基于模型道的地表一致性剩余静校正方法
地震数据处理重点整理
地震数据处理重点整理(个人观点)一、题型判断题20分/10个名词解释30分/5个简答题30分/3个计算题20分/2个二、名词解释1、地震剖面的“三高”:高信噪比、高分辨率和高保真度。
2、野外静校正:对陆上资料,把所有炮点和接收点位置均校正到一个公共基准面上以消除高程、低降速带和井深对旅行时的影响。
剩余静校正:野外静校正后,在地震数据中仍然残留有各种剩余静态时移,对这些的校正称为剩余静校正。
3、反褶积:沿时间坐标轴作用,通过压缩地震子波提高地震时间分辨率。
4、最小相位信号:是具有对相同振幅谱的物理可实现信号中相位最小的信号,或者说能量延迟最小的信号。
5、视波数:k=f/v,由于地震勘探是沿测线观测的,因此可以用视波长、视速度、视波数来描述地震波特征,可表示为k*=f/v*,其中k*为视波数。
6、预白化:为了解决带限问题,在地震信号的功率谱P(w)中,从低频到高频统一加一白噪。
7、子波整形反褶积:将不同相位的子波转变为最佳子波的反褶积。
8、速度分析:为叠加提供最佳叠加速度的方法。
9、静校正:存在地形起伏、低速带的厚度变化和速度的横向变化等,此时时距曲线发生畸变,对这些因素的校正,称为静校正。
10、动校正:在水平界面的情况下,从观测到的反射波旅行时中减去正常时差t,得到相当于自激自收的时间,这一过程叫做动校正。
11、正常时差:在界面水平时,对界面上某点以跑检距进行观测得到的反射波旅行时与自激自收观测的旅行时之差,称为正常时差。
12、拉伸畸变:动校正结果出现频率畸变,同相轴移向低频。
13、水平叠加:水平叠加是将CMP道集记录经NMO动校后叠加起来,目的是压制随机噪音,提高地震信噪比。
14、速度谱:把每一种速度所得的叠加结果并排显示在速度-双程零炮检距时间平面中,称此为速度谱。
15、速度扫描:应用一系列常速度在CMP道集进行动校正,并将结果并列显示,从中选出能使反射波同相轴拉平程度最高的速度作为NMO速度的速度分析方法称为速度扫描。
几种静校正方法在复杂山区的应用分析
几种静校正方法在复杂山区的应用分析在复杂山地地区,由于地表起伏剧烈,低速带的横向速度和纵向厚度变化大,不同检波点接收到的地震波至时间出现延迟,反射波时距曲线发生畸变,通常利用静校正解决这种畸变,目前勘探实践中较常使用高程、折射、层析等三种静校正方法。
文章对这几种静校正方法的原理、特点以及实际应用效果进行了对比分析,研究认为基于初至时间的层析静校正方法能较好地解决复杂山区由于地形和低速带变化引起的长波长静校正问题,同时结合反射剩余静校正解决残余的短波长静校正量,可有效地解决复杂山地的静校正问题。
标签:高程静校正;折射静校正;层析静校正;剩余静校正引言目前油气勘探的重点逐步在向复杂地区转移,其地表起伏剧烈,表层速度横向变化大,部分地区基岩出露,这给地震资料处理工作带来复杂的静校正难题。
静校正工作是地震资料处理中最基础也是最关键的一项内容,它直接影响叠加效果,同时决定叠加剖面信噪比和垂向分辨率。
静校正可分为一次静校正和剩余静校正两大类,常用的一次野外静校正方法有高程静校正、折射静校正和层析反演静校正等;剩余静校正方法主要有基于初至时间的剩余静校正与基于反射能量的剩余静校正两类[1]。
为此,应清楚认识理解每种方法的基本原理及其适用条件,以免在处理过程中走弯路。
1 方法及原理1.1 高程静校正高程静校正是最简单的静校正方法,它不考虑近地表速度和厚度变化的影响,只对由地形变化引起的部分进行校正,因此高程静校正只能消除地表起伏的影响。
在复杂地区,低速带对静校正的影响并不仅仅是高频分量,也有影响构造形态的低频分量,对于这种情况,高程静校正无能为力,尽管在某些地区可以见到较好的效果,但也可能会是构造假象难以让人察觉,所以在复杂探区,高程静校正并不是一种理想的静校正解决方法。
通常地震处理者为了快速了解研究区的大致构造形态,会选用该方法进行初叠加剖面,同时也作为选择其它静校正方法及参数的一个质量控制对比标准。
1.2 折射静校正折射静校正方法有两点假设:一是假设地表模型是由几个局部水平层构成;二是假设波在折射界面上的入射角是临界角。
2014年春《地震资料采集与处理》课程总结-宋先海
《地震资料采集与处理》课程总结(仅供参考)郑重申明:采集与处理难度较大,老师上面提及‘仅供参考’四字,可能出的题目会有较大偏差,被坑了不关我事。
这总结内容有点多,包含了一些相关内容,答案还要从中自己总结,前面是老师总结的内容,后面是附加重点,内容有点混乱,因为自己都不懂的情况下总结的,仅供本人使用。
提高地震资料信噪比:1、组合法压制干扰波(面波和随机干扰波)的基本原理及其优缺点。
组合法的原理:它是利用有效波(反射波)与低速规则干扰波(面波)的传播方向或视速度的差异,根据地震信号的叠加原理和组合统计效应,来压制低速规则干扰面波和无规则的随机干扰波,以增强反射波提高地震资料信噪比(Ratio Signal to Noise)。
➢优点:(1)利用组合的方向特性,可以压制低速规则干扰面波。
(2)利用组合的统计效应,可以压制随机干扰波。
(3)组合表层的平均效应,有利于波形对比和追踪。
➢缺点:(1)组合具有低频滤波作用,可能会使波形发生畸变。
