七年级上册专题训练角的比较和计算
人教版数学七年级上册4.3.2《角的比较和运算》教案
人教版数学七年级上册4.3.2《角的比较和运算》教案一. 教材分析《角的比较和运算》是人教版数学七年级上册第四章第三节的内容,本节内容主要让学生掌握角的比较方法,了解角的大小与边的长短没有关系,学会用符号表示角的大小,以及学会角的运算方法。
教材通过生活实例和几何图形,引导学生探究角的大小与边的长短之间的关系,从而引出角的符号表示方法,再通过角的加减运算,让学生进一步理解和掌握角的概念。
二. 学情分析七年级的学生已经掌握了角的基本概念,对于角的画法和识别有一定的基础。
但是,对于角的比较和运算,他们可能还不太熟悉,需要通过实例和练习来进一步理解和掌握。
此外,学生可能对于角的符号表示方法感到困惑,需要教师进行详细的解释和引导。
三. 教学目标1.让学生掌握角的比较方法,了解角的大小与边的长短没有关系。
2.让学生学会用符号表示角的大小。
3.让学生学会角的运算方法。
四. 教学重难点1.角的比较方法。
2.角的符号表示方法。
3.角的运算方法。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。
通过生活实例和几何图形,引导学生探究角的大小与边的长短之间的关系,从而引出角的符号表示方法,再通过角的加减运算,让学生进一步理解和掌握角的概念。
六. 教学准备1.PPT课件。
2.几何图形。
3.练习题。
七. 教学过程导入(5分钟)通过一个生活实例,如钟表的指针所形成的角度,引导学生思考角的大小与边的长短之间的关系。
让学生认识到角的大小与边的长短没有关系,而是与角的开口大小有关。
呈现(10分钟)通过PPT课件,展示各种几何图形中的角,让学生观察和比较这些角的大小。
引导学生发现,角的大小与边的长短没有关系,而是与角的开口大小有关。
操练(10分钟)让学生用尺子和圆规画出不同大小的角,并比较这些角的大小。
教师巡回指导,解答学生的疑问。
巩固(10分钟)让学生用符号表示所画出的角的大小。
例如,用“∠1”表示第一个角,“∠2”表示第二个角,等等。
《4.3.2 角的比较与运算》同步练习 2021-2022学年人教版七年级数学上册
4.3.2 角的比较与运算一.填空题1.如图,∠AOB∠AOC,∠AOB∠BOC(填>,=,<);用量角器度量∠BOC =,∠AOC=,∠AOC∠BOC.2.如图,∠AOC=+=﹣;∠BOC=﹣=﹣.3.如图,O是直线AB上一点,∠BOD=90°,∠COE=90°,那么下列各式中错误的是()A.∠AOC=∠DOE B.∠COD=∠BOE C.∠AOD=∠BOD D.∠BOE=∠AOC 4.将一副常规三角板拼成如图所示的图形,则∠ABC=度.5.如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC=度.6.OC是从∠AOB的顶点O引出的一条射线,若∠AOB=90°,∠AOB=2∠BOC,求∠AOC的度数.7.如图.∠AOB=∠COD,则()A.∠1>∠2B.∠1=∠2C.∠1<∠2D.∠1与∠2的大小无法比较8.如图,∠AOB=∠AOC,∠BOC=110°,∠AOB=.9.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,则∠AOD+∠COB的度数为度.10.如图所示,把一张长方形纸片ABCD沿EF折叠,点C、D分别落在C'、D'的位置上,EC'交AD于点G,已知∠FEC=48°,那么∠BEG=.11.钟面上8:30这一时刻,钟面上时针与分针所形成的角度是.12.已知∠AOB=120°,∠BOC=30°,则∠AOC=.13.用三角板画15°角,如图所示,使30°角的顶点与45°角的顶点,30°角的相邻直角边与45°角的相邻斜边重合,用铅笔沿AB,ED画线,移开三角板,延长DE 与AB交于点A,∠DAB=.二.选择题14.下列说法正确的是()A.不大于90的角是锐角B.一个钝角减去比它小的钝角,差是锐角C.钝角与锐角的差小于直角D.两个锐角的和是钝角15.下列说法错误的是()A.角的大小与角的边画出部分的长短没有关系B.角的大小与它们的度数大小是一致的C.角的和差倍分的度数等于它们的度数的和差倍分D.若∠A+∠B>∠C,那么∠A一定大于∠C16.用一副三角板不能画出()A.75°角B.135°角C.160°角D.105°角17.如果∠1﹣∠2=∠3,且∠4+∠2=∠1,那么∠3和∠4间的关系是()A.∠3>∠4B.∠3=∠4C.∠3<∠4D.不确定18.在∠AOB的内部任取一点C,作射线OC,那么有()A.∠AOC=∠BOC B.∠AOC>∠BOC C.∠BOC>∠AOB D.∠AOB>∠AOC三.解答题19.如图,把∠AOB绕着O点按逆时针方向旋转一个角度,得∠A′OB′,指出图中所有相等的角,并简要说明理由.20.如图:∠AOB是哪几个角的和?∠DOC是哪几个角的和?若∠AOB=∠COD,则还有哪两个角相等?21.下面是小马虎解的一道题题目:在同一平面上,若∠BOA=70°,∠BOC=15°,求∠AOC的度数.解:根据题意可画出图∵∠AOC=∠BOA﹣∠BOC=70°﹣15°=55°∴∠AOC=55°若你是老师,会判小马虎满分吗?若会,说明理由.若不会,请将小马虎的错误指出,并给出你认为正确的解法.22.已知∠AOB=90°,∠COD=30°.(1)如图1,当点O、A、C在同一条直线上时,∠BOD的度数是;(2)将∠COD从图1的位置开始,绕点O逆时针方向旋转n°(即∠AOC=n°),且0<n<180.①如果∠COD的一边与∠AOB的一边垂直,则n=.②当60<n<90时(如图2),作射线OM平分∠AOC,射线ON平分∠BOD,试求∠MON 的度数.参考答案与试题解析1.如图,∠AOB>∠AOC,∠AOB>∠BOC(填>,=,<);用量角器度量∠BOC =30°,∠AOC=25°,∠AOC>∠BOC.【分析】根据图形,射线OC在∠AOB的内部,即可判断角之间的大小关系.【解答】解:由图知,射线OC在∠AOB的内部,所以∠AOB>∠AOC,∠AOB>∠BOC,用量角器量得∠BOC=25°,∠AOC=30°,故∠AOC>∠BOC.故答案为:>,>,25°,30°,>.2.如图,∠AOC=∠AOB+∠BOC=∠AOD﹣∠COD;∠BOC=∠BOD ﹣∠COD=∠AOC﹣∠AOB.【分析】根据图形即可求出∠AOC及∠BOC的不同表示形式.【解答】解:根据图形,∴∠AOC=∠AOB+∠BOC=∠AOD﹣∠COD;∠BOC=∠BOD﹣∠COD=∠AOC﹣∠AOB.故答案为:∠AOB+∠BOC,∠AOD﹣∠COD,∠BOD﹣∠COD,∠AOC﹣∠AOB.3.如图,O是直线AB上一点,∠BOD=90°,∠COE=90°,那么下列各式中错误的是()A.∠AOC=∠DOE B.∠COD=∠BOE C.∠AOD=∠BOD D.∠BOE=∠AOC 【分析】由∠BOD=90°,∠COE=90°,得∠AOD=∠BOD=90°.根据同角的余角相等,得∠COD=∠BOE,∠AOC=∠DOE.那么,∠AOC+∠BOE=90°.进而推断出A、B、C不合题意,D符合题意.【解答】解:A:∵∠BOD=90°,∴∠AOD=180°﹣∠BOD=90°.∴∠AOC+∠COD=90°.又∵∠COE=∠COD+∠DOE=90°,∴∠AOC=∠DOE.故A不合题意.B:∵∠COE=∠COD+∠DOE=90°,∠BOD=∠BOE+∠DOE=90°,∴∠COD=∠BOE.故B不符合题意.C:∵BOD=90°,∴∠AOD=180°﹣∠BOD=90°.∴∠AOD=∠BOD.故C不符合题意.D:由B知:∠BOE=∠COD.∵∠AOD=∠AOC+∠DOC=∠AOC+∠BOE=90°.∴∠BOE与∠AOC不一定相等.故选:D.4.将一副常规三角板拼成如图所示的图形,则∠ABC=135度.【分析】根据图形得出∠ABD和∠CBD的度数,即可求出∠ABC的度数.【解答】解:∵∠ABD=90°,∠DBC=45°,∴∠ABC=∠ABD+∠BCD=90°+45°=135°.故答案为:135.5.如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC=180度.【分析】先利用∠AOD+∠COD=90°,∠COD+∠BOC=90°,可得∠AOD+∠COD+∠COD+∠BOC=180°,而∠BOD=∠COD+∠BOC,∠AOD+∠BOD=∠AOB,于是有∠AOB+∠COD=180°.【解答】解:如右图所示,∵∠AOD+∠COD=90°,∠COD+∠BOC=90°,∠BOD=∠COD+∠BOC,∠AOD+∠BOD=∠AOB,∴∠AOD+∠COD+∠COD+∠BOC=180°,∴∠AOD+2∠COD+∠BOC=180°,∴∠AOB+∠COD=180°.故答案是180.6.OC是从∠AOB的顶点O引出的一条射线,若∠AOB=90°,∠AOB=2∠BOC,求∠AOC的度数.【分析】利用角的和差关系计算,注意此题要分两种情况.【解答】解:①如图1所示,OC在∠AOB内部,∵∠AOB=90°,∠AOB=2∠BOC,∴∠BOC=×90°=45°,∴∠AOC=∠AOB﹣∠BOC=90°﹣45°=45°;②如图2所示,OC在∠AOB外部,∵∠AOB=90°,∠AOB=2∠BOC,∴∠BOC=×90°=45°,又∵∠AOC=∠AOB+∠BOC,∴∠AOC=90°+45°=135°.7.如图.∠AOB=∠COD,则()A.∠1>∠2B.∠1=∠2C.∠1<∠2D.∠1与∠2的大小无法比较【分析】根据∠AOB=∠COD,再在等式的两边同时减去∠BOD,即可得出答案.【解答】解:∵∠AOB=∠COD,∴∠AOB﹣∠BOD=∠COD﹣∠BOD,∴∠1=∠2;故选:B.8.如图,∠AOB=∠AOC,∠BOC=110°,∠AOB=125°.【分析】本题是角的计算问题,根据周角是360°即可求出∠AOB的度数.【解答】解:设∠AOB=∠AOC=x,则2x+110°=360°,解得x=125°,∴∠AOB=125°,故答案为125°.9.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,则∠AOD+∠COB的度数为180度.【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB,据此即可求解.【解答】解:∠AOD+∠COB=∠AOD+∠AOC+∠AOD+∠BOD=∠COD+∠AOB=90°+90°=180°.故答案是:180.10.如图所示,把一张长方形纸片ABCD沿EF折叠,点C、D分别落在C'、D'的位置上,EC'交AD于点G,已知∠FEC=48°,那么∠BEG=84°.【分析】由折叠的性质可得∠FEG=∠FEC=48°,再由点E在BC上,可求得∠BEG 的度数.【解答】解:∵长方形纸片ABCD沿EF折叠,∠FEC=48°,∴∠FEG=∠FEC=48°,∵点E在BC上,∴∠BEG=180°﹣∠FEC﹣∠FEG=180°﹣48°﹣48°=84°.故答案为:84°.11.钟面上8:30这一时刻,钟面上时针与分针所形成的角度是75°.【分析】根据钟面上圆心角的大小关系进行计算即可.【解答】解:钟面上每相邻两个数字之间所对应的圆心角为360°÷12=30°,即∠DOC=∠COB=30°,而钟面上8:30时,时针指向“8与9中间”,因此∠AOB=×30°=15°,所以钟面上8:30这一时刻,钟面上时针与分针所形成的角∠AOD=30°×2+15°=75°,故答案为:75°.12.已知∠AOB=120°,∠BOC=30°,则∠AOC=90°或150°.【分析】由于点C的位置不确定,所有此题要分类讨论,利用角之间相加减求出∠AOC 的大小.【解答】解:①当点C在射线OB左侧时,∠AOC1=∠AOB﹣∠BOC1=120°﹣30°=90°,②当点C在射线OB右侧时,∠AOC2=∠AOB+∠BOC2=120°+30°=150°.故答案为90°或150°.13.用三角板画15°角,如图所示,使30°角的顶点与45°角的顶点重合,30°角的相邻直角边与45°角的相邻斜边重合,用铅笔沿AB,ED画线,移开三角板,延长DE 与AB交于点A,∠DAB=15°.【分析】根据角的和差计算即可.【解答】解:用三角板画15°角,如图所示,使30°角的顶点与45°角的顶点重合,∴∠DAB=∠CAB﹣∠CAD=45°﹣30°=15°.故答案为:重合,15°.14.下列说法正确的是()A.不大于90的角是锐角B.一个钝角减去比它小的钝角,差是锐角C.钝角与锐角的差小于直角D.两个锐角的和是钝角【分析】不大于90°的角还有直角,故A错误,135°的钝角﹣1°的锐角差还是钝角,故C错误,两个较小的锐角和可能还是锐角也可能是直角,故D错误,因为两个钝角都大于90°且小于180°,故B正确.【解答】解:∵不大于90°的角还有直角,故A错误,举例:135°的钝角﹣1°的锐角差还是钝角,故C错误,∵两个较小的锐角和可能还是锐角也可能是直角,故D错误,∵两个钝角都大于90°且小于180°,故B正确,故选:B.15.下列说法错误的是()A.角的大小与角的边画出部分的长短没有关系B.角的大小与它们的度数大小是一致的C.角的和差倍分的度数等于它们的度数的和差倍分D.若∠A+∠B>∠C,那么∠A一定大于∠C【分析】根据角的大小与角的开口大小有关,与角的边的长短无关,角的大小是通过角的度数来体现的,然后对各选项分析判断后利用排除法求解.【解答】解:A、角的大小与角的边画出部分的长短没有关系,因为角的大小只与角的开口有关,故本选项正确;B、角的大小与它们的度数大小是一致的,正确;C、角的和差倍分的度数等于它们的度数的和差倍分,正确;D、∠A+∠B>∠C,∠A与∠C的大小关系无法确定,故本选项错误.故选:D.16.用一副三角板不能画出()A.75°角B.135°角C.160°角D.105°角【分析】用三角板画出角,无非是用角度加减法.根据选项一一分析,排除错误答案.【解答】A选项:75°的角,45°+30°=75°;B选项:135°的角,45°+90°=135°;C选项:160°的角,无法用三角板中角的度数拼出;D选项:105°的角,45°+60°=105°.故选:C.17.如果∠1﹣∠2=∠3,且∠4+∠2=∠1,那么∠3和∠4间的关系是()A.∠3>∠4B.∠3=∠4C.∠3<∠4D.不确定【分析】由∠1﹣∠2=∠3,可把∠1等效替换为∠2与∠3的和,进而求解.【解答】解:∵∠1﹣∠2=∠3,∴∠1=∠2+∠3,又∠4+∠2=∠1,即∠4+∠2=∠2+∠3,∴∠4=∠3故选:B.18.在∠AOB的内部任取一点C,作射线OC,那么有()A.∠AOC=∠BOC B.∠AOC>∠BOC C.∠BOC>∠AOB D.∠AOB>∠AOC 【分析】根据题意画出图,观察图即可得答案.【解答】解:如图:∵C点是∠AOB内部任一点,∴∠AOC与∠BOC的大小无法确定,由图可知∠AOB必大于∠AOC,故选:D.19.如图,把∠AOB绕着O点按逆时针方向旋转一个角度,得∠A′OB′,指出图中所有相等的角,并简要说明理由.【分析】可根据旋转前后,图形的大小形状不变,旋转角相等的性质,寻找相等角.【解答】解:①∠AOB=∠A′OB′.因∠A′OB′是由∠AOB旋转得到的.②∠AOA′=∠BOB′.∵∠AOB=∠A′OB′,∴∠AOB﹣∠A′OB=∠A′OB′﹣∠A′OB,∴∠AOA′=∠BOB′.20.如图:∠AOB是哪几个角的和?∠DOC是哪几个角的和?若∠AOB=∠COD,则还有哪两个角相等?【分析】本题是角的计算问题,利用角的加法定义即可.【解答】解:由图可知,∠AOB=∠AOD+∠DOB,∠DOC=∠DOB+∠BOC,∵∠AOB=∠COD,∠AOD=∠AOB﹣∠BOD,∠COB=∠COD﹣∠BOD,∴∠AOD=∠COB.21.下面是小马虎解的一道题题目:在同一平面上,若∠BOA=70°,∠BOC=15°,求∠AOC的度数.解:根据题意可画出图∵∠AOC=∠BOA﹣∠BOC=70°﹣15°=55°∴∠AOC=55°若你是老师,会判小马虎满分吗?若会,说明理由.若不会,请将小马虎的错误指出,并给出你认为正确的解法.【分析】在同一平面内,若∠BOA与∠BOC可能存在两种情况,即当OC在∠AOB的内部或OC在∠AOB的外部.【解答】解:如图,当OC在∠AOB的内部时,∠AOC=∠BOA﹣∠BOC=55°,当OC在∠AOB的外部时,∠AOC=∠BOA+∠BOC=85°,故∠AOC的度数是55°或85°.22.已知∠AOB=90°,∠COD=30°.(1)如图1,当点O、A、C在同一条直线上时,∠BOD的度数是60°;(2)将∠COD从图1的位置开始,绕点O逆时针方向旋转n°(即∠AOC=n°),且0<n<180.①如果∠COD的一边与∠AOB的一边垂直,则n=60、90、150.②当60<n<90时(如图2),作射线OM平分∠AOC,射线ON平分∠BOD,试求∠MON的度数.【分析】(1)根据∠AOB=∠AOD+∠BOD=90°,而∠AOD=∠COD=30°,代入即可求出结论;(2)①在旋转的过程中,能够发现∠COD的一边与∠AOB的一边垂直共有三种情况,分别求出每种情况下旋转的度数即可;②根据角与角之间的关系,将直接求∠MON得度数转换成求∠AOM,∠DON的度数,再依照角的关系即可求得结论.【解答】解:(1)∠BOD=∠AOB﹣∠AOD=∠AOB﹣∠COD=90°﹣30°=60°.故答案为:60°.(2)①∵0<n<180,∴分三种情况.a:点D在射线0B上,∠AOC=∠AOB﹣∠COD=90°﹣30°=60°;b:点C在射线OB上,∠AOC=∠AOB=90°;c:点D在AO的延长线上,∠AOC=180°﹣∠COD=180°﹣30°=150°.综上得n为60、90、150.故答案为:60、90、150.②∵∠AOC=n°,OM平分∠AOC,∴∠AOM=n°,∠AOD=∠AOC+∠COD=n°+30°,∠BOD=∠AOD﹣∠AOB=n°+30°﹣90°=n°﹣60°,∵ON平分∠BOD,∴∠DON=∠BOD=×(n°﹣60°)=n°﹣30°,∠MON=∠AOD﹣∠AOM﹣∠DON=n°+30°﹣n°﹣(n°﹣30°)=60°。
人教版初中数学七年级上册《4.3.2 角的比较与运算》同步练习卷(含答案解析
