i是虚数单位),则=()A.2﹣3i B.2+3i C.3+2i D.3﹣2i3.(5分)下列函数中,既不是奇函数,也不是偶函数的是()A.y=B.y=x+C.y=2x+ D.y=x+e x4.(5分)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为()A.B.C.D.15.(5分)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()A.2x+y+5=0或2x+y﹣5=0 B.2x+y+=0或2x+y﹣=0C.2x﹣y+5=0或2x﹣y﹣5=0 D.2x﹣y+=0或2x﹣y﹣=06.(5分)若变量x,y满足约束条件,则z=3x+2y的最小值为()A.4 B.C.6 D.7.(5分)已知双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),则双曲线C的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=18.(5分)若空间中n个不同的点两两距离都相等,则正整数n的取值()A.至多等于3 B.至多等于4 C.等于5 D.大于5二、填空题(本大题共7小题,考生作答6小题,每小题5分,满分30分.)(一)必做题(11~13题)9.(5分)在(﹣1)4的展开式中,x 的系数为.10.(5分)在等差数列{a n}中,若a3+a4+a5+a6+a7=25,则a2+a8=.11.(5分)设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sinB=,C=,则b=.12.(5分)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)13.(5分)已知随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,则P=.14.(5分)已知直线l的极坐标方程为2ρsi n(θ﹣)=,点A的极坐标为A (2,),则点A到直线l的距离为.15.如图,已知AB是圆O的直径,AB=4,EC是圆O的切线,切点为C,BC=1.过圆心O作BC的平行线,分别交EC和AC于D和点P,则OD=.三、解答题16.(12分)在平面直角坐标系xOy中,已知向量=(,﹣),=(sinx,cosx),x∈(0,).(1)若⊥,求tanx的值;(2)若与的夹角为,求x的值.17.(12分)某工厂36名工人年龄数据如图:工人编号年龄工人编号年龄工人编号年龄工人编号年龄1 2 3 4 5 6 7 8 9404440413340454243101112131415161718363138394345393836192021222324252627274341373442374442282930313233343536343943384253374939(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的均值和方差s2;(3)36名工人中年龄在﹣s 和+s之间有多少人?所占百分比是多少(精确到0.01%)?18.(14分)如图,三角形△PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3,点E是CD的中点,点F、G分别在线段AB、BC上,且AF=2FB,CG=2GB.(1)证明:PE⊥FG;(2)求二面角P﹣AD﹣C的正切值;(3)求直线PA与直线FG所成角的余弦值.19.(14分)设a>1,函数f(x)=(1+x2)e x﹣a.(1)求f(x)的单调区间;(2)证明f(x)在(﹣∞,+∞)上仅有一个零点;(3)若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP平行,(O是坐标原点),证明:m ≤﹣1.20.(14分)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.21.(14分)数列{a n}满足:a1+2a2+…na n=4﹣,n∈N+.(1)求a3的值;(2)求数列{a n}的前n项和T n;(3)令b1=a1,b n=+(1+++…+)a n(n≥2),证明:数列{b n}的前n 项和S n满足S n<2+2lnn.2015年广东省高考数学试卷(理科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2015•广东)若集合M={x|(x+4)(x+1)=0},N={x|(x﹣4)(x﹣1)=0},则M∩N=()A.{1,4}B.{﹣1,﹣4}C.{0}D.∅【分析】求出两个集合,然后求解交集即可.【解答】解:集合M={x|(x+4)(x+1)=0}={﹣1,﹣4},N={x|(x﹣4)(x﹣1)=0}={1,4},则M∩N=∅.故选:D.2.(5分)(2015•广东)若复数z=i(3﹣2i)(i是虚数单位),则=()A.2﹣3i B.2+3i C.3+2i D.3﹣2i【分析】直接利用复数的乘法运算法则化简求解即可.【解答】解:复数z=i(3﹣2i)=2+3i,则=2﹣3i,故选:A.3.(5分)(2015•广东)下列函数中,既不是奇函数,也不是偶函数的是()A.y=B.y=x+C.y=2x+ D.y=x+e x【分析】直接利用函数的奇偶性判断选项即可.【解答】解:对于A,y=是偶函数,所以A不正确;对于B,y=x+函数是奇函数,所以B不正确;对于C,y=2x+是偶函数,所以C不正确;对于D,不满足f(﹣x)=f(x)也不满足f(﹣x)=﹣f(x),所以函数既不是奇函数,也不是偶函数,所以D正确.故选:D.4.(5分)(2015•广东)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为()A.B.C.D.1【分析】首先判断这是一个古典概型,从而求基本事件总数和“所取的2个球中恰有1个白球,1个红球”事件包含的基本事件个数,容易知道基本事件总数便是从15个球任取2球的取法,而在求“所取的2个球中恰有1个白球,1个红球”事件的基本事件个数时,可利用分步计数原理求解,最后带入古典概型的概率公式即可.【解答】解:这是一个古典概型,从15个球中任取2个球的取法有;∴基本事件总数为105;设“所取的2个球中恰有1个白球,1个红球”为事件A;则A包含的基本事件个数为=50;∴P(A)=.故选:B.5.(5分)(2015•广东)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()A.2x+y+5=0或2x+y﹣5=0 B.2x+y+=0或2x+y﹣=0C.2x﹣y+5=0或2x﹣y﹣5=0 D.2x﹣y+=0或2x﹣y﹣=0【分析】设出所求直线方程,利用圆心到直线的距离等于半径,求出直线方程中的变量,即可求出直线方程.【解答】解:设所求直线方程为2x+y+b=0,则,所以=,所以b=±5,所以所求直线方程为:2x+y+5=0或2x+y﹣5=0故选:A.6.(5分)(2015•广东)若变量x,y满足约束条件,则z=3x+2y的最小值为()A.4 B.C.6 D.【分析】作出不等式组对应的平面区域,根据z的几何意义,利用数形结合即可得到最小值.【解答】解:不等式组对应的平面区域如图:由z=3x+2y得y=﹣x+,平移直线y=﹣x+,则由图象可知当直线y=﹣x+,经过点A时直线y=﹣x+的截距最小,此时z最小,由,解得,即A(1,),此时z=3×1+2×=,故选:B.7.(5分)(2015•广东)已知双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),则双曲线C的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【分析】利用已知条件,列出方程,求出双曲线的几何量,即可得到双曲线方程.【解答】解:双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),可得:,c=5,∴a=4,b==3,所求双曲线方程为:﹣=1.故选:C.8.(5分)(2015•广东)若空间中n个不同的点两两距离都相等,则正整数n的取值()A.至多等于3 B.至多等于4 C.等于5 D.大于5【分析】先考虑平面上的情况:只有三个点的情况成立;再考虑空间里,只有四个点的情况成立,注意运用外接球和三角形三边的关系,即可判断.【解答】解:考虑平面上,3个点两两距离相等,构成等边三角形,成立;4个点两两距离相等,由三角形的两边之和大于第三边,则不成立;n大于4,也不成立;在空间中,4个点两两距离相等,构成一个正四面体,成立;若n>4,由于任三点不共线,当n=5时,考虑四个点构成的正四面体,第五个点,与它们距离相等,必为正四面体的外接球的球心,且球的半径等于边长,即有球心与正四面体的底面的中心重合,故不成立;同理n>5,不成立.故选:B.二、填空题(本大题共7小题,考生作答6小题,每小题5分,满分30分.)(一)必做题(11~13题)9.(5分)(2015•广东)在(﹣1)4的展开式中,x的系数为6.【分析】根据题意二项式(﹣1)4的展开式的通项公式为T r=•(﹣1)+1r•,分析可得,r=2时,有x的项,将r=2代入可得答案.=•(﹣1)r•,【解答】解:二项式(﹣1)4的展开式的通项公式为T r+1令2﹣=1,求得r=2,∴二项式(﹣1)4的展开式中x的系数为=6,故答案为:6.10.(5分)(2015•广东)在等差数列{a n}中,若a3+a4+a5+a6+a7=25,则a2+a8=10.【分析】根据等差数列的性质,化简已知的等式即可求出a5的值,然后把所求的式子也利用等差数列的性质化简后,将a5的值代入即可求出值.【解答】解:由a3+a4+a5+a6+a7=(a3+a7)+(a4+a6)+a5=5a5=25,得到a5=5,则a2+a8=2a5=10.故答案为:10.11.(5分)(2015•广东)设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sinB=,C=,则b=1.【分析】由sinB=,可得B=或B=,结合a=,C=及正弦定理可求b 【解答】解:∵sinB=,∴B=或B=当B=时,a=,C=,A=,由正弦定理可得,则b=1当B=时,C=,与三角形的内角和为π矛盾故答案为:112.(5分)(2015•广东)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了1560条毕业留言.(用数字作答)【分析】通过题意,列出排列关系式,求解即可.