函数的奇偶性几种类型题
函数的奇偶性经典例题
精品资料 欢迎下载2.4 函数的奇偶性【知识网络】1.奇函数、偶函数的定义及其判断方法; 2.奇函数、偶函数的图象.3.应用奇函数、偶函数解决问题. 【典型例题】例 1.( 1)下面四个结论中,正确命题的个数是( A )①偶函数的图象一定与 y 轴相交;②函数 f ( x) 为奇函数的充要条件是 f (0) 0 ;③偶函数的图象关于 y 轴对称;④既是奇函数,又是偶函数的函数一定是f ( x )=0( x ∈ R ).A . 1B . 2C . 3D .4提示:①不对,如函数 f ( x)1y轴没有交点;②不对,因为奇函 x 2 是偶函数,但其图象与f ( x )数的定义域可能不包含原点;③正确;④不对,既是奇函数又是偶函数的函数可以为 =0〔 x ∈(- a , a )〕,答案为 A .( 2 )已知函数 f ( x) ax 2 bx 3a b 是偶函数,且其定义域为[a 1, 2a ],则()A1 b = 0B . ab 0C b = 0D . a 3b = 03提示:由 f (x) ax 2bx 3ab 为偶函数,得 b = 0.又定义域为[ a1, 2a ],∴ ( a 1) 2a 0 ,∴ a1 .故答案为 A .3x 2( 3)已知 f ( x) 是定义在 R 上的奇函数,当 x0 时, f ( x)2 x ,则 f ( x) )在 R 上的表达式是()A . y x( x2) B . y x(| x | 2)C .y| x |( x 2)D .y提示:由 x 0 时, f ( x) x 22x , f ( x) 是定义在 R 上的奇函数得: 当 x < 0 时, x 0 , f ( x) f ( x) ( x 2 2x) x( x 2) x( x 2) ( x 0) x(| x | 2) ,答案为 D . ∴ f ( x) x 2) ( x,即 f ( x) x( 0) ( 4)已知 f ( x) x 5 ax 3bx 8 ,且 f ( 2) 10 ,那么 f (2)等于 26 提示: f ( x)8x5ax3bx 为奇函数,f (2) 8 18 ,∴ f (2) 818( 5)已知 f ( x) 是偶函数,g (x) 是奇函数,若1f (x) g( x),则x1x(| x | 2),∴ f (2) 26.f ( x) 的解析式为提 示 : 由 f ( x) 是 偶 函 数 , g (x) 是奇函数,可得1 , 联 立f ( x)g (x)x1f ( x) g( x)111111x 1 ,得: f ( x) 2 ( x1x 1 )x21, ∴ f (x)1x2例 2.判断下列函数的奇偶性:( 1 ) f ( x) (x 1) 1x; (2) f ( x) 1 x2x 2 1 ;1 x2x 2x ( x 0)( 3 ) f (x)lg(1 x ) ;( 4) f ( x)x 2 x.| x 2 2 | 2( x 0)解:( 1)由1 x1,1),关于原点不对称,∴f (x) 为非奇非偶函数.10 ,得定义域为 [x(2)1x20x2 1 x 1 ,∴ f ( x)0 ∴ f ( x) 既是奇函数又是偶函数.x210(3)由1x20得定义域为 (1,0)(0,1) ,∴f ( x)lg(1x)2lg(1x)2| x22|2 0( x22) 2x2,∵ f (x)lg[1(x) 2 ]lg(1x2 )f (x)∴ f ( x) 为偶函数(x) 2x2( 4)当x0 时,x0 ,则 f ( x)( x)2x(x2x) f (x) ,当 x0 时, x0 ,则 f (x) ( x) 2x( x2x) f (x) ,综上所述,对任意的x(,) ,都有 f (x) f ( x),∴ f ( x) 为奇函数.例 3.若奇函数 f ( x) 是定义在(1,1)上的增函数,试解关于 a 的不等式:f ( a 2) f ( a 24) 0.解:由已知得 f ( a 2) f ( a24)因 f(x) 是奇函数,故 f (a24) f (4a2 ) ,于是 f (a2) f (4 a2 ) .又 f ( x) 是定义在(1, 1)上的增函数,从而a24 a 23a21 a211a33a21a2415a或3a5 3即不等式的解集是(3,2) .例 4.已知定义在 R 上的函数 f ( x)对任意实数x、y,恒有 f ( x) f ( y) f ( x y) ,且当 x 0时, f ( x)0 ,又 f (1)2.3(1)求证: f ( x)为奇函数;( 2)求证:f(x ) 在R上是减函数;(3)求 f ( x) 在[3,6]上的最大值与最小值.(1)证明:令x y0 ,可得 f (0) f (0) f (0 0) f (0),从而, f(0) = 0 .令y x,可得 f ( x) f (x) f ( x x) f (0)0 ,即 f ( x) f (x),故 f ( x ) 为奇函数.(2)证明:设x1 , x2∈R,且 x1x2,则 x1x20 ,于是 f ( x1 x2 )0 .从而f ( x1 ) f ( x2 ) f [( x1x2 ) x2 ] f ( x2 ) f ( x1x2 ) f (x2 ) f ( x2 ) f ( x1x2 ) 0所以, f ( x) 为减函数.(3)解:由(2)知,所求函数的最大值为 f ( 3) ,最小值为 f (6) .f (3) f (3)[ f (2) f (1)][2 f (1) f (1)] 3 f (1)2f (6) f (6)[ f (3) f (3)]4于是, f ( x)在 [-3,6]上的最大值为2,最小值为-4.【课内练习】1.下列命题中,真命题是( C )A .函数 y1是奇函数,且在定义域内为减函数xB .函数 y x 3 ( x 1)0 是奇函数,且在定义域内为增函数C .函数 y x 2 是偶函数,且在(3, 0)上为减函数D .函数 yax 2 c(ac 0) 是偶函数,且在(0, 2)上为增函数提示: A 中, y 1B 中,函数的定义域不关于原点对称; D 中,在定义域内不具有单调性;x当 a 0 时, y ax 2 c(ac0) 在( 0, 2)上为减函数,答案为 C .2. 若(x) , g (x) 都是奇函数, f ( x)a ( x) bg ( x)2 在( 0,+∞)上有最大值5 ,则 f (x) 在(-∞, 0)上有( )A .最小值- 5B .最大值- 5C .最小值- 1D .最大值- 3提示:( x) 、 g( x) 为奇函数,∴ f ( x)2 a (x)bg( x) 为奇函数.又 f (x) 有最大值 5,∴- 2 在( 0,+∞)上有最大值3.∴ f (x) - 2 在 (, 0) 上有最小值- 3,∴ f ( x) 在 ( , 0) 上有最小值- 1.答案为 C .3.定义在 R 上的奇函数 f ( x) 在( 0, +∞)上是增函数,又 f ( 3) 0 ,则不等式 xf ( x)的解集为( A )A .(- 3, 0)∪( 0, 3)B .(-∞,- 3)∪( 3, +∞)C .(- 3, 0)∪( 3, +∞)D .(-∞,- 3)∪( 0, 3) 提示:由奇偶性和单调性的关系结合图象来解.答案为 A .4. 已知函数 y f ( x) 是偶函数, yf ( x2) 在[ 0,2]上是单调减函数,则( A )A . f (0) f ( 1) f (2)B . f ( 1) f (0)f (2) C.f ( 1) f (2) f (0)D.f (2) f ( 1)f (0)提示:由 f ( x - 2)在[ 0, 2]上单调递减,∴ f ( x) 在[- 2, 0]上单调递减 .