人教新版七年级上学期《4.3.2 角的比较与运算》同步练习卷一.选择题(共9小题)1.如图,点O为直线AB上一点,∠COD=90°,OE平分∠AOD.有下列四种结论,其中一定正确的个数有()个①∠AOE=∠EOD②∠AOC=∠EOD③∠AOC+∠BOD=90°④∠BOD=2∠COEA..4B.3C.2D.12.如图,下列条件中不能确定的是OC是∠AOB的平分线的是()A.∠AOC=∠BOC B.∠AOB=2∠AOCC.∠AOC+∠BOC=∠AOB D.3.如图,O是直线AB上的一点,过点O任意作射线OC,OD平分∠AOC,OE 平分∠BOC,则∠DOE()A.一定是钝角B.一定是锐角C.一定是直角D.都有可能4.下列说法中正确的是()A.若∠AOB=2∠AOC,则OC平分∠AOBB.延长∠AOB的平分线OCC.若射线OC、OD三等分∠AOB,则∠AOC=∠DOCD.若OC平分∠AOB,则∠AOC=∠BOC5.射线OC在∠AOB的内部,下列给出的条件中不能得出OC是∠AOB的平分线的是()A.∠AOC=∠BOC B.∠AOC+∠BOC=∠AOBC.∠AOB=2∠AOC D.∠BOC=∠AOB6.用一个放大镜去观察一个角的大小,正确的说法是()A.角的度数扩大了B.角的度数缩小了C.角的度数没有变化D.以上都不对7.如图.∠AOB=∠COD,则()A.∠1>∠2B.∠1=∠2C.∠1<∠2D.∠1与∠2的大小无法比较8.已知∠A=60°24′,∠B=60.24°,∠C=60°14′24″,则()A.∠A>∠B>∠C B.∠A>∠B=∠C C.∠B>∠C>∠A D.∠B=∠C>∠A 9.已知∠AOB和∠DEF,如果移动∠DEF使得顶点O与顶点E重合,边ED与边OA叠合,边EF在∠AOB内部,那么∠AOB和∠DEF大小关系是()A.∠AOB>∠DEF B.∠AOB<∠DEF C.∠AOB=∠DEF D.不能确定二.填空题(共6小题)10.已知:如图,AOB是直线,∠1:∠2:∠3=1:3:2,则∠DOB=.11.以∠AOB的顶点O为端点引射线OP,使∠AOP:∠BOP=3:2,若∠AOB=17°,∠AOP的度数为.12.已知∠AOB=80°,以O为顶点,OB为一边作∠BOC=20°,OD平分∠AOC,则∠BOD度数为.13.比较大小:52°52′52.52°.(填“>”、“<”或“=”)14.比较:28°15′28.15°(填“>”、“<”或“=”).15.若∠A=∠B,∠B=2∠C,则∠A2∠C(填<,>或=).三.解答题(共18小题)16.如图,O为直线AB上一点,∠AOC=60°,OD平分∠OC,∠DOE=90°.(1)求出∠BOD的度数;(2)请通过计算说明OE是否平分∠BOC.17.如图所示,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数?18.已知,O为直线AB上一点,∠DOE=90°.(1)如图1,若∠AOC=130°,OD平分∠AOC.①求∠BOD的度数;②请通过计算说明OE是否平分∠BOC.(2)如图2,若∠BOE:∠AOE=2:7,求∠AOD的度数.19.如图1,点O为直线AB上的一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按每秒10°的速度沿逆时针旋转一周,在旋转的过程中,假如第t秒时,OA、OC、ON三条射线构成相等的角,求此时t的值为多少?(2)将图1中的三角板绕点O顺时针旋转至图2,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.20.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=135°,将一个含45°角的直角三角尺的一个顶点放在点O处,斜边OM与直线AB重合,另外两条直角边都在直线AB的下方.(1)将图1中的三角尺绕着点O逆时针旋转90°,如图2所示,此时∠BOM=;在图2中,OM是否平分∠CON?请说明理由;(2)紧接着将图2中的三角板绕点O逆时针继续旋转到图3的位置所示,使得ON在∠AOC的内部,请探究:∠AOM与∠CON之间的数量关系,并说明理由;(3)将图1中的三角板绕点O按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为(直接写出结果).21.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC 的内部,当OM平分∠BOC时,∠BON=;(直接写出结果)(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM 之间的数量关系.(直接写出结果,不须说明理由)22.已知,∠AOD=160°,OB、OM、ON 是∠AOD内的射线(1)如图1,若OM平分∠AOB,ON平分∠BOD,则∠MON=°(2)如图2,OC是∠AOD内的射线,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD,当射线OB在∠AOC内时,求∠MON的大小;(3)如图2,在(2)的条件下,当∠AOB=2t°时,∠AOM:∠DON=2:3,求t 的值.23.如图,已知∠AOB=108°,OE是∠AOB的平分线,OC在∠AOE内.(1)若∠COE=∠AOE,求∠AOC的度数;(2)若∠BOC﹣∠AOC=72°,则OB与OC有怎样的位置关系?为什么?24.如图,已知∠BOC=2∠AOC,OD平分∠AOB且∠AOC=50°,求∠COD的度数.25.如图,∠AOB等于∠COD,请判断∠AOC和∠BOD的大小关系并说明理由.26.如图,∠BOD=90°,∠COE=90°,解答下列问题:(1)图中有哪些小于平角的角?用适当的方法表示出它们.(2)比较∠AOC、∠AOD、∠AOE、∠AOB的大小,并指出其中的锐角、钝角、直角、平角.(3)找出图中所有相等的角.27.如图所示,比较∠α与∠β的大小.28.∠AOB与∠COD有共同的顶点O,其中∠AOB=∠COD=60°.(1)如图①,试判断∠AOC与∠BOD的大小关系,并说明理由;(2)如图①,若∠BOC=10°,求∠AOD的度数;(3)如图①,猜想∠AOD与∠BOC的数量关系,并说明理由;(4)若改变∠AOB,∠COD的位置,如图②,则(3)的结论还成立吗?若成立,请证明;若不成立,请直接写出你的猜想.29.已知:∠AOD=160°,OB,OM,ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当射线OB绕点O在∠AOD 内旋转时,∠MON=度.(2)OC也是∠AOD内的射线,如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD,当∠BOC绕点O在∠AOD内旋转时,求∠MON的大小.(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD绕O点以每秒2°的速度逆时针旋转t秒,如图3,若∠AOM:∠DON=2:3,求t的值.30.如图,O是直线AB上一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=100°,则∠DOE=;若∠AOC=120°,则∠DOE=;(2)若∠AOC=α,则∠DOE=(用含α的式子表示),请说明理由;(3)在∠AOC的内部有一条射线OF,满足∠AOC﹣2∠BOE=4∠AOF,试确定∠AOF与∠DOE的度数之间的关系,并说明理由.31.已知∠AOB是一个定角,记为α,在∠AOB的内部作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.(1)如图①,当α=120°,∠AOC=40°时,求∠DOE的度数;(2)如图①,当射线OC在∠AOB内绕点O旋转时,∠DOE的度数是否发生变化?若变化,请说明理由;若不变,猜想∠DOE与α的关系,并证明;(3)当射线OC在∠AOB外绕点O旋转到图②位置时,直接写出∠DOE的度数(用含a的代数式表示).32.已知:∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠DOB,求∠MON的大小.(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠DOB,求∠MON的大小.33.如图①,点O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图①,若∠AOC=40°,求∠DOE的度数;(2)如图①,若∠AOC=α,直接写出∠DOE的度数(用含α的代数式表示)(3)将图①中的∠COD绕顶点O顺时针旋转至图②的位置,OE平分∠BOC.①探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;②在∠AOC的内部有一条射线OF,且∠AOC﹣3∠AOF=2∠BOE,试确定∠AOF与∠DOE的度数之间的关系,说明理由.人教新版七年级上学期《4.3.2 角的比较与运算》同步练习卷参考答案与试题解析一.选择题(共9小题)1.如图,点O为直线AB上一点,∠COD=90°,OE平分∠AOD.有下列四种结论,其中一定正确的个数有()个①∠AOE=∠EOD②∠AOC=∠EOD③∠AOC+∠BOD=90°④∠BOD=2∠COEA..4B.3C.2D.1【分析】根据角平分线定义即可判断①②;根据邻补角即可判断③,根据∠COD=90°和∠AOD=2∠AOE求出∠BOD=2∠BOD﹣2∠COE,即可判断④.【解答】解:∵OE平分∠AOD,∴∠AOE=∠EOD,故①正确;∵∠AOE=∠EOD,∠AOC<∠AOE,∴∠AOC<∠EOD,故②错误;∵∠COD=90°,∴∠AOC+∠BOD=180°﹣∠COD=90°,故③正确;∵∠BOD=180°﹣∠AOD=180°﹣2∠AOE=180°﹣2(∠AOC+∠COE)=2(90°﹣∠AOC)﹣2∠COE=2∠BOD﹣2∠COE,∴∠BOD=2∠BOD﹣2∠COE,∴∠BOD=2∠COE,故④正确;即正确的有3个,故选:B.【点评】本题考查了角平分线的定义,邻补角等知识点,能根据知识点进行推理是解此题的关键.2.如图,下列条件中不能确定的是OC是∠AOB的平分线的是()A.∠AOC=∠BOC B.∠AOB=2∠AOCC.∠AOC+∠BOC=∠AOB D.【分析】直接利用角平分线的性质分别分析得出答案.【解答】解:A、∠AOC=∠BOC能确定OC平分∠AOB,故此选项不合题意;B、∠AOB=2∠AOC能确定OC平分∠AOB,故此选项不合题意;C、∠AOC+∠COB=∠AOB不能确定OC平分∠AOB,故此选项符合题意;D、∠BOC=∠AOB,能确定OC平分∠AOB,故此选项不合题意.故选:C.【点评】此题主要考查了角平分线的性质,正确把握角平分线的定义是解题关键.3.如图,O是直线AB上的一点,过点O任意作射线OC,OD平分∠AOC,OE 平分∠BOC,则∠DOE()A.一定是钝角B.一定是锐角C.一定是直角D.都有可能【分析】直接利用角平分线的性质得出∠AOD=∠DOC,∠BOE=∠COE,进而得出答案.【解答】解:∵OD平分∠AOC,OE平分∠BOC,∴∠AOD=∠DOC,∠BOE=∠COE,∴∠DOE=×180°=90°,故选:C.【点评】此题主要考查了角平分线的定义,正确把握角平分线的定义是解题关键.4.下列说法中正确的是()A.若∠AOB=2∠AOC,则OC平分∠AOBB.延长∠AOB的平分线OCC.若射线OC、OD三等分∠AOB,则∠AOC=∠DOCD.若OC平分∠AOB,则∠AOC=∠BOC【分析】画出反例图形,即可判断A、C;根据延长线的意义和射线的意义即可判断B;根据角平分线定义即可判断D.【解答】解:A、如图,符合条件,但是OC不是∠AOB平分线,故本选项错误;B、反向延长∠AOB的角平分线OC,故本选项错误;C、如图,∠AOC=2∠DOC,故本选项错误;D、∵OC平分∠AOB,∴∠AOC=∠BOC,故本选项正确;故选:D.【点评】本题考查了角平分线的定义,射线的应用,主要考查学生的理解能力和辨析能力.5.射线OC在∠AOB的内部,下列给出的条件中不能得出OC是∠AOB的平分线的是()A.∠AOC=∠BOC B.∠AOC+∠BOC=∠AOBC.∠AOB=2∠AOC D.∠BOC=∠AOB【分析】利用角平分的定义从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线.可知B不一定正确.【解答】解:A、正确;B、不一定正确;C、正确;D、正确;故选:B.【点评】此题主要考查了从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线.6.用一个放大镜去观察一个角的大小,正确的说法是()A.角的度数扩大了B.角的度数缩小了C.角的度数没有变化D.以上都不对【分析】角的大小只与两边叉开的大小有关,放大镜不能改变角的大小.【解答】解:用放大镜看一个角的大小时,角的度数不会发生变化,故选:C.【点评】本题主要考查角的大小,明确角的大小只与两边叉开的大小有关,与其他无关是解决此类问题的关键.7.如图.∠AOB=∠COD,则()A.∠1>∠2B.∠1=∠2C.∠1<∠2D.∠1与∠2的大小无法比较【分析】根据∠AOB=∠COD,再在等式的两边同时减去∠BOD,即可得出答案.【解答】解:∵∠AOB=∠COD,∴∠AOB﹣∠BOD=∠COD﹣∠BOD,∴∠1=∠2;故选:B.【点评】本题考查了角的大小比较,此题较简单,培养了学生的推理能力.8.已知∠A=60°24′,∠B=60.24°,∠C=60°14′24″,则()A.∠A>∠B>∠C B.∠A>∠B=∠C C.∠B>∠C>∠A D.∠B=∠C>∠A 【分析】将∠A、∠B、∠C统一单位后比较即可.【解答】解:∵∠A=60°24′=60.4°,∠B=60.24°,∠C=60°14′24″=60.24°,∴∠A>∠B=∠C.故选:B.【点评】此类题是进行度、分、秒的转化计算,相对比较简单,注意以60为进制即可.9.已知∠AOB和∠DEF,如果移动∠DEF使得顶点O与顶点E重合,边ED与边OA叠合,边EF在∠AOB内部,那么∠AOB和∠DEF大小关系是()A.∠AOB>∠DEF B.∠AOB<∠DEF C.∠AOB=∠DEF D.不能确定【分析】依据叠合法,即将两个角叠合在一起比较,使两个角的顶点及一边重合,观察另一边的位置.【解答】解:如图,由叠合法可得,∠AOB>∠DEF,故选:A.【点评】本题主要考查了角的大小的比较,将两个角叠合在一起比较,使两个角的顶点及一边重合,观察另一边的位置即可.二.填空题(共6小题)10.已知:如图,AOB是直线,∠1:∠2:∠3=1:3:2,则∠DOB=120°.【分析】先设∠1为x°,则∠2=3x°,∠3=2x°,根据∠1+∠2+∠3=180°,列出方程,求出x的值,即可得出答案.【解答】解:设∠1为x°,则∠2=3x°,∠3=2x°,依题意有x+3x+2x=180,解得x=30,则∠DOB=x°+3x°=120°.故答案为:120°.【点评】本题考查了角的计算,关键是根据题意列出方程,求出x的值,用到的知识点是角的和、差.11.以∠AOB的顶点O为端点引射线OP,使∠AOP:∠BOP=3:2,若∠AOB=17°,∠AOP的度数为10.2°或51°.【分析】分射线OP在∠AOB的内部和外部两种情况进行讨论求解即可.【解答】解:如图1,当射线OP在∠AOB的内部时,设∠AOP=3x,则∠BOP=2x,∵∠AOB=∠AOP+∠BOP=5x=17°,解得:x=3.4°,则∠AOP=10.2°,如图2,当射线OP在∠AOB的外部时,设∠AOP=3x,则∠BOP=2x,∵∠AOP=∠AOB+∠BOP,又∵∠AOB=17°,∴3x=17°+2x,解得:x=17°,则∠AOP=51°.故∠AOP的度数为10.2°或51°.故答案为:10.2°或51°.【点评】本题考查了角的计算,关键是分两种情况进行讨论.12.已知∠AOB=80°,以O为顶点,OB为一边作∠BOC=20°,OD平分∠AOC,则∠BOD度数为30°或50°.【分析】根据∠BOC的位置,先得出∠AOC的大小,当∠BOC的一边OC在∠AOB 外部时,两角相加,当∠BOC的一边OC在∠AOB内部时,两角相减即可,再利用角平分线的定义可得结果.【解答】解:以O为顶点,OB为一边作∠BOC=20°有两种情况:如图1,当∠BOC的一边OC在∠AOB外部时,则∠AOC=∠AOB+∠BOC=80°+20°=100°,∵OD平分∠AOC,∴∠DOC=∠AOC=50°,则∠BOD=50°﹣20°=30°;如图2,当∠BOC的一边OC在∠AOB内部时,则∠AOC=∠AOB﹣∠BOC=80°﹣20°=60°,则∠DOC=∠AOC=30°,故∠BOD=∠BOC+∠DOC=50°.故答案是:30°或50°.【点评】本题主要考查学生角的计算及角平分线的定义,采用分类讨论的思想是解答此题的关键.13.比较大小:52°52′>52.52°.(填“>”、“<”或“=”)【分析】将角的度数换算成度分秒的形式,再进行比较即可得出结论、【解答】解:∵0.52×60=31.2,0.2×60=12,∴52.52°=52°31′12″,52°52′>52°31′12″,故答案为:>.【点评】本题考查的度分秒的换算以及角的大小比较,解题的关键是将角的度数换算成度分秒的形式,再进行比较.14.比较:28°15′>28.15°(填“>”、“<”或“=”).【分析】首先利用度分秒换算法则进行转化,再比较大小.【解答】解:∵28°15′=28°+(15÷60)°=28.25°,∴28°15′>28.15°.故答案为:>.【点评】此题主要考查了角的比较大小以及度分秒转化,正确掌握度分秒转化是解题关键.15.若∠A=∠B,∠B=2∠C,则∠A=2∠C(填<,>或=).【分析】把∠B=2∠C代入∠A=∠B即可.【解答】解:∵∠A=∠B,∠B=2∠C,∴∠A=2∠C,故答案为:=.【点评】本题考查了角的大小比较的应用,主要考查学生的理解能力.三.解答题(共18小题)16.如图,O为直线AB上一点,∠AOC=60°,OD平分∠OC,∠DOE=90°.(1)求出∠BOD的度数;(2)请通过计算说明OE是否平分∠BOC.【分析】(1)根据∠BOD=∠DOC+∠BOC,首先利用角平分线的定义和邻补角的定义求得∠DOC和∠BOC即可;(2)根据∠DOC与∠COE互余即可得出∠COE的度数,由(1)可知∠BOC=120°,那么∠BOE=∠BOC﹣∠COE=60°,进而可得出结论,从而求解.