【解答】解:某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了=40×39=1560条.故答案为:1560.13.(5分)(2015•广东)已知随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,则P=.【分析】直接利用二项分布的期望与方差列出方程求解即可.【解答】解:随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,可得np=30,npq=20,q=,则p=,故答案为:.14.(5分)(2015•广东)已知直线l的极坐标方程为2ρsin(θ﹣)=,点A 的极坐标为A(2,),则点A到直线l的距离为.【分析】把极坐标方程转化为直角坐标方程,然后求出极坐标表示的直角坐标,利用点到直线的距离求解即可.【解答】解:直线l的极坐标方程为2ρsin(θ﹣)=,对应的直角坐标方程为:y﹣x=1,点A的极坐标为A(2,),它的直角坐标为(2,﹣2).点A到直线l的距离为:=.故答案为:.15.(2015•广东)如图,已知AB是圆O的直径,AB=4,EC是圆O的切线,切点为C,BC=1.过圆心O作BC的平行线,分别交EC和AC于D和点P,则OD= 8.【分析】连接OC,确定OP⊥AC,OP=BC=,Rt△OCD中,由射影定理可得OC2=OP•OD,即可得出结论.【解答】解:连接OC,则OC⊥CD,∵AB是圆O的直径,∴BC⊥AC,∵OP∥BC,∴OP⊥AC,OP=BC=,Rt△OCD中,由射影定理可得OC2=OP•OD,∴4=OD,∴OD=8.故答案为:8.三、解答题16.(12分)(2015•广东)在平面直角坐标系xOy中,已知向量=(,﹣),=(sinx,cosx),x∈(0,).(1)若⊥,求tanx的值;(2)若与的夹角为,求x的值.【分析】(1)若⊥,则•=0,结合三角函数的关系式即可求tanx的值;(2)若与的夹角为,利用向量的数量积的坐标公式进行求解即可求x的值.【解答】解:(1)若⊥,则•=(,﹣)•(sinx,cosx)=sinx ﹣cosx=0,即sinx=cosxsinx=cosx,即tanx=1;(2)∵||=,||==1,•=(,﹣)•(sinx,cosx)=sinx ﹣cosx,∴若与的夹角为,则•=||•||cos =,即sinx ﹣cosx=,则sin(x ﹣)=,∵x∈(0,).∴x ﹣∈(﹣,).则x ﹣=即x=+=.17.(12分)(2015•广东)某工厂36名工人年龄数据如图:工人编号年龄工人编号年龄工人编号年龄工人编号年龄1 2 3 4404440411011121336313839192021222743413728293031343943385 6 7 8 93340454243141516171843453938362324252627344237444232333435364253374939(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的均值和方差s2;(3)36名工人中年龄在﹣s 和+s之间有多少人?所占百分比是多少(精确到0.01%)?【分析】(1)利用系统抽样的定义进行求解即可;(2)根据均值和方差公式即可计算(1)中样本的均值和方差s2;(3)求出样本和方差即可得到结论.【解答】解:(1)由系统抽样知,36人分成9组,每组4人,其中第一组的工人年龄为44,所以其编号为2,∴所有样本数据的编号为:4n﹣2,(n=1,2,…,9),其数据为:44,40,36,43,36,37,44,43,37.(2)由平均值公式得=(44+40+36+43+36+37+44+43+37)=40.由方差公式得s2=[(44﹣40)2+(40﹣40)2+…+(37﹣40)2]=.(3)∵s2=.∴s=∈(3,4),∴36名工人中年龄在﹣s 和+s之间的人数等于区间[37,43]的人数,即40,40,41,…,39,共23人.∴36名工人中年龄在﹣s 和+s 之间所占百分比为≈63.89%.18.(14分)(2015•广东)如图,三角形△PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3,点E是CD的中点,点F、G分别在线段AB、BC上,且AF=2FB,CG=2GB.(1)证明:PE⊥FG;(2)求二面角P﹣AD﹣C的正切值;(3)求直线PA与直线FG所成角的余弦值.【分析】(1)通过△PDC为等腰三角形可得PE⊥CD,利用线面垂直判定定理及性质定理即得结论;(2)通过(1)及面面垂直定理可得PG⊥AD,则∠PDC为二面角P﹣AD﹣C的平面角,利用勾股定理即得结论;(3)连结AC,利用勾股定理及已知条件可得FG∥AC,在△PAC中,利用余弦定理即得直线PA与直线FG所成角即为直线PA与直线AC所成角∠PAC的余弦值.【解答】(1)证明:在△PDC中PO=PC且E为CD中点,∴PE⊥CD,又∵平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,PE⊂平面PCD,∴PE⊥平面ABCD,又∵FG⊂平面ABCD,∴PE⊥FG;(2)解:由(1)知PE⊥平面ABCD,∴PE⊥AD,又∵CD⊥AD且PE∩CD=E,∴AD⊥平面PDC,又∵PD⊂平面PDC,∴AD⊥PD,又∵AD⊥CD,∴∠PDC为二面角P﹣AD﹣C的平面角,在Rt△PDE中,由勾股定理可得:PE===,∴tan∠PDC==;(3)解:连结AC,则AC==3,在Rt△ADP中,AP===5,∵AF=2FB,CG=2GB,∴FG∥AC,∴直线PA与直线FG所成角即为直线PA与直线AC所成角∠PAC,在△PAC中,由余弦定理得cos∠PAC===.19.(14分)(2015•广东)设a>1,函数f(x)=(1+x2)e x﹣a.(1)求f(x)的单调区间;(2)证明f(x)在(﹣∞,+∞)上仅有一个零点;(3)若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP平行,(O是坐标原点),证明:m≤﹣1.【分析】(1)利用f′(x)>0,求出函数单调增区间.(2)证明只有1个零点,需要说明两个方面:①函数单调;②函数有零点.(3)利用导数的最值求解方法证明,思路较为复杂.【解答】解:(1)f′(x)=e x(x2+2x+1)=e x(x+1)2,∴f′(x)>0,∴f(x)=(1+x2)e x﹣a在(﹣∞,+∞)上为增函数.(2)证明:∵f(0)=1﹣a,a>1,∴1﹣a<0,即f(0)<0,∵f()=(1+a)﹣a=+a(﹣1),a>1,∴>1,﹣1>0,即f()>0,且由(1)问知函数在(﹣∞,+∞)上为增函数,∴f(x)在(﹣∞,+∞)上有且只有一个零点.(3)证明:f′(x)=e x(x+1)2,设点P(x0,y0)则)f'(x)=e x0(x0+1)2,∵y=f(x)在点P处的切线与x轴平行,∴f′(x0)=0,即:e x0(x0+1)2=0,∴x0=﹣1,将x0=﹣1代入y=f(x)得y0=.∴,∴,要证m≤﹣1,即证(m+1)3≤a﹣,需要证(m+1)3≤e m(m+1)2,即证m+1≤e m,因此构造函数g(m)=e m﹣(m+1),则g′(m)=e m﹣1,由g′(m)=0得m=0.当m∈(0,+∞)时,g′(m)>0,当m∈(﹣∞,0)时,g′(m)<0,∴g(m)的最小值为g(0)=0,∴g(m)=e m﹣(m+1)≥0,∴e m≥m+1,∴e m(m+1)2≥(m+1)3,即:,∴m≤.20.(14分)(2015•广东)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.【分析】(1)通过将圆C1的一般式方程化为标准方程即得结论;(2)设当直线l的方程为y=kx,通过联立直线l与圆C1的方程,利用根的判别式大于0、韦达定理、中点坐标公式及参数方程与普通方程的相互转化,计算即得结论;(3)通过联立直线L与圆C1的方程,利用根的判别式△=0及轨迹C的端点与点(4,0)决定的直线斜率,即得结论.【解答】解:(1)∵圆C1:x2+y2﹣6x+5=0,整理,得其标准方程为:(x﹣3)2+y2=4,∴圆C1的圆心坐标为(3,0);(2)设当直线l的方程为y=kx、A(x1,y1)、B(x2,y2),联立方程组,消去y可得:(1+k2)x2﹣6x+5=0,由△=36﹣4(1+k2)×5>0,可得k2<由韦达定理,可得x1+x2=,∴线段AB的中点M的轨迹C的参数方程为,其中﹣<k<,∴线段AB的中点M的轨迹C的方程为:(x﹣)2+y2=,其中<x≤3;(3)结论:当k∈(﹣,)∪{﹣,}时,直线L:y=k(x﹣4)与曲线C只有一个交点.理由如下:联立方程组,消去y,可得:(1+k2)x2﹣(3+8k2)x+16k2=0,令△=(3+8k2)2﹣4(1+k2)•16k2=0,解得k=±,又∵轨迹C的端点(,±)与点(4,0)决定的直线斜率为±,∴当直线L:y=k(x﹣4)与曲线C只有一个交点时,k的取值范围为(﹣,)∪{﹣,}.21.(14分)(2015•广东)数列{a n}满足:a1+2a2+…na n=4﹣,n∈N+.(1)求a3的值;(2)求数列{a n}的前n项和T n;(3)令b1=a1,b n=+(1+++…+)a n(n≥2),证明:数列{b n}的前n 项和S n满足S n<2+2lnn.【分析】(1)利用数列的递推关系即可求a3的值;(2)利用作差法求出数列{a n}的通项公式,利用等比数列的前n项和公式即可求数列{a n}的前n项和T n;(3)利用构造法,结合裂项法进行求解即可证明不等式.【解答】解:(1)∵a1+2a2+…na n=4﹣,n∈N+.∴a1=4﹣3=1,1+2a2=4﹣=2,解得a2=,∵a1+2a2+…+na n=4﹣,n∈N+.∴a1+2a2+…+(n﹣1)a n﹣1=4﹣,n∈N+.两式相减得na n=4﹣﹣(4﹣)=,n≥2,则a n=,n≥2,当n=1时,a1=1也满足,∴a n=,n≥1,则a3=;(2)∵a n=,n≥1,∴数列{a n}是公比q=,则数列{a n}的前n项和T n==2﹣21﹣n.(3)b n=+(1+++…+)a n,∴b1=a1,b2=+(1+)a2,b3=(1++)a3,∴b n=+(1+++…+)a n,∴S n=b1+b2+…+b n=(1+++…+)a1+(1+++…+)a2+…+(1+++…+)a n=(1+++…+)(a1+a2+…+a n)=(1+++…+)T n=(1+++…+)(2﹣21﹣n)<2×(1+++…+),设f(x)=lnx+﹣1,x>1,则f′(x)=﹣.即f(x)在(1,+∞)上为增函数,∵f(1)=0,即f(x)>0,∵k≥2,且k∈N•时,,∴f()=ln+﹣1>0,即ln>,∴ln,,…,即=lnn,∴2×(1+++…+)=2+2×(++…+)<2+2lnn,即S n<2(1+lnn)=2+2lnn.。