(2)组合深层的平均效应,模糊了深层反射界面构造细节,降低了地震资料的横向分辨率,易漏掉小断层、小构造。
(3)不能压制高速规则干扰波(多次反射波)。
2、多次覆盖技术(共反射点多次叠加法)压制干扰波(多次波和随机干扰波)的基本原理及其与组合法的异同点。
基本原理:它是利用有效波(一次反射波)和规则干扰波(如多次反射波) 经正常时差校正(Normal MoveOut Correction)后,存在着剩余时差的差异,来突出有效波(一次反射波),压制干扰波(如多次波),提高资料信噪比(S/N)的。
➢相同点:● 1.共反射点多次叠加法(多次覆盖法)与组合检波方法都是进行多个地震道叠加。
● 2.当界面倾斜时,多次覆盖法和组合法都存在平均效应。
● 3.多次覆盖法和组合法利用统计效应,均可压制随机干扰波。
● 4.当有剩余时差时,多次覆盖法对地震波有低通滤波作用,组合法也有低通滤波作用。
➢相同点:● 1.共反射点多次叠加法(多次覆盖法)与组合检波方法都是进行多个地震道叠加。
地震数据处理第五章:静校正
总的低速带校正量为:
' j
hl )
静校正前
地面 V0
低速带底面 V
反射界面
第一步:井深校正后
V0 V
地面 低速带底面 反射界面
第二步:地形校正后
V0 V
基准面 低速带底面 反射界面
第三步:低速带校正后
基准面
反射界面
小结
1、符号约定:剥去地层时间为负,即减去静校正 量为负号;填充地层时间为正,即加上静校正量为 正号。 2、最终基准面校正量计算公式为
近地表沉积的介质相对深层而言,沉积年代
相对较短,长年的风化作用使近地表沉积的介质 疏松,无胶结或半胶结,地层中含水与不含水, 含水量的多少都会引起地球物理特征的变化。
近地表厚度和速度的各向异性、地表高程起
伏都会对地震波场造成不等量的延迟,延迟的大 小与近地表地层的物性有关,这种延迟时若不校 正,将会影响到叠加成像和构造形态的可靠性。
ESW—炮点处风化层高 程 EGW—检波点处风化层 高程 ESR—炮点处参考基准 面高程
EGR—检波点处参考基 准面高程
Hs —— 井深
炮点基准面静校正量为:
TS
TSW
- TSR
ES
- E SW vW
hs
ESW ESR VR
检波点基准面静校正量为:
TG
TGW
- TGR
EG - EGW v
(1)基准面校正;CMP叠加参考面校正;低降速 带底面校正;
(2)控制点数据线性内插法(微测井、小折射方 法等建立控制点数据);
(3)沙丘曲线法(根据沙丘厚度在延迟时曲线上 找到对应的延迟时,计算静校正量);
(4)相似系数法; (5)数据库法(建立导线成果、浮动基准面高程、 地表高程、小折射成果、高速层顶深度、潜水面深度 等数据库)。
第八节 地表一致性反射波剩余静校正
第八节 地表一致性反射波剩余静校正许多静校正方法均采用地表一致性模型。
检波器组在位置i 的延迟G i 和震源在位置j 的延迟S j ,对所有相应的地震道都是相同的。
如果i 和j 具有公共的坐标原点,其炮检距正比于(j -i )。
如果沿测线有构造,我们以CMP (共中心点)号位置k 来表示延迟量L k ,其中k =(j - i )/2,表示构造的深度比其它位置深L k 个单位,L k 是构造时移的均值。
对于平界面反射而言,它即指向中点位置。
如果倾角很缓,L k 对于共中心点来说几乎是常数。
如果动校正速度有误差,就会保留一些剩余时差M k ,它随炮检距的平方而变化。
如果不考虑炮点或检波点对测线的横向偏离,那么对于地表一致性模型,一个道总的时移量t i,j 为: t i,j =G i 十 S j + L k 十 Mk (j – I )2 (8.1)地表一致性模型不只限于确定静校正量的时移,在振幅调节、子波提取、反褶积及其它算法中,有时候都是基于地表一致性模型,均按上述相同的过程进行。
我们并不知道每一道的时移量,但可以利用互相关求一个道相对于另一个道的时移量(t i,j – t m,n ):t i,j – t m,n =G i –G m +S j –S n +L i+j – L m+n +M i+j (j - i )2 – M m+n (n –m )2 (8.2)在此没有使用下标k ,而使用i+j ,是确保下标是整数,具体数值无关紧要。
对于一个CMP 道集,两两道互相关,就可以得出比未知数(G i ,S j ,L i+j ,M i+j )个数还要多的方程式,是一个超定方程组。
但是,方程(8.2)在测量过程中也包含一些不确定的因素,例如等号左边就会出现误差。
一个“超定”,一个“不确定”,就使我们有办法来求解这个方程组,通常用最小平方法,有时也用迭代法。
最小平方问题是使误差e p 的平方和最小:()[]{}最小值∑∑=+-+-+---==++++2n m 2j i n m ,,2m) - (n M - i -j M L )(j i n j m i n m j i p L S S G G t t e E (8.3) 可用下式求解:,0,0,0,0=∂∂=∂∂=∂∂=∂∂++j i j i j i M E L E S E G E (8.4)通常,我们事先构成一个横型道,例如经过一般处理后的本道集的初步叠加道,或者是经过时移处理后的前一个道集的叠加道。
折射波剩余静校正方法