【解答】解:(1)因为∠AOC=60°,OD平分∠AOC,所以∠DOC=∠AOC=30°,∠BOC=180°﹣∠AOC=120°,所以∠BOD=∠DOC+∠BOC=150°;(2)OE平分∠BOC.理由如下:∵∠DOE=90°,∠DOC=30°,∴∠COE=90°﹣30°=60°,∵∠BOC=120°,∴∠BOE=∠BOC﹣∠COE=120°﹣60°=60°,∴∠COE=∠BOE,∴OE平分∠BOC.【点评】本题主要考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键.17.如图所示,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数?【分析】先根据角平分线定义得:∠AOM=×120°=60°,同理得:∠CON=∠BOC==15°,最后利用角的差可得结论.【解答】解:∵∠AOB=90°,∠BOC=30°,∴∠AOC=90°+30°=120°,∵OM平分∠AOC,∴∠AOM=∠AOC=×120°=60°,∵ON平分∠BOC,∴∠CON=∠BOC==15°,∴∠MON=∠AOC﹣∠AOM﹣∠CON=120°﹣60°﹣15°=45°.【点评】本题考查了角平分线的定义和角的和与差,熟练掌握角平分线的定义是关键.18.已知,O为直线AB上一点,∠DOE=90°.(1)如图1,若∠AOC=130°,OD平分∠AOC.①求∠BOD的度数;②请通过计算说明OE是否平分∠BOC.(2)如图2,若∠BOE:∠AOE=2:7,求∠AOD的度数.【分析】(1)①根据角平分线的定义求出∠AOD的度数,再根据平角的定义求出∠BOD的度数;②根据角的和差求出∠COE=∠DOE﹣∠DOC=90°﹣65°=25°,∠BOE=∠BOD﹣∠DOE=115°﹣90°=25°,根据角平分线的定义即可求解;(2)设∠BOE=2x,则∠AOE=7x,根据平角的定义列出方程求出x,进一步求出∠AOD的度数.【解答】解:(1)①∵OD平分∠AOC,∠AOC=130°,∴∠AOD=∠DOC=∠AOC=×130°=65°,∴∠BOD=180°﹣∠AOD=180°﹣65°=115°;②∵∠DOE=90°,又∵∠DOC=65°,∴∠COE=∠DOE﹣∠DOC=90°﹣65°=25°,∵∠BOD=115°,∠DOE=90°,∴∠BOE=∠BOD﹣∠DOE=115°﹣90°=25°,∴∠COE=∠BOE,即OE平分∠BOC.(2)若∠BOE:∠AOE=2:7,设∠BOE=2x,则∠AOE=7x,又∵∠BOE+∠AOE=180°,∴2x+7x=180°,∴x=20°,∠BOE=2x=40°,∵∠DOE=90°,∴∠AOD=90°﹣40°=50°.【点评】主要考查了角平分线的定义和角的运算.结合图形找到其中的等量关系进一步解决问题.19.如图1,点O为直线AB上的一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按每秒10°的速度沿逆时针旋转一周,在旋转的过程中,假如第t秒时,OA、OC、ON三条射线构成相等的角,求此时t的值为多少?(2)将图1中的三角板绕点O顺时针旋转至图2,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.【分析】(1)根据已知条件可知,在第t秒时,三角板转过的角度为10°t,然后按照OA、OC、ON三条射线构成相等的角分四种情况讨论,即可求出t的值;(2)根据三角板∠MON=90°可求出∠AOM、∠NOC和∠AON的关系,然后两角相加即可求出二者之间的数量关系.【解答】解:(1)∵三角板绕点O按每秒10°的速度沿逆时针方向旋转,∴第t秒时,三角板转过的角度为10°t,当三角板转到如图①所示时,∠AON=∠CON∵∠AON=90°+10°t,∠CON=∠BOC+∠BON=120°+90°﹣10°t=210°﹣10°t∴90°+10°t=210°﹣10°t即t=6;当三角板转到如图②所示时,∠AOC=∠CON=180°﹣120°=60°∵∠CON=∠BOC﹣∠BON=120°﹣(10°t﹣90°)=210°﹣10°t∴210°﹣10°t=60°即t=15;当三角板转到如图③所示时,∠AON=∠CON=,∵∠CON=∠BON﹣∠BOC=(10°t﹣90°)﹣120°=10°t﹣210°∴10°t﹣210°=30°即t=24;当三角板转到如图④所示时,∠AON=∠AOC=60°∵∠AON=10°t﹣180°﹣90°=10°t﹣270°∴10°t﹣270°=60°即t=33.故t的值为6、15、24、33.(2)∵∠MON=90°,∠AOC=60°,∴∠AOM=90°﹣∠AON,∠NOC=60°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.【点评】本题主要考查角的和、差关系,难点是找出变化过程中的不变量,需要结合图形来计算,在计算分析的过程中注意动手操作,在旋转的过程中得到不变的量.20.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=135°,将一个含45°角的直角三角尺的一个顶点放在点O处,斜边OM与直线AB重合,另外两条直角边都在直线AB的下方.(1)将图1中的三角尺绕着点O逆时针旋转90°,如图2所示,此时∠BOM= 90°;在图2中,OM是否平分∠CON?请说明理由;(2)紧接着将图2中的三角板绕点O逆时针继续旋转到图3的位置所示,使得ON在∠AOC的内部,请探究:∠AOM与∠CON之间的数量关系,并说明理由;(3)将图1中的三角板绕点O按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为 4.5秒或40.5秒(直接写出结果).【分析】(1)利用旋转的性质可得∠BOM的度数,然后计算∠MOC的度数判断OM是否平分∠CON;(2)利用∠AOM=45°﹣∠AON和∠NOC=45°﹣∠AON可判断∠AOM与∠CON之间的数量关系;(3)ON旋转22.5度和202.5度时,ON平分∠AOC,然后利用速度公式计算t 的值.【解答】解:(1)如图2,∠BOM=90°,OM平分∠CON.理由如下:∵∠BOC=135°,∴∠MOC=135°﹣90°=45°,而∠MON=45°,∴∠MOC=∠MON;故答案为90°;(2)∠AOM=∠CON.理由如下:如图3,∵∠MON=45°,∴∠AOM=45°﹣∠AON,∵∠AOC=45°,∴∠NOC=45°﹣∠AON,∴∠AOM=∠CON;(3)T=×45°÷5°=4.5(秒)或t=(180°+22.5°)÷5°=40.5(秒).故答案为90°;4.5秒或40.5秒.【点评】本题考查了角的计算:熟练掌握度、分、秒的加减运算.在进行度分秒的加减时,要将度与度,分与分,秒与秒相加减,分秒相加,逢60要进位,相减时,要借1化60.21.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC 的内部,当OM平分∠BOC时,∠BON=60°;(直接写出结果)(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM 之间的数量关系.(直接写出结果,不须说明理由)【分析】(1)依据∠AOC=120°,可得∠BOC=180°﹣120°=60°,再根据OM平分∠BOC,可得∠BOM=30°,最后依据∠NOM=90°,即可得出∠BOM=90°﹣30°=60°;(2)依据∠AOP=∠BOM=60°,∠AOC=120°,即可得到∠AOP=∠AOC,进而得到射线OP是∠AOC的平分线;(3)依据∠AOC=120°,∠MON=90°,即可得到∠AON=120°﹣∠NOC,∠AON=90°﹣∠AOM,进而得到120°﹣∠NOC=90°﹣∠AOM,据此可得∠NOC与∠AOM 之间的数量关系.【解答】解:(1)如图②,∠AOC=120°,∴∠BOC=180°﹣120°=60°,又∵OM平分∠BOC,∴∠BOM=30°,又∵∠NOM=90°,∴∠BOM=90°﹣30°=60°,故答案为:60°;(2)如图③,∵∠AOP=∠BOM=60°,∠AOC=120°,∴∠AOP=∠AOC,∴射线OP是∠AOC的平分线;(3)如图④,∵∠AOC=120°,∴∠AON=120°﹣∠NOC,∵∠MON=90°,∴∠AON=90°﹣∠AOM,∴120°﹣∠NOC=90°﹣∠AOM,即∠NOC﹣∠AOM=30°.【点评】本题主要考查了角的计算以及角平分线的定义的运用,从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.解决问题的关键是利用角的和差关系进行计算.22.已知,∠AOD=160°,OB、OM、ON 是∠AOD内的射线(1)如图1,若OM平分∠AOB,ON平分∠BOD,则∠MON=80°(2)如图2,OC是∠AOD内的射线,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD,当射线OB在∠AOC内时,求∠MON的大小;(3)如图2,在(2)的条件下,当∠AOB=2t°时,∠AOM:∠DON=2:3,求t 的值.【分析】(1)根据角平分线的定义求出∠BOM和∠BON,然后根据∠MON=∠BOM+∠BON代入数据进行计算即可得解;(2)设∠AOB=x,表示出∠BOD=160°﹣x,根据角平分线的定义表示出∠COM和∠BON,然后根据∠MON=∠COM+∠BON﹣∠BOC列式计算即可得解;(3)由∠AOB=2t°,∠BOC=20°,则∠AOM=∠AOC=t°+10°,∠DON=∠BOD=80°﹣t°,列式计算即可.【解答】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=∠AOB,∠BON=∠BOD,∴∠MON=∠BOM+∠BON=(∠AOB+∠BOD),∵∠AOD=∠AOB+∠BOD=160°,∴∠MON=×160°=80°;故答案为:80;(2)设∠AOB=x,则∠BOD=160°﹣x,∵OM平分∠AOC,ON平分∠BOD,∴∠COM=∠AOC=(x+20°),∠BON=∠BOD=(160°﹣x),∴∠MON=∠COM+∠BON﹣∠BOC=(x+20°)+(160°﹣x)﹣20°=70°;(3)由∠AOB=2t°,∠BOC=20°,则∠AOC=2t°+20°,∠BOD=160°﹣2t°,∴∠AOM=∠AOC=t°+10°,∠DON=∠BOD=80°﹣t°,∵∠AOM:∠DON=2:3,∴=,解得:t=26.【点评】本题考查了角的计算,角平分线的定义,准确识图是解题的关键,难点在于要注意整体思想的利用.23.如图,已知∠AOB=108°,OE是∠AOB的平分线,OC在∠AOE内.(1)若∠COE=∠AOE,求∠AOC的度数;(2)若∠BOC﹣∠AOC=72°,则OB与OC有怎样的位置关系?为什么?【分析】(1)根据角平分线的定义和角的和差即可得到结论;(2)根据角的和差和垂直的定义即可得到结论.【解答】解:(1)∵∠COE=∠AOE,∴∠AOE=3∠COE,∵OE是∠AOB的平分线,∴∠AOB=2∠AOE=6∠COE,∵∠AOB=180°,∴∠COE=18°,∴∠AOC=2∠COE=2×18°=36°;(2)OB⊥OC,设∠BOC=x°,则∠AOC=108°﹣x°,∵∠BOC﹣∠AOC=72°,∴x﹣(108﹣x)=72,解得x=90,∴∠BOC=90°,∴OB⊥OC.【点评】本题主要考查角的比较与运算,还考查了角平分线的定义等知识点,熟练掌握角平分线的定义是解题的关键.24.如图,已知∠BOC=2∠AOC,OD平分∠AOB且∠AOC=50°,求∠COD的度数.【分析】求出∠BOC,求出∠AOB,根据角平分线求出∠AOD,代入∠COD=∠AOD ﹣∠AOC求出即可.【解答】解:∵∠BOC=2∠AOC,∠AOC=50°,∴∠BOC=2×50°=100°,∴∠AOB=∠BOC+∠AOC=100°+50°=150°,∵OD平分∠AOB,∴∠AOD=∠AOB=×150°=75°,∴∠COD=∠AOD﹣∠AOC=75°﹣50°=25°.【点评】本题考查了角的平分线定义和角的计算,关键是求出∠AOD的度数和得出∠COD=∠AOD﹣∠AOC.25.如图,∠AOB等于∠COD,请判断∠AOC和∠BOD的大小关系并说明理由.【分析】∠AOC=∠BOD.根据图形得到:∠AOB﹣∠BOC=∠COD﹣∠BOC,即∠AOC=∠BOD.【解答】解:∠AOC=∠BOD.理由如下:∵∠AOB=∠COD,∴∠AOB﹣∠BOC=∠COD﹣∠BOC,即∠AOC=∠BOD.【点评】本题考查了角的大小比较.注意数形结合数学思想在解题中的应用.26.如图,∠BOD=90°,∠COE=90°,解答下列问题:(1)图中有哪些小于平角的角?用适当的方法表示出它们.(2)比较∠AOC、∠AOD、∠AOE、∠AOB的大小,并指出其中的锐角、钝角、直角、平角.(3)找出图中所有相等的角.【分析】根据题中所给条件,结合图形:(1)找出途中锐角、直角、钝角即可;(2)直接比较,并且分类即可;(3)利用直角都相等,等角的余角相等列出即可.【解答】解:(1)图中小于平角的角有∠AOC、∠AOD、∠AOE、∠COD、∠COE、∠DOE、∠DOB、∠EOB;(2)由图可知,∠AOC<∠AOD<∠AOE<∠AOB,其中∠AOC为锐角,∠AOD为直角,∠AOE为钝角,∠AOB为平角;(3)∠AOC=∠DOE,∠COD=∠BOE,∠AOD=∠BOD=∠COE.【点评】此题考查对角的分类以及角的大小比较,注意找角要从一个点出发,按一定的顺序数.27.如图所示,比较∠α与∠β的大小.【分析】根据度量法或叠合法即可得出结论.【解答】解:方法一:∵用量角器∠α=60°,∠β=46°,∴∠α>∠β.方法二:①作∠AOB=∠α;②用点O作顶点,一边为射线OA,在与OB同侧的方向作∠AOC=∠β,∵射线OC在∠AOB的内部,∴∠α>∠β.【点评】本题考查的是角的大小比较,熟知比较角的大小的两种方法是解答此题的关键.28.∠AOB与∠COD有共同的顶点O,其中∠AOB=∠COD=60°.(1)如图①,试判断∠AOC与∠BOD的大小关系,并说明理由;(2)如图①,若∠BOC=10°,求∠AOD的度数;(3)如图①,猜想∠AOD与∠BOC的数量关系,并说明理由;(4)若改变∠AOB,∠COD的位置,如图②,则(3)的结论还成立吗?若成立,请证明;若不成立,请直接写出你的猜想.【分析】(1)利用角的和差定义证明即可;(2)求出∠AOC即可解决问题;(3)结论:∠AOD+∠COB=120°.利用角的和差定义证明即可;(4)不成立.猜想:∠AOD+∠BOC=240°,根据周角的性质证明即可;【解答】解:(1)结论:∠AOC=∠BOD.理由:∵∠AOB=∠COD=60°,∴∠AOC+∠BOC=∠BOD+∠BOC,∴∠AOC=∠BOD.(2)∵∠BCO=10°,∠AOB=60°,∴∠AOC=50°,∴∠AOD=∠AOC+∠COD=50°+60°=110°.(3)猜想:∠AOD+∠COB=120°.理由:∵∠AOB=∠COD=60°.∴∠AOD=∠AOB+∠COD﹣∠COB=120°﹣∠COB,∴∠AOD+∠COB=120°.(4)不成立.猜想:∠AOD+∠BOC=240°,理由:∵∠AOB=∠COD=60°.∴∠AOD+∠BOC=360°﹣60°﹣60°=240°.【点评】本题考查角的计算,角的和差定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.29.已知:∠AOD=160°,OB,OM,ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当射线OB绕点O在∠AOD 内旋转时,∠MON=80度.(2)OC也是∠AOD内的射线,如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD,当∠BOC绕点O在∠AOD内旋转时,求∠MON的大小.(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD绕O点以每秒2°的速度逆时针旋转t秒,如图3,若∠AOM:∠DON=2:3,求t的值.【分析】(1)依据OM平分∠AOB,ON平分∠BOD,即可得到∠MON=∠BOM+∠BON=(∠AOB+∠BOD)=∠AOD;(2)依据OM平分∠AOC,ON平分∠BOD,即可得到∠MOC=∠AOC,∠BON=∠BOD,再根据∠MON=∠MOC+∠BON﹣∠BOC进行计算即可;(3)依据∠AOM=(10°+2t+20°),∠DON=(160°﹣10°﹣2t),∠AOM:∠DON=2:3,即可得到3(30°+2t)=2(150°﹣2t),进而得出t的值.【解答】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=∠AOB,∠BON=∠BOD,∴∠MON=∠BOM+∠BON=(∠AOB+∠BOD)=∠AOD=80°,故答案为:80;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠AOC,∠BON=∠BOD,即∠MON=∠MOC+∠BON﹣∠BOC=∠AOC+∠BOD﹣∠BOC=(∠AOC+∠BOD)﹣∠BOC=(∠AOB+∠BOC+∠BOD)﹣∠BOC=(∠AOD+∠BOC)﹣∠BOC=×180°﹣20°=70°;(3)∵∠AOM=(10°+2t+20°),∠DON=(160°﹣10°﹣2t),又∵∠AOM:∠DON=2:3,∴3(30°+2t)=2(150°﹣2t),得t=21.答:t为21秒.【点评】本题考查的是角平分线的定义,从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.30.如图,O是直线AB上一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=100°,则∠DOE=50°;若∠AOC=120°,则∠DOE=60°;(2)若∠AOC=α,则∠DOE=α(用含α的式子表示),请说明理由;(3)在∠AOC的内部有一条射线OF,满足∠AOC﹣2∠BOE=4∠AOF,试确定∠AOF与∠DOE的度数之间的关系,并说明理由.