七年级:三角形三线合一性质专题

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F E D C B A E D
C B A
B '
C B
A 专题四(第九讲):三角形三线性质
金牌数学专题系列 导入
知识要点
知识点1 :
三角形的
重要线段
意义 图形
表示法
三角形 的高线
从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段 D C
B A
1.AD 是△ABC 的BC 上的高线.
2.AD ⊥BC 于D.
3.∠ADB=∠ADC=90°. 三角形 的中线
三角形中,连结一个顶点和它对边中的 线段 D C
B A
1.AE 是△ABC 的BC 上的中线.
2.BE=EC=
12
BC. 三角形的 角平分线
三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段
21
D C
B A
1.AM 是△ABC 的∠BAC 的平分线.
2.∠1=∠2=
1
2
∠BAC.
双基练习
一、选择题:
1.如图1所示,在△ABC 中,∠ACB=90°,把△ABC 沿直线AC 翻折180°,使点B 落在点B ′的位置,则线段AC 具有性质( )
A.是边BB ′上的中线
B.是边BB ′上的高
C.是∠BAB ′的角平分线
D.以上三种性质合一
(1) (2)
(3) 2.如图2所示,D,E 分别是△ABC 的边AC,BC 的中点,则下列说法正确的是( )
A.DE 是△BCD 的中线
B.BD 是△ABC 的中线
C.AD=DC,BD=EC
D.∠C 的对边是DE
3.如图3所示,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点, 且S △ABC =4cm 2
,则S 阴影等于( )
小学时上课爱睡觉。