2015高考数学真题广东理科解析
2015年普通高等学校招生全国统一考试(广东卷)理科标准答案与解析1. 解析 因为()(){}{}4104,1M x x x =++==--,()(){}{}4101,4N x x x =--==, 所以MN =∅.故选D .2. 解析 因为()i 32i 23i z =-=+,所以23i z =-.故选A .3. 解析 令()e xf x x =+,则()11e f =+,()111e f --=-+,所以()()11f f ≠-,()1f -≠()1f -,所以e x y x =+既不是奇函数也不是偶函数,而选项A,B,C 依次是偶函数、奇函数、偶函数.故选D .4.解析 从袋中任取2个球共有215C 105=种,其中恰好1个白球1个红球共有11105C C 50=种,所以恰好1个白球1个红球的概率501010521P ==.故选B . 5.解析 设所求切线方程为20x y c ++==5c =±,所以所求切线的方程为20x y +=或20x y +=.故选B . 6.解析 不等式所表示的可行域如下图所示,由32z x y =+得322z y x =-+,依题当目标函数直线3:22z l y x =-+经过点41,5A ⎛⎫⎪⎝⎭时,z 取得最小值,即min 42331255z =⨯+⨯=.故选B . 47.解析 因为所求双曲线的右焦点为()25,0F ,且离心率为54c e a ==,所以5c =,4a =,所以2229b c a =-=,所以所求双曲线方程为221169x y -=.故选C . 8.解析 正四面体的四个顶点两两距离相等,则正整数n 可以等于4.假设可以等于5,则不妨先取出其中4个点,为A ,B ,C ,D ,则ABCD 构成一个正四面体的四个顶点,设第5个点为点E ,则点E 和点A ,B ,C 也要构成一个正四面体,此时点E 要么跟点D 重合,要么点E 和点D 关于平面ABC 对称,但此时DE 的长又不等于AB ,故矛盾.故选B . 9.解析由题可知()()442144C1C 1r rrrr r r T x--+=-=-,令412r-=,解得2r =,所以展开式中x 的系数为()224C 16-=.故应填6.10.解析 因为{}n a 是等差数列,所以37462852a a a a a a a +=+=+=,所以345a a a +++6a +7a =5525a =,即55a =,所以285210a a a +==.故应填10.11.解析 解法一:因为1sin 2B =且()0,B ∈π,所以6B π=或6B 5π=.又6C π=,所以6B π=, 所以b c =,且23A B C π=π--=.又a =2222cos a b c bc A =+-,所以 22232cos3b c bc π=+-.又b c =,解得21b =,所以1b =. 解法二:因为1sin 2B =且()0,B ∈π,所以6B π=或6B 5π=.又6C π= ,所以6B π=, 23A BC π=π--=.又a =sin 1sin a Bb A==.故应填1. 12.解析 两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了240A 40391560=⨯=条毕业留言.故应填1560.13.解析 由题意可得()30E X np ==, ()()120D X np p =-=,所以13p =.故应填13. 14.解析直线:2sin 4l ρθπ⎛⎫-= ⎪⎝⎭74A π⎛⎫ ⎪⎝⎭可化为直线:10l x y --=和点()2,2A -,所以点()2,2A -与直线l 的距离为2d==.故应填2.15.解析 如图所示,连接OC .因为//OD BC ,BC AC ⊥,所以OP AC ⊥.又点O 为线段AB 的中点,所以1122OP BC ==.在Rt OCD △中,122OC AB ==,由直角三角形的射影定理可得2OC OP OD =,即28OC OD OP==.故应填8.16. 解析 (1)因为22⎛=- ⎝⎭m ,()sin ,cos x x =n ,且⊥m n ,所以()22,sin ,cos xx ⎛⎫=-=⎪ ⎪⎝⎭m n 22x x -=0,所以sin cos x x =,所以sin tan 1cos xx x==.(2)由题可得2cossin 34sin cos x x x x ππ⎛⎫===- ⎪⎝⎭+m n m n ,所以1sin 42x π⎛⎫-= ⎪⎝⎭.又因为,444x πππ⎛⎫-∈- ⎪⎝⎭,所以46x ππ-=,即512x π=.17. 解析 (1)依题所抽样本编号是一个首项为2,公差为4的等差数列,故其所有样本编号依次为2,6,10,14,18,22,26,30,34,对应样本的年龄数据依次为44,40,36,43,36,37,44,43,37. (2)由(1)可得其样本的平均值为444036433637444337409x ++++++++==,方差为2s =()()()()()()()2222222144404040364043403640374044409⎡-+-+-+-+-+-+-+⎣()()2243403740⎤-+-=⎦()()()()22222222214043434339⎡⎤++-++-+-+++-=⎣⎦1009. (3)由(2)知103s =,所以2363x s -=,1433x s +=,所以年龄在x s -与x s +之间共有23人,所占百分比为2310063.8936⨯≈%%. ED CBOAP18. 解析 (1)证明:因为PD PC =且点E 为CD 的中点,所以PE DC ⊥.又因为平面PDC ⊥平面ABCD ,且平面PDC平面ABCD CD =,PE ⊂平面PDC ,所以PE ⊥平面ABCD .又因为FG ⊂平面ABCD ,所以PE FG ⊥.(2)因为ABCD 是矩形,所以AD DC ⊥.由(1)可得PE ⊥平面ABCD ,所以PE AD ⊥,所以AD ⊥平面PCD .又PD ⊂平面PDC ,所以AD PD ⊥.又因为AD DC ⊥,所以PDC ∠即为二面角P AD C --的平面角. 在Rt PDE △中,4PD =,132DE AB ==,PE =所以tan PE PDC DE ∠==P AD C --(3)如图所示,连接AC ,因为2AF FB =,2CG GB =,即2AF CGFB GB==, 所以//AC FG ,所以PAC ∠为直线PA 与直线FG 所成角或其补角. 在PAC △中,因为5PA ==,AC ==所以由余弦定理可得22222254cos 2PA AC PC PAC PA AC +-+-∠===所以直线PA与直线FG 所成角的余弦值为25.19. 解析 (1)函数()f x 的定义域为R ,()()()()()2221e 1e 1e 0x xx f x x x x '''=+++=+…,所以()f x 在(),-∞+∞上是单调增函数.(2)因为1a >,所以()010f a =-<,且()()221e10af a aa a a =+->+->,所以()f x 在()0,a 上有零点.又由(1)知()f x 在(),-∞+∞上是单调增函数,所以()f x 在(),-∞+∞上仅有一个零点.E CG B FPD(3)由(1)知,令()0f x '=,得1x =-,又()21e f a -=-,即21,e P a ⎛⎫-- ⎪⎝⎭,所以22e 10eOPa k a --==---.又()()21e m f m m '=+,所以()221e em m a +=-.令()e 1m g m m =--,则()e 1mg m '=-,所以由()0g m '>得0m >,由()0g m '<得0m <,所以函数()g m 在(),0-∞上单调递减,在()0,+∞上单调递增,所以()()min 00g m g ==,即()0g m …在R 上恒成立,所以e 1m m +…,所以()()()()22321e 111e m a m m m m -=+++=+…1m +,所以1m …. 20. 解析 (1)由22650x y x +-+=得()2234x y -+=,所以圆1C 的圆心坐标为()3,0.(2)设(),M x y .因为点M 为弦AB 中点,即1C M AB ⊥,所以11C M AB k k =-,即13y y x x =--,所以线段AB 的中点M 的轨迹的方程为223953243x y x ⎛⎫⎛⎫-+=< ⎪ ⎪⎝⎭⎝⎭…. (当直线l与圆1C 相切时,根据圆心到直线的距离等于半径可求得直线的斜率5k =±l 的方程为y x =,代入圆1C 的方程可求得53x =,此时直线l 与圆1C 只有一个交点,因此53x >.当直线l 为0y =时,点M 即为圆心,x 可取最大值3,所以3x ….综上所述,533x <…). (3)由(2)知点M 的轨迹是以点3,02C ⎛⎫⎪⎝⎭为圆心,32r =为半径的部分圆弧EF(如图所示,不包括两端点),且53E ⎛⎝⎭,5,3F ⎛ ⎝⎭.当直线():4l y k x =-与圆C相切时,有32=,解得34k=±.又因为0543DE DF k k ⎛- ⎝⎭=-=-=-3325,,44k ⎡⎧⎫∈--⎨⎬⎢⎩⎭⎣⎦时,直线():4l y k x =-与曲线C 只有一个交点.21. 解析(1)由题可得()()3123123232a a a a a a =++-+=31213222344224--++⎛⎫---= ⎪⎝⎭,所以314a =. (2)由题可得当1n >时,()()12121221n n n na a a na a a n a -=+++-+++-=⎡⎤⎣⎦1242n n -+-- 211422n n n n --+⎛⎫-= ⎪⎝⎭,所以112n n a -⎛⎫= ⎪⎝⎭.又1012412a +=-=也适合此式,所以112n n a -⎛⎫= ⎪⎝⎭,所以数列{}n a 是首项为1,公比为12的等比数列,故1111221212nn n T -⎛⎫- ⎪⎛⎫⎝⎭==- ⎪⎝⎭-. (3)由题可得()12111122n n n a a a b a n n n -+++⎛⎫=++++ ⎪⎝⎭…,所以1221122a b a ⎛⎫=++ ⎪⎝⎭,1233111323a a b a +⎛⎫=+++ ⎪⎝⎭,1234411114234a a a b a ++⎛⎫=++++ ⎪⎝⎭,,所以1211112n n S b b b a n ⎛⎫=+++=++++ ⎪⎝⎭211111122n a a n n ⎛⎫⎛⎫++++++++= ⎪ ⎪⎝⎭⎝⎭()121112n a a a n ⎛⎫++++++= ⎪⎝⎭1112n T n ⎛⎫+++= ⎪⎝⎭ 11111222n n -⎛⎫⎛⎫+++-< ⎪⎪⎝⎭⎝⎭11212n ⎛⎫⨯+++ ⎪⎝⎭. 记()()()ln 111x f x x x x =+->-+,则()()()2211111x f x x x x '=-=+++.当()1,0x ∈-时,()0f x '<,当()0,x ∈+∞时,()0f x '>,所以()f x 在()1,0-上单调递减,在()0,+∞上单调递增,所以当0x =时,()()min 00f x f ==,当0x ≠时,()()00f x f >=,所以()()ln 101x x x x +>≠+,所以()*11ln 11n n n ⎛⎫+>∈ ⎪+⎝⎭N ,所以12ln 21<,13ln 32<,,1ln 1n n n <-,即有11123ln ln lnln 23121nn n n +++<+++=-,所以1112122ln 23n n ⎛⎫⨯++++<+ ⎪⎝⎭,即22ln n S n <+.。