【分析】(1)先根据平角的定义求出∠BOC,再根据角平分线的定义求得∠COE,再根据直角的定义可求∠DOE;(2)先根据平角的定义求出∠BOC,再根据角平分线的定义求得∠COE,再根据直角的定义可求∠DOE;(3)设∠DOE=x,∠AOF=y,根据已知和(2)的结论可得出x﹣y=45°,从而得出结论.【解答】解:(1)∵∠AOC=100°,∴∠BOC=180°﹣100°=80°,∵OE平分∠BOC,∴∠COE=∠BOC=×80°=40°,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣40°=50°;∵∠AOC=120°,∴∠BOC=180°﹣120°=60°,∵OE平分∠BOC,∴∠COE=∠BOC=×60°=30°,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣30°=60°;故答案为:50°;60°;(2)∠DOE=α;∵∠AOC=α,∴∠BOC=180°﹣α,∵OE平分∠BOC,∴∠COE=∠BOC=90°﹣α,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣(90°﹣α)=α;故答案为:α;(3)∠DOE﹣∠AOF=45°.理由:∵∠AOC﹣2∠BOE=4∠AOF,∴∠AOC﹣3∠AOF=2∠BOE+∠AOF,设∠DOE=x,∠AOF=y,左边=∠AOC﹣3∠AOF=2∠DOE﹣3∠AOF=2x﹣3y,右边=2∠BOE+∠AOF=2(90°﹣x)+y=180°﹣2 x+y,∴2x﹣3y=180﹣2 x+y 即4x﹣4y=180°,∴x﹣y=45°∴∠DOE﹣∠AOF=45°.【点评】此题考查的知识点是角平分线的性质及角的计算,关键是正确运用好有关性质准确计算角的和差倍分.31.已知∠AOB是一个定角,记为α,在∠AOB的内部作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.(1)如图①,当α=120°,∠AOC=40°时,求∠DOE的度数;(2)如图①,当射线OC在∠AOB内绕点O旋转时,∠DOE的度数是否发生变化?若变化,请说明理由;若不变,猜想∠DOE与α的关系,并证明;(3)当射线OC在∠AOB外绕点O旋转到图②位置时,直接写出∠DOE的度数(用含a的代数式表示).【分析】(1)根据角平分线的定义,OD、OE分别平分∠AOC和∠BOC,则可求得∠COE、∠COD的值,∠DOE=∠COE+∠COD;(2)结合角的特点∠DOE=∠DOC+∠COE,求得结果进行判断和计算;(3)根据周角的定义,结合角的特点∠DOE=∠DOC+∠COE,求得结果进行判断和计算.【解答】解:(1)∵α=120°,∠AOC=40°,∴∠BOC=80°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COE=∠BOC=40°,∠COD=∠AOC=20°,∴∠DOE=60°;(2)∵∠BOC=α﹣∠AOC,OD、OE分别平分∠AOC和∠BOC,∴∠COE=∠BOC=α﹣∠AOC,∠COD=∠AOC,∴∠DOE=∠COE+∠COD=α;(3)∠DOE=(360°﹣α)=180°﹣α.【点评】考查了角的计算,熟记角的特点与角平分线的定义是解决此题的关键.32.已知:∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠DOB,求∠MON的大小.(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠DOB,求∠MON的大小.【分析】(1)根据角平分线的定义、结合图形计算;(2)根据角平分线的定义得到∠MOC=∠AOC,∠NOB=∠DOB,计算即可.【解答】解:(1)∵OM平分∠AOB,ON平分∠DOB,∴∠MOB=∠AOB,∠NOB=∠DOB,∴∠MON=∠MOB+∠BON=(∠AOB+∠DOB)=∠AOD=80°;(2)OM平分∠AOC,ON平分∠DOB,∴∠MOC=∠AOC,∠NOB=∠DOB,∴∠MON=∠MOC+∠BON﹣∠BOC=(∠AOC+∠DOB)﹣∠BOC=70°.【点评】本题考查的是角的计算、角平分线的定义,正确进行角的计算、掌握角平分线的定义是解题的关键.33.如图①,点O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图①,若∠AOC=40°,求∠DOE的度数;(2)如图①,若∠AOC=α,直接写出∠DOE的度数(用含α的代数式表示)(3)将图①中的∠COD绕顶点O顺时针旋转至图②的位置,OE平分∠BOC.。
2022-2023学年人教版七年级数学上册《4-3-2角的比较与运算》题型分类练习题(附答案)
2022-2023学年人教版七年级数学上册《4.3.2角的比较与运算》题型分类练习题(附答案)一.角平分线的定义1.如图,两个直角∠AOB,∠COD有相同的顶点O,下列结论:①∠AOC=∠BOD;②∠AOC+∠BOD=90°;③若OC平分∠AOB,则OB平分∠COD;④∠AOD的平分线与∠COB的平分线是同一条射线.其中正确的个数有()A.1个B.2个C.3个D.4个2.如图,OE为∠AOD的平分线,∠COD=∠EOC,∠COD=15°,求:①∠EOC的大小;②∠AOD的大小.3.如图,已知O为直线AB上一点,过点O向直线AB上方引三条射线OC、OD、OE,且OC平分∠AOD,∠2=3∠1,∠COE=70°,求∠2的度数.4.如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)若∠AOB=50°,∠DOE=30°,那么∠BOD是多少度?(2)若∠AOE=160°,∠AOB=50°,那么∠COD是多少度?5.已知:如图,OC是∠AOB的角平分线,∠AOD=2∠BOD,∠COD=18°.请你求出∠BOD的度数.6.如图,O为直线AB上一点,∠AOC=58°,OD平分∠AOC,∠DOE=90°.(1)求出∠BOD的度数;(2)请通过计算说明:OE是否平分∠BOC.二.角的计算7.把两块三角板按如图所示那样拼在一起,则∠ABC等于()A.70°B.90°C.105°D.120°8.如图,已知∠AOB:∠BOC=2:3,∠AOC=75°,那么∠AOB=()A.20°B.30°C.35°D.45°9.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,则∠AOB的度数为.10.如图,射线OB和OD分别为∠AOC和∠COE的角平分线,∠AOB=45°,∠DOE=20°,则∠AOE=()A.110°B.120°C.130°D.140°11.如图所示,OB,OC是∠AOD的任意两条射线,OM平分∠AOB,ON平分∠COD,若∠MON=α,∠BOC=β,则表示∠AOD的代数式是()A.2α﹣βB.α﹣βC.α+βD.以上都不正确12.如图所示,将一张长方形纸片斜折过去,使顶点A落在A′处,BC为折痕,然后再把BE折过去,使之与BA′重合,折痕为BD,若∠ABC=58°,则求∠E′BD的度数()A.29°B.32°C.58°D.64°13.如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE为∠BOC的平分线,则∠DOE的度数为()A.36°B.45°C.60°D.72°14.如图,将三个同样的正方形的一个顶点重合放置,那么∠1的度数为.15.如图,将一张纸折叠,若∠1=65°,则∠2的度数为.16.如图,OB、OC是∠AOD内部的两条射线,OM平分∠AOB,ON平分∠COD,∠MON =80°.(1)若∠BOC=40°,求∠AOD的度数;(2)若∠AOD=x°,求∠BOC的度数(用含x的代数式表示).17.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC 的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?18.如图,点O是直线AB上一点,OD平分∠BOC,∠COE=90°.(1)若∠AOC=48°,求∠DOE的度数.(2)若∠AOC=α,则∠DOE=(用含α的代数式表示).19.如图,将两块直角三角尺的直角顶点C叠放在一起,(1)若∠DCE=35°,求∠ACB的度数;(2)若∠ACB=140°,求∠DCE的度数;(3)猜想∠ACB与∠DCE的大小关系,并说明理由.20.如图,已知同一平面内∠AOB=90°,∠AOC=60°,(1)填空∠BOC=;(2)如OD平分∠BOC,OE平分∠AOC,直接写出∠DOE的度数为°;(3)试问在(2)的条件下,如果将题目中∠AOC=60°改成∠AOC=2α(α<45°),其他条件不变,你能求出∠DOE的度数吗?若能,请你写出求解过程;若不能,请说明理由.三.角的大小比较21.比较:28°15′28.15°(填“>”、“<”或“=”).22.下列说法正确的个数是()(1)连接两点之间的线段叫两点间的距离;(2)木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点之间,线段最短;(3)若AB=2CB,则点C是AB的中点;(4)若∠A=20°18′.∠B=20°28″,∠C=20.25°,则有∠A>∠C>∠B.A.1个B.2个C.3个D.4个参考答案一.角平分线的定义1.解:①∵∠AOB=∠COD=90°,∴∠AOC=90°﹣∠BOC,∠BOD=90°﹣∠BOC,∴∠AOC=∠BOD,∴①正确;②∵只有当OC,OB分别为∠AOB和∠COD的平分线时,∠AOC+∠BOD=90°,∴②错误;③∵∠AOB=∠COD=90°,OC平分∠AOB,∴∠AOC=∠COB=45°,则∠BOD=90°﹣45°=45°∴OB平分∠COD,∴③正确;④∵∠AOB=∠COD=90°,∠AOC=∠BOD(已证);∴∠AOD的平分线与∠COB的平分线是同一条射线,∴④正确;故选:C.2.解:①由∠COD=∠EOC,得∠EOC=4∠COD=4×15°=60°;②由角的和差,得∠EOD=∠EOC﹣∠COD=60°﹣15°=45°.由角平分线的性质,得∠AOD=2∠EOD=2×45°=90°.3.解:设∠1=x,则∠2=3∠1=3x,(1分)∵∠COE=∠1+∠3=70°∴∠3=(70﹣x)(2分)∵OC平分∠AOD,∴∠4=∠3=(70﹣x)(3分)∵∠1+∠2+∠3+∠4=180°∴x+3x+(70﹣x)+(70﹣x)=180°(4分)解得:x=20(5分)∴∠2=3x=60°(6分)答:∠2的度数为60°.(7分)4.解:(1)OB是∠AOC的平分线,∴∠BOC=∠AOB=50°;∵OD是∠COE的平分线,∴∠COD=∠DOE=30°,∴∠BOD=∠BOC+∠COD=50°+30°=80°;(2)OB是∠AOC的平分线,∴∠AOC=2∠AOB=100°,∴∠COE=∠AOE﹣∠AOC=160°﹣100°=60°,∵OD是∠COE的平分线,∴∠COD=∠COE=30°.5.解:∵OC是∠AOB的角平分线∴∠BOC=∠AOB,∵∠AOD=2∠BOD,∴∠AOB=3∠BOD,即∠BOD=∠AOB;∴∠COD=∠AOB﹣∠AOB=∠AOB,∴∠BOD=2∠COD,∵∠COD=18°,∴∠BOD=36°.6.解:(1)∵∠AOC=58°,OD平分∠AOC,∴∠AOD=29°,∴∠BOD=180°﹣29°=151°;(2)OE是∠BOC的平分线.理由如下:∵∠AOC=58°,∴∠BOC=122°.∵OD平分∠AOC,∴∠DOC=×58°=29°.∵∠DOE=90°,∴∠COE=90°﹣29°=61°,∴∠COE=∠BOC,即OE是∠BOC的平分线.二.角的计算7.解:∠ABC=30°+90°=120°.故选:D.8.解:∵∠AOB:∠BOC=2:3,∠AOC=75°,∴∠AOB=∠AOC=×75°=30°,故选:B.9.解:∵∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,∴设∠COB=2∠AOC=2x,∠AOD=∠BOD=1.5x,∴∠COD=0.5x=20°,∴x=40°,∴∠AOB的度数为:3×40°=120°.故答案为:120°.10.解:∵OB是∠AOC的角平分线,∠AOB=45°,∴∠COB=∠AOB=45°∵OD是∠COE的角平分线,∠DOE=20°,∴∠DOC=∠DOE=20°,∴∠AOE=∠AOB+∠COB+∠DOC+∠DOE=45°×2+20°×2=130°.故选:C.11.解:∵∠MON=α,∠BOC=β∴∠MON﹣∠BOC=∠CON+∠BOM=α﹣β又∵OM平分∠AOB,ON平分∠COD∴∠CON=∠DON,∠AOM=∠BOM由题意得∠AOD=∠MON+∠DON+∠AOM=∠MON+∠CON+∠BOM=α+(α﹣β)=2α﹣β.故选:A.12.解:∵根据折叠得出∠ABC=∠A′BC,∠EBD=∠E′BD,又∵∠ABC+∠A′BC+∠EBD+∠E′BD=180°,∴∠ABC+∠E′BD=90°,∵∠ABC=58°,∴∠E′BD=32°.故选:B.13.解:∵∠AOB=90°,∠COD=90°,∴∠AOB+∠COD=180°,∵∠AOB=∠AOC+∠BOC,∠COD=∠BOC+∠BOD,∴∠AOC+∠BOC+∠BOC+∠BOD=180°,∴∠AOD+∠BOC=180°,∵∠AOD=4∠BOC,∴4∠BOC+∠BOC=180°,∴∠BOC=36°,∵OE为∠BOC的平分线,∴∠COE=∠BOC=18°,∴∠DOE=∠COD﹣∠COE=90°﹣18°=72°,故选:D.14.解:∵∠BOD=90°﹣∠AOB=90°﹣30°=60°∠EOC=90°﹣∠EOF=90°﹣40°=50°又∵∠1=∠BOD+∠EOC﹣∠BOE∴∠1=60°+50°﹣90°=20°故答案是:20°.15.解:∵将一张纸条折叠,∠1=65°,∴∠1+∠2=180°﹣∠1即65°+∠2=180°﹣65°,得∠2=50°.故答案为:50°.16.解:(1)∵∠MON﹣∠BOC=∠BOM+∠CON,∠BOC=40°,∠MON=80°,∴∠BOM+∠CON=80°﹣40°=40°,∵OM平分∠AOB,ON平分∠COD,∴∠AOM=∠BOM,∠DON=∠CON,∴∠AOM+∠DON=40°,∴∠AOD=∠MON+∠AOM+∠DON=80°+40°=120°;(2)∵∠AOD=x°,∠MON=80°,∴∠AOM+∠DON=∠AOD﹣∠MON=(x﹣80)°,∵∠BOM+∠CON=∠AOM+∠DON=(x﹣80)°,∴∠BOC=∠MON﹣(∠BOM+∠CON)=80°﹣(x﹣80)°=(160﹣x)°.17.解:(1)∵∠AOB是直角,∠AOC=40°,∴∠AOB+∠AOC=90°+40°=130°,∵OM是∠BOC的平分线,ON是∠AOC的平分线,∴,.∴∠MON=∠MOC﹣∠NOC=65°﹣20°=45°,(2)当锐角∠AOC的大小发生改变时,∠MON的大小不发生改变.∵=,又∠AOB是直角,不改变,∴.18.解:(1)∵O是直线AB上一点,∴∠AOC+∠BOC=180°,∵∠AOC=48°,∴∠BOC=132°,∵OD平分∠BOC,∴∠COD=∠BOC=66°,∵∠DOE=∠COE﹣∠COD,∠COE=90°,∴∠DOE=90°﹣66°=24°;(2)∵O是直线AB上一点,∴∠AOC+∠BOC=180°,∵∠AOC=α,∴∠BOC=180°﹣α,∵OD平分∠BOC,∴∠COD=∠BOC=(180°﹣α)=90°﹣α,∵∠DOE=∠COE﹣∠COD,∠COE=90°,∴∠DOE=90°﹣(90°﹣α)=α.故答案为:α.19.解:(1)∵∠ECB=90°,∠DCE=35°∴∠DCB=90°﹣35°=55°∵∠ACD=90°∴∠ACB=∠ACD+∠DCB=145°.(2)∵∠ACB=140°,∠ACD=90°∴∠DCB=140°﹣90°=50°∵∠ECB=90°∴∠DCE=90°﹣50°=40°.(3)猜想得∠ACB+∠DCE=180°(或∠ACB与∠DCE互补)理由:∵∠ECB=90°,∠ACD=90°∴∠ACB=∠ACD+∠DCB=90°+∠DCB∠DCE=∠ECB﹣∠DCB=90°﹣∠DCB∴∠ACB+∠DCE=180°.20.解:(1)∵∠AOB=90°,∠AOC=60°,∴∠BOC=∠AOB+∠AOC=90°+60°=150°,故答案为:150°;(2)∵OD平分∠BOC,OE平分∠AOC,∴∠COD=∠BOC=75°,∠COE=∠AOC=30°,∴∠DOE的度数为:∠COD﹣∠COE=45°;故答案为:45;(3)∵∠AOB=90°,∠AOC=2α,∴∠BOC=90°+2α,∵OD、OE平分∠BOC,∠AOC,∴∠DOC=∠BOC=45°+α,∠COE=∠AOC=α,∴∠DOE=∠DOC﹣∠COE=45°.三.角的大小比较21.解:∵28°15′=28°+(15÷60)°=28.25°,∴28°15′>28.15°.故答案为:>.22.解:(1)连接两点之间的线段的长度叫两点间的距离,错误;(2)木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点确定一条直线,错误;(3)当C在线段AB上,且AB=2CB时,点C是AB的中点,当C不在线段AB上时,则不是中点,故命题错误;(4)若∠A=20°18′.∠B=20°28″,∠C=20.25°,则有∠A>∠C>∠B,正确;故选:A.。
4.3.2 角的比较与运算-七年级数学人教版(上册)(解析版)