*北京市海淀区学院路中国地质大学地下信息探测技术与仪器教育部重点实验室,100083本文于2005年2月21日收到,修改稿于同年10月2日收到。
・处理方法・折射波剩余静校正方法段云卿*(中国地质大学地下信息探测技术与仪器教育部重点实验室)摘 要段云卿.折射波剩余静校正方法.石油地球物理勘探,2006,41(1):32~35山地、沙漠及其他复杂地表地区地震资料的线性散射噪声和随机噪声很强,有效反射信号弱,资料信噪比较低,静校正问题严重,使用常规剩余静校正方法难以见效。
本文利用折射波信噪比高的特点,将反射波剩余静校正方法应用于折射波资料处理,通过交互手段,逐段估算折射波的速度,用合适的速度对地震记录进行线性动校正,在共炮点或共中心点道集上,用相关方法计算各道与模型道时差,再用统计方法计算出炮点和检波点剩余静校正量。
将该方法应用于信噪比较低、反射波剩余静校正方法难以奏效的复杂地表区,获得良好处理效果。
关键词 剩余静校正 折射波法 共炮点道集 共中心点道集 复杂地表区 模型道1 引言静校正是地震资料处理中至关重要的一环。
我国西部地区地表条件极为复杂,静校正问题尤为严重。
如在沙漠、戈壁、黄土塬或山地等复杂地表区,地形起伏大,表层岩性变化非常剧烈,低降速带厚度变化大,激发和接收条件复杂,近地表条件纵横向千差万别。
近地表地形和低降速带的影响导致地震反射资料不能准确成像,也造成地下构造发生扭曲。
因此,研究复杂地表区静校正方法,对于提高地震勘探精度、降低勘探风险及节约勘探成本有着重要的意义。
本文基于反射波剩余静校正思路,提出一种实现折射波剩余静校正的方法,从而较好地解决了信噪比较低、反射波剩余静校正方法难以奏效地区的静校正问题。
2 方法实现思路静校正的常规步骤为:首先对地震资料进行野外静校正;随后进行折射波静校正;在动效正之后,再进行反射波剩余静校正。
通过这些处理,可初步解决长、中、短波长静校正问题。
但在山地、沙漠及其他复杂地表区,由于线性散射噪声和随机噪声强,有效反射信号弱,地震资料的信噪比往往较低,因此采用常规剩余静校正方法不能建立准确的模型道而达不到预期处理效果。
山地地区地表一致性剩余静校正技术应用技巧
3 1 2・
价 值 工 程
山地地 区地表一致性剩余静校正技术应用技巧
Ap p l i c a t i o n S k i l l o f S u r f a c e Co n s i s t e n t Re s i d u a l S t a t i c Co r r e c t i o n Te c hn o l o g y i n Mo u n t a i n o u s Ar e a
Ab s t r a c t :Du e t o c o mp l e x g e o l o g i c a l c o n d i t i o n s o f mo u n t a i n o u s a r e a a n d p o o r r e c e i v i n g c o n d i t i o n , t h e o r i g i n a l ma t e r i a l S NR i s l o w. I t i s d i ic f u l t t o a c c u r a t e l y i d e n t i f y t h e e f f e c t i v e v e l o c i t y b e f o r e r e s i d u a l s t a t i c c o r r e c t i o n .T h e e a s i l y i d e n t i i f e d v e l o c i t y c a n b e g a i n e d a f t e r s e v e r a l t i me s o f v e l o c i t y a n a l y s i s a n d r e s i d u a l s t a t i c c o r e c t i o n . B u t b e c a u s e o f t h e e r r o r o f i n i t i a l v e l o c i t y a n d i n i t i a l s t a t i c s , t h e i t e r a t i v e o f r e s i d u l a s t a t i c c o r r e c t i o n i s a l wa y s n o t c o n v e r g e n t S O t h e r e l a u n d e r g r o un d s t r u c t u r l a c o n i f g u r a t i o n c a n n o t b e g a i n e d .On l y r e l a t i v e l y r e a s o n a b l e i n i t i a l v e l o c i t y c a l c u l a t i n g me t h o d c a n e n s u r e t h e r e l a a n d r e a s o n a b l e i ma g e r y .
