三种折射静校正方法原理的比较
几种静校正方法在复杂山区的应用分析
几种静校正方法在复杂山区的应用分析在复杂山地地区,由于地表起伏剧烈,低速带的横向速度和纵向厚度变化大,不同检波点接收到的地震波至时间出现延迟,反射波时距曲线发生畸变,通常利用静校正解决这种畸变,目前勘探实践中较常使用高程、折射、层析等三种静校正方法。
文章对这几种静校正方法的原理、特点以及实际应用效果进行了对比分析,研究认为基于初至时间的层析静校正方法能较好地解决复杂山区由于地形和低速带变化引起的长波长静校正问题,同时结合反射剩余静校正解决残余的短波长静校正量,可有效地解决复杂山地的静校正问题。
标签:高程静校正;折射静校正;层析静校正;剩余静校正引言目前油气勘探的重点逐步在向复杂地区转移,其地表起伏剧烈,表层速度横向变化大,部分地区基岩出露,这给地震资料处理工作带来复杂的静校正难题。
静校正工作是地震资料处理中最基础也是最关键的一项内容,它直接影响叠加效果,同时决定叠加剖面信噪比和垂向分辨率。
静校正可分为一次静校正和剩余静校正两大类,常用的一次野外静校正方法有高程静校正、折射静校正和层析反演静校正等;剩余静校正方法主要有基于初至时间的剩余静校正与基于反射能量的剩余静校正两类[1]。
为此,应清楚认识理解每种方法的基本原理及其适用条件,以免在处理过程中走弯路。
1 方法及原理1.1 高程静校正高程静校正是最简单的静校正方法,它不考虑近地表速度和厚度变化的影响,只对由地形变化引起的部分进行校正,因此高程静校正只能消除地表起伏的影响。
在复杂地区,低速带对静校正的影响并不仅仅是高频分量,也有影响构造形态的低频分量,对于这种情况,高程静校正无能为力,尽管在某些地区可以见到较好的效果,但也可能会是构造假象难以让人察觉,所以在复杂探区,高程静校正并不是一种理想的静校正解决方法。
通常地震处理者为了快速了解研究区的大致构造形态,会选用该方法进行初叠加剖面,同时也作为选择其它静校正方法及参数的一个质量控制对比标准。
1.2 折射静校正折射静校正方法有两点假设:一是假设地表模型是由几个局部水平层构成;二是假设波在折射界面上的入射角是临界角。
静校正处理-地球物理学习基础
3、以上两种校正留下的残余和其它因素引起的剩余时差校正。
目前我们常用的静校正方法
高程静校正 折射静校正 层析静校正 剩余静校正
高程静校正
高程静校正
解决地形起伏、爆炸井深不一引起的静校正问 题可用高程校正方法解决。该方法利用野外测量成 果和预定的基准面高程以及基准面和地面之间的速 度来计算校正量。
地震波反射波的旅行时间反映地下反射点的位置,多个反 射点的位置勾画出反射界面的几何分布即地下构造形态。但由 于野外地形的起伏变化,采集时激发和接收点不在一个水平面 上,反射波旅行时间受地形变化的影响,它所反映的地下构造 形态包含有地表起伏的因素。通过静校正处理,将激发和接收 点的位置校正到一个水平面上以去掉地表起伏的影响。
初至时间差随炮检距差的变化如下图。图中星形的位置由该 接收点的初至时间差和炮检距差确定。根据这些星形的位置拟 合成直线(红色虚线),直线的斜率除以2就是V2。
+ 初至时差
_
G4
G2 G1
G3 _
G5 +
偏移距差
2、计算时间延迟项
时间延迟项的计算既可用互换法也可用迭代法
(1)互换法
一个站点的时间延迟需用两个炮点的三个折射波旅行时计算,如图:
3、后续处理的需要
地震资料处理的一些重要步骤是在反射波时距曲线为双曲线 的前提下进行的(速度分析、动校正等),但反射波时距曲线 为双曲线的条件是:地表水平、上覆介质速度为常数。为了后 处理的需要,应把反射时间校正到炮点、检波点均在一个水平 面上一样的情况。
地表水平、上覆介质速度为常数时,地震波传播路径如下图:
通过以上方法,把折射波旅行时方程的未知量都求出来了,但这不是目的。我们要
01-静校正基础知识
静 校 正
静校正基础知识
静校正基本概念 长短波长静校正 基准面选取问题
静校正本概念
常规叠加假设:
1、地表水平;2、均匀水平层状介质。
静校正: 对地震资料所作的校正,用来
消除高程、风化层厚度以及风化层速度变 化的影响,把资料校到一个指定的基准面 上。其目的就是获得在一个平面上进行采 集,且没有风化层或低速介质存在时的反 射波到达时间。
静校正有关基础知识
静校正基础知识
基的 准选 面择 基 准 面 静 校 正 水平基准面 浮动基准面 利用小折射、微测井等资料 地的 表建 模立 型 静计 校算 正及 量应 用 剩 余 静 校 正 利用初至波 利用反射波 利用初至波反演地表模型 (层状介质、连续介质、层 析方法等) 不同方法建立的模型连接 在高速层下选取圆滑的“中间参考面” 计算时先校正到中间参考面,然后 用中间参考面处的速度平均值作为统一 校正速度充填到一个水平基准面 资料处理时先在 CMP 参考面上进行速 度分析和叠加,然后再校正到统一基准 面
算高速层顶界面到中间参考面之间校正量所用的速度是 中间参
考面校正速度;计算高速层顶界面(中间参考面)到统一基准 面之间校正量的速度叫统一基准面校正速度。
静校正基础知识
静校正基本概念 基 准 面 问 题 长短波长静校正
基准面选取问题
参考面:
1、统一基准面
统一基准面
2、CMP参考面
3、中间参考面
高速层顶界面
O
Z
地表
基准面
H
计算的基准 面静校正量
Z t1 V