第四章几何图形初步4.3.2角的比较与运算一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.两个锐角的和A.一定是锐角B.一定是直角C.一定是钝角D.可能是锐角【答案】D2.如果∠α=3∠β,∠α=2∠θ,则必有A.∠β=12∠θB.∠β=32∠θC.∠β=23∠θD.∠β=34∠θ【答案】C【解析】因为∠α=3∠β,∠α=2∠θ,所以3∠β=2∠θ,所以∠β=23∠θ,故选C.3.如图,O是直线AB上一点,OC为任意一条射线,∠BOC=40°,OE平分∠AOC,OD平分∠BOC,则∠DOE的度数为A.70°B.80°C.90°D.100°【答案】C【解析】因为∠BOC=40°,所以∠AOC=180°–40°=140°,因为OE平分∠AOC,OD平分∠BOC,所以∠DOC=12∠BOC=20°,∠EOC=12∠AOC=70°,所以∠DOE=∠DOC+∠EOC=20°+70°=90°.故选C.4.在同一平面上.∠AOB=60°,∠BOC=40°,则∠AOC等于A.100°B.20°C.100°或20°D.不能确定【答案】C5.点C在∠AOB内部,现有四个等式∠COA=∠BOC,∠BOC=12∠AOB,12∠AOB=2∠COA,∠AOB=2∠AOC,其中能表示OC是角平分线的等式的个数为A.1 B.2 C.3 D.4 【答案】C【解析】能表示OC是角平分线的等式有∠COA=∠BOC,∠BOC=12∠AOB,∠AOB=2∠AOC,共3个.故选C.学科@#网二、填空题:请将答案填在题中横线上.6.如果∠1=∠2,∠2=∠3,则∠1__________∠3;如果∠1>∠2,∠2>∠3,则∠1__________∠3.【答案】=,>【解析】因为∠1=∠2,∠2=∠3,所以∠1=∠3;因为∠1>∠2,∠2>∠3,所以∠1>∠3.故答案为:=,>.7.从点O引出四条射线OA,OB,OC,OD,如果∠AOB∶∠BOC∶∠COD∶∠DOA=1∶2∶3∶4,那么这四个角的度数是∠AOB=__________,∠BOC=__________,∠COD=__________,∠DOA=__________.【答案】36°,72°,108°,144°【解析】因为∠AOB∶∠BOC∶∠COD∶∠DOA=1∶2∶3∶4,所以∠AOD≠∠AOB+∠BOC+∠COD,即∠AOD+∠AOB+∠BOC+∠COD=360°,设∠AOB=x°,∠BOC=2x°,∠COD=3x°,∠AOD=4x°,则x+2x+3x+4x=360,x=36,所以∠AOB=36°,∠BOC=72°,∠COD=108°,∠AOD=144°,故答案为:36°,72°,108°,144°.三、解答题:解答应写出文字说明、证明过程或演算步骤.8.计算:(1)49°38′+66°22′;(2)180°–79°19′;(3)22°16′×5;(4)182°36′÷4.学@#科网9.如图,OM平分∠AOB、ON平分∠COD,若∠AOD=84°,∠MON=68°,求∠BOC.【解析】设∠AOM=∠BOM=x,∠CON=∠DON=y,则∠BOC=68°–(x+y).所以2x+68°–(x+y)+2y=84°,x+y=16°,所以∠BOC=68°–16°=52°.10.将一副三角板如图1摆放.∠AOB=60°,∠COD=45°,OM平分∠AOD,ON平分∠COB.(1)∠MON=__________;(2)将图1中的三角板OCD绕点O旋转到图2的位置,求∠MON;(3)将图1中的三角板OCD绕点O旋转到图3的位置,求∠MON.。
【数学】七年级上册数学-角的比较与运算(练习题)
角的比较与运算一、学习目标:1、学会比较两个角的大小,•丰富对角的大小关系的认识。
2、能够会分析角的和差关系,学会借助三角板画出不同度数的角。
3、认识角的平分线及角的等分线,会进行角的简单计算。
二、教材导学(一) 知识回顾:1、怎样比较两条线段的大小?2、什么叫做线段的中点?3、什么叫做线段的三等分点?(二)自主学习:1、两个角的大小比较(1)度量法。
用 量出角的 ,然后比较 。
(2)叠合法。
把两个角 重合在一起,另一条边在重合的同侧,比较 说明:角的大小与边长 。
2、角的和差 (1)如图,图中共有 个角(2)∠AOC=∠AOB+ ;∠AOC-∠AOB=3、角的平分线:从一个角的 出发,把这个角分成 的两个角的 ,叫做这个角的平分线。
4、角的三等分线:从一个角的 出发,把这个角分成 的 个角的 ,叫做这个角的三等分线。
角的三等分线有 条。
三、引领学习1、强化新知动手操作:在透明纸上画一个角,沿着顶点对折,使角的两边重合(1)∠AOC 被折痕OB 分成的两个角有什么关系?(2)在图中,射线OB 把∠AOC 分成 两个角,即∠AOB ∠BOC ,∠AOC 与 ∠AOB•和∠BOC 的关系用式子来表示为 射线OB 叫做 符号语言:∵OB ∠AOC ∴∠AOB ∠BOC(∠AOC=2∠ 或∠AOC =2∠ ;或∠AOB=21∠ ,∠BOC =21∠ )类似还有角的三等分线。
∵OB 、OC 是∠AOD 的三等分线∴ = = = 2、小组活动:借助一副三角尺,画︒︒︒︒90,45,60,30等特殊角。
想一想还可以画出多少度数的角? 可以画出的角。
结论:凡是 度的整数倍的角都能用一副三角尺画出。
3、例题示范例:如图,OB 是平角∠AOC 的角平分线,OD 平分∠BOC ,求∠AOD 的度数。
解:∵OB 平分平角∠AOC∴∠BOC=21∠ =21× = ∵OD 平分∠BOC∴∠DOC=21∠ =21× = ∠AOD=∠ - ∠ = - =想一想,∠AOD 可以看成哪两个角的和?本题还可以怎样解?四、学习反馈1、如图,用“=”或“>”或“<”填空:(1)∠AOC ∠AOB+∠BOC ; (2)∠AOC ∠AOB ;(3)∠BOD-∠BOC ∠DOC ; (4)∠AOD ∠AOC+∠BOD .2、已知∠AOB =60°,∠BOC =40°求∠AOC3、如图,已知∠AOC=60°,∠BOD=90°,∠AOB 是∠DOC 的3倍,求∠AOB 的度数.练习题D C O B AE F D1B C DA(一)选择题1、 57. 32°用度、分、秒表示为( )A. 57°19′12″B. 57°20′2″C. 57°20′12″D. 57°21′2、 角是指( )A. 由两条线段组成的图形;B. 由两条射线组成的图形C. 由两条直线组成的图形;D. 有公共端点的两条射线组成的图形3、下列说法正确的是( )A. 两条相交直线组成的图形叫做角B. 有一个公共端点的两条线段组成的图形叫做角C. 一条射线绕着端点从一个位置旋转到 另一个位置所成的图形叫做角D. 角是两条射线组成的图形 4、如图中,在下列表示角的方法中正确的是( )A 、∠FB 、∠DC 、∠AD 、∠B 5、如图,∠α的另一种正确的表示方法是:( )A 、∠1B 、∠C C 、∠ACBD 、∠ABC6、下列语句正确的是 ( )A 、两条直线相交组成的图形叫角;B 、一条直线可以看成一个平角;C 、一个平角的两边可以看成一条直线;D 、周角就是一条射线7、如图,下列表示角的方法,错误的是( )A. ∠1与∠AOB 表示同一个角;B. ∠AOC 也可用∠O 来表示C. 图中共有三个角:∠AOB、∠AOC、∠BOC;D. ∠β表示的是∠BOC8、若∠1=5005' ∠2=50.50 则∠1与∠2的大小关系是( )A 、∠1=∠2B 、∠1>∠2C 、∠1<∠2D 、无法确定9、时钟的分钟走过5分钟的角度是( )A 、300B 、130C 、120D 、5010、时钟显示为8:30时,时针与分针所夹角度是()A、900B、1200C、750D、84011、已知O是直线AB上一点,OC是一条射线,则∠AOC与∠BOC的关系是()A. ∠AOC一定大于∠BOC;B. ∠AOC一定小于∠BOCC. ∠AOC一定等于∠BOC;D. ∠AOC可能大于,等于或小于∠BOC12、如图,O是直线AB上一点,OC⊥AB,OE⊥OD,若∠AOE=25°,∠DOC等于()A. 155°B. 135°C. 150°D. 205°(二)填空题1、一个周角等于________º;一个平角等于_______º;1º=_______分;1分=_______秒。
2022-2023学年人教版七年级数学上册《4-3-2角的比较与运算》知识点分类练习题(附答案)
2022-2023学年人教版七年级数学上册《4.3.2角的比较与运算》知识点分类练习题(附答案)一.角平分线1.如图,下列结论中,不能说明射线OC平分∠AOB的是()A.∠AOC=∠BOC B.∠AOB=2∠BOCC.∠AOB=2∠AOC D.∠AOC+∠BOC=∠BOA2.如图所示,∠AOB=156°,OD是∠AOC的平分线,OE是∠BOC的平分线,那么∠DOE 等于()A.78°B.80°C.88°D.90°3.一个钝角的平分线和这个角的一边形成的角一定是()A.锐角B.钝角C.直角D.平角4.如图,∠AOB是直角,OE平分∠AOC,OD平分∠BOC.求∠EOD的度数.5.如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB 和∠AOC的度数.6.如图,点O为直线AB上的一点,∠BOC=42°,∠COE=90°,且OD平分∠AOC,求∠AOE和∠DOE的度数.7.如图,OC是∠AOB的平分线,∠BOD=∠COD,∠BOD=15°,则∠AOD=()A.45°B.55°C.65°D.75°8.如图,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分别是∠AOC,∠BOD 的平分线,∠MON等于度.9.如图,OC平分∠AOB,若∠BOC=23°,则∠AOB=度.10.点M,O,N顺次在同一直线上,射线OC,OD在直线MN同侧,且∠MOC=64°,∠DON=46°,则∠MOC的平分线与∠DON的平分线夹角的度数是()A.85°B.105°C.125°D.145°11.如图,∠AOC与∠BOC的度数比为5:2,OD平分∠AOB,若∠COD=15°,求∠AOB 的度数.12.已知在平面内,∠AOB=60°,OD是∠AOB的角平分线,∠BOC=20°,则∠COD 的度数是.二.角的计算13.不能用一副三角板拼出的角是()A.150°B.105°C.15°D.110°14.如图,是一副三角板重叠而成的图形,则∠AOD+∠BOC=°.15.如图,已知∠AOB=90°,OD平分∠AOC,OE平分∠BOC.(1)若∠DOB=15°,求∠DOE的度数;(2)若∠DOB=x,此时∠DOE=.(1)解:∵∠AOB=90°,∠DOB=15°,∴∠1=.又∵OD平分∠AOC,∴.请继续完成求∠DOE度数的推理过程:16.如图,∠DOC=∠BOD,OB平分∠AOC.(1)若∠DOC=20°,求∠BOD和∠AOC的度数;(2)若∠DOC=α,则∠AOD=°.17.如图,已知O是直线AB上的一点,∠COD是直角,OE平分∠AOD.(1)如图1,若∠COE=35°,求∠DOB的度数;(2)若将图1中的∠COD放置到图2所示的位置,其他条件不变,若∠COE=β,求∠DOB的度数.(根据图形中角的关系进行推理和计算,并用含β的代数式表示出∠DOB)18.如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE为∠BOC的平分线,则∠DOE的度数为()A.36°B.45°C.60°D.72°19.平面内有公共端点的三条射线OA,OB,OC,构成的角∠AOB=30°,∠BOC=70°,OM和ON分别是∠AOB和∠BOC的角平分线,则∠MON的度数是.20.已知∠AOB=70°,以O为端点作射线OC,使∠AOC=42°,则∠BOC的度数为.21.如图:已知直线AB、CD相交于点O,∠COE=90°.(1)若∠AOC=32°,求∠BOE的度数;(2)若∠BOD:∠BOC=2:7,求∠BOD的度数.22.如图,点O为直线AC上任意一点,∠AOB=78°,OD平分∠AOB,OE在∠BOC内,∠BOE=∠EOC.求∠EOC及∠DOC的度数.23.已知:如图,∠AOB=∠AOC,∠COD=∠AOD=120°,求:∠COB的度数.24.如图,OE为∠AOD的平分线,∠EOC,∠COD=18°,求:∠AOD的大小.三.比较角的大小25.将钝角,直角,平角,锐角由小到大依次排列,顺序是.26.比较大小:52°52′52.52°.(填“>”、“<”或“=”)27.如图,正方形网格中每个小正方形的边长都为1,则∠α与∠β的大小关系为()A.∠α<∠βB.∠α=∠βC.∠α>∠βD.无法估测28.把一副三角尺如图所示拼在一起.(1)写出图中∠A、∠B、∠BCD、∠D、∠AED的度数;(2)用小于号“<”将上述各角连接起来.29.如图,数一数以O为顶点且小于180°的角一共有多少个?你能得到解这类问题的一般方法吗?参考答案一.角平分线1.解:A、∵∠AOC=∠BOC,∴OC平分∠AOB,故A正确;B、∵∠AOB=2∠BOC,∠AOB=∠AOC+∠BO,C∴∠AOC=∠BOC,故B正确;C、∵∠AOB=2∠BOC,∠AOB=∠AOC+∠BOC,∴∠AOC=∠BOC,故C正确;D、∵∠AOC+∠BOC=∠AOB,∠AOC不一定等于∠BOC,故D错误;故选:D.2.解:∵OD是∠AOC的平分线,∴∠COD=∠AOC,同理,∠COE=∠BOC,又∵∠AOB=∠AOC+∠BOC,∴∠DOE=∠COD+∠COE=∠AOB=×156°=78°.故选:A.3.解:设这个角的度数是α°,则90<α<180,两边都除以2得:45<α<90,即是锐角.故选:A.4.解:∵OD平分∠BOC,∴∠DOC=∠BOC,∵OE平分∠AOC,∴∠COE=∠COA,∴∠EOD=∠DOC+∠COE=(∠BOC+∠COA)=∠AOB,∵∠AOB是直角,∴∠EOD=45°.5.解:∵∠AOB=90°,OE平分∠AOB∴∠BOE=45°又∵∠EOF=60°∴∠FOB=60°﹣45°=15°∵OF平分∠BOC∴∠COB=2×15°=30°∴∠AOC=∠BOC+∠AOB=30°+90°=120°6.解:∵点O为直线AB上的一点,∠BOC=42°,∴∠AOC=180°﹣42°=138°,∵OD平分∠AOC,∴∠COD=∠AOD=∠AOC=69°,∵∠COE=90°,∴∠DOE=90°﹣69°=21°,∴∠AOE=∠AOD﹣∠DOE=48°.7.解:∵∠BOD=∠COD,∠BOD=15°,∴∠COD=3∠BOD=45°,∴∠BOC=45°﹣15°=30°,∵OC是∠AOB的角平分线,∴∠BOC=∠AOC=30°,∴∠AOD=75°.故选:D.8.解:∵∠AOB是平角,∠AOC=30°,∠BOD=60°,∴∠COD=90°(互为补角)∵OM,ON分别是∠AOC,∠BOD的平分线,∴∠MOC+∠NOD=(30°+60°)=45°(角平分线定义)∴∠MON=90°+45°=135°.故答案为135.9.解:∵OC平分∠AOB,且∠BOC=23°,∴∠AOB=2∠BOC=46°.∴∠AOB=46°.故答案为46.10.解:如图,设∠MOC的平分线为OE,∠DON的平分线为OF,∵∠MOC=64°,∠DON=46°,∴∠MOE=∠MOC=×64°=32°,∠NOF=∠DON=×46°=23°,∴∠EOF=180°﹣∠MOE﹣∠NOF=180°﹣32°﹣23°=125°.故选:C.11.解:设∠AOC=5x,则∠BOC=2x,∠AOB=7x,∵OD平分∠AOB,∴∠BOD=∠AOB=x,∵∠COD=∠BOD﹣∠BOC∴15°=x﹣2x,解得x=10°,∴∠AOB=7×10°=70°.12.解:①OC在∠AOB外,如图1,OD是∠AOB的平分线,∠AOB=60°,∠B0D=∠AOB=30°,∠COD=∠B0D+∠BOC=30°+20°=50°;②OC在∠AOB内,如图2,OD是∠AOB的平分线,∠AOB=60°,∠B0D=∠AOB=30°,∠COD=∠B0D﹣∠BOC=30°﹣20°=10°.故答案为:50°或10°.二.角的计算13.解:A、150°可以用90°与60°角拼出;B、105°可以用60°与45°角拼出;C、15°可以用30°与45°角拼出;D、110°不能拼出.故选:D.14.解:∵∠AOD+∠BOC=∠AOB+∠COB+∠DOC+∠COB+∠COD,∵∠AOC=∠BOD=90°,∴∠AOD+∠BOC=180°.故答案为180.15.解:(1)∵∠AOB=90°,∠DOB=15°,∴∠1=90°﹣∠DOB=90°﹣15°=75°.又∵OD平分∠AOC,∴∠1=∠COD=∠AOC,∴∠AOC=2∠1=150°,∵∠AOB=90°,∴∠BOC=∠AOC﹣∠AOB=150°﹣90°=60°,∵OE平分∠BOC,∴∠3=∠BOC=30°,∴∠DOE=∠DOB+∠3=15°+30°=45°;故答案为:90°﹣∠DOB=90°﹣15°=75°;∠1=∠COD=∠AOC,(2)∵∠AOB=90°,∠DOB=x,∴∠1=90°﹣∠DOB=90°﹣x.又∵OD平分∠AOC,∴∠1=∠COD=∠AOC,∴∠AOC=2∠1=180°﹣2x,∵∠AOB=90°,∴∠BOC=∠AOC﹣∠AOB=180°﹣2x﹣90°=90°﹣2x,∵OE平分∠BOC,∴∠3=∠BOC=45°﹣x,∴∠DOE=∠DOB+∠3=x+45°﹣x=45°.故答案为:45°.16.解:(1)∵∠DOC=∠BOD,∠DOC=20°,∴∠BOD=3∠DOC=60°,∴∠BOC=∠BOD﹣∠DOC=60°﹣20°=40°,∵OB平分∠AOC,∴∠AOC=2∠BOC=80°,答:∠BOD和∠AOC的度数分别为60°,80°;(2)∵∠DOC=∠BOD,∴∠BOD=3∠DOC=3α°,∴∠BOC=∠BOD﹣∠DOC=3α°﹣α°=2α°,∵OB平分∠AOC,∴∠AOC=2∠BOC=4α°,∴∠AOD=∠DOC+∠AOC=5α°,故答案为:5α.17.解:(1)∵∠COE=35°,∠COD是直角,∴∠DOE=∠COD﹣∠COE=55°,∵OE平分∠AOD,∴∠AOD=2∠DOE=110°,∴∠DOB=180°﹣∠AOD=70°;(2)∵∠COD是直角,∠COE=β,∴∠DOE=∠COE﹣∠COD=β﹣90°,∵OE平分∠AOD,∴∠AOD=2∠DOE=2β﹣180°,∴∠DOB=180°﹣∠AOD=360°﹣2β.18.解:∵∠AOB=90°,∠COD=90°,∴∠AOB+∠COD=180°,∵∠AOB=∠AOC+∠BOC,∠COD=∠BOC+∠BOD,∴∠AOC+∠BOC+∠BOC+∠BOD=180°,∴∠AOD+∠BOC=180°,∵∠AOD=4∠BOC,∴4∠BOC+∠BOC=180°,∴∠BOC=36°,∵OE为∠BOC的平分线,∴∠COE=∠BOC=18°,∴∠DOE=∠COD﹣∠COE=90°﹣18°=72°,故选:D.19.解:有两种情况,(1)射线OA在∠BOC的内部,∵∠AOB=30°,∠BOC=70°,OM、ON分别是∠AOB和∠BOC的平分线,∴∠BON=∠BOC=×70°=35°,∠BOM=∠AOB=×30°=15°,∴∠MON=∠BON﹣∠BOM=35°﹣15°=20°.(2)射线OA在∠BOC的外部.∵∠AOB=30°,∠BOC=70°,OM、ON分别是∠AOB和∠BOC的平分线,∴∠BON=∠BOC=×70°=35°,∠BOM=∠AOB=×30°=15°,∴∠MON=∠BON+∠BOM=35°+15°=50°.故答案为:20°或50°.20.解:如图,当点C与点C1重合时,∠BOC=∠AOB﹣∠AOC=70°﹣42°=28°;当点C与点C2重合时,∠BOC=∠AOB+∠AOC=70°+42°=112°.故答案为:28°或112°.21.解:(1)∵∠COE=90°,∠AOC=32°,∴∠BOE=180°﹣∠AOC﹣∠COE=180°﹣32°﹣90°=58°;(2)∵∠BOD:∠BOC=2:7,∠BOD+∠BOC=180°,∴∠BOD=40°.22.解:∵∠AOB=78°,OD平分∠AOB∴,∴∠DOC=180°﹣∠AOD=180°﹣39°=141°;∵,∴∠EOC====68°.23.解:∵∠COD=∠AOD=120°,∴∠AOC=120°,∵∠AOB=∠AOC,∴∠AOB=40°,∴∠COB=80°.24.解:∵∠COD=∠EOC,∠COD=18°,∴∠EOC=72°;∵OE平分∠AOD,∴∠DOE=∠AOE,∵∠EOC=72°,∠COD=18°,∴∠DOE=54°,则∠AOD=2∠DOE=108°.三.比较角的大小25.解:将钝角,直角,平角,锐角由小到大依次排列,顺序是锐角<直角<钝角<平角,故答案为:锐角<直角<钝角<平角.26.解:∵0.52×60=31.2,0.2×60=12,∴52.52°=52°31′12″,52°52′>52°31′12″,故答案为:>.27.解:将∠α平移,使∠α与∠β两个角的顶点重合,∠α下边的一条边与∠β下边的一条边重合,可得:∠α上面的一条边在∠β的内部,所以∠α<∠β,故选:A.28.解:(1)∠A=30°,∠B=90°,∠BCD=150°,∠D=45°,∠AED=135°;(2)∠A<∠D<∠B<∠AED<∠BCD.29.解:7+6+5+4+3+2+1==28,一般地如果MOG小于180,且图中一共有几条射线,则一共有:(n﹣1)+(n﹣2)+…+2+1=.。