2015数学广东卷(理科)
2015数学广东卷(理科)参考公式:样本数据x,…,x n的方差s2=[(x1-)2+(x2-)2+…+(x n-)2],其中表示样本均值.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015高考广东卷,理1)若集合M={x|(x+4)(x+1)=0},N={x|(x-4)(x-1)=0},则M∩N等于( D ) (A){1,4} (B){-1,-4} (C){0} (D)解析:化简集合得M={-4,-1},N={1,4},显然M∩N=⌀,故选D.2.(2015高考广东卷,理2)若复数z=i(3-2i)(i是虚数单位),则等于( A )(A)2-3i (B)2+3i (C)3+2i (D)3-2i解析:因为i(3-2i)=3i-2i2=2+3i,所以z=2+3i,所以=2-3i,故选A.3.(2015高考广东卷,理3)下列函数中,既不是奇函数,也不是偶函数的是( D )(A)y=(B)y=x+(C)y=2x+(D)y=x+e x解析:易知y=与y=2x+是偶函数,y=x+是奇函数,故选D.4.(2015高考广东卷,理4)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( B )(A)(B)(C)(D)1解析:从15个球中任取2个球,取法共有种,其中恰有1个白球,1个红球的取法有×种,所以所求概率为P==,故选B.5.(2015高考广东卷,理5)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是( A )(A)2x+y+5=0或2x+y-5=0(B)2x+y+=0或2x+y-=0(C)2x-y+5=0或2x-y-5=0(D)2x-y+=0或2x-y-=0解析:切线平行于直线2x+y+1=0,故可设切线方程为2x+y+c=0(c≠1),结合题意可得=,解得c=±5.故选A.6.(2015高考广东卷,理6)若变量x,y满足约束条件则z=3x+2y的最小值为( B )(A)4 (B)(C)6 (D)解析:由约束条件画出可行域如图.由z=3x+2y得y=-x+,易知目标函数在直线4x+5y=8与x=1的交点A(1,)处取得最小值,故z min=,故选B.7.(2015高考广东卷,理7)已知双曲线C:-=1的离心率e=,且其右焦点为F2(5,0),则双曲线C的方程为( C )(A)-=1 (B)-=1(C)-=1 (D)-=1解析:由已知得解得故b=3,从而所求的双曲线方程为-=1,故选C.8.(2015高考广东卷,理8)若空间中n个不同的点两两距离都相等,则正整数n的取值( B )(A)至多等于3 (B)至多等于4(C)等于5 (D)大于5解析:首先我们知道正三角形的三个顶点满足两两距离相等,于是可以排除C,D.又注意到正四面体的四个顶点也满足两两距离相等,于是排除A,故选B.二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.(2015高考广东卷,理9)在(-1)4的展开式中,x的系数为.解析:(-1)4的展开式通项为T()4-r(-1)r=(-1)r··,令=1,得r=2,从而x的系数为(-1)2=6.答案:610.(2015高考广东卷,理10)在等差数列{a n}中,若a3+a4+a5+a6+a7=25,则a2+a8= .解析:利用等差数列的性质可得a3+a7=a4+a6=2a5,从而a3+a4+a5+a6+a7=5a5=25,故a5=5,所以a2+a8=2a5=10.答案:1011.(2015高考广东卷,理11)设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sin B=,C=,则b= .解析:在△ABC中,由sin B=可得B=或B=,结合C=可知B=.从而A=π,利用正弦定理=,可得b=1.答案:112.(2015高考广东卷,理12)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)解析:因为同学之间两两彼此给对方仅写一条毕业留言,且全班共有40人,所以全班共写了40×39=1560(条)毕业留言.答案:156013.(2015高考广东卷,理13)已知随机变量X服从二项分布B(n,p).若E(X)=30,D(X)=20,则p= .解析:因为X~B(n,p),所以E(X)=np=30,D(X)=np(1-p)=20,解得n=90,p=.答案:(二)选做题(14~15题,考生只能从中选做一题)14.(2015高考广东卷,理14)(坐标系与参数方程选做题)已知直线l 的极坐标方程为2ρsin(θ-)=,点A的极坐标为A(2,),则点A 到直线l的距离为.解析:将直线l的极坐标方程2ρsin(θ-)=化为直角坐标方程为x-y+1=0.由A(2,)得A点的直角坐标为(2,-2),从而点A到直线l的距离d==.答案:15.(2015高考广东卷,理15)(几何证明选讲选做题)如图,已知AB是圆O的直径,AB=4,EC是圆O的切线,切点为C,BC=1.过圆心O作BC的平行线,分别交EC和AC于点D和点P,则OD= .解析:易得AC==,由OP∥BC,且O为AB的中点可知CP=AC=, OP=BC=,∠APO=∠ACB=90°.所以∠CPD=90°.因为EC是切线,所以∠DCP=∠B,从而△CPD∽△BCA,故=,所以DP=.故OD=DP+OP=+=8.答案:8三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(2015高考广东卷,理16)在平面直角坐标系xOy中,已知向量m=(,-),n=(sin x,cos x),x∈.(1)若m⊥n,求tan x的值;(2)若m与n的夹角为,求x的值.解:(1)因为m⊥n,所以m·n=sin x-cos x=0.即sin x=cos x,又x∈(0,),所以tan x==1.(2)易求得|m|=1,|n|==1.因为m与n的夹角为,所以cos==.则sin x-cos x=sin(x-)=.又因为x∈(0,),所以x-∈(-,).所以x-=,解得x=.17.(本小题满分12分)(2015高考广东卷,理17)某工厂36名工人的年龄数据如下表.(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的均值和方差s2;(3)36名工人中年龄在-s与+s之间有多少人?所占的百分比是多少?(精确到0.01%)?解:(1)由系统抽样知识知,将36名工人分为9组(4人一组),每组抽取一名工人.因为在第一分段里抽到的是年龄为44的工人,即编号为2的工人,故所抽样本的年龄数据为44,40,36,43,36,37,44,43,37.(2)均值==40;方差s2=×[(44-40)2+(40-40)2+(36-40)2+(43-40)2+(36-40)2+(37- 40)2+(44-40)2+(43-40)2+(37-40)2]=.(3)由(2)可知s=.由题意,年龄在-s与+s之间,即在区间[37,43]内的工人共有23人,所占的百分比为×100%≈63.89%.18.(本小题满分14分)(2015高考广东卷,理18)如图,三角形PDC所在的平面与长方形ABCD 所在的平面垂直,PD=PC=4,AB=6,BC=3.点E是CD边的中点,点F,G分别在线段AB,BC上,且AF=2FB,CG=2GB.(1)证明:PE⊥FG;(2)求二面角P-AD-C的正切值;(3)求直线PA与直线FG所成角的余弦值.(1)证明:因为PD=PC,点E为DC中点,所以PE⊥DC.又因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=DC,所以PE⊥平面ABCD.又FG⊂平面ABCD,所以PE⊥FG.(2)解:由(1)可知PE⊥AD.因为四边形ABCD为长方形,所以AD⊥DC.又因为PE∩DC=E,所以AD⊥平面PDC.而PD⊂平面PDC,所以AD⊥PD.由二面角的平面角的定义可知∠PDC为二面角P-AD-C的一个平面角. 在Rt△PDE中,PE==,所以tan∠PDC==.从而二面角P-AD-C的正切值为.(3)解:连接AC.因为==,所以FG∥AC.易求得AC=3,PA==5.所以直线PA与直线FG所成角等于直线PA与直线AC所成角,即∠PAC, 在△PAC中,cos∠PAC==.所以直线PA与直线FG所成角的余弦值为.19.(本小题满分14分)(2015高考广东卷,理19)设a>1,函数f(x)=(1+x2)e x-a.(1)求f(x)的单调区间;(2)证明:f(x)在(-∞,+∞)上仅有一个零点;(3)若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP平行(O是坐标原点),证明:m≤-1.(1)解:函数f(x)的定义域为R.因为f′(x)=2x·e x+(1+x2)e x=(x2+2x+1)e x=(x+1)2e x≥0,所以函数f(x)在R上单调递增,即f(x)的单调递增区间为(-∞,+∞),无单调递减区间.(2)证明:因为a>1,所以f(0)=1-a<0,f(ln a)=(1+ln2a)e ln a-a= aln2a>0,所以f(0)·f(ln a)<0,由零点存在性定理可知f(x)在(0,ln a)内存在零点.又由(1)知f(x)在R上单调递增,故f(x)在(-∞,+∞)上仅有一个零点.