一次语文课老师布置作业写一篇作文,题目是《假如我是蜘蛛》。

F E D
C A 6
5
4
321F E C
B A 140︒80︒1 A.2cm 2 B.1cm 2
C.
12cm 2 D.14
cm 2
4.在△ABC,∠A=90°,角平分线AE 、中线AD 、高AH 的大小关系为( )
A.AH<AE<AD
B.AH<AD<AE
C.AH ≤AD ≤AE
D.AH ≤AE ≤AD
5.在△ABC 中,D 是BC 上的点,且BD:DC=2:1,S △ACD =12,那么S △ABC 等于( ) A.30 B.36 C.72 D.24
6.如果三角形的三个内角的度数比是2:3:4,则它是( )
A.锐角三角形
B.钝角三角形;
C.直角三角形
D.钝角或直角三角形 7.下列说法正确的是( )
A.三角形的内角中最多有一个锐角;
B.三角形的内角中最多有两个锐角
C.三角形的内角中最多有一个直角;
D.三角形的内角都大于60° 8.已知三角形的一个内角是另一个内角的
23,是第三个内角的4
5
,则这个三角形各内角的度数分别为( ) A.60°,90°,75° B.48°,72°,60° C.48°,32°,38° D.40°,50°,90°
9.已知△ABC 中,∠A=2(∠B+∠C),则∠A 的度数为( ) A.100° B.120° C.140° D.160° 10.已知三角形两个内角的差等于第三个内角,则它是( )
A.锐角三角形
B.钝角三角形
C.直角三角形
D.等边三角形 11.设α,β,γ是某三角形的三个内角,则α+β,β+γ,α+γ 中 ( )
A.有两个锐角、一个钝角
B.有两个钝角、一个锐角
C.至少有两个钝角
D.三个都可能是锐角 12.在△ABC 中,∠A=
12∠B=1
3
∠C,则此三角形是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形
13.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.无法确定
14.如果三角形的一个外角和与它不相邻的两个内角的和为180°,那么与这个外角相邻的内角的度数为( ) A.30° B.60° C.90° D.120°
15.已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为( ) A.90° B.110° C.100° D.120° 16.已知等腰三角形的一个外角是120°,则它是( )
A.等腰直角三角形;
B.一般的等腰三角形;
C.等边三角形;
D.等腰钝角三角形 17.如图1所示,若∠A=32°,∠B=45°,∠C=38°,则∠DFE 等于( )
A.120°
B.115°
C.110°
D.105°
(1) (2) (3) 18.如图2所示,在△ABC 中,E,F 分别在AB,AC 上,则下列各式不能成立的是( )
A.∠BOC=∠2+∠6+∠A;
B.∠2=∠5-∠A;
C.∠5=∠1+∠4;
D.∠1=∠ABC+∠4 二、填空题:
1.直角三角形两锐角的平分线所夹的钝角为_______度.
2.等腰三角形的高线、角平分线、中线的总条数为________.
3.在△ABC 中,∠B=80°,∠C=40°,AD,AE 分别是△ABC 的高线和角平分线, 则∠DAE 的度数为_________. 5.三角形中,若最大内角等于最小内角的2倍,最大内角又比另一个内角大20°,则此三角形的最小内角的度数是________.
D C B A
2
1C 'F
E C A 6.在△ABC 中, 若∠A+∠B >∠C,则此三角形为_______三角形,若∠A+∠B=∠C,则此三角形为_______三角形;若∠A+∠B <∠C,则此三角形是_____三角形.
7.已知等腰三角形的两个内角的度数之比为1: 2, 则这个等腰三角形的顶角为_______. 8.在△ABC 中,∠B,∠C 的平分线交于点O,若∠BOC=132°,则∠A=_______度. 9.三角形的三个外角中,最多有_______个锐角. 10.如图3所示,∠1=_______. 11.如果一个三角形的各内角与一个外角的和是225°,则与这个外角相邻的内角是____度. 12.已知等腰三角形的一个外角为150°,则它的底角为_____.
13.∠ABC 的内角平分线与∠ACB 的外角平分线交于点D,∠ABC 与∠ACB 的相邻外角平分线交于点E,且∠A=60°, 则∠BOC=_______,∠D=_____,∠E=________.
14.如图所示,已知∠1=20°,∠2=25,∠A=35°,则∠BDC 的度数为________
三、基础训练:
1.如图所示,在△ABC 中,∠C-∠B=90°,AE 是∠BAC 的平分线,求∠AEC 的度数.
2.在△ABC 中,AB=AC,AD 是中线,△ABC 的周长为34cm,△ABD 的周长为30cm, 求AD 的长.
3.如图所示,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC=63°, 求∠DAC 的度数.
4
321
D
C
B
A
4.如图所示,在△ABC 中,AD ⊥BC 于D,AE 平分∠BAC(∠C>∠B), 试说明∠EAD=
1
2
(∠C-∠B).
5.如图所示,已知∠1=∠2,∠3=∠4,∠C=32°,∠D=28°,求∠P 的度数.
四、提高训练: 1.在△ABC 中,∠A=50°,高BE,CF 所在的直线交于点O,求∠BOC 的度数.
2.如图所示,将△ABC 沿EF 折叠,使点C 落到点C ′处,试探求∠1,∠2与∠C 的关系.
2
1D A E
B
A
43
P
21
D
C B A
3.如图所示,在△ABC 中,∠B=∠C,FD ⊥BC,DE ⊥AB,∠AFD=158°, 求∠EDF 的度数.
4.如图,已知,在直角△ABC 中,∠C=90°,BD 平分∠ABC 且交AC 于D . (1)若∠BAC=30°,求证:AD=BD ;(2)若AP 平分∠BAC 且交BD 于P ,求∠BPA 的度数.
五、探索发现:
1. 如图5所示的是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案花盆的总数为s.按此规律推断s 与n 有什么关系,并求出当n=13时,s 的值.
2. 如图所示,在△ABC 中,∠A=α,△ABC 的内角平分线或外角平分线交于点P, 且∠P=β,试探求下列各图中α
与β的关系,并选择一个加以说明.
(1)
P
C B
A (2)
P
C
B
A
(3)
C
B
A
F E D C B A
n=2,s=3
n=3,s=6n=4,s=9。

相关文档
最新文档