角的比较与运算例题解析
角的比较与运算例题解析1. 引言1.1角的概念与基本属性【角的概念与基本属性】角是平面几何中的重要概念之一,它由两条射线以一个公共端点组成。
在初中数学学习中,我们常常需要比较和运算不同角的大小和性质。
下面我们来详细介绍角的比较与运算的例题解析。
一、角的比较:角的比较是通过比较两个角的大小来确定它们的关系。
通常,我们可以通过以下几种方式进行角的比较:1.估算比较法:对于一些特殊的角,我们可以通过估算它们的大小来比较它们的大小关系。
例如,右角(90度)一定大于锐角,而钝角(大于90度)则一定大于直角。
2.角度运算法:通过将角度转换成度数,我们可以使用数值的大小来比较两个角的关系。
需要注意的是,角度越大,角就越大。
但是当角度相等时,我们无法进一步确定两个角的大小关系。
3.度数与弧度的比较法:角度与弧度是表示角度大小的两种常见方式。
弧度是一个无量纲的物理量,是弧长与半径的比值。
通过将角度转换为弧度,我们可以利用弧度的大小进行角的比较。
二、角的运算:角的运算主要是指角的加法和减法运算。
在角的运算中,我们需要使用以下几个重要的基本概念和公式:1.对内角和对外角:对于一个多边形,每一个内角和对应的外角之和等于180度。
根据这个性质,我们可以利用对内角和对外角之间的关系进行角的运算。
2.余角和补角:余角是指两个角之和等于90度的角,而补角是指两个角之和等于180度的角。
通过这两个概念,我们可以进行角的加法和减法运算。
3.角平分线:角平分线是指从角的顶点出发,将角分成两个相等的角的线。
在角的运算中,我们常常使用角平分线来帮助解题。
通过学习角的比较与运算,我们可以更好地理解角的概念与基本属性,从而应用到更复杂的几何问题中去。
熟练掌握角的比较与运算的方法和技巧,对于解决几何问题具有重要的帮助作用。
以上内容是关于“角的概念与基本属性”中角的比较与运算的例题解析。
通过丰富的例题解析,我们希望能够帮助大家更好地掌握角的比较与运算的方法和技巧。
2022年人教版七上《角的比较和运算》同步练习 附答案
4.4 角的比拟和运算5分钟训练 (预习类训练,可用于课前)∠1与∠2互补,那么∠1+∠2=_______,假设∠1与∠2互余,那么∠1+∠°角的余角为______,补角为_____,70°39′角的余角为_____,补角为______.假设一个角的度数为x(x <90°),那么它的余角是______,假设一个角的度数为x(x<180°),那么它的补角是______.思路解析:利用两角互余即两角相加等于90°,两角互补即两角相加等于180°求解.答案:180° 90° 60° 150° 19°21′ 109° 21′ 90°-x 180°-x4-4-1:O是直线AB上的一点,OC是∠AOB的平分线,①∠AOD的补角是______;②∠AOD的余角是______;③∠DOB的补角是______.思路解析:由图可知∠AOB=180°,∠AOC=∠COB =90°,根据补角、余角的概念可求解. 答案:①∠DOB ②∠DOC ③∠AOD4-4-2:〔1〕∠AOC=∠〔〕+∠〔〕;〔2〕∠AOB=∠〔〕-〔〕=∠〔〕-∠〔〕;〔3〕假设∠AOB=∠COD,那么∠AOC=〔〕.图4-4-1 图4-4-2思路解析:仔细观察图中各个角的关系是解决此题的关键.答案:〔1〕AOB BOC 〔2〕AOC BOC AOD BOD 〔3〕BOD10分钟训练(强化类训练,可用于课中)4-4-3:如果OC,OD把∠AOB三等份,那么∠COD=〔〕∠AOB,∠AOD=〔〕∠AOB,∠AOB=〔〕∠AOD.图4-4-3思路解析:由条件知∠AOC=∠COD=∠BOD.答案:1323322.填空:(1)77°42′+34°45′=______;(2)108°18′—56°23′=_______;(3)180°—(34°54′+21°33′)=______.思路解析:度、分、秒之间的进率为60,按照小学竖式计算(单位对齐). 答案:〔1〕112°27′〔2〕51°55′〔3〕123°33′∠AOB内部任取一点C,作射线OC,那么一定有( )A.∠AOB>∠AOCB.∠AOC>∠BOCC.∠BOC=∠AOBD.∠AOC=∠BOC思路解析:作出图形,通过观察即可得出答案.答案:A4.判断:(1)一个角的余角一定是锐角;( )(2)一个角的补角一定是钝角;( )(3)一个角的补角不能是直角;( )(4)∠1+∠2+∠3=90°,那么∠1、∠2、∠3互为余角.( )思路解析:因为两角相加等于90°,那么这两个角互余,所以互余的两个角必都是锐角,所以(1)对,(4)错;而两个角互补是指两角相加等于180°,所以锐角、直角、钝角都有补角,所以(2),(3)都错.答案:〔1〕√〔2〕×〔3〕×〔4〕×4-4-4,射线OC为∠AOB的平分线,∠AOC=35°,那么∠AOB是多少?图4-4-4解:因为OC为∠AOB的平分线,所以∠AOC=∠BOC=35°.∴∠AOB=70°.4-4-5,如果∠1=65°15′,∠2=78°30′,∠3是多少度?图4-4-5思路解析:充分利用三角和为一个平角来解决问题.解:因为∠1,∠2,∠3组成一个平角,所以∠3=180°-∠1-∠2=36°15′.快乐时光水果摊一位挑剔的顾客来到一个小食品店,看到新送来的一批新鲜水果,他对售货员说:“给我两公斤橙子,并用纸把每个橙子分别包起来。
七年级数学上册几角的比较与运算练习题
七年级数学上册几角的比较与运算练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.用度、分、秒表示91.34︒为( )A .9120'24''︒B .9134'︒C .9120'4''︒D .913'4''︒2.如图,下列各式中错误的是( )A .∠AOC =∠1+∠2B .∠AOC =∠AOD -∠3 C .∠1+∠2=∠3 D .∠AOD -∠1-∠3=∠23.如图所示,//CD AB ,OE 平分∠AOD ,80EOF ∠=︒,60D ∠=︒,则∠BOF 为( )A .35︒B .40︒C .25︒D .20︒4.若110AOC ∠=︒,OB 在AOC ∠内部,OM 、ON 分别平分AOC ∠和AOB ∠,若23MON ∠=︒,则AOB ∠度数为( ).A .43.5︒B .46︒C .64︒D .87︒5.如图,D 、E 分别为ABC 的边AB 、AC 的中点,连接DE ,过点B 作BF 平分ABC ∠,交DE 于点F ,若4EF =,7AD =,则BC 的长为( )A .22B .20C .18D .166.如图,O 是直线AD 上一点,射线,OC OE 分别平分,AOB BOD ∠∠,则COE ∠的大小为( )A .120°B .60°C .90°D .150°7.如图,在22⨯的正方格中,连接AB 、AC 、AD ,则图中1∠、2∠、3∠的和( ).A .必为锐角B .必为直角C .必为钝角D .可能是锐角、直角或钝角 8.已知∠A =20°18′,∠B =20°15′30″,∠C =20.25°,则度数最大的是( )A .∠AB .∠BC .∠CD .无法确定9.下列说法正确的个数是( )(1)连接两点之间的线段叫两点间的距离;(2)木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点之间,线段最短;(3)若AB=2CB ,则点C 是AB 的中点;(4)若∠A=20°18′.∠B=20°28″,∠C=20.25°,则有∠A >∠C >∠B .A .1个B .2个C .3个D .4个10.已知2,AOB BOC ∠=∠若30,BOC ∠=则AOC ∠等于( )A .90B .120或60C .30D .30或9011.把一副三角板ABC 与BDE 按如图所示的方式拼接在一起,其中A 、D 、B 三点在同一条直线上,BM 为∠ABC 的角平分线,BN 为∠CBE 的角平分线.下列结论∠∠MBN =45o ,∠∠BNE =∠BMC ,∠∠EBN =65o ,∠2∠NBD =∠CBM ,其中结论正确的个数是( )A .1个B .2个C .3个D .4个12.如图,已知BM 平分∠ABC ,且BM //AD ,若∠ABC =70°,则∠A 的度数是()A .30°B .35°C .40°D .70°二、填空题13.3242'︒=______°.14.下图所示的网格是正方形网格,BAC ∠________DAE ∠.(填“>”,“=”或“<”)15.如图,OC 是AOB ∠的平分线,13BOD COD ∠=∠,15BOD ∠=︒,则COD ∠=_____,BOC ∠=______,AOB ∠=______.16.如图,正方形ABCD 的对角线相交于点O ,正三角形OEF 绕点O 旋转.在旋转过程中,当AE =BF 时,∠AOE 的大小是__________.三、解答题17.如图,O 是直线AB 上一点,OC 是AOB ∠的平分线,3128COD '∠=︒,求AOD ∠的度数.18.如图,直线,EF CD 相交于点,,O OA OB OC ⊥平分AOF ∠.(1)若40AOE ∠=︒,求∠BOD 的度数;(2)若30BOE ∠=︒,求∠DOE 的度数.19.如图1,四边形ABCD 中,点E 在边AB 上,∠BCE 与∠BEC 互余,过点E 作EF CD ,交AD 于点F .(1)若EF ∠CE ,求证:∠AEF =∠BCE ;(2)如图2,EG 平分∠BEC 交DC 延长线于点G ,∠BCD +∠ECD =180°.点H 在FD 上,连接EH ,CH ,∠AHE +∠BCH =90°.当∠D +∠AEF =2∠G 时,判断线段CH 与CE 的大小关系,并说明理由.20.已知OC 是AOB ∠内部的一条射线,M ,N 分别为OA ,OC 上的点,线段OM ,ON 同时分别以30/s ︒,10/s ︒的速度绕点O 逆时针转动,设转动时间为s t .(1)如图(1),若120AOB ∠=︒,OM ,ON 逆时针转动到OM ',ON '处.∠若OM ,ON 的转动时间t 为2,则BON COM ''∠+∠=________;∠若OM '平分AOC ∠,ON '平分BOC ∠,求M ON ''∠的值.(2)如图(2),若4AOB BOC ∠=∠,当OM ,ON 分别在AOC ∠,BOC ∠内部转动时,请猜想COM ∠与BON ∠的数量关系,并说明理由.参考答案:1.A【分析】根据度分秒的进率''"160,160︒==把度可化为分和秒的形式即得.【详解】由度分秒的进率可得''"'"91.34910.346091200.460912024︒=︒+⨯=︒+⨯=︒故选:A.【点睛】考查了度分秒的进率关系式,注意相邻两个单位的进率是60,熟记进率关系式是解题的关键. 2.C【分析】结合图形根据角的和差关系逐项作出判断即可求解.【详解】解:A. ∠AOC =∠1+∠2,判断正确,不合题意;B. ∠AOC =∠AOD -∠3,判断正确,不合题意;C. ∠1+∠2=∠AOC ,∠AOC 与∠3不一定相等,判断错误,符合题意;D. ∠AOD -∠1-∠3=∠2判断正确,不合题意.故选:C .【点睛】本题考查了根据图形确定角的和差关系,理解题意并结合图形作出判断是解题关键.3.B【分析】由平行线的性质和角平分线的定义,求出60BOD D ∠=∠=︒,20DOF ∠=︒,然后即可求出∠BOF 的度数.【详解】解:∠//CD AB ,60D ∠=︒∠60BOD D ∠=∠=︒,18060120AOD ∠=︒-︒=︒,∠OE 平分∠AOD , ∠1120602DOE ∠=⨯︒=︒, ∠806020DOF EOF DOE ∠=∠-∠=︒-︒=︒;∠602040BOF BOD DOF ∠=∠-∠=︒-︒=︒;故选:B .【点睛】本题考查了平行线的性质,角平分线的定义,以及角的和差关系,解题的关键是熟练掌握所学的知识,正确的求出角的度数.4.C【分析】首先根据AOC ∠的度数和OM 平分AOC ∠求出AOM ∠的度数,然后可求出AON ∠的度数,最后根据ON 平分AOB ∠即可求出AOB ∠的度数.【详解】如图所示,∠110AOC ∠=︒,OM 平分AOC ∠, ∠1552AOM AOC ∠=∠=︒,∠=552332AON AOM MON ∠∠-∠=︒-︒=︒,∠ON 平分AOB ∠,∠264AOB AON ∠=∠=︒.故选:C .【点睛】此题考查了角平分线的概念和求角度问题,解题的关键是根据角平分线的概念求出AOM ∠的度数.5.A【分析】根据角平分线,平行线和等腰三角形的性质可求出线段DE 的长度,进一步根据中位线的性质即可求出BC 的长.【详解】解:D ,E 为AB ,AC 中点,AD =7, //DE BC ∴,且12DE BC =,AD =BD=7 DFB FBC ∴∠=∠, 又BF 平分ABC ∠,DBF FBC ∴∠=∠,即DFB DBF ∠=∠,7DF BD ∴==,则7411DE DF FE =+=+=,222BC DE ∴==.故选:A .【点睛】此题考查了角平分线,平行线,等腰三角形,三角形中位线的性质,熟练运用角平分线,平行线,等腰三角形,三角形中位线的性质是解题的关键.6.C【分析】根据平角的概念结合角平分线的定义列式求解.【详解】解:∠O 是直线AD 上一点∠180AOD ∠=︒∠射线,OC OE 分别平分,AOB BOD ∠∠ ∠12COB AOB ∠=∠,12EOB BOD ∠=∠ ∠1111=()902222COE COB EOB AOB BOD AOB BOD AOD ∠∠+∠=∠+∠=∠+∠=∠=︒ 故选:C .【点睛】本题考查平角及角平分线的概念,正确理解相关概念列出角的和差关系是解题关键.7.C【分析】标注字母如图所示,正方格,将正方格沿AC 对折,可得∠1=∠HDA ,可求∠3+∠1=90°,可得1∠+2∠+3∠>90°即可.【详解】解:标注字母如图所示,∠正方格,将正方格沿AC 对折,∠∠1=∠HDA ,∠∠3+∠1=∠3+∠HDA =90°,∠1∠+2∠+3∠>90°∠图中1∠、2∠、3∠的和是钝角.故选择C .【点睛】本题考查网格中的角度问题,掌握正方形网格的边有平行,将角转化∠1=∠HDA ,求出∠3+∠1=90°是解题关键.8.A【分析】将∠A 、∠B 、∠C 统一单位后比较即可.【详解】∠∠A =20°18′,∠B =20°15′30″,∠∠A >∠B ,∠∠C =20.25°=20°15′,∠∠A >∠C ,则度数最大的是∠A .故选A .【点睛】本题考查了度、分、秒的转化计算,解决这类题目的基本思路是把各个角的度数统一单位后再比较大小.9.A【分析】根据两点之间的距离的定义,线段的中点的定义以及角的比较即可作出判断.【详解】(1)连接两点之间的线段的长度叫两点间的距离,错误;(2)木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点确定一条直线,错误;(3)当C 在线段AB 上,且AB=2CB 时,点C 是AB 的中点,当C 不在线段AB 上时,则不是中点,故命题错误;(4)若∠A=20°18′.∠B=20°28″,∠C=20.25°,则有∠A >∠C >∠B ,正确;所以有1个正确.故选A .【点睛】考查了两点之间的距离、线段中点的定义、以及角的大小的比较,正确理解定义是关键. 10.D【分析】可分两种情况讨论:当射线OB 在AOC ∠中时,当射线OC 在AOB ∠中时,分别求出结果即可.【详解】解:如图1,当射线OB 在AOC ∠中时,2AOB BOC ,30BOC ∠=︒,60AOB ∴∠=︒,90AOC AOB BOC ∴∠=∠+∠=︒,如图2,当射线OC 在AOB ∠中时,2AOB BOC ,30BOC ∠=︒,60AOB ∴∠=︒,30AOC AOB BOC .故选:D .【点睛】本题是角的加减运算,能分两种情况讨论是解题的关键.11.C【分析】根据三角板中角的度数及角平分线的概念逐个进行分析判断.