∵ y f ( x) 是偶函数,∴f ( x) 在[ 0, 2]上单调递增 . 又 f ( 1) f (1) ,故应选 A .5.已知 f ( x) 奇函数,当 x ∈( 0,1)时, f ( x) lg 1 ,那么当 x ∈(- 1,0)时, f ( x)的表达式是 lg(1 x) .1 x提示:当 x(- 1,0)时, x ∈( 0, 1),∴ f ( x)f ( x)lg 1lg(1 x) .x2 ax是奇函数,则a 20071 6.已知 f ( x)log 3 + 2007a = 2008.a x提示:f (0) log 32a0 ,2a1 ,解得: a 1 ,经检验适合, a 20072007a 2008 .aa7.若 f ( x) 是偶函数,当 x ∈[ 0,+∞) 时, f ( x) x 1,则 f (x 1) 0的解集是 { x | 0 x 2}提示:偶函数的图象关于 y 轴对称,先作出 f ( x) 的图象,由图可知 f ( x) 0的解集为 { x | 1 x 1} ,∴ f ( x 1) 0 的解集为 { x | 0 x 2} .8.试判断下列函数的奇偶性:(1) f ( x) | x2| | x 2| ; ( 2) f ( x)1 x2 ; ( 3) f ( x)| x |( x 1)0 . x 33x解:( 1)函数的定义域为 R , f ( x) | x2|| x 2| | x2|| x 2|f (x) ,故 f (x) 为偶函数.1 x2 0x1且 x 0 ,定义域为 [ 1, 0)(0, 1] ,关于原点对称,(2)由3| 得: 1| x3 01 x2 1 x2x) 1 x 2f ( x)3x,f (f ( x) ,故 f ( x) 为奇函数.x 3x( 3)函数的定义域为 (- ∞, 0)∪ (0,1)∪ (1,+∞ ),它不关于原点对称,故函数既非奇函数,又非偶函数.9.已知函数 f (x) 对一切 x, y R ,都有 f ( x y)f (x)f ( y) ,若 f ( 3)a ,用 a表示 f (12) .解:显然 f (x) 的定义域是 R ,它关于原点对称.在f ( x y)f (x) f ( y) 中,令 y x ,得 f (0)f ( x) f ( x) ,令 xy0 ,得 f (0)f (0)f (0) ,∴ f (0) 0 ,∴ f ( x) f ( x) 0 ,即 f ( x) f ( x) , ∴ f (x) 是奇函数.∵ f ( 3) a , ∴ f (12) 2 f (6)4 f (3) 4 f ( 3)4a .10.已知函数 f ( x)ax 21b, c Z ) 是奇函数,又, f (1)2 , f (2)3 ,求 a 、 b 、 cbx ( a, 的值 .c解:由 f ( x) f ( x) 得 bxc (bx c) ∴c=0. 又 f (1)2 ,得 a 12b ,而 f (2) 3 ,得4a1 3 ,解得 1 a2 .a 1又 a Z ,∴ a 0 或 a 1.若 a 0 ,则 b= 1 Z ,应舍去;若 a 1 ,则 b=1 ∈Z.2∴ a 1, b 1, c 0 .。
函数的奇偶性练习题
函数的奇偶性练习题1. 函数f(x)在定义域上是否是奇函数还是偶函数?解析:要判断函数的奇偶性,需要分析函数在x和-f(x)两点处的取值情况。
2. 函数g(x) = x^3 - x是奇函数还是偶函数?解析:首先,我们分别计算g(x)和g(-x)的值。
当x = 1时,g(1) = 1^3 - 1 = 0;当x = -1时,g(-1) = (-1)^3 - (-1) = -2。
由于g(1) = 0,且g(-1) = -2,即当x = 1时,g(x) = -g(-x)成立。
因此,函数g(x)是奇函数。
3. 函数h(x) = x^4 - x^2是奇函数还是偶函数?解析:同样地,我们分别计算h(x)和h(-x)的值。
当x = 1时,h(1) = 1^4 - 1^2 = 0;当x = -1时,h(-1) = (-1)^4 - (-1)^2 = 0。
由于h(1) = h(-1) = 0,即当x = 1和x = -1时,h(x) = h(-x)成立。
因此,函数h(x)是偶函数。
4. 函数i(x) = sin(x)是奇函数还是偶函数?解析:对于三角函数,我们需要利用其周期性质进行判断。
由于sin(x)的周期是2π,即sin(x + 2πk) = sin(x)(k为整数)。
考虑到奇函数关于原点对称,我们将其分为两种情况进行分析:当x = 0时,sin(0) = 0;当x = π时,sin(π) = 0。
由于sin(0) = sin(π) = 0,即当x = 0和x = π时,sin(x) = sin(-x)成立。
因此,函数i(x)是奇函数。
5. 函数j(x) = x^2 + 1是奇函数还是偶函数?解析:对于函数j(x),我们分别计算j(x)和j(-x)的值。
当x = 1时,j(1) = 1^2 + 1 = 2;当x = -1时,j(-1) = (-1)^2 + 1 = 2。
由于j(1) = j(-1) = 2,即当x = 1和x = -1时,j(x) = j(-x)成立。
函数的奇偶性问题练习题(含答案)
...函数的奇偶性问题一、选择题1.已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx () A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数 解析:f (x )=ax 2+bx +c 为偶函数,x x =)(ϕ为奇函数,∴g (x )=ax 3+bx 2+cx =f (x )·)(x ϕ满足奇函数的条件. 答案:A2.已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则() A .31=a ,b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =0 解析:由f (x )=ax 2+bx +3a +b 为偶函数,得b =0.又定义域为[a -1,2a ],∴a -1=2a ,∴31=a .故选A .3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的表达式是( )A .y =x (x -2)B .y =x (|x |-1)C .y =|x |(x -2)D .y =x (|x |-2) 解析:由x ≥0时,f (x )=x 2-2x ,f (x )为奇函数,∴当x <0时,f (x )=-f (-x )=-(x 2+2x )=-x 2-2x =x (-x -2). ∴(2)(0)()(2)(0),,x x x f x x x x ⎧⎨⎩-≥=--<即f (x )=x (|x |-2)答案:D4.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于( ) A .-26 B .-18 C .-10 D .10 解析:f (x )+8=x 5+ax 3+bx 为奇函数,f (-2)+8=18,∴f (2)+8=-18,∴f (2)=-26. 答案:A5.函数1111)(22+++-++=x xx x x f 是()A .偶函数B .奇函数C .非奇非偶函数D .既是奇函数又是偶函数 解析:此题直接证明较烦,可用等价形式f (-x )+f (x )=0. 答案:B 6.