实际基准 t 2 1 2V 面校正量
误差: t t1 t 2
2 X H2 4
反射面
分析各类静校正方法的适用条件
分析各类静校正方法的适用条件地震勘探解释的理论都假定激发点与接收点是在一个水平面上,并且地层速度是均匀的。
但实际上地面常常不平坦,各个激发点深度也可能不同,低速带中的波速与地层中的波速又相差悬殊,所以必将影响实测的时距曲线形状。
为了消除这些影响,对原始地震数据要进行地形校正、激发深度校正、低速带校正等,这些校正对同一观测点的不同地震界面都是不变的,因此统称静校正。
广义的静校正还包括相位校正及对仪器因素影响的校正。
静校正是陆地地震资料常规处理流程中必不可少的一个环节。
在我国西北地区,地表条件比较复杂,静校正问题尤为严重。
目前地震勘探的重点主要在我国的西部,在这些地区静校正问题严重制约着地震勘探的效果,解决好静校正问题具有重要的理论意义和实际意义。
随着数字处理技术的发展,已有多种自动静校正的方法和程序。
本文简单地讨论各种静校正方法的分类以及适用条件。
静校正方法很多,归纳起来主要有以下三大类:第一类是基于模型和高程为基础的静校正计算方法。
(1)基准面校正;CMP叠加参考面校正;低降速带底面校正。
(2)控制点数据线性内插法(微测井、小折射方法等建立控制点数据)。
(3)沙丘曲线法(根据沙丘厚度在延迟时曲线上找到对应的延迟时,计算静校正量)。
(4)相似系数法。
(5)数据库法(建立导线成果、浮动基准面高程、地表高程、小折射成果、高速层顶深度、潜水面深度等数据库)。
第二类是基于生产炮初至信息为基础。
(1)基于折射原理的方法:①斜率、截距时间法,包括单倾斜和多倾斜折射面;②合成延迟时法,包括ABC方法、FARR显示方法、相对延迟时法、绝对折射静校正、合成延迟时法(DRS);③时间深度项法或称为互换法,包括GRM、EGRM、ABCD法、相对折射静校正(RRS)、相遇时间法等;④回折波和折射波连续速度模型反演静校正方法;⑤迭代反演低降速带厚度法静校正(假设V0已知情况下);⑥折射分析射线反演静校正方法。
(2)基于其它原理的方法:①走时层析反演,包括近地表速度模型约束反演、广义线性反演(GLI)、模型反演、数值等效法等;②初至曲线拟合,包括指数曲线拟合法、光滑曲线拟合法、模型曲线拟合法等;③多域正交迭代;⑤回折波层析成像法静校正;③全差分法。
对比讨论常用三种静校正方法的优劣
贾 敏
( 江 大 学 石 油 工程 学 院 长
【 摘 要 】 文 从 方 法 特 点 、 际 应 用 效 果 等 方 面 对 折 射 静 校 正 、 射 线 本 实 无 追 踪 层 析 静 校 正 、 线 性 层 析 静 校 正 进 行 了比 较 研 究 , 后 给 出 了针 对 非 最
经 研 究 了 多 种 静 校 正 方 法 , 些 方 法 各 有 优 缺点 , 生 产 中得 到 了 这 在
1 非 线 性 层 析 静 校 正 - 3 1 . 方 法 特 点 。在 该 类 方 法 中 , 质 被 网格 化 为 一 系 列 单 .1 3 介
不 同 程 度 的 使用 。另 一方 面 , 由于 静 校 正 方 法 众 多 , 常 使 资 料 处 常 理 人 员 无 所 适 从 , 有 通 过 大 量 的 处 理 试 验 来 确 定 使 用 恰 当 的 静 只 校 正 方 法 , 当然 是 一 条 可 行 的 途 径 , 费 时 费 力 , 时 还 会 延 误 这 但 有 工 期 。因 此 , 对 具 体 的工 区特 点 选 择 什 么样 的静 校 正 方 法 , 成 针 已 为 一 个 有 必 要 进 行 研 究 的 课 题 。作 者 在 本 文 中从 众 多 的静 校 正 方 法 中选 择 三 个 具 有 代 表 性 的 , 生 产 中 用 得 较 多 的方 法 进 行 比 较 在 研究 , 目的 在 于 帮助 资料 处 理 人员 在 实 际 资 料 处 理 中 , 据 不 同 处 根 理 目标 的特 点 , 针 对 性 地 选 择 适 当 的 静 校 正 方 法 , 有 以便 快 速 、 有
元 , 至 波 穿 过 模 型 , 行 时剩 余 差 被 反 投 影 或 反 演 成 对 射 线 穿 过 初 旅 的 每个 单元 慢度 的扰 动 。该 类 方 法 灵 活 , 需 对 反 射 或 折 射 界 面 不 作 任何 地 质 假设 。使 用 全 偏 移 距 范 围 内 的 初 至 时 间 , 非 线 性 初 对 至 的 拟 合 较 好 , 能 模 拟 复 杂 的介 质 。该 方 法 能 用 于 求 解 有 速 度 并 倒 转 和 层 尖 灭 现 象 的速 度 模 型 , 能 用 于 求 解 没 有 明 显 地 震 地 层 也 结 构 的 速 度 模 型 , 在 常 规 折 射 静 校 技 术 失 效 或 有 效 地 区 的表 现 它 都是同样的好。 1 . 不 足 之 处 在 于 : 1 由于 介 质 被 网 格 化 为 一 系 列 单 元 , .2 3 () 引 入 了 大 量 的 未 知 量 , 析 问题 常 常 是 欠 定 的 , 要 间接 的 正则 化 层 需 约 束 , 增 加 了反 演 的难 度 。特 别 是 在 三 维 情 况 下 , 要 作 更 多 的 这 就 努力 , 反演切实可行并且稳定 。 使 ( ) 演 对 射 线 路 径 有 很 强 的 依 赖 性 , 演 通 过 逐 次 线 性 化 迭 2反 反