GeoEast初至波剩余静校正
4
初至时间读取 FBTimeRead3D
计算 应用 FBDecom3D StApply
中国石油东方地球物理公司远程培训
概述
所谓的数据准备即为初至波拾取提供输入数据,此时用户需要在完成观 测系统定义的地震数据上进行野外校正量的直接应用(direct application of static correction选件),并得到完成野外校正量应用 之后的地震数据,然后在该数据上进行初至波拾取,作业例子如下:
输入数据:道头中含有初至时间,按inline依次排序的三维/二维CMP道集 输出数据:初至时间和相应道头信息的数据表
中国石油东方地球物理公司远程培训
25
FBTimeRead3D模块输出初至时间和相应道头信息的数据表,并保存在 对应项目、工区(线束)下的datatable目录中。模块参数取值如下图所 示,输出数据表文件名称:fbt-all。
中国石油东方地球物理公司远程培训
13
在静校正量窗口中移动光标,将激活 光标所在处炮的初至旅行时曲线(变 为红色)。
在控制点初至显示窗中,使用鼠标左键点击并拖动, 选择该控制点需要参与计算的偏移距范围。
中国石油东方地球物理公司远程培训
14
中国石油东方地球物理公司远程培训
15
用户可以根据自己需要进行下一个控制点的选择,在主窗口中滑动鼠标, 此时显示为黄色,如上图所示,在需要增加控制点的位臵点击鼠标左键, 弹出控制点初至显示窗,并选定范围即可完成另一个控制点的定义。此 时模块将根据多各控制点定义的范围自动进行插值和外推,形成全线计 算范围,并调整主窗口中初至时间曲线的显示颜色 。 对于已经定义好的控制点,用户可以将鼠标滑动到该控制点的初至时间 曲线,并点击,在弹出的控制点初至显示框进行修改,程序自动进行全 线计算范围的重新计算。 需要说明的时,第一次进入本模块时,无论需要选层与否,都要进行一 次插值计算,即在计算之前选择一次Calculate→ Interpolate,此时程 序按照缺省参数进行计算范围圈定。
地震资料处理流程与方法介绍(2)
动校正前
动校正后
3、水平叠加
九、动校正、切除与叠加
叠加
同一反射点地震记录
叠加剖面
十、 (短波长)剩余静校正
1、为什么要做剩余静校正
由于低速带的速度和厚度在横向上的变化,使野外表层参数测量不准确或无法测 量,故使野外静校正后,爆炸点和接收点的静校正量还残存着或正或负的误差,这个 误差称为“剩余静校正量”。
幅能量分布均匀合理 。 基本假设:近地表不均匀因素对地震记录影响十分复杂,把各种因素同时加以考
虑会使问题变得十分棘手,甚至无法解决。为了使问题简化并满足地表一致性要求, 一般作如下假设:
(1)地表振幅影响因子对整道是一个常数,它是震源强度、表层衰减、检波器 耦合等影响的总和系数。
(2)各振幅因子保持地表一致性原则。即不管波的传播路径如何,同一道集内 所有道将具有同一补偿因子。如:同一炮的所有道将具有同一炮点的补偿因子,同一 检波点所有道将具有同一检波点的补偿因子。
将野外磁带数据转换成处理系统格式,加载到磁盘上; 2、输入数据质量检查: 炮号、道号、波形、道长、采样间隔等等。
二、置道头
道头:每个地震道的开始部分都有一个固定字节长度的空余段,这个空余段用来记录
描述本道各种属性的信息,称之为道头。如第8炮第2道,第126CMP等。
1、观测系统定义
模拟野外,定义一个相对坐标系,将野外的激发点、接收点的实际位置放到这个相 对的坐标系中。 2、置道头
(3)输入数据为经准确的静校正、球面扩散、地层衰减补偿后的记录。 ——可以根据数据的具体情况,在处理的不同阶段多次使用。目前的流程大都使用一 次。
2、地表一致性振幅补偿
五、振幅补偿
地震第5章-静校正
§5.2 基准面静校正
基准面静校正也称为野外静校正,顾名思义,就是将在地表采集的地 震记录校正到基准面上,消除地表高程和风化层对地震记录旅行时的影响。