(3)证明:设点P(x0,y0),由题意知,f′(x 0)=(x0+1)2=0,解得x0=-1.)-a=-a,所以y所以点P的坐标为(-1,-a).所以k OP=a-.由题意可得f′(m)=(m+1)2e m=a-.要证明m≤-1,只需要证明m+1≤,只需要证明(m+1)3≤a-=(m+1)2e m,只需要证明m+1≤e m.构造函数:h(x)=e x-x-1(x∈R),则h′(x)=e x-1.当x<0时,h ′(x)<0,即h(x)在(-∞,0)上单调递减; 当x>0时,h ′(x)>0,即h(x)在(0,+∞)上单调递增; 所以函数h(x)有最小值,为h(0)=0,则h(x)≥0.所以e x -x-1≥0,故e m -m-1≥0,即m+1≤e m ,故原不等式成立. 20.(本小题满分14分)(2015高考广东卷,理20)已知过原点的动直线l 与圆C 1:x 2+y 2-6x+5=0相交于不同的两点A,B. (1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k,使得直线L:y=k(x-4)与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由. 解:(1)由题意知:圆1C 方程为:22(3)4x y -+= ∴圆1C 的圆心坐标为(3,0) (2)由图可知,令111(,),|||M x y OM C M =222112222211112211||||||3(3)39()24OC OM C M x y x y x y =+∴=++-+∴-+=∵直线L 与圆1C 交于A 、B 两点 ∴直线L 与圆1C 的距离:02d ≤<221122111220(3)4930(3)()442533395C ()(,3]243x y x x x x y x ∴≤-+<∴≤-+--<∴<≤∴-+=∈轨迹的方程为:(3)∵直线L :2239(4)()124y k x x y =--+=与曲线仅有个交点联立方程:22(4)5(,3]393()24y k x x x y =-⎧⎪∈⎨-+=⎪⎩, 得:2222(1)(83)160k x k x k +-++=,5(,3]13在区间有且仅有个解22224=(83)-64+1=3k k k k ∆+=±当()0时, 此时,125(,3]53x =∈,仅有一个交点,符合题意。
15年高考真题——理科数学(广东卷)
2015年普通高等学校招生全国统一考试(广东卷)数学(理科)一.选择题:本大题共8小题,每小题5分,满分40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合()(){}|410M x x x =++=,()(){}|410N x x x =--=,则M N =( ) (A )∅ (B ){}1,4-- (C ){}0 (D ){}1,42.若复数()32z i i =-(i 是虚数单位),则z =( )(A )32i - (B )32i + (C )23i + (D )23i -3.下列函数中,既不是奇函数,也不是偶函数的是( )(A )xe x y += (B )x x y 1+= (C )x xy 212+= (D )21x y += 4.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球。
从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( ) (A )1 (B )2111 (C )2110 (D )215 5.平行于直线012=++y x 且与圆522=+y x 相切的直线的方程是( )(A )052=+-y x 或052=--y x (B )052=++y x 或052=-+y x (C )052=+-y x 或052=--y x (D )052=++y x 或052=-+y x6.若变量,x y 满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≥+2031854y x y x ,则y x z 23+=的最小值为( )(A )315 (B )6 (C )23 (D )47.已知双曲线C :12222=-by a x 的离心率54e =,且其右焦点()25,0F ,则双曲线C的方程为( ) (A )13422=-y x (B )191622=-y x (C )116922=-y x (D )14322=-y x 8.若空间中n 个不同的点两两距离都相等,则正整数n 的取值( )(A )大于5 (B )等于5 (C )至多等于4 (D )至多等于3二.填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
15年高考真题——理科数学(广东卷)
2015年普通高等学校招生全国统一考试(广东卷)数学(理科)一.选择题:本大题共8小题,每小题5分,满分40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合()(){}|410M x x x =++=,()(){}|410N x x x =--=,则MN =( ) (A )∅ (B ){}1,4-- (C ){}0 (D ){}1,42.若复数()32z i i =-(i 是虚数单位),则z =( )(A )32i - (B )32i + (C )23i + (D )23i -3.下列函数中,既不是奇函数,也不是偶函数的是( ) (A )xe x y += (B )x x y 1+= (C )x xy 212+= (D )21x y += 4.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球。
从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )(A )1 (B )2111 (C )2110 (D )215 5.平行于直线012=++y x 且与圆522=+y x 相切的直线的方程是( ) (A )052=+-y x 或052=--y x (B )052=++y x 或052=-+y x (C )052=+-y x 或052=--y x (D )052=++y x 或052=-+y x6.若变量,x y 满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≥+2031854y x y x ,则y x z 23+=的最小值为( )(A )31 (B )6 (C )235 (D )47.已知双曲线C :12222=-b y a x 的离心率54e =,且其右焦点()25,0F ,则双曲线C的方程为( ) (A )13422=-y x (B )191622=-y x (C )116922=-y x (D )14322=-y x 8.若空间中n 个不同的点两两距离都相等,则正整数n 的取值( )(A )大于5 (B )等于5 (C )至多等于4 (D )至多等于3二.填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
2015年广东卷理科数学高考试卷(原卷 答案)
绝密★启用前2015年普通高等学校招生全国统一考试(广东卷)理科数学本试卷共21题,共150分。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本大题共8小题,每小题5分,满分40分.1.若集合{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则MN =A .∅B .{}1,4−−C .{}0D .{}1,4 2.若复数z=i ( 3 – 2 i ) ( i 是虚数单位 ),则z =A .3-2iB .3+2iC .2+3iD .2-3i 3.下列函数中,既不是奇函数,也不是偶函数的是A .xe x y += B .xx y 1+= C .x x y 212+= D .21x y +=4.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球。
从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为 A .1 B.2111 C. 2110 D. 2155.平行于直线012=++y x 且与圆522=+y x 相切的直线的方程是A .052=+−y x 或052=−−y x B. 052=++y x 或052=−+y x C. 052=+−y x 或052=−−y x D. 052=++y x 或052=−+y x6.若变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≥+2031854y x y x 则y x z 23+=的最小值为A .531 B. 6 C. 523 D. 4 7.已知双曲线C :12222=−b y a x 的离心率e =45,且其右焦点F 2( 5 , 0 ),则双曲线C 的方程为 ( )A .13422=−y x B. 191622=−y x C. 116922=−y x D. 14322=−y x 8.若空间中n 个不同的点两两距离都相等,则正整数n 的取值A .大于5 B. 等于5 C. 至多等于4 D. 至多等于3二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9-13题)9.在4)1(−x 的展开式中,x 的系数为 。
2015广东高考理科数学(word版,含答每道题解析答案)
绝密★启用前 试卷类型:B2015年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色自己的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求做大的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡得整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式: 样本数据12,,,n x x x 的方差2222121[()()()]n s x x x x x x n=-+-++-,其中x 表示样本均值.一、选择题(本大题共8小题,每题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.若集合M={x|(x+4)(x+1)=0},集合N= {x|(x-4)(x-1)=0},则M∩N=A .∅ B.{ -1 , -4 } C.{ 0 } D. { 1 ,4 } 2.若复数z=i ( 3 – 2 i ) ( i 是虚数单位 ),则z =A .3-2i B.3+2i C.2+3i D. 2-3i 3.下列函数中,既不是奇函数,也不是偶函数的是 A .x e x y += B. x x y 1+= C. x xy 212+= D. 21x y += 4.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球。