若)(x ϕ,g (x )都是奇函数,2)()(++=x bg a x f ϕ在(0,+∞)上有最大值5,则f (x )在(-∞,0)上有( )A .最小值-5B .最大值-5C .最小值-1D .最大值-3解析:)(x ϕ、g (x )为奇函数,∴()2()()f x a x bg x φ-=+为奇函数. 又f (x )在(0,+∞)上有最大值5, ∴f (x )-2有最大值3. ∴f (x )-2在(-∞,0)上有最小值-3, ∴f (x )在(-∞,0)上有最小值-1. 答案:C 二、填空题 7.函数2122)(xx x f ---=的奇偶性为____奇函数____(填奇函数或偶函数) .8.若y =(m -1)x 2+2mx +3是偶函数,则m =____0_____. 解析:因为函数y =(m -1)x 2+2mx +3为偶函数,∴f (-x )=f (x ),即(m -1)(-x )2+2m (-x )+3=(m —1)x 2+2mx +3,整理,得m =0.9.已知f (x )是偶函数,g (x )是奇函数,若11)()(-=+x x g x f ,则f (x )的解析式为____11)(2-=xx f ___.解析:由f (x )是偶函数,g (x )是奇函数,...可得11)()(--=-x x g x f ,联立11)()(-=+x x g x f ,∴11)1111(21)(2-=----=x x x x f . 10.已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和为___0 _____. 三、解答题11.设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),求实数m 的取值范围.(21<m ) 12.已知函数f (x )满足f (x +y )+f (x -y )=2f (x )·f (y )(x ∈R ,y ∈R ),且f (0)≠0,试证f (x )是偶函数.证明:令x =y =0,有f (0)+f (0)=2f (0)·f (0),又f (0)≠0,∴可证f (0)=1.令x =0,∴f (y )+f (-y )=2f (0)·f (y )⇒f (-y )=f (y ),故f (x )为偶函数.13.已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2—1,求f (x )在R 上的表达式.解析:本题主要是培养学生理解概念的能力.f (x )=x 3+2x 2-1.因f (x )为奇函数,∴f (0)=0.当x <0时,-x >0,f (-x )=(-x )3+2(-x )2-1=-x 3+2x 2-1, ∴f (x )=x 3-2x 2+1.因此,.)0()0()0(12012)(,,2323<=>+--+=⎪⎩⎪⎨⎧x x x x x x x x f 点评:本题主要考查学生对奇函数概念的理解及应用能力.14.f (x )是定义在(-∞,-5]Y [5,+∞)上的奇函数,且f (x )在[5,+∞)上单调递减,试判断f (x )在(-∞,-5]上的单调性,并用定义给予证明. 解析:任取x 1<x 2≤-5,则-x 1>-x 2≥-5.因f (x )在[5,+∞]上单调递减,所以f (-x 1)<f (-x 2)⇒f (x 1)<-f (x 2)⇒f (x 1)>f (x 2),即单调减函数.点评:此题要注意灵活运用函数奇偶性和单调性,并及时转化.15.设函数y =f (x )(x ∈R 且x ≠0)对任意非零实数x 1、x 2满足f (x 1·x 2)=f (x 1)+f (x 2),求证f (x )是偶函数.解析:由x 1,x 2∈R 且不为0的任意性,令x 1=x 2=1代入可证, f (1)=2f (1),∴f (1)=0. 又令x 1=x 2=-1,∴f [-1×(-1)]=2f (1)=0, ∴(-1)=0.又令x 1=-1,x 2=x ,∴f (-x )=f (-1)+f (x )=0+f (x )=f (x ),即f (x )为偶函数. 点评:抽象函数要注意变量的赋值,特别要注意一些特殊值,如,x 1=x 2=1,x 1=x 2=-1或x 1=x 2=0等,然后再结合具体题目要求构造出适合结论特征的式子即可.。
高中函数奇偶性练习题
高中函数奇偶性练习题高中函数奇偶性练习题函数是数学中的重要概念,它描述了数值之间的关系。
而在高中数学中,函数的奇偶性是一个重要的性质,它可以帮助我们更好地理解函数的行为和特点。
本文将通过一些练习题来探讨高中函数的奇偶性。
1. 练习题一:判断函数的奇偶性考虑函数f(x) = x^3 + 2x^2 - 3x,我们需要判断它的奇偶性。
首先,我们来看函数f(-x)的表达式:f(-x) = (-x)^3 + 2(-x)^2 - 3(-x) = -x^3 +2x^2 + 3x。
现在,我们来比较f(x)和f(-x)的表达式。
通过比较我们可以发现,f(x)和f(-x)的表达式中,只有最后一项的符号不同。
根据奇偶性的定义,如果一个函数满足f(x) = f(-x),那么它是一个偶函数;如果一个函数满足f(x) = -f(-x),那么它是一个奇函数。
根据上述比较,我们可以得出结论:函数f(x)是一个奇函数,因为f(x) = -f(-x)。
2. 练习题二:利用奇偶性求解方程现在考虑一个方程:f(x) = 0。
我们可以利用函数的奇偶性来求解这个方程。
假设函数f(x)是一个奇函数,那么对于任意的x,如果f(x) = 0,那么必然有f(-x) = 0。
这是因为如果f(x) = 0,那么根据奇函数的定义,我们有f(x) = -f(-x),所以-f(-x) = 0,即f(-x) = 0。
同样地,如果函数f(x)是一个偶函数,那么对于任意的x,如果f(x) = 0,那么必然有f(-x) = 0。
通过利用奇偶性,我们可以将一个方程的解空间缩小一半。
例如,如果我们发现函数f(x)是一个奇函数,并且我们找到了一个x的解x1,那么我们知道-f(x1)也是一个解。
因此,我们只需要找到方程f(x) = 0的正解,然后通过奇偶性来得到其他解。
3. 练习题三:利用奇偶性求导在微积分中,我们经常需要对函数进行求导。
而函数的奇偶性也可以帮助我们求导。
函数奇偶性练习题(内含答案)
函数奇偶性练习题(内含答案)新希望培训学校资料数学函数奇偶性练(内含答案)一、选择题1.已知函数 $f(x)=ax+bx+c(a\neq0)$ 是偶函数,那么$g(x)=ax+bx-cx$ 是()A。
奇函数B。
偶函数C。
既奇又偶函数D。
非奇非偶函数2.已知函数 $f(x)=ax+bx+3a+b$ 是偶函数,且其定义域为$[a-1,2a]$,则()A。
$a=2,\ b=\frac{1}{3}$B。
$a=-1,\ b=-\frac{1}{3}$C。
$a=1,\ b=-\frac{1}{3}$D。
$a=3,\ b=\frac{1}{3}$3.已知 $f(x)$ 是定义在 $\mathbb{R}$ 上的奇函数,当$x\geq0$ 时,$f(x)=x-2x$,则 $f(x)$ 在 $\mathbb{R}$ 上的表达式是()A。
$y=x(x-2)$B。
$y=x(|x|-1)$C。
$y=|x|(x-2)$D。
$y=x(|x|-2)$4.已知 $f(x)=x+ax+bx-8$,且 $f(-2)=10$,那么 $f(2)$ 等于()A。
$-26$B。
$-18$C。
$-10$D。
$10$5.函数$f(x)=\frac{5x^2}{1+x^2}+\frac{x-1}{x+1}$ 是()A。
偶函数B。
奇函数C。
非奇非偶函数D。