图5-6(a)给出了只有一个风化层的简单近地表模型,地面A、B点对应 风化层底界的 、 点,对应基准面上的 、 点。下面对A、B上的地 震记录进行时间A w 校B正w ,使之转化为在 、 A ,R 点B记R 录所观测到的记录时间, 且在基准面之下无风化层或低速带的存A R 在B。R
(5-7)
sin c
vw vb
(5-8)
将(5-8)式代入(5-7)式,整理后
t 2zw vb2 vw2 x
vbvw
vb
我们知道,折射波时距方程是下面的线性方程
t
tob
x vb
对比(5-9)式和(5-10)式,得到
(5-9) (5-10)
tob
2zw
vb2 vw2 vbvw
(5-11)
因此,由风化层速度 v w ,基岩速度 v b 和折射波的截距 t o b ,可以
(5-23)
—由于D 1 点和 D 2 点不重合而引入的补偿项。
t 的定义与(5-15)式类似
静校正
第四节静校正静校正是消除地震波到达时间误差的办法。
研究由于地形起伏、低降速带厚度和速度的横向变化,引起地震波到达时间的变化规律,并进行校正的技术。
静校正是一项十分复杂的至今仍未彻底解决好的技术。
著名地球物理学家迪克斯教授生前曾说,解决好了静校正问题就等于解决好了地震勘探中几乎一半的问题,静校正的难度可见一斑。
在观测面是水平的,地下传播介质是均匀的假设条件下,推导出了地震反射波的时距曲线方程。
实际上,沿着测线的方向,地表高程、地表低降速带的厚度和速度的变化,也就是介质的不均匀,导致地震波到达时间的误差,所得到地震反射波的时距曲线,是一条畸变了的双曲线。
地表的变化越大,导致地震波到达时间的误差就越大,也就是静校正问题越突出。
地震波的激发、接收、传输系统也能引起少量的到达时间误差。
1.静校正概述静校正是提高叠加剖面信噪比和垂向分辨率的一项关键技术。
静校正方法有野外静校正和室内静校正,或者野外静校正和剩余静校正。
目前,对地表复杂的地震资料,联合应用多种静校正方法,取得了较好的静校正效果。
(1)地表模型的一致性与非一致性对于一致性的地表模型,上地层的速度与下地层的速度差异明显(由低到高),根据斯奈尔定律,同共接收点道集的所有地震波经过低降速带时,几乎沿着同一条路径、同一个方向(近似垂直地面)到达同一个接收点。
在共接收点道集内,接收点引起的各道的静校正量大小基本相同;在共激发点道集内,激发点引起的各道的静校正量大小也基本相同。
一个地震道的静校正与一个激发点和一个接收点有关,它的静校正量是激发点的静校正量和接收点的静校正量的总和。
对于非一致性的地表模型,道集各道的地震波传播路径有差异,接收点或激发点引起的静校正量不相同,引发了静校正不“静”的问题。
(2)野外静校正与剩余静校正野外静校正至关重要,当野外的静校正到位时,叠加剖面不仅信噪比高,构造形态比较真实,而且能提供高质量的模型道,使反射波法静校正(一种剩余静校正)与速度分析相结合的多次迭代过程能够收到真实果。
地震数据处理重点整理
地震数据处理重点整理(个人观点)一、题型判断题20分/10个名词解释30分/5个简答题30分/3个计算题20分/2个二、名词解释1、地震剖面的“三高”:高信噪比、高分辨率和高保真度。
2、野外静校正:对陆上资料,把所有炮点和接收点位置均校正到一个公共基准面上以消除高程、低降速带和井深对旅行时的影响。
剩余静校正:野外静校正后,在地震数据中仍然残留有各种剩余静态时移,对这些的校正称为剩余静校正。
3、反褶积:沿时间坐标轴作用,通过压缩地震子波提高地震时间分辨率。
4、最小相位信号:是具有对相同振幅谱的物理可实现信号中相位最小的信号,或者说能量延迟最小的信号。
5、视波数:k=f/v,由于地震勘探是沿测线观测的,因此可以用视波长、视速度、视波数来描述地震波特征,可表示为k*=f/v*,其中k*为视波数。
6、预白化:为了解决带限问题,在地震信号的功率谱P(w)中,从低频到高频统一加一白噪。