层析静校正技术
层析静校正技术一级类目:油气勘探二级类目:前陆盆地油藏勘探技术三级类目:前陆盆地地震勘探技术——地震资料处理技术技术类型:前沿技术(中试或现场先导试验技术)在地形复杂、老地层出露地区,地表速度横向变化剧烈,折射界面不能连续识别时,传统的野外高程静校正、初至折射静校正很难解决好静校正问题。
层析静校正技术在这些地区尤其是在三维静校正方面具有明显优势。
从低速层底部折射的波可成功地用于计算和改善野外静校正。
层析静校正包括回转射线层析成像和静校正两部分。
1、层析成像首先利用回转射线层析成像估算近地表速度。
把要成像的介质离散成小矩形单元或格子状的网格,每个单元有一个单一速度(v),输入数据是从单炮记录中人工拾取的折射(初至波)旅行时(t), 震源和检波器都位于地表。
速度估算通过解下面方程组获得=?式中,D是射线段的矩阵(m×n),s是未知慢度的矢量(n×1),t为所观测时间的列向量(m×1)。
解方程?的方法很多,一般是最小二乘法和共轭梯度法。
相应的,不同求解方程?的方法形成不同的层析静校正方法。
使观测(拾取的初至折射)和预测的(根据初始模型进行射线追踪得到的)旅行时差最小。
其过程是一个迭代过程,一般分为5步:(1)拾取初至;(2)通过初始速度模型进行射线追踪;(3)射线路径分成小段,使其每个部分包括速度模型的每个网格;(4)对每条射线计算观察和预测的旅行时差;(5)将时差返回到速度模型,并不断地进行修正。
层析成像反演是一个非线形问题。
利用初始模型的一套射线追踪进行线形反演是实际可行的。
好的初始模型一般是根据初至旅行时或区域资料建立的。
当地形变化很严重时,建议用沿着变化的地形初始化的垂向速度梯度建立初始速度模型。
通过反演的速度模型和测井资料对比,回转射线层析成像可以估算比较精确的近地表速度模型。
2、静校正这个过程比较简单,从地面到下延拓基准面(利用所计算出的近地表速度场)垂直估算静校正值,然后用一常数替代速度,通过整体静态时移,将基准面上延到最后基准面。
山地地震勘探中野外静校正问题解决方案的探讨
山地地震勘探中野外静校正问题解决方案的探讨喻兵良 刘玉红 解建建(安徽省勘查技术院,安徽 合肥 230031)摘 要以山西沁水地区煤层气地震勘探数据处理为例,对比分析三种静校正方法应用效果,认为折射静校正和层析静校正方法在山地地震勘探中解决静校正问题方面都有不错的效果。
但由于两种方法又具有各自不同的适用条件,在资料处理时需针对不同勘探区的浅地表地震地质条件和初至波复杂程度对这两种静校正方法进行选择或组合使用。
关键词山地地震勘探 层析静校正 折射静校正 高程静校正 同相叠加中图分类号 P631.4 文献标识码 A doi:10.3969/j.issn.1005-2801.2019.02.064Discussion on the Solution of Field Static Correction in Mountain Seismic ExplorationYu Bing-liang Liu Yu-hong Xie Jian-jian(Anhui Institute of Exploration Technology, Anhui Hefei 230031)Abstract : Taking the processing of coal bed gas seismic exploration data in Qinshui area of Shanxi Province as an example, the application effects of three static correction methods are compared and analyzed, and the refraction static correction and chromatography static correction methods are considered to have good results in solving static correction problems in mountain seismic exploration. However, since the two methods have different applicable conditions, the two static correction methods should be selected or combined according to the shallow surface seismogeological conditions and the first-arrival wave complexity in different exploration areas.Key words : mountain seismic exploration elevation static correction refraction static correction tomographic static correction phase stacking收稿日期2018-07-01作者简介喻兵良(1965-),男,湖南宁乡人,毕业于原长春地质学院物探专业,高级工程师,长期从事煤田和石油地震数据处理工作。