既是奇函数又是偶函数6.若 $\phi(x),\ g(x)$ 都是奇函数,$f(x)=a\phi(x)+bg(x)+2$ 在 $(0,+\infty)$ 上有最大值 $5$,则$f(x)$ 在 $(-\infty,0)$ 上有()A。
最小值 $-5$B。
最大值 $-5$C。
最小值 $-1$D。
最大值 $-3$二、填空题7.函数 $f(x)=\frac{x-2}{1-x^2}$ 的奇偶性为(奇函数或偶函数)。
8.若 $y=(m-1)x+2mx+3$ 是偶函数,则 $m=$()。
9.已知 $f(x)$ 是偶函数,$g(x)$ 是奇函数,若$f(x)+g(x)=\frac{1}{x-1}$,则 $f(x)$ 的解析式为()。
函数的奇偶性试题(含答案)
一、选择题1.下列命题中错误的是( )①图象关于原点成中心对称的函数一定为奇函数②奇函数的图象一定过原点③偶函数的图象与y 轴一定相交④图象关于y 轴对称的函数一定为偶函数A .①②B .③④C .①④D .②③[答案] D[解析] f (x )=1x 为奇函数,其图象不过原点,故②错;y =⎩⎨⎧ x -1 x ≥1-x -1 x ≤-1为偶函数,其图象与y 轴不相交,故③错.2.如果奇函数f (x )在(0,+∞)上是增函数,则f (x )在(-∞,0)上( )A .减函数B .增函数C .既可能是减函数也可能是增函数D .不一定具有单调性[答案] B3.已知f (x )=x 7+ax 5+bx -5,且f (-3)=5,则f (3)=( )A .-15B .15C .10D .-10[答案] A[解析] 解法1:f (-3)=(-3)7+a (-3)5+(-3)b -5=-(37+a ·35+3b -5)-10=-f (3)-10=5,∴f (3)=-15.解法2:设g (x )=x 7+ax 5+bx ,则g (x )为奇函数,∵f (-3)=g (-3)-5=-g (3)-5=5,∴g (3)=-10,∴f (3)=g (3)-5=-15.4.若f (x )在[-5,5]上是奇函数,且f (3)<f (1),则下列各式中一定成立的是( )A .f (-1)<f (-3)B .f (0)>f (1)C .f (2)>f (3)D .f (-3)<f (5)[答案] A[解析] ∵f (3)<f (1),∴-f (1)<-f (3),∵f (x )是奇函数,∴f (-1)<f (-3).5.设f (x )是定义在R 上的奇函数,且当x >0时,f (x )=2x -3,则f (-2)的值等于( )A .-1B .1 C.114D .-114[答案] A[解析] ∵x >0时,f (x )=2x -3,∴f (2)=22-3=1,又f (x )为奇函数,∴f (-2)=-f (2)=-1.6.设f (x )在[-2,-1]上为减函数,最小值为3,且f (x )为偶函数,则f (x )在[1,2]上( )A .为减函数,最大值为3B .为减函数,最小值为-3C .为增函数,最大值为-3D .为增函数,最小值为3[答案] D[解析] ∵f (x )在[-2,-1]上为减函数,最大值为3,∴f (-1)=3,又∵f (x )为偶函数,∴f (x )在[1,2]上为增函数,且最小值为f (1)=f (-1)=3.7.(胶州三中高一模块测试)下列四个函数中,既是偶函数又在(0,+∞)上为增函数的是( )A .y =x 3B .y =-x 2+1C .y =|x |+1D .y =2-|x | [答案] C[解析] 由偶函数,排除A ;由在(0,+∞)上为增函数,排除B ,D ,故选C.8.(09·辽宁文)已知偶函数f (x )在区间[0,+∞)单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 取值范围是( ) A.⎝ ⎛⎭⎪⎫13,23B.⎣⎢⎡⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,23 ` D.⎣⎢⎡⎭⎪⎫12,23 [答案] A[解析] 由题意得|2x -1|<13⇒-13<2x -1<13⇒23<2x <43⇒13<x <23,∴选A.9.若函数f (x )=(x +1)(x +a )为偶函数,则a =( )A .1B .-1C .0D .不存在[答案] B[解析] 解法1:f (x )=x 2+(a +1)x +a 为偶函数,∴a +1=0,∴a =-1.解法2:∵f (x )=(x +1)(x +a )为偶函数,∴对任意x ∈R ,有f (-x )=f (x )恒成立,∴f (-1)=f (1),即0=2(1+a ),∴a =-1.10.奇函数f (x )当x ∈(-∞,0)时,f (x )=-2x +3,则f (1)与f (2)的大小关系为( )A .f (1)<f (2)B .f (1)=f (2)C .f (1)>f (2)D .不能确定 [答案] C[解析] 由条件知,f (x )在(-∞,0)上为减函数,∴f (-1)<f (-2),又f (x )为奇函数,∴f (1)>f (2).[点评] 也可以先求出f (x )在(0,+∞)上解析式后求值比较,或利用奇函数图象对称特征画图比较.二、填空题11.若f (x )=ax 2+bx +c (a ≠0)为偶函数,则g (x )=ax 3+bx 2+cx 的奇偶性为________.[答案] 奇函数[解析] 由f (x )=ax 2+bx +c (a ≠0)为偶函数得b =0,因此g (x )=ax 3+cx ,∴g (-x )=-g (x ),∴g (x )是奇函数.12.偶函数y =f (x )的图象与x 轴有三个交点,则方程f (x )=0的所有根之和为________.[答案] 0[解析] 由于偶函数图象关于y 轴对称,且与x 轴有三个交点,因此一定过原点且另两个互为相反数,故其和为0.三、解答题13.判断下列函数的奇偶性:(1)f (x )=⎩⎪⎨⎪⎧-x 2+x (x >0)x 2+x (x ≤0); (2)f (x )=1x 2+x. [解析] (1)f (-x )=⎩⎨⎧ x 2-x (x ≥0)-x 2-x (x <0),∴f (-x )=-f (x ),∴f (x )为奇函数.(2)f (-x )=1x 2-x≠f (x ),f (-x )≠-f (x ),∴f (x )既不是奇函数,又不是偶函数.14.已知f (x )是偶函数,g (x )是奇函数,且f (x )+g (x )=x 2+x -2,求f (x ),g (x )的表达式.[解析] f (-x )+g (-x )=x 2-x -2,由f (x )是偶函数,g (x )是奇函数得,f (x )-g (x )=x 2-x -2又f (x )+g (x )=x 2+x -2,两式联立得:f (x )=x 2-2,g (x )=x .15.函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f ⎝ ⎛⎭⎪⎫12=25,求函数f (x )的解析式.[解析] 因为f (x )是奇函数且定义域为(-1,1),所以f (0)=0,即b =0.又f ⎝ ⎛⎭⎪⎫12=25,所以12a 1+⎝ ⎛⎭⎪⎫122=25, 所以a =1,所以f (x )=x 1+x 2. 16.定义在(-1,1)上的奇函数f (x )是减函数,且f (1-a )+f (1-a 2)<0,求实数a 的取值范围.[解析] 由f (1-a )+f (1-a 2)<0及f (x )为奇函数得,f (1-a )<f (a 2-1),∵f (x )在(-1,1)上单调减,∴⎩⎪⎨⎪⎧-1<1-a<1-1<1-a 2<11-a >a 2-1 解得0<a <1.故a 的取值范围是{a |0<a <1}.17.f (x )是奇函数,当x ≥0时,f (x )的图象是经过点(3,-6),顶点为(1,2)的抛物线的一部分,求f (x )的解析式,并画出其图象.[解析] 设x ≥0时,f (x )=a (x -1)2+2,∵过(3,-6)点,∴a (3-1)2+2=-6,∴a =-2.即f (x )=-2(x -1)2+2.当x <0时,-x >0,f (-x )=-2(-x -1)2+2=-2(x +1)2+2,∵f (x )为奇函数,∴f (-x )=-f (x ),∴f (x )=2(x +1)2-2,即f (x )=⎩⎨⎧ -2(x -1)2+2 (x ≥0)2(x +1)2-2 (x <0),其图象如图所示.。