7、子波整形反褶积:将不同相位的子波转变为最佳子波的反褶积。
8、速度分析:为叠加提供最佳叠加速度的方法。
9、静校正:存在地形起伏、低速带的厚度变化和速度的横向变化等,此时时距曲线发生畸变,对这些因素的校正,称为静校正。
10、动校正:在水平界面的情况下,从观测到的反射波旅行时中减去正常时差t,得到相当于自激自收的时间,这一过程叫做动校正。
11、正常时差:在界面水平时,对界面上某点以跑检距进行观测得到的反射波旅行时与自激自收观测的旅行时之差,称为正常时差。
12、拉伸畸变:动校正结果出现频率畸变,同相轴移向低频。
13、水平叠加:水平叠加是将CMP道集记录经NMO动校后叠加起来,目的是压制随机噪音,提高地震信噪比。
14、速度谱:把每一种速度所得的叠加结果并排显示在速度-双程零炮检距时间平面中,称此为速度谱。
15、速度扫描:应用一系列常速度在CMP道集进行动校正,并将结果并列显示,从中选出能使反射波同相轴拉平程度最高的速度作为NMO速度的速度分析方法称为速度扫描。
剩余静校正
• • (3-15)
• 式中,vstk为该排列范围内与CMP道集时间最接近的某条双曲线 的速度。
• 方程(3-15)描述的最佳叠加双曲线不一定是方程(3-15)给 出的小排列双曲线。
• 单层近地表模型的复杂性可归结为: • 风化层速度的横向变化; • 接收点和炮点位置高程的快速变化; • 折射层几何形态的横向变化,对折射静校正来说,它被定义为
基岩以上与风化层之间的分界面。
• 风化层底的折射能量经常包含共炮点道集 最先到达波,这些初至波的波前叫做初至。 初至的不同质量一定程度上依赖于震源
• (a) 从未进行处理的野外记录拾取并编辑初至;
• (b) 假设或从测井信息得到一个风化层速度值;
• (c) 对于井下震源应用测井校正;
• (d) 用折射静校正法在所有炮检点计算基岩速度和截距时间,如广义相遇法或最小平方法;
• (e) 用风化层速度、基岩速度和截距时间,在炮点和检波点位置计算基岩深度(方程3-53a,b);
类型和近地表情况。图3.4-3中的共炮点道 集的初至有明显的起跳。线性初至时间的 偏离大多是由沿着测线高程变化引起的。
• •
• 静校正的处理流程
•
重新看一下图3.3-12的处理流程和图3.4-10的严格描述时差和静校正的近地表模型是很重要的。从未处理的野外记录开始,如图
3.3-12所示的详细的处理流程如下:
• 参看图3.1-16所示的旅行时可得以下结论: • (a) 方程(3-14)中,观察的双程零炮检距时
间OC=t(0),它可能与对应的最佳双曲线拟 合(方程3-15)的双程时间OB=tstk(0)不相 等。例如,在反射层以上存在某种速度非均匀 性时,会出现这种情况;
模拟退火法剩余静校正在山地资料处理中的应用
低、 剩余静校 正量大的 山地资料处理 中效果 明显。 在 常规 地表一致性剩余静 校正方法失效 时依然有 效, 提高了剖面成像质量。但在使用该方法时 , 需注
求 出的解不是最优解 ; 太大 , 影响计算效率 , 实践证 明, 迭代次数一般为6 次就足够了。 0
( 下转第 6 页 ) 8
从 图 2 可 以看 出 , 2b 的处 理 效 果 明显 优 中 图 ()
在剩 余静 校正 里 , 通过 给定 ( , 的一个初 s R)
值, 通过上述计算过程 , 不断对初值进行扰动 , 利用 概率分布 函数选取符合式 () 1的最优解 的扰动 , 逼近 最优解 , 求得全局收敛 的剩余静校正量 。
关键词 : 拟退 火法; 模 剩余 静校正 ; 山地资 料处理
模 拟 退 火 法 (iua dA naigMehd 简 称 Sm le n el to , t n
出来的模型参数 , 而对反演结果 的接受 可简化为最
优 化 问题 【 即 miES R 。 3 . [, J J n ,
.