静校正原理
3.4 折射静校正通常,野外静校正和折射静校正法用于校正长波长分量。
静校正需要近地表模型。
近地表常常由一个低速的风化层组成。
但是,除了这个近地表的简化模型外还有例外的情况。
例如被冰碛物、火山带和沙丘覆盖的地区常常有不同速度的多套地层组成。
地层边界从一个平界面到一个任意不规则的形态变化明显。
当由于出露、尖灭或沿着测向方向的河漫滩引起的岩性横向组成成分变化时,近地表的单层假设就被破坏了。
在永久冻土层覆盖的地区,它有比下伏层明显高的速度,用于近地表校正的地表一致性假设就不再适用。
此外,永久冻土层底不形成首波,所以是探测不到的。
在实际应用中,单层近地表模型解决长波长静态异常一般是足够的。
单层近地表模型的复杂性可归结为以下一条或多条:(a)接收点和炮点位置高程的快速变化;(b)风化层速度的横向变化;(c)折射层几何形态的横向变化,对折射静校正来说,它被定义为基岩以上与风化层之间的分界面。
近地表速度与深度模型常常用折射初至计算。
折射能量与沿着风化层和下伏的基岩之间的分界面滑行的首波有关。
如果折射初至在共炮点道集上是可观测到的,一般就可以说明近地表模型有简单的几何形态。
然而,没有射线理论方法可以确切的在远小于一个排列长度的风化层基底上计算短波长变化,这些变化留给后续的剩余静校正处理,其剩余静态时差是在时差校正CMP道集上的反射旅行时畸变引起的(Taner 等,1974)。
首波由于沿着风化层基底的不规则性被扭曲,在风化层和下部地层之间没有大的速度差别时,它转化为潜水波(Hill 和Wuenechel,1985)。
这样的情况,如果是完全可能的,它就可以用波动理论模拟和反演(Hill,1987),或回转波层析成像来处理(9.5节)。
初至波风化层底的折射能量经常包含共炮点道集最先到达波,这些初至波的波前叫做初至。
初至的不同质量一定程度上依赖于震源类型和近地表情况。
图3.4-3中的共炮点道集的初至有明显的起跳。
线性初至时间的偏离大多是由沿着测线高程变化引起的。
地震第5章-静校正
§5.2 基准面静校正
基准面静校正也称为野外静校正,顾名思义,就是将在地表采集的地 震记录校正到基准面上,消除地表高程和风化层对地震记录旅行时的影响。
图5-6(a)给出了只有一个风化层的简单近地表模型,地面A、B点对应 风化层底界的 、 点,对应基准面上的 、 点。下面对A、B上的地 震记录进行时间A w 校B正w ,使之转化为在 、 A ,R 点B记R 录所观测到的记录时间, 且在基准面之下无风化层或低速带的存A R 在B。R
(5-7)
sin c
vw vb
(5-8)
将(5-8)式代入(5-7)式,整理后
t 2zw vb2 vw2 x
vbvw
vb
我们知道,折射波时距方程是下面的线性方程
t
tob
x vb
对比(5-9)式和(5-10)式,得到
(5-9) (5-10)
tob
2zw
vb2 vw2 vbvw
(5-11)
因此,由风化层速度 v w ,基岩速度 v b 和折射波的截距 t o b ,可以
(5-23)
—由于D 1 点和 D 2 点不重合而引入的补偿项。
t 的定义与(5-15)式类似
05-初至折射静校正技术
静校正量计算。
相对时差静校正方法的原理
求取相对时差
简单计算方法
——针对高速层顶界面稳定且只有一 层情况设计
缅甸相对时差方法剖面
缅甸表层模型法剖面
相对时差静校正方法的应用效果
高程校正的剖面
相对时差方法的剖面
相对时差静校正方法的关键点
——确定一个最小炮检距的道来计算相 对时差。
——控制点位置选择合理。
——通过对不同炮检距的速度分析确定
计算相对时差方法。
——最好不用相邻炮点计算相对时差。
绿山折射静校正方法
Ta=Tab-Tb-AB/VR 同样,检波点延迟时方程为: Tb=Tab-Ta-AB/VR 首先给出检波点延迟时估算值计算炮点延迟时,再将计算的 炮点延迟时作为估算值计算检波点延迟时……。如此迭代下去直 到估算值不再变化,也就是方程收敛了。这样就求出了炮、检点 延迟时。 如果有多个折射层,则分别计算出每层的炮、检延迟时。
30
求取相对时差
20
相对时差
10
0
-10
-20
-30
记录1
记录2
记录3
记录4
记录5
综合
相对时差静校正方法的原理
最终静校正量计算
T(J)= DT(J)+ LT(J)
相对时差静校正方法的适应范围
——适用弯线施工的测线;
——适用于各种二维观测系统; ——适合于井炮、可控震源及多波等勘探类型;
相对时差静校正方法的应用效果
静校正
常用静校正方法
野外静校正
折射波静校正 层析静校正 反射波静校正
常用静校正方法
►野外静校正
地震勘探首先需要进行野外近地表信息 收集,主要采用测量地表高程、井深,调查 地质露头,进行小折射、小反射、微测井, 获得时深曲线以及表层速度变化趋势,建立
浅层速度模型来计算静校正量。
常用静校正方法
►折射波静校正
在完成折射波初至拾取及预先给定初始 表层信息的基础上,采用简单层状模型假设, 由初至波时间计算截距-斜率,进而反演近地 表速度和厚度模型,最终在给定基准面和替
换速度的前提下,计算出静校正量。
常用静校正方法
►折射波静校正
●适用前提
① 地表有稳定的折射层,且在一个排列长度 内接近水平; ② 表层速度和厚度纵横向变化不太剧烈;