函数奇偶性练习题及答案
函数的奇偶性练习题1、判断以下函数的奇偶性。
〔1〕x xx x f -+-=11)1()(〔非奇非偶〕〔2〕 2|2|)1lg()(2---=x x x f 〔奇〕〔3〕33)(22-+-=x x x f 〔奇偶〕 〔4〕2||)(2+--=a x x x f 〔a=0,偶;a ≠0,非奇非偶〕 〔5〕1212)(-+=x x x f 〔奇〕 〔6〕)1lg(2x x y ++=〔奇〕 〔7〕1cos sin ()1cos sin x xf x x x-+=++ 〔8〕1()x f x +-=(奇)2、设函数)(x f 是定义在R 上的奇函数,对于R x ∈∀,都有)23()23(x f x f --=+成立。
〔1〕证明:)(x f 是周期函数,并指出周期。
)()()]23(23[]23)23[()3()()(),23()23(x f x f x f x f x f x f x f x f x f =--=+--=++=+∴=---=+ 所以,)(x f 是周期函数,且3=T 〔2〕假设2)1(=f ,求)3()2(f f +的值。
-23.设()f x 是定义在R 上的奇函数,当x ≤0时,()f x x x 2=2-,则()f 1=〔 A 〕A .-3B .-1C .1D .34.函数)(x f 的定义域为()()+∞⋃∞-,11,,且)1(+x f 为奇函数,当1>x 时, 16122)(2+-=x x x f ,则直线2=y 与函数)(x f 图象的所有交点的横坐标之和是〔 D 〕A .1B .2C .4D .5解:f(x+1)是奇函数所以 f(x+1)的图像关于(0,0)对称,且f(0+1)=0f(x+1)的图像向右平移1个单位,得到f(x)所以 f(x)的图像关于(1,0)对称, f(1)=0则当 x>1时〔1〕 2x²-12x+16=2x²-6x+7=0x=3±√2 两根都大于1即x>1时,y=2与函数f(x)图像交点的横坐标为3±√2〔2〕 2x²-12x+16=-2x²-6x+9=0x=3所以 x=3时,y=-2(3,-2)关于(1,0)的对称点为〔-1,2〕即 x<1时,y=2与函数f(x)图像交点的横坐标为-1所以 ,直线y=2与函数f(x)图象的所有交点的横坐标之和是3+√2+3-√2+(-1)=55.下面四个结论中,正确命题的个数是 ( A )①偶函数的图象一定与y 轴相交②奇函数的图象一定通过原点③偶函数的图象关于y 轴对称④既是奇函数,又是偶函数的函数一定是f 〔x 〕=0〔x ∈R 〕A.1B.2C.36.设f (x )是定义在R 上以2为周期的偶函数,已知x ∈(0,1)时,)1(log )(21x x f -=,则函数f (x )在(1,2)上( D )A .是增函数,且f (x )<0B .是增函数,且f (x )>0C .是减函数,且f (x )<0D .是减函数,且f (x )>07.已知函数)(x f y =,R x ∈,有以下4个命题:①假设)21()21(x f x f -=+,则)(x f 的图象关于直线1=x 对称;②)2(-x f 与)2(x f -的图象关于直线2=x 对称;③假设)(x f 为偶函数,且)()2(x f x f -=+,则)(x f 的图象关于直线2=x 对称;④假设)(x f 为奇函数,且)2()(--=x f x f ,则)(x f 的图象关于直线1=x 对称.其中正确命题的个数为 〔C 〕.A. 1个B. 2个C. 3个D. 4个 分析:①先用换元法将f 〔1+2x 〕=f 〔1-2x 〕转化,再由转化后的形式判断对称轴的方程.②y=f 〔x-2〕与y=f 〔2-x 〕的图象关于直线x=2对称可转化为证明y=f 〔x 〕与y=f 〔-x 〕的图象关于直线x=0对称的问题,再结合图象的平移知识进行判断.③用-x 换x ,由题设条件和偶函数的性质得,f 〔2-x 〕=-f 〔-x 〕=-f 〔x 〕=f 〔2+x 〕,故f 〔x 〕的图象关于直线x=2对称. ④用-x 换x ,由题设条件和奇函数的性质得,f 〔-x 〕=f 〔x-2〕,故y=f 〔x 〕的图象关于直线x=-1对称. 解答:解:①令t=1+2x ,可得2x=t-1,代入f 〔1+2x 〕=f 〔1-2x 〕得f 〔t 〕=f 〔2-t 〕由于|t-1|=|2-t-1|,故可知函数y=f 〔x 〕图象关于直线x=1对称即y=f 〔x 〕的图象关于直线x=1对称,故①是真命题.②由题设知y=f 〔2-x 〕=f[-〔x-2〕]由于函数y=f 〔x 〕与y=f 〔-x 〕的图象关于直线x=0对称,又y=f 〔x-2〕与y=f 〔2-x 〕的图象可由函数y=f 〔x 〕与y=f 〔-x 〕的图象右移动2个单位而得到, ∴y=f 〔x-2〕与y=f 〔2-x 〕的图象关于直线x=2对称,故②是真命题.③f 〔x 〕为偶函数,且f 〔2+x 〕=-f 〔x 〕,用-x 换x 得,f 〔2-x 〕=-f 〔-x 〕=-f 〔x 〕=f 〔2+x 〕 ∴f 〔x 〕的图象关于直线x=2对称,故③是真命题.④∵y=f 〔x 〕为奇函数,且f 〔x 〕=f 〔-x-2〕,用-x 换x 得,f 〔-x 〕=f 〔x-2〕,∴y=f 〔x 〕的图象关于直线x=-1对称,故④是假命题.故选C .8.设)(x f 是),(+∞-∞上的奇函数,),()2(x f x f -=+当10≤≤x 时,x x f =)(,则)5.7(f 等于〔 B 〕A.0.5B.C.D.9.设f (x )是连续的偶函数,且当x >0时是单调函数,则满足f (x )=f ⎝ ⎛⎭⎪⎫x +3x +4的所有x 之和为( C ) A .-3 B .3 C .-8 D .810.已知函数f (x )满足:f (1)=2,)(1)(1)1(x f x f x f -+=+,则f (2011)等于( C ) A .2 B .-3 C .-12 D.13[解析] 由条件知,f (2)=-3,f (3)=-12,f (4)=13,f (5)=f (1)=2,故f (x +4)=f (x ) (x ∈N *).∴f (x )的周期为4,故f (2011)=f (3)=-12.[点评] 严格推证如下:f (x +2)=1+f (x +1)1-f (x +1)=-1f (x ),∴f (x +4)=f [(x +2)+2]=f (x ).即f (x )周期为 11.函数y =log 22-x 2+x的图象( A ) A .关于原点对称 B .关于直线y =-x 对称C .关于y 轴对称D .关于直线y =x 对称12.已知f 〔x 〕是奇函数,当x ∈〔0,1〕时,f 〔x 〕=lgx +11,那么当x ∈〔-1,0〕时,f 〔x 〕的表达式是__________.