【详解】解:由题意可得:90EBD ∠=︒,60ABC ∠=︒,∠150EBC EBD ABC ∠=∠+∠=︒,∠BM 为∠ABC 的角平分线,BN 为∠CBE 的角平分线, ∠1302CBM ABC ∠=∠=︒,1752NBC EBN EBC ∠=∠=∠=︒,故∠错误; ∠∠MBN =NBC CBM ∠-∠=45o ,故∠正确;∠BNE =180°-E EBN ∠-∠=60°,∠BMC =90°-CBM ∠=60°,∠∠BNE =∠BMC ,故∠正确;9015NBD EBN ∠=︒-∠=︒,∠2∠NBD =∠CBM ,故∠正确;正确的是∠∠∠,共3个,故选:C .【点睛】本题主要考查了角平分线的定义,利用角平分线的定义计算角的度数是解答此题的关键. 12.B【分析】先根据角平分线的性质,求出∠ABC 的度数,再由平行线的性质得到∠A 的度数.【详解】解:∠BM 平分∠ABC ,∠∠MBA =12∠ABC =35°.∠BM ∠AD ,∠∠A =∠MBA =35°.故选:B .【点睛】本题考查的是角平分线的性质,平行线的性质,掌握以上知识是解题的关键.13.32.7 【分析】根据42324232+()60'︒=︒︒解答. 【详解】解:42324232+()32+0.732.760'︒=︒︒=︒︒=︒ 故答案为:32.7.【点睛】本题考查角、度的换算,是基础考点,掌握相关知识是解题关键.14.>【分析】构造等腰直角三角形,根据等腰直角三角形的性质即可进行比较大小.【详解】解:如下图所示,AFG 是等腰直角三角形,∠45FAG BAC ∠=∠=︒,∠BAC DAE ∠>∠.故答案为.>另:此题也可直接测量得到结果.【点睛】本题考查等腰直角三角形的性质,构造等腰直角三角形是解题的关键.15. 45︒ 30 60︒【分析】根据13BOD COD ∠=∠,15BOD ∠=︒可求出COD ∠的度数,COD BOD ∠-∠即可求BOC ∠的度数,然后根据OC 是AOB ∠的平分线即可求出AOB ∠的度数.【详解】∠13BOD COD ∠=∠,15BOD ∠=︒, ∠345COD BOD ∠=∠=︒;∠451530BOC COD BOD ∠=∠-∠=︒-︒=︒;∠OC 是AOB ∠的平分线,∠260AOB BOC ∠=∠=︒.故答案为:45︒;30;60︒.【点睛】此题考查了角平分线的概念,角度之间的数量关系,解题的关键是熟练掌握角平分线的概念,角度之间的数量关系.16.15°或165°【详解】分情况讨论:(1)如图(1),连接AE 、BF .∠四边形ABCD 为正方形,∠OA =OB ,∠AOB =90°. ∠∠OEF 为等边三角形,∠OE =OF ,∠EOF =60°.∠在∠OAE 和∠OBF 中,,{,,OA OB OE OF AE BF ===∠∠OAE∠∠OBF (SSS ), ∠1(9060)152AOE BOF ∠=∠=⨯︒-︒=︒. (2)如图(2),连接AE 、BF .∠在∠AOE 和∠BOF 中,,{,,OA OB OE OF AE BF ===∠∠AOE∠∠BOF (SSS ),∠∠AOE =∠BOF ,∠∠DOF =∠COE , ∠1(9060)152COE ∠=⨯︒-︒=︒,∠∠AOE =180°-15°=165°. 综上,∠AOE 的大小为15°或165°.17.5832'︒.【分析】首先根据O 是直线AB 上一点,OC 是AOB ∠的平分线,求出AOC ∠的度数是90°;然后根据AOD AOC COD ∠=∠-∠即可求出AOD ∠的度数.【详解】解:∠O 是直线AB 上一点,OC 是AOB ∠的平分线,∠180290AOC ∠=÷=,∠3128COD '∠=,∠9031285832AOD AOC COD ''∠=∠-∠=-=.【点睛】此题主要考查了角平分线的定义和角度的计算,要熟练掌握,解答此题的关键是清楚角平分线的定义.18.(1)20°;(2)60°【分析】(1)先求出∠AOF=140°,然后根据角平分线的定义求出∠AOC=70°,再由垂线的定义得到∠AOB=90°,则∠BOD=180°-∠AOB-∠AOC=20°;(2)先求出∠AOE=60°,从而得到∠AOF=120°,根据角平分线的性质得到∠AOC =60°,则∠COE=∠AOE+∠AOC=120°,∠DOE=180°-∠COE=60°.【详解】解:(1)∠∠AOE=40°,∠∠AOF=180°-∠AOE=140°,∠OC平分∠AOF,∠∠AOC=1∠AOF=70°,2∠OA∠OB,∠∠AOB=90°,∠∠BOD=180°-∠AOB-∠AOC=20°;(2)∠∠BOE=30°,OA∠OB,∠∠AOE=60°,∠∠AOF=180°-∠AOE=120°,∠OC 平分∠AOF ,∠∠AOC =12∠AOF =60°,∠∠COE =∠AOE +∠AOC =60°+60°=120°,∠∠DOE =180°-∠COE =60°.【点睛】本题主要考查了几何中角度的计算,角平分线的定义,垂线的定义,解题的关键在于能够熟练掌握角平分线的定义.19.(1)见解析(2)∠D =∠BCG ,理由见解析【分析】(1)根据EF CE ⊥得出90FEC ∠=︒,进而根据已知得出90BCE BEC ∠+∠=︒,从而求解;(2)先证明ECD BCG ∠=∠,然后设ECD BCG x ∠=∠=,表示出1802BCE x ∠=︒-,290BEC x ∠=-︒,进而表示出180180FEC ECD x ∠=︒-∠=︒-,18090AEF FEC BEC x ∠=︒-∠-∠=︒-,求出135FEG ∠=︒,45G ∠=︒,进而求出D x ∠=,得出D BCG ∠=∠. (1)证明:∠EF ∠CE ,∠∠FEC =90°,∠∠AEF +∠BEC =90°.∠∠BCE 与∠BEC 互余,∠∠BCE +∠BEC =90°,∠∠AEF =∠BCE ;(2)解:∠∠BCD +∠ECD =180°,∠BCD +∠BEG =180°,∠∠ECD =∠BCG .设∠ECD =∠BCG =x ,∠∠BCE =180°﹣2x ,∠BEC =2x ﹣90°.∠EG 平分∠BEC ,∠∠BEG =∠GEC =x ﹣45°.∠EF CD ,∠∠FEC =180°﹣∠ECD =180°﹣x ,∠∠AEF =180°﹣∠FEC ﹣∠BEC =90°﹣x ,∠FEG =∠FEC +∠GEC =180°﹣x +x ﹣45°=135°,∠∠G =180°﹣CFEG =45°.∠∠D +∠AEF =2∠G ,∠∠D =2∠G ﹣∠AEF =90°﹣(90°﹣x )=x ,∠∠D =∠BCG .【点睛】本题考查了多边形的内角和外角以及平行线的性质,解题的关键是熟练运用平行线的性质. 20.(1)∠40゜;∠60゜;(2)3COM BON ∠=∠,理由见解析.【分析】(1)∠先求出∠AOM′、CON′,再表示出∠BON′、∠COM′,然后相加并根据∠AOB=120°计算即可得解;∠先由角平分线求出∠AOM′=∠COM′=12∠AOC ,∠BON′=∠CON′=12∠BOC ,再求出∠COM′+∠CON′=12∠AOB=12×120°=60°,即∠M′ON′=60°; (2)设旋转时间为t ,表示出∠CON 、∠AOM ,然后列方程求解得到∠BON 、∠COM 的关系,再整理即可得解.【详解】(1)∠线段OM 、ON 分别以30°/s 、10°/s 的速度绕点O 逆时针旋转2s ,∠∠AOM′=2×30°=60°,∠CON′=2×10°=20°,∠∠BON′=∠BOC -20°,∠COM′=∠AOC -60°,∠∠BON′+∠COM′=∠BOC -20°+∠AOC -60°=∠AOB -80°,∠∠AOB=120°,∠∠BON′+∠COM′=120°-80°=40°;故答案为:40°;∠∠OM′平分∠AOC ,ON′平分∠BOC , ∠∠AOM′=∠COM′=12∠AOC ,∠BON′=∠CON′=12∠BOC , ∠∠COM′+∠CON′=12∠AOC+12∠BOC=12∠AOB=12×120°=60°, 即∠MON=60°;(2)∠COM=3∠BON ,理由如下:设∠BOC=x ,则∠AOB=4x ,∠AOC=3x ,∠旋转t 秒后,∠AOM=30t ,∠CON=10t ,∠∠COM=3x-30t=3(x-10t),∠NOB=x-10t,∠∠COM=3∠BON.【点睛】本题考查了角的计算,读懂题目信息,准确识图并表示出相关的角度,然后列出方程是解题的关键.。
专训4.3.3-与角有关的计算问题-七年级上册考点专训(解析版)(人教版)
专训4.3.3 与角有关的计算问题一、单选题1. 己知α∠与β∠都小于平角,在平面内把这两个角的一条边重合,若α∠的另一条边恰好落在β∠的内部,则( ).A .αβ∠<∠B .αβ∠=∠C .αβ∠>∠D .不能比较α∠与β∠的大小【答案】A【详解】解:如图所示,AOC β∠=∠,=BOC α∠∠,∵∠AOC >∠BOC ,∴αβ∠<∠,故选A .2. 如图,1∠与2∠之间的关系是( )A .12∠>∠B .12∠=∠C .12∠∠<D .1∠与2∠的大小无法比较【答案】B【详解】用度量法测得∠1=24°,∠2=24°∴12∠=∠.故选B .3. 若12018'∠=︒,22015'30''∠=︒,320.25∠=︒,则()A .123∠>∠>∠B .213∠>∠>∠C .132∠>∠>∠D .312∠>∠>∠【答案】A【详解】 解:∵12018'∠=︒,22015'30''∠=︒,320252015'∠=︒=︒., ∴123∠>∠>∠.故选:A .4. 若208'A ∠=︒,201'0'53'∠=︒B ,20.252015'∠=︒=︒C ,则( ).A .BC A ∠>∠>∠B .B AC ∠>∠>∠ C .A C B ∠>∠>∠D .C A B ∠>∠>∠【答案】A【详解】解:∵208'∠=︒A ,201530'''∠=︒B ,20.252015'∠=︒=︒C ,∴B C A ∠>∠>∠.故选:A .5. 将一副三角板按如图所示的方式放置,则∠AOB 的大小为( )A .75°B .45°C .30°D .15°【答案】D【详解】 解:∠AOB =45°﹣30°=15°.故选:D .6. 用一副三角板画角,不能画出的角的度数是( )度.A .15B .20C .75D .120【答案】B【详解】解:∵一副三角板中的角有30°,45°,60°,90°,∴用一块三角板的45 °角和另一块三角板的30°角组合可画出15°、75°角;用一块三角板的直角和和另一块三角板的30°角组合可画出135°角;无论两块三角板怎么组合也不能画出20°角.故选:B .7. 将三角尺与直尺按如图所示摆放,下列关于α∠与β∠之间的等量关系正确的是( )A .45αβ∠+∠=︒B .12αβ∠=∠C .135αβ∠+∠=︒D .90αβ∠+∠=︒【答案】D【详解】 解:∵直尺一边是平角为180°,三角尺的顶角为90°,∴90180αβ∠+︒+∠=︒,∴90αβ∠+∠=︒,故选:D .8. 将一副三角板按如图方式摆放,则下列结论错误的是( )A .1135∠=︒B .2145∠=︒C .12∠=∠D .12270∠+∠=︒【答案】B【详解】解:如图,由题意得:∠3=∠4=45°,∵13180,24180∠+∠=︒∠+∠=︒,∴12135∠=∠=︒,故A 、C 正确,B 错误;∴12270∠+∠=︒,故D 正确;故选B .9. 已知60AOB ∠=︒,从顶点O 引一条射线OC ,若20AOC ∠=︒,则BOC ∠=( ) A .20°B .40°C .80°D .40°或80°【答案】D【详解】解:分为两种情况:①当OC 在∠BOA 内部时,∠BOC =∠AOB -∠AOC =60°-20°=40°;②当OC在∠BOA外部时,∠BOC=∠AOB+∠AOC=60°+20°=80°.故选:D.二、多选题10.下列说法中,错误的是()A.角的平分线就是把一个角分成两个角的射线B.若∠AOB=1∠AOC,则OA是∠AOC的平分线2C.角的大小与它的边的长短无关D.∠CAD与∠BAC的和一定是∠BAD【答案】ABD【详解】解:A、角的平分线就是把一个角分成两个相等的角的射线,故本选项错误,符合题意;B、若∠AOB=1∠AOC,OA也不是∠AOC的平分线,2如图,故本选项错误,符合题意;C、角的大小与它的边的长短无关,故本选项正确,不符合题意;D、当射线AB在CAD∠∠与BAC∠的内部时,CAD的差是BAD∠,故本选项错误,符合题意;故选:ABD .三、填空题11. 计算:10842'36''︒=__________︒.【答案】108.71【详解】解:10842'36''︒()108423660''=︒++÷()10842.660=︒+÷︒108.71=︒.故答案为:108.71.12. 如果12,23∠=∠∠=∠,则1∠________3∠;如果12,23∠>∠∠>∠,则1∠___________3∠.【答案】= >【详解】解:如果12∠=∠,23∠∠=,则13∠=∠;如果12∠>∠,23∠>∠,则13∠>∠.故答案为:=,>.13. 如图,将一副三角板叠在一起,使直角顶点重合于点O ,则(1)AOD ∠=_____,理由是____________________;(2)AOC DOB ∠+∠=_______︒.【答案】BOC ∠ 同角的余角相等 180【详解】90AOD AOC COD ∠+∠=∠=︒,90AOC COB AOB ∠+∠=∠=︒,AOD BOC ∴∠=∠,理由是同角的余角相等,AOD AOB COD AOC ∠=∠+∠-∠,∴AOC DOB ∠+∠=AOB COD ∠+∠9090180=︒+︒=︒,故答案为:BOC ∠,同角的余角相等,180.14. 一副三角板如图放置,若34AOC ∠=︒,则BOC ∠=_____︒,BOD ∠=_____︒.【答案】56 34【详解】解:∵∠AOC=34°,∠AOB=90°,∴∠BOC=∠AOB-∠AOC=90°﹣34°=56°,又∵∠COD=90°,∴∠BOD=∠COD-∠BOC=90°﹣56°=34°.故答案为:56;34.15.如图,OM是AOB∠的平分线,若∠的平分线,射线OC在BOM∠内,ON是BOC∠=︒,则MON∠的度数为_________.AOC54【答案】27︒【详解】解:∵ON平分∠BOC,∴∠CON=∠BON,设∠CON=∠BON=x,∠MOC=y,则∠BOM=∠MOC+∠BOC=2x+y,又∵OM平分∠AOB,∴∠AOM=∠BOM=2x+y∴∠AOC=∠AOM+∠MOC=2x+y+y=2(x+y),∵∠AOC=54°,∴2(x+y)=54°,∴x+y=27°∴∠MON=∠MOC+∠NOC=x+y=27°.故答案为:27︒.四、解答题16. (1)35︒等于多少分?等于多少秒?(2)3815'︒和38.15︒相等吗?如不相等,哪一个大?【答案】(1)2100分,126000秒;(2)不相等,3815'︒大.【详解】解:(1)35°=(35×60)分=2100分35°=(35×3600)秒=126000秒;(2)∵0.15°=(0.15×60) ′=9′∴38.15°=38°9′,∴38°15′>38°9′.∴不相等,3815'︒大.17. 计算:(1)18⎛⎫ ⎪⎝⎭︒等于多少分?等于多少秒? (2)6000"等于多少分?等于多少度?【答案】(1)7.5,450''';(2)5100,3⎛⎫'︒ ⎪⎝⎭. 【详解】解:(1)115607.582⨯==,7.560450⨯=, 1()7.54508'''∴︒==; (2)∵600060100÷=,5100603÷=, ∴56000100()3'''==︒. 18. (1)0.25︒等于多少分?等于多少秒?(2)2700"等于多少分?等于多少度?【答案】(1)15',900'';(2)45'' ,0.75︒.【详解】解:(1)∵0.256015⨯=,1560900⨯=,∴0.2515900'''︒==;(2)∵27006045÷=,45600.75÷=,∴2700450.75'''==︒.19. 如图,直线m 外有一定点O ,A 是m 上的一个动点,当点A 从左向右运动时,观察α∠和β∠是如何变化的,α∠和β∠之间有关系吗?【答案】α∠越来越小,β∠越来越大,但始终180αβ∠+∠=︒.【详解】如图所示,∵α∠是钝角,β∠是锐角,∴当点A 从左向右运动时,α∠越来越小,β∠越来越大,又∵α∠和β∠组成了一个平角,∴180αβ∠+∠=︒.20. 如图,点P 是直线l 外一点,过点P 画直线P A ,PB ,PC ,…,分别交直线l 于点A ,B ,C ,….用量角器量出1∠,2∠,3∠的度数,并量出P A ,PB ,PC 的长度,你发现了什么?【答案】135∠=︒,256∠=︒,368∠=︒, 2.8PA =cm ,2PB =cm , 1.8PC =cm ,在P 点与直线上的点的连线中,与直线的夹角越大(不超过90︒),P 点与直线交点连线的线段长度越短;反之亦然.【详解】解:量得135∠=︒,256∠=︒,368∠=︒, 2.8PA =cm ,2PB =cm , 1.8PC =cm , 由此发现,在P 点与直线上的点的连线中,与直线的夹角越大(不超过90︒),P 点与直线交点连线的线段长度越短;反之亦然.21. 估计图中1∠与2∠的大小关系,并用适当的方法检验.【答案】(1)12∠∠<;(2)12∠=∠.【详解】解:(1)如图所示:分别以两个角的顶点为圆心,以相同的任意长为半径画弧,分别与自身角的两端交于A、B,C、D,然后用圆规量出AB与CD的长,当AB=CD时,∠1=∠2,当AB<CD时,∠1<∠2,当AB>CD时,∠1>∠2,如图所示,OE=AB,OF=CD∴在图形中可以发现OF>OE即CD>AB,即∠1<∠2;(2)同理可得下图中MN=GH,即下图中∠1=∠2.22.如图:已知点O是直线AD上的点,AOB∠,BOC∠,COD∠三个角从小到大依次相差25︒,求这三个角的度数.【答案】35︒,60︒,85︒【详解】解:设∠AOB=x,则∠BOC=x+25°,∠COD=x+50°,∵∠AOB+∠BOC+∠COD=180°,∴x + x+25°+x+50°=180°,解得:x=35°,∴∠AOB=35°,∠BOC=x+25°=60°,∠COD=x+50°=85°,∴这三个角的度数是35°,60°,85°.23.如图1,O为直线AB上一点,过点O作射线OC,30∠=︒,将一直角三角板(∠AOCM=30°)的直角顶点放在点O处,另一边OM与OC都在直线AB的上方,将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)几秒后ON 与OC 重合?(2)如图2,经过 秒后,MN ∥AB ;(3)若三角板在转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OC 与OM 重合?