2015年高考理科数学广东卷-答案
1+ (-x )21+ x 2 2015 年普通高等学校招生全国统一考试(广东卷)数学(理科)答案解析一、选择题1. 【答案】D【解析】由题意可得M ={ -1, -4},N = {1, 4},M N = ∅ .【提示】求出两个集合,然后求解交集即可. 【考点】交集及其运算2. 【答案】B【解析】由题意可得 z = i(3 - 2i) = 2 - 3i ,因此 z = 2 + 3i . 【提示】直接利用复数的乘法运算法则化简求解即可. 【考点】复数的基本计算以及共轭复数的基本概念3. 【答案】D【解析】A 选项, f (-x ) = = = f (x ) ,偶函数;B 选项, f (-x ) = -x + 1 = -⎛ x + 1 ⎫ = - f ( x ) ,奇函数;-x x ⎪ ⎝ ⎭C 选项, f (-x ) = 2- x+ 1 2- x= 1 + 2x = f (x ),偶函数; 2x D 选项, f (-x ) = -x + e - x = -x + = 1e x≠ f (x ) ≠ - f (x ) ,因此选 D .【提示】直接利用函数的奇偶性判断选项即可. 【考点】函数的奇偶性的判定4. 【答案】B【解析】任取两球一共有C 2=15⨯14= 15⨯ 7 种情况,其中一个红球一个白球一共有C 1 C 1 = 10 ⨯ 5 ,15因此概率为10 ⨯ 5 = 10. 15 ⨯ 7 211⨯ 210 5【提示】首先判断这是一个古典概型,从而求基本事件总数和“所取的 2 个球中恰有 1 个白球,1 个红球” 事件包含的基本事件个数,容易知道基本事件总数便是从 15 个球任取 2 球的取法,而在求“所取的 2 个球中恰有 1 个白球,1 个红球”事件的基本事件个数时,可利用分步计数原理求解,最后带入古典概型的概率公式即可.【考点】古典概型及其概率计算公式5. 【答案】A⎝ ⎭【解析】与直线2x + y +1= 0 平行的直线可以设为2x + y + m = 0 ,= 5 ,∴| m |= 5 ,解得m = ±5 ,因此我们可以得到直线方程为: 2x + y + 5 = 0 或2x + y - 5 = 0 .【提示】设出所求直线方程,利用圆心到直线的距离等于半径,求出直线方程中的变量,即可求出直线方程. 【考点】解析几何中的平行,圆的切线方程6. 【答案】B【解析】依据题意,可行域如右图所示,初始函数为l :y =- 3x ,0 2当l 0 逐渐向右上方平移的过程中, z = 3x + 2y 不断增大,⎛ 4 ⎫23 因此我们可以得到当l 过点 E 1, 5 ⎪ 的时候, z min = 5 .【提示】作出不等式组对应的平面区域,根据 z 的几何意义,利用数形结合即可得到最小值. 【考点】线性规划问题7. 【答案】Cx 2 y 2c 5 【解析】已知双曲线C : - = 1,e = = , a 2 b2a 4 又由焦点为 F (5, 0) ,因此c = 5 ⇒ a = 4c = 4 ⇒ b = 3 ,2因此双曲线方程为 x 5 y 2 - = 1 .16 9【提示】利用已知条件,列出方程,求出双曲线的几何量,即可得到双曲线方程. 【考点】圆锥曲线的离心率求解问题8. 【答案】B22 +12 c 2 - a 2 24 4 2【解析】解:考虑平面上,3 个点两两距离相等,构成等边三角形,成立; 4 个点两两距离相等,由三角形的两边之和大于第三边,则不成立;n 大于 4,也不成立;在空间中,4 个点两两距离相等,构成一个正四面体,成立;若 n > 4 ,由于任三点不共线,当 n = 5 时,考虑四个点构成的正四面体,第五个点,与它们距离相等,必为正四面体的外接球的球心,由三角形的两边之和大于三边,故不成立; 同理 n > 5 ,不成立. 故选:B .【提示】先考虑平面上的情况:只有三个点的情况成立;再考虑空间里,只有四个点的情况成立,注意运用外接球和三角形三边的关系,即可判断. 【考点】棱锥的结构特征 二、填空题9. 【答案】6【解析】展开通式为C m-1(x )m (-1)4-m ,令m = 2 可得Cm -1(x )m (-1)4-m = C 1 ( x )2 (-1)4-2 = 4x ,因此系数为 6. 44【提示】根据题意二项式( -1)4 的展开的通式为C m -1 ( x )m (-1)4-m ,分析可得, m = 2 时,有 x 的项,将m = 2 代入可得答案. 【考点】二项式定理的运用10. 【答案】10【解析】根据等差中项可得: a 3 + a 4 + a 5 + a 6 + a 7 = 5a 5 = 25 , a 5 = 5 ,因此a 2 + a 8 = 2a 5 = 10 .【提示】根据等差数列的性质,化简已知的等式即可求出 a 5 的值,然后把所求的式子也利用等差数列的性质化简后,将a 5 的值代入即可求出值. 【考点】等差中项的计算11. 【答案】1【解析】由sin B = 1 ,得 B = π 或者 B = 5π ,2 6 6又因为C = π ,因此 B = π , A = 2π,6 6 3 根据正弦定理可得 a= bb = asin B =3 1 = 1. sin A sin B sin A 3x 23 【提示】由sin B= 1 ,可得 B = π 或者 B = 5π ,结合a = , C = π及正弦定理可求b .2 6 6 6【考点】正弦定理,两角和与差的正弦函数12. 【答案】1560【解析】某高三毕业班有 40 人,每人给彼此写一条留言,因此每人的条数为 39,故而一共有40⨯ 39 =1560 条留言.【提示】通过题意,列出排列关系式,求解即可. 【考点】排列与组合的实际应用 13. 【答案】 13【解析】根据随机变量 X 服从二项分布 B (n , p ) ,根据 E (X ) = np = 30,D (X ) = np (1- p ) = 20 ,可得1- p =D ( X ) = 2,化简后可得 p = 1 . E ( X ) 3 3【提示】直接利用二项分布的期望与方差列出方程求解即可.【考点】离散型随机变量的期望与方差 14. 【答案】 5 22 【解析】考察基本的极坐标和直角坐标的化简以及点到直线距离问题.由2ρ sin ⎛θ -π ⎫ =可得直线l 的4 ⎪ ⎝ ⎭ 直角坐标系方程为 x - y -1 = 0,由 A ⎛2 2, 7 π⎫ 可得它的直角坐标为 A (2, -2) , 4 ⎪ ⎝ ⎭ 因此,点A 到直线l 的距离为 d =| 2 + 2 + 1| = 5 2. 22【提示】把极坐标方程转化为直角坐标方程,然后求出极坐标表示的直角坐标,利用点到直线的距离求解即可. 【考点】简单曲线的极坐标方程15. 【答案】8【解析】连接OC ,根据△AOC 为等腰三角形可得∠CAO = ∠ACO ,又因为 AB 为直径,2m n = sin ⎛ x - π ⎫= |m | |n |cos π = 1 4 ⎪ ⎝ ⎭3 2 因此可得∠CAO + ∠B = 90︒ , ∠ACO + ∠B = 90︒ , ∵OP ∥BC ∴ AC ⊥ OP ,∠ACO + ∠COP = 90︒ , 因此可得∠COP = ∠B ,因此Rt △DOC ∽Rt △ABC ,故而可得 OD = OC = 2,∴ OD = 8 .AB BC 1【提示】连接 OC , 根据△AOC 为等腰三角形可得 ∠CAO = ∠ACO , AB 为直径以及 OP ∥BC 得出R t △D O C ∽t ABC 即可求出OD 的值.【考点】相似三角形的判定 三、解答题 16. 【答案】(Ⅰ)tan x =1 (Ⅱ) x = 5π12⎛ 2 2 ⎫ m n = , - (sin x , c os x ) =2 sin x - 2 cos x = sin ⎛ x - π ⎫【解析】∵ m ⊥ n , 2 2 ⎪2 2 4 ⎪ , ⎝ ⎭⎝ ⎭∴|m | =1, |n | =1,因此:(Ⅰ)若m ⊥ n ,可得m n = sin ⎛ x - π ⎫= 0 ,4 ⎪ ⎝ ⎭∴x - π = k π ⇒ x = π+ k π , 4 4 又∵ x ∈⎛ 0, π ⎫ , k = 0,x = π ,2 ⎪ 4 ⎝ ⎭因此可得tan x = tan π= 1 .4(Ⅱ)若m 和 n的夹角为 π ,可得 , 3 ∴ x - π = π + 2k π 或 x - π = 5π+ 2k π ,4 6 4 6 又∵ x ∈⎛ 0, π ⎫ ,∴ ⎛ x - π ⎫∈⎛ - π , π ⎫ , 2 ⎪ 4 ⎪ 4 4 ⎪ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭ ∴ x - π = π ,解得 x = 5π .4 6 12【提示】(Ⅰ)若m ⊥ n ,则m n = 0 ,结合三角函数的关系式即可求tan x 的值.(Ⅱ)若m 和 n 的夹角为 π,利用向量的数量积的坐标公式进行求解即可求 x 的值.3【考点】平面向量数量积的运算,数量积表示两个向量的夹角 17.【答案】(Ⅰ) 44, 40, 36, 43, 36, 37, 44, 43, 37s 2 100 9 (Ⅱ) x = 40 s 2 =100 9 (Ⅲ)23 人 63.89% .【解析】(Ⅰ)根据系统抽样的方法,抽取 9 个样本,因此分成 9 组,每组 4 人.又因为第一组中随机抽样可抽到 44,因此按照现有的排序分组.故而每组中抽取的都是第二个数,因此我们可得样本数据为第 2 个, 第 6 个,第 10 个,第 14 个,第 18 个,第 22 个,第 26 个,第 30 个,第 34 个, 分别为: 44, 40, 36, 43, 36, 37, 44, 43, 37(Ⅱ)由平均值公式得 x =44 + 40 + 36 + 43 + 36 + 37 + 44 + 43 + 37 = 40 ,9由方差公式得s 2 = 1 ⎡⎣(x - x )2 + (x - x )2 + ⋅⋅⋅ + (x - x )2 ⎤⎦ = (44 - 40)2 + (40 - 40)2 +L + (37 - 40)2 = 100 . 