解析:当x ∈〔-1,0〕时,-x ∈〔0,1〕,∴f 〔x 〕=-f 〔-x 〕=-lg x-11=lg 〔1-x 〕.答案:lg 〔1-x 〕13.定义在R 上的奇函数f (x )满足:当x >0时,f (x )=2008x +log 2008x ,则方程f (x )=0的实根的个数为 3 .14.假设y =〔m -1〕x 2+2mx +3是偶函数,则m =_________.0解析:因为函数y =〔m -1〕x 2+2mx +3为偶函数,∴f 〔-x 〕=f 〔x 〕,即〔m -1〕〔-x 〕2+2m 〔-x 〕+3=〔m —1〕x 2+2mx +3,整理,得m =0.(15.已知函数f(x)定义域为R ,则以下命题:①y=f(x)为偶函数,则y=f(x+2)的图像关于y 轴对称;②y=f(x+2)为偶函数,则y=f(x)的图像关于直线x=2对称;③假设函数f(2x+1)是偶函数,则f(2x)的图像关于直线x=1/2对称; ④假设f(x-2)=f(2-x),则y=f(x)的图像关于直线x=2对称;⑤y=f(x-2)和y=f(2-x)的图像关于x=2对称。
函数专题五:函数的奇偶性50套精选一套
函数专题五:函数的奇偶性1.)(x f 为偶函数⇔ 定义域关于原点对称且)()(x f x f =-2.)(x f 为奇函数⇔ 定义域关于原点对称且)()(x f x f -=-或()0)(=+-x f x f3.)(x a f +是偶函数⇔)()(x a f x a f -=+ ⇔)(x f 关于直线a x =对称.4.)(x a f +是奇函数⇔)()(x a f x a f --=+⇔)(x f 关于点)0,(a 中心对称。
5.奇函数的图像关于原点对称,偶函数的图像关于y 轴对称.6.奇函数的特殊性质: 若)(x f 是奇函数,若定义域中包含0=x ,则0)0(=f .7.对于b x a x a x a ax x f n n ++++= 33221)(的奇偶性的判定结论:奇函数中只含有奇次方, 不能含有常数项; 偶函数中只含有偶次方, 可以含有常数项.题型一:判断函数的奇偶性1.若函数3)(x x f =,则函数)(x f 在其定义域上是( )A.单调递减的偶函数B.单调递减的奇函数 C .单调递增的偶函数 D .单调递增的奇函数2.下列函数为偶函数的是( )A. sin y x =B. 3y x =C. x y e =D. y =3.若函数x x x f -+=33)(与x x x g --=33)(的定义域均为R ,则( )A .)(x f 与)(x g 均为偶函数 B. )(x f 为偶函数,)(x g 为奇函数C .)(x f 与)(x g 均为奇函数 D. )(x f 为奇函数,)(x g 为偶函数4.下列函数中,在其定义域内既是奇函数又是减函数的是( )A.3 ,y x x R =-∈B. sin ,y x x R =∈C. ,y x x R =∈D. x 1() ,2y x R =∈题型二:已知函数的奇偶性和分段函数某段解析式,求函数值及整段函数解析式.5.设)(x f 是定义在R 上的偶函数,且当0>x 时,32)(-=x x f ,则)2(-f =6.设)(x f 是定义在R 上的偶函数,且当0<x 时,13)(+=x x f ,则)4(f =7.设()f x 是定义在R 上的奇函数,当0≥x 时,13)(+=x x f ,则)1(-f =8.设()f x 是定义在R 上的奇函数,当0≤x 时,x x x f -=22)(,则)3(f =9.已知函数()y f x =为奇函数,若(3)(2)1f f -=,则(2)(3)f f ---=10.已知()f x 是奇函数,()g x 是偶函数,且(1)(1)2f g -+=,(1)(1)4f g +-=,则(1)g =( )A .4B .3C .2D .1 11.设函数()f x 是定义在R 上的偶函数,当0x ≥时,()21x f x =+,若()3f a =,则a =12.已知5)(357++++=dx cx bx ax x f ,其中d c b a ,,,为常数,若8)8(-=-f ,则=)8(f 13.)(),(x g x f 都是定义在R 上的奇函数,且2)(5)(3)(++=x g x f x F ,若b a F =)(,)(a F -=( )A. 4+-bB. 2+-bC. 4-bD. 2+b14.若奇函数()f x (R x ∈)满足1)3(=f ,)3()()3(f x f x f +=+,则A .0 B .1 C. 21 D . 21- 15.(拔高训练)设函数)()(R x x f ∈为奇函数,21)1(=f,)2()()2(f x f x f +=+,则=)5(f ( ) A.0 B.1 C.25 D.5 16.设)(x f 是偶函数,当0<x 时, x e x e x f +⋅=2)(,当0>x 时,)(x f =17.已知函数)(x f 在R 是奇函数,且当0≥x 时,x x x f 2)(2-=,则0<x 时,)(x f =18.已知定义域为R 的奇函数)(x f ,当0<x , 12)(2++=x x x f ,则0>x ,则)(x f = 题型三:已知奇偶性,求解未知数,简便解法为特例法. 若)(x f 为偶函数,常用特例)1()1(f f =-求解,若)(x f 为奇函数,常用特例0)0(=f 求解或)1()1(f f -=-求解.19.已知函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数,则m =( )A .1B .2C .3D .4 20.若函数(1)()y x x a =+-为偶函数,则a =( )A .2-B .1-C .1D .2 21.若b a bx ax x f +++=3)(2是定义在[]a a 2,1-上的偶函数,则a = ,b =22.已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a =( )A .0B .1-C .1D .1±23.设函数(1)()()x x a f x x++=为奇函数,则a = 24.已知函数121)(+-=x a x f ,若)(x f 为奇函数,则a = 25.已知函数11)(-+=x e m x f 是奇函数,则m = 26.函数⎪⎩⎪⎨⎧<+=>-=0,0,0,1)(x b x x a x x x f 是奇函数,则b a +=27.设()f x 为定义在R 上的奇函数,当0x ≥时,()22xf x x b =++(b 为常数),则(1)f -=( )A.-3B.-1C.1D.3题型四:奇偶性与不等式及奇偶性的应用28.(1).已知奇函数)(x f 是定义在)2,2(-上的减函数,若0)12()1(>-+-m f m f ,则实数m 的取值范围是(2).已知奇函数)(x f 是定义在)1,1(-上的减函数,若0)4()2(2<-+-a f a f ,则实数a 的取值范围是29.函数()y f x =是R 上的偶函数,且在(,0]-∞上是增函数,若()(2)f a f ≤,则实数a 的取值范围是( )A.2a ≤B.2a ≥-C.22a -≤≤D.2a ≤-或2a ≥30.已知偶函数()f x 在区间[0,)+∞单调增加,则满足的x 的取)31()12(f x f <-值范围是( ) A.12(,)33 B. 12[,)33 C. 12(,)23 D. 12[,)2331.设奇函数)(x f 的定义域为[]5,5-.若当[]5,0∈x 时,)(x f 的图象如图所示, 则不等式0)(<x xf 的解集是32.