请并说明理由.(4)在(3)的条件下,求经过多长时间OC 平分∠MOB ?请说明理由.【答案】(1)10秒;(2)20;(3)20秒,详情见解析;(4)703秒,详情见解析 【详解】(1)∵30310÷=∴10秒后ON 与OC 重合;(2)∵//MN AB∴30BOM M ==︒∠∠∵90NOM ∠=︒∴90AON BOM ∠+∠=°∴60AON ∠=︒∴60320t =÷=∴经过20秒后,//MN AB(3)当OC 与OM 重合时,如图3所示:∵90AON BOM ∠+∠=°,BOC BOM =∠∠∵三角板在以每秒3︒转动的同时,射线OC 也绕O 点以每秒6︒的速度旋转,设3AON t ∠=,则306AOC t =︒+∠∵180AOC BOC ∠+∠=︒∴(306)(903)180t t ︒++︒-=︒解得:20t =∴经过20秒后OC 与OM 重合(4)当OC 平分∠MOB 时,如图4所示:∵90AON BOM ∠+∠=°,BOC COM ∠=∠∴3AON t ∠=,则306AOC t =︒+∠∵90AON BOM ∠+∠=° ∴11(903)22BOC COM BOM t ===︒-∠∠∠ ∴1(306)(903)1802t t ︒++︒-=︒ 解得:703t =∴经过703t =秒后OC 平分∠MOB 24. 已知两个分别含有30°,45°角的一副直角三角板.(1)如图1叠放在一起,若OC 恰好平分∠AOB ,求∠AOD 的度数;(2)如图2叠放在一起,∠AOD =4∠BOC ,试计算∠AOC 的度数.【答案】(1)135°;(2)110°【详解】(1)∵OC 平分∠AOB ,∠AOB =90°,∴∠AOC =12∠AOB =45°,∴∠AOD =∠AOC +∠COD =45°+90°=135°;(2)∵∠AOD =4∠BOC ,∴∠AOB -∠BOD =4(∠COD -∠BOD ),即90°-∠BOD =4(30°-∠BOD ),解得:∠BOD =10°,∴∠AOC =∠AOB +∠COD -∠BOD =90°+30°-10°=110°即∠AOC 的度数为110°.25. 如图,OM 是AOC ∠的平分线,ON 是BOC ∠的平分线.(1)如图1,当AOB ∠是直角,60BOC ∠=︒时, NOC ∠=________,MOC ∠=________ ,MON ∠=________;(2)如图2,当AOB α∠=,60BOC ∠=︒时,猜想:MON ∠与α的数量关系,并说明理由; (3)如图3,当AOB α∠=,BOC β∠= (β为锐角)时,猜想:MON ∠与α、β有数量关系吗?如果有,请写出结论,并说明理由.【答案】(1)30,75︒,45︒;(2)12MON ∠=α,理由见解析;(3)有,12MON ∠=α,理由见解析.【详解】解:(1)∵ON 平分BOC ∠, ∴11603022NOC BOC ∠∠==⨯︒=︒, ∴09060150AOC AOB B C ∠=∠+∠=︒+︒=︒,∵OM 是AOC ∠的平分线, ∴111507522MOC AOC ∠∠===︒⨯︒, ∴753045MON MOC NOC ∠∠∠=-=︒-=︒︒;故答案为:30,75︒,45︒;(2)12MON ∠=α.理由:60AOC AOB BOC ∠∠∠α=+=+︒,OM 是AOC ∠的平分线,()1116030222MOC AOC ∠∠αα︒==+=+︒,因为ON 平分BOC ∠, 所以11603022NOC BOC ∠∠==⨯︒=︒,11303022MON MOC NOC ∠∠∠αα=-=+︒-︒=; (3)12MON ∠=α. 理由:因为ON 平分BOC ∠,所以1122NOC BOC β∠=∠=, 又因为AOC AOB BOC αβ∠=∠+∠=+,OM 是AOC ∠的平分线, 所以11()22MOC AOC ∠∠αβ==+,111()222MON MOC NOC ∠∠∠αββα=-=+-=. 26. 已知150AOB ∠=︒,射线OP 从OB 出发,绕O 逆时针以1°/秒的速度旋转,射线OQ 从OA 出发,绕O 顺时针以3°/秒的速度旋转,两射线同时出发,运动时间为t 秒()060t <≤ (1)当12t =秒时,求POQ ∠;(2)当OP OQ ⊥,求t 的值;(3)射线OP ,OQ ,OB ,其中一条射线是其他两条射线所形成的角的平分线,求t 的值.【答案】(1)102POQ ∠=︒;(2)当15t =或60时,OP OQ ⊥;(3)当30t =或3007时,OP 、OQ 、OB 其中一条射线是其他两条射线所形成的角的平分线 【详解】(1)当12t =时,12336AOQ ∠=⨯︒=︒,12112POB ∠=⨯︒=︒∴1503612102POQ AOB AOQ POB ∠=∠-∠-∠=︒-︒-︒=︒.(2)3AOP t ∠=,POB t ∠=,OQ 与OP 相遇前,当037.5t ≤≤时,1501504POQ AOQ POB t ∠=-∠-∠=-∵OP OQ ⊥,∴150490t ︒-=︒,15t =,OQ 与OP 相遇后,37.550t <≤时,()150415050POQ POB AOQ t ∠=∠--∠=-≤︒,∴OP 不垂直OQ ,当5060t <≤时,()1504150POQ POB AOQ t ∠=∠+∠-=-,∵OP OQ ⊥,,∴415090t -=︒,60t =,综上所述,当15t =或60时,OP OQ ⊥.(3)当OP 平分QOB ∠时,12POQ POB QOB ∠=∠=∠, ∴1504t t -=,30t =,当OQ 平分POB ∠时,12POQ QOB POB ∠=∠=∠, 115032t t =-, 7300t =,3007t =, 当OB 平分POQ ∠时,POB QOB ∠=∠,3150t t =-,75t =(不合题意),综上所述,当30t =或3007时, OP 、OQ 、OB 其中一条射线是其他两条射线所形成的角的平分线.27.如图1,点O 为直线AB 上一点,过O 点作射线OC ,使∠BOC =120°.将一块直角三角板的直角顶点放在点O 处,边OM 与射线OB 重合,另一边ON 位于直线AB 的下方. (1)将图1的三角板绕点O 逆时针旋转至图2,使边OM 在∠BOC 的内部,且恰好平分∠BOC ,问:此时ON 所在直线是否平分∠AOC ?请说明理由;(2)将图1中的三角板绕点O 以每秒6°的速度沿逆时针方向旋转一周,设旋转时间为t 秒,在旋转的过程中,ON 所在直线或OM 所在直线何时会恰好平分∠AOC ?请求所有满足条件的t 值;(3)将图1中的三角板绕点O顺时针旋转至图3,使边ON在∠AOC的内部,试探索在旋转过程中,∠AOM和∠CON的差是否会发生变化?若不变,请求出这个定值;若变化,请求出变化范围.【答案】(1)直线ON平分∠AOC,见解析;(2)10秒或40秒或25秒或55秒;(3)不变,30°【详解】解:(1)直线ON平分∠AOC理由:设ON的反向延长线为OD,∵OM平分∠BOC,∴∠MOC=∠MOB,又∵OM⊥ON,∴∠MOD=∠MON=90°,∴∠COD=∠BON,又∵∠AOD=∠BON,∴∠COD=∠AOD,∴OD平分∠AOC,即直线ON平分∠AOC;(2)①当直线ON平分∠AOC时,三角板旋转角度为60°或240°,∵旋转速度为6°/秒,∴t=10秒或40秒;②当直线OM平分∠AOC时,三角板旋转角度为150°或330°,∴t=25秒或55秒,综上所述:t=10秒或40秒或25秒或55秒;(3)设∠AON=x°,则∠CON=60°-x°,∠AOM=90°-x°,∴∠AOM-∠CON=30°,∴∠AOM与∠CON差不会改变,为定值30°.28.如图(a),将两块直角三角尺的直角顶点C叠放在一起.(1)若∠DCE=25°,∠ACB等于多少;若∠ACB=130°,则∠DCE等于多少;(2)猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由;(3)如图(b),若是两个同样的三角尺60°锐角的顶点A重合在一起,则∠DAB与∠CAE 的大小有何关系,请说明理由;(4)已知∠AOB=α,∠COD=β(α、β都是锐角),如图(c),若把它们的顶点O重合在一起,则∠AOD与∠BOC的大小有何关系,请说明理由.【答案】(1)∠ACB=155°;∠DCE=50°;(2)∠ACB+∠DCE=180°,理由见解析;(3)∠DAB+∠CAE=120°,理由见解析;(4)∠AOD+∠BOC=α+β,理由见解析.【详解】解:(1)∵∠BCE=90°,∠DCE=25°,∴∠BCD=∠BCE﹣∠DCE=65°,∵∠ACD=90°,∴∠ACB=∠ACD+∠BCD=90°+65°=155°;∵∠ACB=130°,∠ACD=90°,∴∠BCD=∠ACB﹣∠ACD=130°﹣90°=40°,∵∠BCE=90°,∴∠DCE=∠BCE﹣∠BCD=90°﹣40°=50°,故答案为:155°,50°;(2)∠ACB+∠DCE=180°,理由如下:∵∠ACB=∠ACE+∠DCE+∠DCE,∴∠ACB +∠DCE =∠ACE +∠DCE +∠DCE +∠DCE =∠ACD +∠BCE =180°;(3)∠DAB +∠CAE =120°,理由如下:∵∠DAB =∠DAE +∠CAE +∠CAB ,∴∠DAB +∠CAE =∠DAE +∠CAE +∠CAB +∠CAE =∠DAC +∠BAE =120°;(4)∠AOD +∠BOC =α+β,理由如下:∵∠AOD =∠AOC +∠COB +∠BOD ,∴∠AOD +∠BOC =∠AOC +∠COB +∠BOD +∠BOC =∠AOB +∠COD =α+β.29.已知:∠AOB =60°,∠COD =90°,OM 、ON 分别平分∠AOC 、∠BOD .(1)如图1,OC 在∠AOB 内部时,∠AOD +∠BOC = ,∠BOD ﹣∠AOC = ; (2)如图2,OC 在∠AOB 内部时,求∠MON 的度数;(3)如图3,∠AOB ,∠COD 的边OA 、OD 在同一直线上,将∠AOB 绕点O 以每秒3°的速度逆时针旋转直至OB 边第一次与OD 边重合为止,整个运动过程时间记为t 秒.若∠MON =5∠BOC 时,求出对应的t 值及∠AOD 的度数.【答案】(1)150°,30°;(2)75°;(3)5,165t AOD =∠=︒或35,75t AOD =∠=︒【详解】解:(1)∠AOD +∠BOC =∠AOB +∠COD =90°+60°=150°,∠BOD ﹣∠AOC =∠COD ﹣∠AOB =90°﹣60°=30°;(2)∵OM 、ON 分别平分∠AOC ,∴∠MOC =12∠AOC ,12NOB ∠=∠BOD . ∴∠MON =12(∠AOB ﹣∠BOC +∠COD ﹣∠BOC )+∠BOC =12()75AOB COD ∠+∠=︒.(3)当∠AOB ,∠COD 的边OA 、OD 在同一直线上时,∠AOD 为平角,∴∠BOC =180°﹣90°﹣60°=30°.∠BOD =90°+30°=120°.30÷3=10(秒),120÷3=40(秒).当0≤t ≤10时,(303)BOC t ∠=-︒,由(2)可知75MON ∠=︒.∴5(30﹣3t )=75时t =5.∠AOD =180﹣3t =165°.当10<t ≤30时,∠BOC =3(t ﹣10)°,75MON ∠=︒,∴75=3×(t ﹣10),t =35,此时∠AOD =180﹣3t =75°.30.一副三角板(直角三角板OAB 和直角三角板OCD )如图1所示放置,两个顶点重合于点O ,OC 与OB 重合,且60AOB ∠=︒,30A ∠=︒,45OCD ODC ∠=∠=︒,90COD ABO ∠=∠=︒.将三角板OCD 绕着点O 逆时针旋转一周,旋转过程中,OE 平分BOC ∠,OF 平分AOD ∠,(AOD ∠和BOC ∠均是指小于180°的角)探究EOF ∠的度数.(1)当三角板OCD 绕点O 旋转至如图2的位置时,OB 与OD 重合,AOC ∠=______°,EOF ∠=______°.(2)三角板OCD 绕点O 旋转过程中,EOF ∠的度数还有其他可能吗?如果有,请研究证明结论,若没有,请说明理由.(3)类比拓展:当COD ∠的度数为α()0180α︒<<︒时,其他条件不变,在旋转过程中,请直接写出EOF ∠的度数.(用含α的式子来表示)【答案】(1)150;75 (2)有,105° (3)1302EOF α=︒+或11502α︒-【详解】(1)如图,由OB 与OD 重合,∵60AOB ∠=︒,90COD BOC ∠=∠=︒,∴6090150AOC AOB BOC ∠=∠+∠=︒+︒=︒.又∵OE 平分BOC ∠,OF 平分AOD ∠, ∴1452BOE BOC ∠=∠=︒,1302DOF AOD ∠=∠=︒, ∴453075EOF BOE EOF ∠=∠+∠=︒+︒=︒.故答案为:150°;75°;(2)如图,∵OE 平分BOC ∠,OF 平分AOD ∠, ∴12BOE BOC ∠=∠()12AOC AOB =∠+∠ ()1602AOC =∠+︒ 1302AOC =∠+︒ ()13602COD AOD =︒-∠-∠+30° ()1360902AOC =︒-︒-∠+30° ()12702AOD =︒-∠+30° 11652AOD =︒-∠.∴EOF BOE AOF AOB ∠=∠+∠-∠, ∴111656010522EOF AOD AOD ∠=∠+︒-∠-︒=︒. (3)如图,∵OE 平分BOC ∠,OF 平分AOD ∠, ∴12BOE BOC ∠=∠()12AOC AOB =∠+∠()1602AOC =∠+︒1302AOC =∠+︒, ()1111++2222AOF AOD COD AOC AOC α∠=∠=∠∠=∠, ∴EOF AOF AOB BOE ∠=∠+∠-∠ =11+22AOC α∠+60°-1-302AOC ∠︒ =1302α︒+;如图,∵OE 平分BOC ∠,OF 平分AOD ∠, ∴12BOE BOC ∠=∠()12AOC AOB =∠+∠()1602AOC =∠+︒1302AOC =∠+︒, ()()1111136036018022222AOF AOD COD AOC AOC AOC αα∠=∠=︒-∠-∠=︒--∠=︒--∠∴EOF BOE AOF AOB ∠=∠+∠-∠111130180601502222AOC AOC αα=∠+︒+︒--∠-︒=︒-. 综上所述,1302EOF α∠=︒+或11502α︒-.。
初中数学七年级上册《角的比较与运算》拓展训练
《角的比较与运算》拓展训练一、选择题1.如图,已知ZAON=15°,ZB0N=40°,Q4是ZBOC的平分线,0D10B,则()A.射线。
的方向为东偏北25°B.射线。
的方向为北偏东25C.射线0D的方向为西偏南45°D.射线0D的方向为南偏西50°2.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,则ZAOB的大小为()3.如图,三个营地中ZACB=60°-在一次夏令营活动中,小霞同学从营地A点出发,要到C地去,先沿北偏东70°方向到达B地,然后再沿北偏西20°方向到达目的地C,此时小霞在营地A的()4. A.北偏东20°方向上C.北偏东40°方向上已知ZAOB=70° , ZBOC=30° B.北偏东30°方向上D.北偏西30°方向上,平分ZAOB, ON 平分ZBOC,则/MON 的度数等于( )A. 50°B. 20°C. 20° 或 50°D. 40° 或 50°5.如图,ZAOB 是直角,Q4平分ZCOD, OE 平分/BOD,若ZBOE=23° ,则ZBOC 的度数是( )A. 113°B. 134°C. 136°D. 144°如图,03 平分ZAOD,平分ZBOD, ZAOC=45°,则 ZBOC=()6.7.10° C. 15° D. 20°如图,两块直角三角板的直顶角。
重合在一起,^zboc =L zaod ,贝以58. C. 54° D. 60°已知ZAOB=6Q° ,其角平分线为OM, ZBOC=20°其角平分线为ON,则ZMON 的大小为( )A. 20°B. 40°C. 20° 或 40°D. 30° 或 10°9.若ZAOB=90° , ZBOC=40° ,则ZAOC 的度数为()A. 50° B. 50° 或 120° C. 50° 或 130° D.130°10.已知射线。
七年级数学上册《第四章几何图形初步》角的比较与运算(二)练习题(2021年整理)
(完整版)七年级数学上册《第四章几何图形初步》角的比较与运算(二)练习题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)七年级数学上册《第四章几何图形初步》角的比较与运算(二)练习题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)七年级数学上册《第四章几何图形初步》角的比较与运算(二)练习题(word版可编辑修改)的全部内容。
角的比较与运算(二)一、选择题题号12345678910答案1.如图,长方形ABCD沿AE折叠,使D点落在BC边上的F点处,如果∠BAF =520,则∠DAE等于 ( )A.210 B。
l90 C。
400 D.450第1题图第6题图第8题图第9题图2.下面说法正确的是 ( )A.边越长角越大B。
放大镜看一个角,角的度数变大了C.度数相等的两个角相等 D.如果∠1≤∠2,∠2≤∠3,那么∠l〈∠33.两个锐角的和( )A.必是锐角 B.必是直角 C.必是钝角 D.可能是锐角、直角或者钝角※4.已知∠AOB =3 ∠BOC,若∠BOC =300,则∠AOC等于 ( )A.1200 B. 1200或600 C. 300 D. 300或9005.如果∠α=3∠β,∠α=2∠θ,则必有 ( )A.∠β=12∠θ B.∠β=13∠θ C.∠β=23∠θ D.∠β=34∠θ6.如图所示,射线OB、OC将∠AOD分为三部分,下列判断错误的是( ) A.如果∠AOB=∠COD,那么∠AOC=∠BODB.如果∠AOB>∠COD, 那么∠AOC〉∠BODC.如果∠AOB<∠COD,那么∠AOC〈∠BODD.如果∠AOB=∠BOC,那么∠AOC=∠BOD7.若将一个平角三等分,则两旁的两个角的角平分线所组成的内角是()A. 900B. 1000C. 1200 D。