9 1 2 9 9(Ⅲ) s = = = 10,因此可得 x - s = 36 2,x + s = 431 ,3 3 3 因此在 x - s 和 x + s 之间的数据可以是44, 40, 36, 43, 36, 37, 44, 43, 37 ,因此数据一共有 23 人,占比为 23⨯100% ≈ 63.89%.36【提示】(Ⅰ)利用系统抽样的定义进行求解即可.(Ⅱ)根据均值和方差公式即可计算(Ⅰ)中样本的均值 x 和方差 s 2 . (Ⅲ)求出样本和方差即可得到结论. 【考点】极差,方差与标准差,分层抽样方法18. 【答案】(Ⅰ)见解析(Ⅱ) 73 (Ⅲ) 9 5.25【解析】(Ⅰ)证明:由 PD = PC 可得三角形 PDC 是等腰三角形, 又因为点 E 是CD 边的中点,因此可得 PE ⊥ CD ,又因为三角形PDC 所在的平面与长方形 ABCD 所在的平面垂直,而且相交于 CD ,因此 PE ⊥ 平面 ABCD ,又因为 FG 在平面 ABCD 内,因此可得 PE ⊥ FG ,问题得证. (Ⅱ)因为四边形 ABCD 是矩形,因此可得 AD ⊥ CD , 又因为 PE ⊥平面 ABCD ,故而 PE ⊥ AD , 又 PE I CD = E ,因此可得 AD ⊥平面 PDC ,2 AD 2 + CD 2 5 5 因此 AD ⊥ PD , AD ⊥ CD ,所以∠P - AD - C = ∠PDE .在等腰三角形 PDC 中, PD = 4,CD = AB = 6 , DE = 1CD = 3 .2 因此可得 PE == 7 ,故而可得tan ∠PDE = PE = 7. DE 3(Ⅲ)如图所示,连接 AC ,AE .∵AF = 2FB ,CG = 2GB , ∴ BF = BG, △BFG ∽△BAC , GF ∥AC , AB BC因此,直线 PA 与直线 FG 所成角即为直线 PA 与直线 AC 所成角∠PAC , 在矩形 ABCD 中,点 E 为CD 中点,因此 AE = = 3 ,而且 AC = = 3 .又 PE ⊥面 ABCD ,三角形 PAE 为直角三角形,故 PA = = 5,因此在△PAC 中, PA = 5,PC = 4,AC = 3 , PA 2 + AC 2 - PC 29因此可得cos ∠PAC ==5 . 2PA AC 25【提示】(Ⅰ)通过等腰三角形 PDC 可得 PE ⊥ CD ,利用线面垂直判定定理及性质定理即得结论. (Ⅱ)通过(Ⅰ)及面面垂直定理可得 PE ⊥ AD ,则∠PDE 为二面角∠P - AD - C 的平面角,利用勾股定理即得结论.(Ⅲ)连结连接 AC ,AE ,利用勾股定理及已知条件可得GF ∥AC ,在△PAC 中,利用余弦定理即得直线PA 与直线 FG 所成角即为直线 PA 与直线 FG 所成角∠PAC 的余弦值.【考点】二面角的平面角及求法,异面直线及其所成的角,直线与平面垂直的性质19. 【答案】(Ⅰ)单调增区间为R(Ⅱ)见解析 (Ⅲ)见解析【解析】 f '(x ) = 2x e x + (1+ x 2 )e x = (1+ 2x + x 2 )e x = (x +1)2e x ,因此: PD 2 - CE 2AD 2 + DE 2 PE 2 + AE 210 (Ⅰ)求导后可得函数的导函数 f '( x ) = ( x +1)2e x ≥ 0 恒成立,因此函数在(-∞,+∞) 上是增函数.故而单调增区间为R .(Ⅱ)证明:令 f (x ) = (1+ x 2 )e x - a = 0 可得(1 + x 2 )e x= a ,设 y = (1+ x 2 )e x ,y = a ,对函数 y = (1 + x 2 )e x,121求导后可得 y ' = (x +1)2 e x ≥ 0 恒成立,因此函数 y 1 = (1 + x )e 单调递增,因此可以得到函数图像. 2 x函数 f (x ) = (1 + x 2 )e x - a 有零点,即方程(1 + x 2 )e x= a 有解,亦即函数 y = (1+ x 2 )e x,y = a ,图像有交点.12当 x = 0 时, y =1,因此根据函数的图像可得: y = (1+ x 2 )e x,y = a 有且只有一个交点,1 1 2即 f (x ) = (1 + x 2 )e x- a 有且只有一个零点.(Ⅲ)证明:设点 P 的坐标为(x 0 , y 0 ) ,故而在点 P 处切线的斜率为: f '(x 0 ) = (x 0 +1)2 e x0 = 0 , x = -1,因此 P ⎛ -1, 2 -1⎫ . e ⎪ ⎝ ⎭在点 M 处切线的斜率为: f '(m ) = (m +1)2 e m = k = a - 2 , e因为a >1 ,因此a - 2> 0 .e欲证m1 ,即证(m +1)3 ≤ a -2 = (m +1)2 e m , m +1≤ e m , e 设 g (x ) = e x - x -1 ,求导后可得 g '(x ) = e x-1 , x = 0 ,令 g '(x ) = e x-1 = 0 ,因此函数在(-∞,0) 上单调递减,在(0, +∞) 上单调递增.因此可得 g (x ) ≥ g (0) = 0 ,所以 g (x ) = e x - x -1 ≥ 0 , e x ≥ x +1, e m ≥ m +1问题得证.【提示】(Ⅰ)利用 f '(x ) ≥ 0 ,求出函数单调增区间.(Ⅱ)证明只有 1 个零点,需要说明两个方面:函数单调以及函数有零点. (Ⅲ)利用导数的最值求解方法证明.OP3 ⎥ ⎩⎨ 3 ⎥ ⎩3 ⎥ 【考点】利用导数研究函数的单调性,利用导数研究曲线上某点切线方程 20.【答案】(Ⅰ) C 1 (3,0)2 2x ∈⎛ 5 ⎤(Ⅱ) x + y - 3x = 0 ,其中 ,3 ⎝ ⎦(Ⅲ)存在k ⎛ 2 5 2 5 ⎫ ⎧ 3 ⎫∈ - 7 , 7 ⎪ U ⎨± 4 ⎬ ⎝⎭ ⎩ ⎭【解析】依题意得化成标准方程后的圆为: (x - 3)2 + y 2= 4 ,因此:(Ⅰ)根据标准方程,圆心坐标为C 1 (3,0) .(Ⅱ)数形结合法:①当动线l 的斜率不存在是,直线与圆不相交. ②设动线l 的斜率为m ,因此l :y = mx ,⎧ y = mx联立⎨x 2 + y 2 - 6x + 5 = 0 ,则(1+ m 2 )x 2- 6x + 5 = 0⎧∆ = 36 - 20(m 2 + 1) > 0 ⇒ 0 ≤ m 2 < 4 ⎪ ⎪ 根据有两个交点可得: ⎪x ⎪A + xB 5 = 6 ,m 2 + 1 ⎪ ⎪⎩x A g x B =5m 2 + 1 故而点 M 的坐标为⎛ 3 , 3m ⎫ ,m 2+1 m 2 +1⎪⎧x = ⎪ 令⎨ ⎪ y = ⎪⎩ ⎝ ⎭3 m 2 + 1 3m ,m 2+ 12 2 x =3 ∈⎛ 5 ⎤ 因此由此可得 x + y - 3x = 0 ,其中 m 2 +1 ,3 . ⎝ ⎦⎧x 2 + y 2 - 3x = 0(Ⅲ)证明:联立⎨ y = k (x - 4) ,所以, (k 2 +1)x 2 - (8k 2 + 3)x +16k 2= 0因此,当直线 L 与曲线相切时,可得∆ = 9 -16k 2 = 0 ,解得k =± 3.42 2x ∈⎛ 5 ⎤设 x + y - 3x = 0 , ,3 的两个端点是C 、D , ⎝ ⎦⎝ ⎭ 2 32 设直线 L 恒过点 E (4,0)C ⎛ 5 , 2 5 ⎫D ⎛ 5 , - 2 5 ⎫因此可得 3 3 ⎪ , 3 3 ⎪ , ⎝ ⎭ ⎝ ⎭故而可得k =2 5 ,k = - 2 5,CE7 DE7由图像可得当直线 L 与曲线有且只有一个交点的时候,k ⎛ 2 5 2 5 ⎫ ⎧ 3 ⎫∈ - 7 , 7 ⎪ U ⎨± 4 ⎬ . ⎝ ⎭ ⎩ ⎭【提示】(Ⅰ)通过将圆C 1 的一般式方程化为标准方程即得结论(Ⅱ)设当直线l 的方程为 y = mx ,通过联立直线l 与圆C 1 的方程,利用根的判别式大于 0、韦达定理、中点坐标公式及参数方程与普通方程的相互转化,计算即得结论.(Ⅲ)通过联立直线 L 与圆C 1 的方程,利用根的判别式∆= 0 及轨迹C 的端点与点 E (4,0) 决定的直线斜率,即得结论.【考点】轨迹方程,直线与圆的位置关系21.【答案】(Ⅰ) 14 (Ⅱ)T n = 2 - 12n -1(Ⅲ)见解析【解析】由给出的递推公式可得: ①当n =1 时, a 1 = 4 - 3 =1②当n ≥ 2 时, a + 2a+ ⋅⋅⋅ + (n -1)a + na = 4 -n + 2,12n -1na + 2a + ⋅⋅⋅ + (n -1)a= 4 -n +1, 2n -112n -12n -2n⎛ 1 ⎫n -1所以na n = 2n -1 , a n = 2 ⎪其中n =1 也成立,因此可得a n⎛ 1 ⎫n -1= ⎪ ⎝⎭(n ∈ N * )⎛ 1 ⎫2(Ⅰ)因此a = ⎪ ⎝⎭ = 1. 411 / 11 2 n n n n n n n n(Ⅱ)∵ a n ⎛ 1 ⎫n -1 = ⎪ ⎝ ⎭ (n ∈ N * ) , 所以数列{a }的公比q = 1 ,利用等比数列的求和公式可得:n 2⎡ ⎛ 1 ⎫n ⎤1⨯⎢1- 2 ⎥ n T = ⎢⎣ ⎝ ⎭ ⎥⎦ ⎡ ⎛ 1 ⎫⎤ 1 . n 1 2 ⎢1- 2 ⎪⎥ = 2 - 2n -11- ⎣ 2 ⎝ ⎭⎦ (Ⅲ)因为b = T n -1 + ⎛1+ 1 + 1 + ⋅⋅⋅ + 1 ⎫ a (n ≥ 2) n n 2 3 n ⎪ n⎝ ⎭ b = a , b = a 1 + ⎛1+ 1 ⎫ a , b = a 1 + a 2 + ⎛1+ 1 + 1 ⎫a ,1 12 2 2 ⎪ 23 3 2 3 ⎪ 3 ⎝ ⎭ ⎝ ⎭ b = a 1 + a 2 + a 3 + ⋅⋅⋅ + a n + ⎛1+ 1 + 1 + ⋅⋅⋅ + 1 ⎫ a , n n 2 3 n ⎪ n ⎝ ⎭ 因此,欲证 S < 2 + 2ln n ,即证 ⎛ + 1 + 1 + ⋅⋅⋅ + 1 ⎫ < 2 + 2ln n ⇐ 1 + 1 + ⋅⋅⋅ + 1 < ln n , n 2 1 2 3 n ⎪ 2 3 n ⎝ ⎭ n n -1 3 2 ln n > 1 ⇐ -ln n -1 = - ⎛ 1 ⎫ 1 将ln n 化简为ln n = ln + ln + ⋅⋅⋅ + ln + ln ,即证 n -1 n - 2 2 1 令 g (x ) = ln x - x +1,所以 g '(x ) = 1 -1 = 1- x ,x x n -1 n n ln 1- ⎪ > , ⎝ ⎭ 因此函数在(0,1) 上单调递增,在 (1, +∞) 上单调递减,因此 g (x ) ≤ g (1) = 0 , 1 ⎛ 1 ⎫ ⎛ 1 ⎫ 1 ⎛ 1 ⎫ 1 又因为1 - < 1 ,因此 g 1- ⎪ < g (x ) = 0 ⇒ l ⇒ ln 1- ⎪ - (1- ) +1 < 0 ⇒ -ln 1- ⎪ > , ⎝ ⎭ ⎝ ⎭ ⎝ ⎭ 问题得证. 【提示】(Ⅰ)利用数列的递推关系即可求a 3 的值.(Ⅱ)利用作差法求出数列{a n }的通项公式,利用等比数列的前n 项和公式即可求数列{a n } 的前n 项和T n .(Ⅲ)利用构造法,结合裂项法进行求解即可证明不等式.【考点】数列与不等式的综合,数列的求和。