③ 预先给出风化层的速度。
常用静校正方法
►折射波静校正
●步骤
① 初至拾取 ② 层位划分 ③ 折射速度分析
④ 延迟时计算
⑤ 表层模型建立 ⑥ 质量监控
常用静校正方法
►折射波静校正
●局限性
① 在复杂地区风化层速度有强烈的横向变化, 准确给定比较困难; ② 在地表起伏剧烈、高速层出露的地区,很
难追踪到某一稳定的折射界面;
静校正定义
►目的
为了补偿由于地表起伏,近地表低、降 速带横向变化对地震波传播造成的影响,使 静校正后的地震数据反射波时距曲线近似为 光滑的双曲线。
静校正的分类 ►基准面校正
也称为野外静校正,就是将在地表采集的 各点地震记录校正到基准面上,消除地表高程 和风化层对地震记录旅行时的影响。
►剩余静校正
毕业设计(论文)-几种不同的方法测定玻璃的折射率.
内容摘要:本文采用了几种不同的方法测定玻璃的折射率,介绍了几种常用的测定玻璃折射率的方法.例如:最小偏向角法测定玻璃的折射率,读数显微镜法测定玻璃的折射率,插针法测定玻璃的折射率,掠入射法测定玻璃的折射率等.通过几种不同的方法来比较哪种方法更精确,误差更小.以及相应的误差的来源等等.关键词:玻璃折射率分光计读数显微镜布鲁斯特角装置三棱镜光具座Abstract: in this paper, using several different methods for the determination of the refractive index of the glass, describes several commonly used for determination of refractive index of glass method. For example : the angle of minimum deviation method for the determination of the refractive index of the glass, a reading microscope method for the determination of the refractive index of the glass, pin method for the determination of the refractive index of the glass, grazing incidence method for the determination of the index of refraction of glass rate. Through several different methods to compare which method is more accurate, the error is smaller. And the corresponding error sources and so on.Key words: optical glass refraction Brewster angle microscopy spectrometer reading device three prism optical bench引言:折射率是物质的一种重要的光学常数,在工农业生产及许多科研部门都会折射率的测量问题。
三种折射静校正方法原理的比较
三种折射静校正方法原理的比较作者:王立会梁久亮来源:《科技资讯》2014年第25期摘要:随着折射静校正在地震勘探数据处理中的作用日显重要,需要对基本的折射静校正方法进行归纳与分析。
为此,本文介绍了三种常见的折射静校正方法的原理及计算步骤,比较了它们的相同点和不同点。
这对充分理解每种方法的实质大有帮助。
关键词:折射静校正加减法扩展广义互换法合成延迟时法中图分类号:O72 文献标识码:A 文章编号:1672-3791(2014)09(a)-0016-02要获得准确的静校正量,重要的是搞清近地表结构,建立准确的近地表模型,即把近地表地层的速度和厚度求准确[1]。
在地震勘探中,反射记录上存在初至折射波,并且每一炮都有初至折射波,它可为建立近地表模型提供所需的资料,而不增加额外的工作。
所以,利用初至波求取近地表结构,估算静校正量便成了主要且有效的途径。
这一类方法统称为折射静校正。
一般情况下,近地表模型包括3个参数,分别为风化层速度、折射层速度和折射界面深度。
根据折射波基本理论,利用初至波的时距曲线可知,折射波对应的时间斜率的倒数等于折射层速度,直达波对应的时间斜率的倒数等于风化层速度,同时还可求出截距时间(折射波时距曲线延长后与时间轴交点的时间值)。
由此可得到折射界面深度,其计算公式如下:(1)这样求取近地表模型就转化为求取风化层速度、折射层速度和截距时间。
然而,利用初至估算风化层和折射层的速度以及截距时间并不容易。
这主要是因为风化层基底通常是起伏不平,旅行时距曲线也受到高程变化的严重影响,使得时距曲线不易解释[2]。
这样迫切需要一些特殊方法来求取近地表模型。
下面介绍的加减法、扩展广义互换法和合成延迟时法就是这类特殊方法。
1 加减法[3]加减法是由Hagedoorn(1959)首先提出来,它是一种间接计算截距时间和折射界面速度的方法,图1是加减法原理示意图。
定义加减时间值为:(2)方程右边所给的时间是从图1的三条射线路径的初至上读出来的时间值,由射线路径可知:(4)可以看出方程(4)中的加时间值与截距时间是相同的,所以,不是直接从炮记录测量截距时间,而是采用方程(2)求出截距时间。