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( ) A .(10)(1)-+∞,, B .(1)(01)-∞-,, C .(1)(1)-∞-+∞,, D .(10)(01)-,,33.定义在[]2,2-上的偶函数)(x f ,它在[]2,0上的图象是一条如图所示的线段,则不等式x x f x f >-+)()(的解集为34.定义在[]1,1-上的偶函数)(x f ,当0≥x 时,)(x f 为增函数,若)2()1(m f m f <+成立,则m 的取值范围是35.已知定义域为R 的函数)(x f 在),8(+∞上为减函数,且函数)8(+=x f y 函数为偶函数,则( )A. )7()6(f f >B. )9()6(f f >C. )9()7(f f >D. )10()7(f f >36.函数)(x f y =在)2,0(上是增函数,函数)2(+=x f y 是偶函数,则下列结论正确的是( )A .)27()25()1(f f f <<B .)25()1()27(f f f <<C .)1()25()27(f f f <<D .)27()1()25(f f f << 37.已知对于任意实数x ,函数)(x f 满足)()(x f x f =-.若方程0)(=x f 有2009个实数解,则这2009个实数解之和为38.函数1()f x x x=-的图像关于( ) A .y 轴对称 B .直线x y -=对称 C .坐标原点对称 D .直线x y =对称39.函数()412x xf x +=的图象( ) A. 关于原点对称 B. 关于直线x y =对称 C. 关于x 轴对称 D. 关于y 轴对称40.函数xx x f +-=22log )(5的图象( ) A .关于原点对称 B .关于直线x y -=对称 C .关于y 轴对称 D .关于直线x y =对称题型六:零点(零点判断:若连续单调函数在()b a ,上存在唯一零点,则0)()(<b f a f ;若连续单调函数在[]b a ,上存在唯一零点,则0)()(≤b f a f ).41.函数65)(2+-=x x x f 的零点是( )A .()0,2B .()0,3C .()0,2,()0,3D .2,342.已知3)(x x x f --=,[]b a x ,∈,且0)()(<b f a f ,则0)(=x f 在[]b a ,内( ) A .至少有一实数根 B .至多有一实数根 C .没有实数根 D .有唯一实数根43.若方程0122=--x ax 在)1,0(内恰有一实数根,则a 的取值范围是( ) A.),81[+∞- B.(+∞,1) C.(1,∞-) D.)1,81[- 44.已知函数42)(+=mx x f ,在]1,2[-上存在0x ,使0)(0=x f ,则实数m 的取值范围是45.函数x x f x32)(+=的零点所在的一个区间是( )A. )1,2(--B. )0,1(-C. )1,0(D. )2,1(46.已知函数()35x f x x =+-的零点[]0,x a b ∈,且1b a -=,a ,b N *∈,则a b += 47.函数⎩⎨⎧>+-≤-+=0,ln 20,32)(2x x x x x x f 的零点个数为 ( )A .3B .2C .1D .048.方程22x x =的实根的个数为( )A.0B.1C.2D.349.函数631)(-+=x nx x f 的零点个数为50.对于函数n mx x x f ++=2)(,若0)(>a f ,0)(>b f (b a <),则在),(b a 内)(x f ( )A .一定有零点B .一定没有零点C .可能有两个零点D .至多有一个零点。
函数的奇偶性试题(含答案)
函数的奇偶性试题(含答案)一、选择题1.下列命题中错误的是( )①图象关于原点成中心对称的函数一定为奇函数②奇函数的图象一定过原点③偶函数的图象与y轴一定相交④图象关于y轴对称的函数一定为偶函数A.①② B.③④C.①④D.②③[答案] D[解析] f(x)=1x为奇函数,其图象不过原点,故②错;y=Error!为偶函数,其图象与y轴不相交,故③错.2.如果奇函数f(x)在(0,+∞)上是增函数,则f(x)在(-∞,0)上( )A.减函数B.增函数C.既可能是减函数也可能是增函数D.不一定具有单调性[答案] B3.已知f(x)=x7+ax5+bx-5,且f(-3)=5,则f(3)=( )A.-15 B.15C.10 D.-10[答案] A[解析] 解法1:f(-3)=(-3)7+a(-3)5+(-3)b-5=-(37+a·35+3b-5)-10=-f(3)-10=5,∴f(3)=-15.解法2:设g(x)=x7+ax5+bx,则g(x)为奇函数,∵f(-3)=g(-3)-5=-g(3)-5=5,∴g(3)=-10,∴f(3)=g(3)-5=-15.4.若f(x)在[-5,5]上是奇函数,且f(3)<f(1),则下列各式中一定成立的是( )A.f(-1)<f(-3) B.f(0)>f(1)C.f(2)>f(3) D.f(-3)<f(5)[答案] A[解析] ∵f(3)<f(1),∴-f(1)<-f(3),∵f(x)是奇函数,∴f(-1)<f(-3).5.设f(x)是定义在R上的奇函数,且当x>0时,f(x)=2x-3,则f(-2)的值等于( )A.-1 B.1C.114D.-114[答案] A[解析] ∵x>0时,f(x)=2x-3,∴f(2)=22-3=1,又f(x)为奇函数,∴f(-2)=-f(2)=-1.6.设f(x)在[-2,-1]上为减函数,最小值为3,且f(x)为偶函数,则f(x)在[1,2]上( )A.为减函数,最大值为3B.为减函数,最小值为-3C.为增函数,最大值为-3D.为增函数,最小值为3[解析] ∵f(x)在[-2,-1]上为减函数,最大值为3,∴f(-1)=3,又∵f(x)为偶函数,∴f(x)在[1,2]上为增函数,且最小值为f(1)=f(-1)=3.7.(胶州三中高一模块测试)下列四个函数中,既是偶函数又在(0,+∞)上为增函数的是( )A.y=x3B.y=-x2+1C.y=|x|+1 D.y=2-|x|[答案] C[解析] 由偶函数,排除A;由在(0,+∞)上为增函数,排除B,D,故选C.8.(09·辽宁文)已知偶函数f(x)在区间[0,+∞)单调递增,则满足f(2x-1)<f(13)的x取值范围是( )A.(13,23)B.[13,23)C.(12,23)`D.[12,23)[答案] A[解析] 由题意得|2x-1|<13⇒-13<2x-1<13⇒23<2x<43⇒13<x<23,∴选A.9.若函数f(x)=(x+1)(x+a)为偶函数,则a=( ) A.1 B.-1C.0 D.不存在[解析] 解法1:f(x)=x2+(a+1)x+a为偶函数,∴a+1=0,∴a=-1.解法2:∵f(x)=(x+1)(x+a)为偶函数,∴对任意x∈R,有f(-x)=f(x)恒成立,∴f(-1)=f(1),即0=2(1+a),∴a=-1.10.奇函数f(x)当x∈(-∞,0)时,f(x)=-2x+3,则f(1)与f(2)的大小关系为( )A.f(1)<f(2) B.f(1)=f(2)C.f(1)>f(2) D.不能确定[答案] C[解析] 由条件知,f(x)在(-∞,0)上为减函数,∴f(-1)<f(-2),又f(x)为奇函数,∴f(1)>f(2).[点评] 也可以先求出f(x)在(0,+∞)上解析式后求值比较,或利用奇函数图象对称特征画图比较.二、填空题11.