一
泥 页岩 、 灰岩 为主 , 泥 地表 地层 褶皱 扰动 , 否则不接受该扰动。每 当一个参数 的扰动值 叠 系 的砂 岩 、 岩 、 地震地质条件差 , 资料信噪比低 。该区深部地 被接受 , 就修改该参数 的值 , 所有后来 目 函数值的 剧烈 , 标 震 地 质 条 件 复杂 , 层 倾 角 大 , 地 断裂 发 育 , 在各 种 存 计算都根据该参数值 , 直至它再次被修改为止 。
油 气 地 球 物 理
2 1年 4 02 月 P T OL UM 0P YSC ER E GE H I S 第 1卷 第 2 0 期
模拟退火法剩余静校正在山地资料处理中的应用
地震勘探资料处理流程与方法
地震勘探资料处理流程与方法提纲引言一、数据加载二、置道头三、静校正四、叠前噪音压制五、振幅补偿六、叠前反褶积七、动校正、切除与叠加八、剩余静校正九、倾角时差校正(DMO) 与叠前时间偏移十、叠后提高分辨率处理十一、叠后噪音压制引言地震勘探分三个阶段。
地震资料采集、地震资料处理、地震资料解释。
其中地震资料处理是连接野外采集和资料解释的关键环节。
所谓地震资料处理,就是利用数字计算机对野外地震助探所获得的原始资料进行加工、改造,以期得到高质量的、可靠的地震信息,为下一步资料解释提供直观的、可靠的依据和有关的地质信息。
野外地震资料中包含着有关地下构造和岩性的信息,包这些信息是叠加在于扰背景上且被些外界因素所扭曲,信息之间往往是互相交织的,不宜直接用于地质解释。
因此,需要对野外采集的地震资料进行室内处理。
常规处理流程,数据输入→置道头→静校正→叠前噪音压制→振幅补偿→叠前反褶积→抽cmp道集→速度分析,动校正、初叠加→剩余静校正→DMo或叠前时间前移→叠后褶积→随机噪音衰减→偏移→时变滤波,增益一、数据加载1、数据输入:将野外磁带数据转换成处理系统格式,加载到磁盘上;2、输入数据质量检查:炮号、道号波形、道长、采样间隔等等。
二、置道头●道头: 每个地震道的开始部分都有个固定字节长度的空余段,这个空余段用来记录描述本道各种属性的信息,称之为道头。
如第8炮第2道,第126MP等。
观测系统定义:定义一个相对坐标系,将野外的激发点、按收点的实际位置放到这个相对的坐标系中。
观测系统定义完成后,处理软件中置道头模块,可以根据定义的观测系统,计算出各个需要的道头字的值井放入地震教据的道头中。
当道头置入了内容后,我们任取道都可以从道头中了解到这一道属于哪炮、哪一道? CIP号是多少?炮检距是多少?炮点静校正量、检波点静校正量是多少等。
后续处理的各个模块都是从道头中获取信息,进行8的处里,如抽MP道集,只要将数据道头中cmP号相同的道排在一起就可以了因此道头有错误,后续工作也是错误的。
静校正方法
上面列举的一些静校正方法,基本反映了当前这项 技术的发展状况。我们面临的任务是:一方面是继续研 究和发展一些新的方法和技术;另一方面是作业人员如 何根据作业现场千变万化的地表条件,选择合适的方法,
组织有效的静校正处理流程,追求较好的应用效果。近
几年随着勘探战场的转移,进入复杂地区工作,静校正 技术有了很大的发展,出现了为数众多的成果和适应各 种不同条件的方法,在这种情况下,讨论应用技术就更 加需要和更加现实。
底面与地形面之间是不平行的。
低降速带底面是实际存在的一个面。野外进行小折射测
量,就是追踪这个面,室内处理也希望能解释出这个面的准 确位置,但实际应用中困难较多。不少的静校正处理方法是 针对这一点而设计的。
二、基准面 基准面是用户在一个工区内所选用的参考面。 当地表高程变化不大时,基准面采用水平面,如华
这个误差由自动剩余静校正程序进行进一步校正处理。
基准面的深度直接影响反射波的自激自收时间to值, 对速度分析和动校正都有较大的影响,为了减小这种 影响,所选基准面越接近地表越好。另外,基准面的 选择对构造偏移位置也有影响,这是因为静校正的应 用改变了偏移的起始点。
正。
(2)控制点数据线性内插法(微测井、小折射方法等建立 控制点数据)。 (3)沙丘曲线法(根据沙丘厚度在延迟时曲线上找到对应 的延迟时,计算静校正量)。 (4)相似系数法。 (5)数据库法(建立导线成果、浮动基准面高程、地表高 程、小折射成果、高速层顶深度、潜水面深度等数据库)。
第二类是基于生产炮初至信息为基础 (1)基于折射原理的方法:
、动校正、叠加等,都与双曲线的定义有关,只有地
面水平,并且低降速带没有横向变化,共深度点时距 曲线才可近似地认为是一条双曲线。为此,我们必须 在一个或相邻几个CMP道集的炮点和接收点所涉及的 范围内,确定一个时间地形平均面。
第八节 地表一致性反射波剩余静校正