07-层析反演静校正技术
层析反演静校正原理
层析成像的分类
1、根据地震勘探中的方法,分为地表反射(折射) 层析成像、井间层析成像、 VSP 层析成像和反向 VSP层析成像; 2、根据所利用数据类型分为反射层析、透射层析 和折射层析等; 3、根据所利用的地震剖面上的属性的不同可分为 走时层析、振幅层析和波形层析; 4、根据层析成像方法所利用的理论基础,基本可 分为以射线理论和波动理论为基础的绕射层析。
层析反演存在的问题
层析反演静校正 戈壁
初至折射静校正
层析反演存在的问题
1、目前的层析反演静校正应用软件是基于回折波 射线追踪原理开发的,对于层状介质或波场比较 复杂的山地适应性较差。 2、由于大炮采集的道距相对较大,近地表介质的 射线条数很少甚至没有,所以对靠近地表的模型 参数(速度)求取不准,导致静校正误差较大。 3、对于边界的处理还存在一定缺陷,但这是由于 射线较少造成的。
层析反演静校正实现
对模型反演结果的分析:
1、从模型反演的收敛程度分析,看所反演的模型 是否达到要求。一般情况下两次迭代之间速度变 化小于5%。
层析反演静校正实现
对模型反演结果的分析:
2 、从速度变 化规律上分 析。通过与 其他资料对 比分析看速 度变化是否 符合地质规 律,从而判 断反演模型 的可靠性。
层析反演静校正原理
层析静校正软件产品情况
1、美国劳雷公司的产品 2、美国I/O(绿山)公司的产品 3、中国科学院地质与地球物理研究所的产品
4、中国成都理工大学的研究成果
5、东方地球物理公司技术发展中心研究成果
. . . . . .
层析反演静校正原理
初始速度模型
射线追踪求旅行时 拾取初 至时间 求剩余时差 层析反演速度扰动 (SIRT) 修改速度模型
01-静校正基础知识
CMP面SFra bibliotekCMP
地表
基准面选取问题
校正到CMP参考面上后的道集,恢复了反射波时距 曲线的标准双曲线形态,并且道集零线是圆滑地表时 间面。 T
校正后的双曲线
歪曲后的双曲线 CMP参考面
X
地形线
CMP1
基准面选取问题
对于一个 CMP 道集来说, CMP 参考面是一 个平面,把该道集的数据在这个平面上作速 度分析和叠加;但我们绘制的 CMP参考面是每 个CMP校正量连成的一个曲面。
把炮、检点校正到该面上。基准面分为 统一基准面 (水平基准 面和浮动基准面 )和 中间参考面 两种,统一基准面是静校正计 算的最终基准面,它是为了处理和解释方便而定义的一个面; 中间参考面是介于高速层顶界面和统一基准面之间,为了提高
静校正效果而定义的一个过度的面。
校正速度:计算基准面校正量所用的速度叫校正速度。计
风化层:低速带和降速带
静校正基本概念
高速层和高速层顶界面
所谓高速层就是紧靠地表风化层(低降
速带)底面的地层,高速层顶界面就是高速
层与风化层(低速层或降速层)之间的界面
,它是实际存在的一个地质面,表层调查工 作力求追踪的就是这个面;静校正中的低降 速带校正也是校正到这个面。
静校正基本概念
基准面:静校正量计算所用的参考面,做静校正后相当于
长短波长静校正
长波长静校正问题的表现形式
a.叠加剖面—自上而下有‘新构造运动痕迹’的‘同心圆’
或‘套盆’构造 b.‘套盆’构造同近地表结构关系密切—与地形、低速层 厚度呈现正(或负)相关
c.共炮检距初至时间--起伏变化
d.不同炮检距范围叠加剖面-同一反射层t0时大小有明显变化
地震数据处理第五章:静校正
(14)基准面静校正术语
Full Statics Solution
Low Frequency Component
炮点全静校正量剖面图
长波长静校正处理
(15)静校正方法概述 据信息来源大致可分为三类:
第一类在野外进行表层结构调查:如小折射、微 测井、地形测量等,获得近地表模型中的控制点上 的数据,并把这些数据外推或内插到各个点上;然 后确定一个基准面,再根据地形线高程数据,计算 出每一个炮点和检波点上的校正量。由此算出的校 正量称为野外静校正量。
静<
校正量不随时间变化 校正量不随炮检距变化 校正量不随方位角变化(3D数据)
静校正的“静”反映了静校正量是不随时间而变化 的特征,一个物理点的静校正量是固定不变的。
(3)静校正的目的:使炮点S和检波点G位于同一 平面或曲面(基准面)上,使反射波时距曲线具有 双曲线形态。静校正之后的地震数据,相当于在基 准面高程上采集地震数据。 (4)静校正量:一个地震道对应一个炮点和一个 接收点,其静校正量是炮点和接收点静校正量之和。
近地表由于高程、厚度、速度的空间变化,当地震 波穿过近地表时,产生不等量的延迟时差,改变了反 射时距曲线所遵循的时距曲线方程,动校正后不能同 相叠加成像,且不能反映真实的构造形态。
表层介质按速度划分为低速层(速度小1000m/s)、 降速层(速度在1000m/s~2000m/s之间),高于 2000m/s的介质归类为高速层(即成岩地层)。 低速层主要是暴露在大地表面不胶结的松散介质, 厚度一般不大;降速层下伏在低速层之下,不胶结或 半胶结。
野外静校正 1. 定义
直接利用野外实测的表层资料,进行的静校正叫野外 静校正,也叫基准面校正。
包括井深校正,地形校正和低速带校正。
静校正新方法
2.