2015广东高考理科数学试卷(word文档)
2015年全国普通高等学校招生统一考试(广东卷)理科数学一、选择题1.若集合()(){}()(){}|410,|410M x x x N x x x =++==--=,则M N ⋂= A.∅ B.{}1,4-- C.{}0 D.{}1,42.若复数()32z i i =-(i 是虚数单位),则z =A.32i -B.32i +C.23i +D.23i - 3.下列函数中,既不是奇函数,也不是偶函数的是A.x y x e =+B.1y x x =+C.122x x y =+D.y =4.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球,从袋中任取2个球,所取的2个球中恰有一个1白球,1个红球的概率为A.1B.1121C.1021D.5215.平行于直线210x y ++=且与圆225x y +=相切的直线的方程是A.20x y -+=或20x y -=B. 20x y ++=或20x y += C.250x y -+=或250x y --= D. 250x y ++=或250x y +-=6.若变量,x y 满足约束条件45813,02x y x y +≥⎧⎪≤≤⎨⎪≤≤⎩则32z x y =+的最小值为A.315 B.6 C.235D.4 7、已知双曲线C :2222-1(00)x y a b a b =>>,的离心率为5e 4=,且其右焦点为F 2(5,0),则双曲线的方程为A 、22-143x y =B 、22-1169x y =C 、22-1916x y =D 、22-134x y = 8、若空间中n 个不同的点,两两距离都相等,则正整数n 的取值A 、大于5B 、等于5C 、至多等于4D 、至多等于3 二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.) (一)必做题(9~13题)9、在41)的展开式中,x 的系数为 .10、在等差数列{n a }中,若34567a a a a a ++++=25,则28a a +=___11、设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若1,26a B C π===,则b =___12、某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了____条毕业留言(用数字作答)13、已知随机变量X 服从二项分布B (n ,p ),若E (X )=30,D (X )=20,则p =___ (二)选做题(14、15题,考生只能从中选作一题)14、(坐标系与参数方程选做题)已知直线l 的极坐标方程为2sin()4πρθ-=A 的极坐标为A (74π),则点A 到直线l 的距离为 .15、(几何证明选讲选做题)如图1,已知AB 是圆O 的直径,4,=AB EC 是圆O 的切线,切点为C ,1=BC ,过圆心O 作BC 的平行线,分别交EC 和AC 于点D 和点P ,则OD =_______.三、解答题)2,0(),cos ,(sin 22-22x oy 1216π∈==x x x n m ),,(中,已知向量分)在平面直角坐标系、((1)若m ⊥n ,求tanx 的值;(2)若m 与n 的夹角为3π,求x 的值;17、(本小题满分12分) 某工厂36名工人的年龄数据如下表:(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据; (2)计算(1)中样本的均值x 的方差s 2;(3)36名工人中年龄在x -s 与x +s 之间有多少人?所占的百分比是多少?(精确到0.01%)18、(本小题满分14分)如图2,三角形DC P 所在的平面与长方形CD AB 所在的平面垂直,D C 4P =P =,6AB =,C 3B =.点E 是CD 边的中点,点F<G 分别在线段AB ,BC 上,且AF=2F ,CG=2GB 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)求二面角P-AD-C的正切值;
(3)求直线PA与直线FG所成角的余弦值.
(1)证明:
∵PD=PC,E是CD边的中点
∴PE⊥DC
又 ∵平面PDC⊥平面ABCD,
平面PDC⊥平面ABCD=DC
∴PE⊥平面ABCD
又 ∵FG平面ABCD
∴PE⊥FG.
(2)解:∵PE⊥平面ABCD,
C.2x-y+5=0或2x-y-5=0D.2x+y+=0或2x+y-=0
6.若变量x、y满足约束条件,则z=3x+2y的最小值为
A.4B.C.6D.
7.已知双曲线C:的离心率e=,且其右焦点为F2(5,0),则双曲线C的方程为
A.B.C.D.
8.若空间中n个不同的点两两距离都相等,则正整数n的取值
A.至多等于3B.至多等于4C.等于5D.大于5
2015年广东省高等学校招生统一考试理科数学
一、选择题
1.若集合M={x│(x+4)(x+1)=0},N={x│(x-4)(x-1)=0},则M∩N=
A.{1,4}B.{-1,-4}C.{0}D.
2.若复数z=i(3-2i)(i是虚数单位),则=
A.2-3iB.2+3iC.3+2iD.3-2i
3.下列函数中,既不是奇函数,也不是偶函数的是()
∴∠PDE是二面角P-AD-C的平面角.
在Rt△PDE中,DE=DC=AB=3,PE===
tan∠PDE==
(3)连接AC
∵==
∴FG∥CA.
∠CAP即为异面直线PA与直线FG所成角.
AC===3
∵PE⊥平面ABCD,∴PE⊥AD
∵ 四边形ABCD是长方形,
∴AD⊥DC
∵PE∩DC=E
∴AD⊥平面PDC
cos<m,n>=,
∴sinx-cosx=cos,即sin(x-)=
又 ∵x∈(0,),x-∈(-,)
∴x-=,∴x=.
17.(本小题满分12分)
某工厂36名工人的年龄数据如下表:
工人编号
年龄
工人编号
年龄
工人编号
年龄
工人编号
年龄
1
40
10
36
19
27
28
34
2
44
11
31
20
43
29
39
3
40
12
38
13.已知随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,则p=.
(二)、选做题
14(坐标系与参数方程选做题)已知直线t的极坐标方程为2sin(-)=,点A的极坐标为A(2,),则点A到直线l的距离为.
15.(几何证明选做题)如图1,已知AB是圆O的直径,AB=4,EC是圆O的切线,切点C,BC=1,过圆心O作BC的平行线,分别交EC和AC于点D和点P,则OD=8.
解:设36名工人中年龄是X岁,则
P(-s<X<+s)=P(40+<X<40-)=≈63.89%
答:36名工人中年龄在-s与+s之间有23人,所占的百分比63.89%.
18.(本小题满分12分)
如图2,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.点E是CD边的中点,点F、G分别在线段AB,BC上,且AF=2FB,CG=2GB.
答:44,40,36,43,36,37,44,43,37.
(2)计算(1)中样本的均值和方差s2;
均值=(44+40+36+43+36+37+44+43+37)=40
方差s2=[(44-40)2+(40-40)2+…+(43-40)2+(37-40)2]=
(3)36名工人中年龄在-s与+s之间有多少人,所占的百分比是多少?(精确到0.01%)?
21
41
30
43
4
41
13
39
22
37
31
38
5
33
14
43
23
34
32
42
6
40
15
45
24
42
33
53
7
45
16
39
25
37
34
37
8
42
17
38
26
44
35
49
9
43
18
36
27
42
36
39
(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;
(3)令f′ (x)=0得x=-1,∴f(-1)=-a
A.y=B.y=x+C.y=2x+D.y=x+ex
4.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球,从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为
A.B.C.D.1
5.平行于直线2x+y+1=0且与圆x2+y2=5相切的直线方程是
A.2x+y+5=0或2x+y-5=0B.2x+y+=0或2x+y-=0
16.(本小题满分12分)
在平面直角坐标系xOy中,已知向量m=(,-),n=(sinx,cosx),x∈(0,)
(1)若m⊥n,求tanx的值;
(2)若m与n的夹角为,求x的值.
解:∵m⊥n,
∴mn=0,即sinx-cosx=0
∴tanx==1
(2)mn=sinx-cosx,│m│==1,│n│==1
二、填空题:
(一)、必做题
9.在(-1)4的展开式中,x的系数为6。
10.在等差数列{an}中,若a3+a4+a5+a6+a7=25,则a2+a8=10
11.设△ABC的内角A、B、C的对边分别为a、b、c,若a=,sinB=,C=,
则b=1.
12.某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了1560.条毕业留言。(用数字作答)
∴AD⊥PD
∴PA===5
在△PAC中,
∴cos∠CAP===
19.(本小题满分14分)
设a>1,函数f(x)=(1+x2)ex-a.
(1)求f(x)的单调区间;
(2)证明:f(x)在(-∞,+∞)上仅有一个零点;
(3)若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP平行(O是坐标原点),证明m≤-1.
解:(1)f′ (x)=2xex+(1+x2)ex=(1+x)2ex≥0对一切x∈R恒成立
∴f(x)的单调递增区间为(-∞,+∞)
(2)f(0)=1-a<0,f(1)=2e-a>0,f(x)在(0,1)上是连续的,
∴f(x)在(0,1)上有一个零点,
又∵f(x)在(-∞,+∞)上单调递增
∴f(x)在(-∞,+∞)上仅有一个零点,