第八节 地表一致性反射波剩余静校正许多静校正方法均采用地表一致性模型。
检波器组在位置i 的延迟G i 和震源在位置j 的延迟S j ,对所有相应的地震道都是相同的。
如果i 和j 具有公共的坐标原点,其炮检距正比于(j -i )。
如果沿测线有构造,我们以CMP (共中心点)号位置k 来表示延迟量L k ,其中k =(j - i )/2,表示构造的深度比其它位置深L k 个单位,L k 是构造时移的均值。
对于平界面反射而言,它即指向中点位置。
如果倾角很缓,L k 对于共中心点来说几乎是常数。
如果动校正速度有误差,就会保留一些剩余时差M k ,它随炮检距的平方而变化。
如果不考虑炮点或检波点对测线的横向偏离,那么对于地表一致性模型,一个道总的时移量t i,j 为: t i,j =G i 十 S j + L k 十 Mk (j – I )2 (8.1)地表一致性模型不只限于确定静校正量的时移,在振幅调节、子波提取、反褶积及其它算法中,有时候都是基于地表一致性模型,均按上述相同的过程进行。
我们并不知道每一道的时移量,但可以利用互相关求一个道相对于另一个道的时移量(t i,j – t m,n ):t i,j – t m,n =G i –G m +S j –S n +L i+j – L m+n +M i+j (j - i )2 – M m+n (n –m )2 (8.2)在此没有使用下标k ,而使用i+j ,是确保下标是整数,具体数值无关紧要。
对于一个CMP 道集,两两道互相关,就可以得出比未知数(G i ,S j ,L i+j ,M i+j )个数还要多的方程式,是一个超定方程组。
但是,方程(8.2)在测量过程中也包含一些不确定的因素,例如等号左边就会出现误差。
一个“超定”,一个“不确定”,就使我们有办法来求解这个方程组,通常用最小平方法,有时也用迭代法。
最小平方问题是使误差e p 的平方和最小:()[]{}最小值∑∑=+-+-+---==++++2n m 2j i n m ,,2m) - (n M - i -j M L )(j i n j m i n m j i p L S S G G t t e E (8.3) 可用下式求解:,0,0,0,0=∂∂=∂∂=∂∂=∂∂++j i j i j i M E L E S E G E (8.4)通常,我们事先构成一个横型道,例如经过一般处理后的本道集的初步叠加道,或者是经过时移处理后的前一个道集的叠加道。
地震资料处理期末复习题【精选文档】
地震资料数字处理课程练习题第二章预处理与反射振幅处理(1)预处理主要包括的环节:a.数据加载(数据解编和格式转化;增益恢复;时序转为道序)b.道编辑(剔除坏道坏炮)c。
观测系统定义(将每个炮点和检波点的坐标存入计算机)d. 抽道集(2)影响反射振幅的主要因素有哪些:激发条件(声源耦合)、接收条件、波前(球面)扩散、地层吸收衰减、地质体散射、透射损失、微曲多次波、入射角的变化、波的干涉(层间干涉)、混合波和噪声。
(3)真振幅恢复处理的方法:球面(波前)扩散补偿、地层吸收补偿、地表一致性振幅补偿(自动增益补偿、程序增益补偿)第三章反褶积处理(1)褶积模型的实现(适应)条件是什么?a.反射界面是有一系列常速水平介质构成b。
震源产生一个平面压缩纵波,垂直反射界面入射,在此情况下,地震波在反射界面处不会产生转换波c。
地震波在传播过程中,子波波形不变。
即地震波在传播过程中波形是固定的。
(2)试推导维纳滤波方程上式即为维纳滤波方程及其矩阵形式。
(3)已知最小相位子波,其中,希望输出为单位脉冲函数,分别利用维纳滤波和Z变换法计算其反子波。
并对两个滤波器的输出误差进行比较。
维纳滤波的输出误差小于Z变换法的输出误差.(4)已知信号,与,分别计算其及其两个信号的褶积 c(t)=(3,10,9,2)r aa(t)=(2,9,14,9,2) r bb(t)=(3,10,3) r ab(t)=(1,6,11,6) r ba(t)=(6,11,6,1)(5)利用测井资料计算地震子波的实现方式:a.根据声波测井、密度测井资料得到声速曲线v(H)、密度曲线ρ(H),求出波阻抗曲线ρv (H)b.再做时深转换把ρv (H)转化为随反射时间变化的声阻抗曲线ρv (t)c。
然后利用反射系数公式计算出反射系数序列r(t)d.利用傅里叶变换求出r(t)和井旁地震记录x(t)的频谱R(ω)和 X (ω)e。
得到地震子波的频谱W(ω)= X (ω)/R(ω)f.最后对W(ω)进行傅里叶反变换得到地震子波w(t)(6)脉冲反褶积和预测反褶积的基本假设是什么?为什么需要这些假设?褶积模型的假设为:1.反射界面是有一系列常速水平介质构成2。