3.
总之,是永远算法要求资料信噪比较高并且反射界面最好水平。
延迟时差法方法原理
转换波检波点延迟时等于转换波与纵波初至时差和纵波检 波点延迟时的和。 波点延迟时的和。
从激发点A到接收点D的纵波 与转换波初至时间差为:
∆t =[TAB +TBE +TED]−[TAB +TBC +TCD] = TCE +TED −TCD
∆ t = TED − TEF + TEF + TCE − TCD = (TED − TEF ) − (TCD − TCF )
d p = TCD − TCF , d s = TED − TEF
p
d
s
= ∆t + d
spΒιβλιοθήκη 根据延迟时定义可知:d 为纵波延迟时,类似地把 d 定义为转换波 延迟时; 为转换波与纵波的初至时差。 因此可以得出如下结论:转换波检波点延迟时等于转换波与纵波初 至时差和纵波检波点延迟时的和。
6.什么是静校正?为什么要作静校正?这种校正为什么叫“静” 校正? 7.静校正和动校正相比,有什么相同和不同之处? 8.静校正的基本假设条件是什么?如不满足会出现什么现象? *试举1~2例说明实际生产中可能发生的不满足基本假设条件的 情况。 9.什么是剩余静校正?为什么要进行剩余静校正? 10.长波长剩余静校正量和短波长剩余静校正量的分类依据是 什么?它们分别会给地震资料的处理与解释带来什么样的影响? 11.如何求取CDP道集中各道的相对剩余静校正量?它使用的是 什么记录?为什么互相关法只能求取相对剩余静校正量?
上节要点
1、折射静校正的目的是什么? 2、折射静校正和野外一次静校正的关系是什么? 3、延迟时(时间深度)的定义? 4、如何求取延迟时? 5、目前静校正方法的发展方向是什么?
相对折射静校正方法
相对折射静校正方法陈广思【期刊名称】《石油地球物理勘探》【年(卷),期】1990(000)004【摘要】在那些风化层横向变化剧烈、相邻两个接收点之间静校正值差别很大的地区,采用常规的高程校正和根据小折射或微测井控制点资料作线性内插,已无法求得合适的基准面静校正值。
在这种情况下,剩余静校正量已超过反射波波形的1/2周期,即使采用剩余自动静校正方法也不可能取得满意的效果。
为了解决上述问题,人们曾提出采用拾取生产记录初至时间计算基准面静校正量的各式各样初至折射法。
这些方法均可称为绝对折射法。
此类方法的特点是必须确定真正的初至时间,且在计算中要求追踪同一层的折射波,否则就会造成静校正计算误差和出现不闭合的问题。
相对折射静校正方法(RRS)则是从共炮点远道记录求取高速折射层的到达时间,并在小折射或微测井控制点数据控制下进行内插计算,求取各炮点和接收点的基准面静校正值。
就同一炮记录而言,两道折射波到达的时间差可分为两个部分:一部分是由于地表风化层的变化造成的时差,而另一部分则是由于折射波沿折射界面滑行及由此高速折射层至风化层底界之间旅行时差所引起的。
显然,第二部分折射时差应与炮检距呈线性关系;而第一部分时差应是随机的高频分量,这部分时差可通过线性校正方法将其分离出来。
由于环境噪声的影响,折射波到达时间很可能存在某些误差。
为此,RRS方法要求在一对控制点间计算5至10张共炮点记录的折射时差,再根据控制点数据对每个记录作线性校正求得每个桩号的基准面静校正值。
这样,在每个接收点上就会有5个以上的基准面静校正值,然后取其平均值作为该点的校正值。
同时还可求得该点校正值的均方根误差。
合成记录理论试算的结果表明,用RRS方法求得的基准面静校正值误差一般只在±3ms之内,最大不超过±5ms。
两个地表变化较大地区实际资料的处理结果告诉我们,用RRS计算的基准面静校正值与简单线性内插算得的值相差100ms以上;用RRS数据处理的剖面,其结果远比用内插法数据处理的剖面要好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三种折射静校正方法原理的比较
摘要:随着折射静校正在地震勘探数据处理中的作用日显重要,需要对基本的折射静校正方法进行归纳与分析。
为此,本文介绍了三种常见的折射静校正方法的原理及计算步骤,比较了它们的相同点和不同点。
这对充分理解每种方法的实质大有帮助。
关键词:折射静校正加减法扩展广义互换法合成延迟时法要获得准确的静校正量,重要的是搞清近地表结构,建立准确的近地表模型,即把近地表地层的速度和厚度求准确[1]。
在地震勘探中,反射记录上存在初至折射波,并且每一炮都有初至折射波,它可为建立近地表模型提供所需的资料,而不增加额外的工作。
所以,利用初至波求取近地表结构,估算静校正量便成了主要且有效的途径。
这一类方法统称为折射静校正。
然而,利用初至估算风化层和折射层的速度以及截距时间并不容易。
这主要是因为风化层基底通常是起伏不平,旅行时距曲线也受到高程变化的严重影响,使得时距曲线不易解释[2]。
这样迫切需要一些特殊方法来求取近地表模型。
下面介绍的加减法、扩展广义互换法和合成延迟时法就是这类特殊方法。
1 加减法[3]
加减法是由Hagedoorn(1959)首先提出来,它是一种间接计算截距
时间和折射界面速度的方法,图1是加减法原理示意图。
定义加减时间值为:
方程右边所给的时间是从图1的三条射线路径的初至上读出来的时间值,由射线路径可知:
2 扩展广义互换法
扩展广义互换法(EGRM)是在广义互换法(GRM)的基础上发展而来的,使之适用于野外各种不规则的观测系统采集的数据,例如弯线排列接收,炮点偏离排列位置。
这种方法应用比较广泛,很多大型的地震资料处理软件都采用了该方法,如Omega软件的折射波静校正和绿山软件的折射波静校正[4]。
该方法应用效果的好坏不仅与选取的折射层有关,而且和选定的风化层的平均速度有关。
因此在使用该方法时,应注意以下几点:(1)所有测线均选择本地区稳定的同一折射层的折射波进行初至拾取;(2)调查风化层速度变化范围,合理选择高速层顶界面以上地层的平均速度,最好是结合野外微测井和小折射资料;(3)静校正计算过程中,采用统一的替换速度和基准面高程。
2.1 延迟时定义
式中第一项仍为基本项,包括三个初至旅行时,第二项称为炮检距剩余项,包含了每个初至时间所对应的真实炮检距,它用来补偿测线弯曲或观测系统不规则时所产生的差异。
它代表了更为一般的情况,故
被称为扩展广义互换法(EGRM)。
EGRM方法是对GRM方法的扩展,它适用于弯线或三维施工情况,即A,G,x,y四个点不在一条直线上,而要计算延迟时点处也没有接收点。
3 合成延迟时法
所谓合成延迟时法就是根据不同炮点在相同接收点来自同一层折射波初至时差相等的关系,合成出一条各炮点公用的初至折射波时距曲线和相对应于该时距曲线的各炮点的起爆时间曲线,通过对两条曲线的分离求得炮点和检波点延迟时。
该方法具有如下优点[5]:(1)使用道数少,便于同偏移距域、同层追踪合成;(2)同时在共炮、共检、共偏移距域实现绝对延迟时的求取;(3)炮、检波点延迟时精度基本不受折射界面弯曲和速度变化的影响。
图3所示,炮点激发得到的和道初至时差为,这个时差等于第二炮激发,和道的初至时差;如果将炮得到的初至折射波时距曲线向上平移,使和重合,和重合,就得到了炮点激发与激发相接的时距曲线。
同样道理,每炮的时距曲线都照此平移与前一炮的时距曲线相接,就得到了一条连续追踪的合成时距曲线,检波点时间连成的曲线称为合成检波点时距曲线。
在每一炮的时距曲线向上平移过程中,炮点时间也同时向上平移,即所有炮点相对于第一炮的时间延迟也可以连成一条时间曲
线,这条时间曲线我们称之为合成炮点时距曲线。
因为同地面位置合成检波点时距曲线与合成炮点时距曲线的时差就是截距时间,其截距时间的一半就是延迟时,所以,这两条曲线的总和称之为合成延迟时曲线。
对于同地面点道,合成延迟时法可以利用多道初至时间计算时差,因此,它能充分利用多次覆盖的信息,具有统计效应,可求得较精确的折射层速度和延迟时。
该方法在复杂区二维勘探中应用取得了很好的效果。
在三维勘探中,对每条接收线也可以用非纵距较小的一组炮线和接收线来合成延迟时曲线,进而计算炮点、检波点延迟时,这方面也有成功应用的实例。
4 结语
本文介绍的三种折射静校正方法,属于一次静校正方法范畴,都需要建立近地表模型,在此基础上计算静校正量,而不同之处就在于建立近地表模型的方法不同。
加减法是利用式(2)式(3)和式(1)等所示的加减时间与截距时间、折射层速度的关系,求出后者这两个量,进而建立近地表模型,由于一般找不到对比首波和恰好在同一点的射线路径,该方法已为扩展广义互换法所取代。
扩展广义互换法和合成延迟时法,这两种方法都是先求取延迟时,然后利用延迟时、风化层速度、折射层速度这些参数计算得出近地表模型;而它们的区别在于求取延迟时的方法不同,前者利用互换法的基本原理求取延迟时,后者通过平移连接折射初至时间曲线进而求取延迟时。
参考文献
[1] 邓志文.复杂山地地震勘探[M].北京:石油工业出版社,2006.
[2] Ozdogan Yilmaz.Seismic Data Processing[M].Tulsa,OK:Society of Exploration,1987.
[3] 李振春,张军华.地震数据处理方法[M].东营:石油大学出版社,2004.
[4] 刘洪雷.复杂地区的折射波静校正应用研究[D].北京:中国地质大学,2006.
[5] 王顺国.复杂山区静校正方法研究及效果[J].石油物探,1998,37(4):93-103.。