若f(x)=ax2+bx+c(a≠0)为偶函数,则g(x)=ax3+bx2+cx 的奇偶性为________.[答案] 奇函数[解析] 由f(x)=ax2+bx+c(a≠0)为偶函数得b=0,因此g(x)=ax3+cx,∴g(-x)=-g(x),∴g(x)是奇函数.12.偶函数y=f(x)的图象与x轴有三个交点,则方程f(x)=0的所有根之和为________.[答案] 0[解析] 由于偶函数图象关于y轴对称,且与x轴有三个交点,因此一定过原点且另两个互为相反数,故其和为0.三、解答题13.判断下列函数的奇偶性:(1)f(x)=Error!;(2)f(x)=1x2+x.[解析] (1)f(-x)=Error!,∴f(-x)=-f(x),∴f(x)为奇函数.(2)f(-x)=1x2-x≠f(x),f(-x)≠-f(x),∴f(x)既不是奇函数,又不是偶函数.14.已知f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=x2+x-2,求f(x),g(x)的表达式.[解析] f(-x)+g(-x)=x2-x-2,由f(x)是偶函数,g(x)是奇函数得,f(x)-g(x)=x2-x-2又f(x)+g(x)=x2+x-2,两式联立得:f(x)=x2-2,g(x)=x.15.函数f(x)=ax+b1+x2是定义在(-1,1)上的奇函数,且f(12)=25,求函数f(x)的解析式.[解析] 因为f(x)是奇函数且定义域为(-1,1),所以f(0)=0,即b=0.又f(12)=25,所以12a1+(12)2=25,所以a=1,所以f(x)=x1+x2.16.定义在(-1,1)上的奇函数f(x)是减函数,且f(1-a)+f(1-a2)<0,求实数a的取值范围.[解析] 由f(1-a)+f(1-a2)<0及f(x)为奇函数得,f(1-a)<f(a2-1),∵f(x)在(-1,1)上单调减,∴Error! 解得0<a<1.故a的取值范围是{a|0<a<1}.17.f(x)是奇函数,当x≥0时,f(x)的图象是经过点(3,-6),顶点为(1,2)的抛物线的一部分,求f(x)的解析式,并画出其图象.[解析] 设x≥0时,f(x)=a(x-1)2+2,∵过(3,-6)点,∴a(3-1)2+2=-6,∴a=-2.即f(x)=-2(x-1)2+2.当x<0时,-x>0,f(-x)=-2(-x-1)2+2=-2(x+1)2+2,∵f(x)为奇函数,∴f(-x)=-f(x),∴f(x)=2(x+1)2-2,即f(x)=Error!,其图象如图所示.。
必修一函数奇偶性及综合题型大全
必修一函数奇偶性及综合题型大全函数的奇偶性是指函数图像关于y轴或原点的对称性。
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)是偶函数。
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数。
判定函数奇偶性的常用方法有定义法和图象法。
在判断分段函数的奇偶性时,需要注意定义域内x取值的任意性,应分段讨论。
讨论时可依据x的范围取相应的解析式化简,判断f(x)与f(-x)的关系,得出结论,也可以利用图象作判断。
在进行函数奇偶性的操作时,乘以任何系数k不改变奇偶性,不管是kf(x)还是f(kx);偶函数在加上或减去常数a时不变(相当于图象上下平移,不改变偶函数的对称性),奇函数不行;奇函数加上或减去奇函数仍为奇函数,奇函数乘以奇函数为偶函数,偶函数乘以偶函数为偶函数。
例题1、判断下列函数的奇偶性:1) f(x)=x^2+2(x>0)2) f(x)=x-1+1-x3) f(x)=3(x=0)x^2-2(x<0)例题2、定义在实数集上的函数f(x),对任意x,y∈R,有f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0,则f(x)为偶函数;y=f(x)的奇偶性为偶函数。
又如定义在(-1,1)上的函数f(x),对任意x,y∈(-1,1)都有f(x)+f(y)=f((x+y)/(1-xy)),则f(x)为奇函数。
变式1、判断下列函数的奇偶性:1) f(x)=2x+x(x<0)。
f(x)=9-x。
f(x)=x-1)(x>0)x-x(x<0)变式2、设函数f(x),g(x)的定义域为R,且f(x)是奇函数,g(x)是偶函数,则f(x)g(x)是奇函数。
函数的奇偶性是函数的重要性质,常与函数的单调性及周期性相结合命题,以选择题或填空题的形式考查,难度稍大,为中高档题。
高考对函数奇偶性考查主要有以下四个命题角度:1) 求函数值;2) 求函数解析式;3) 已知单调性求参数的值;4) 作函数图象或判断单调性。
函数的奇偶性题型解析(含答案)
函数奇偶性的判定问题1. 判断下列函数的奇偶性:(1)f (x )=|x +1|-|x -1|;(2)f (x )=(x -1)·xx -+11; (3)f (x )=2|2|12-+-x x ; (4)f (x )=⎩⎨⎧>+<-).0()1(),0()1(x x x x x x (5)xx x f 2)21()(2+= 2.判断下列函数的奇偶性2211(0)2()11(0)2x x g x x x ⎧+>⎪⎪=⎨⎪--<⎪⎩3.判断函数f (x )=⎩⎪⎨⎪⎧ x 3-3x 2+1x >0x 3+3x 2-1x <0的奇偶性.4.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的函数是( )答案:BA. B.C. D.1.已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx ( )AA .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数5.已知函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数,则m 的值是( ) A. 1 B. 2 C. 3 D. 47.若y =(m +1)x 2+8mx +3是偶函数,则m =_________.0【例15】若3)3()2()(2+-+-=x k x k x f 是偶函数,讨论函数)(x f 的单调区间。
2.已知函数是偶函数,那么是( )答案:A A.奇函数 B.偶函数C.既奇且偶函数D.非奇非偶函数已知函数121)(+-=x a x f )(R x ∈,若)(x f 为奇函数,则=a ___;9.若f (x )=1222+-+⋅x x a a 为奇函数,求实数a 的值.2.已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则( ) AA .31=a ,b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =01.设函数的定义域为,且是奇函数,则实数a 的值是( )答案:CA. B.1 C.D.36.已知函数是偶函数,且,则的值为( )答案:DA.-1B.1C.-5D.54.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于( )AA .-26B .-18C .-10D .102.已知函数)(x f y =为R 上的奇函数,若1)2()3(=-f f ,则=---)3()2(f f ____;5.函数1111)(22+++-++=x x x x x f 是( )BA .偶函数B .奇函数C .非奇非偶函数D .既是奇函数又是偶函数8.函数2122)(x x x f ---=奇偶性为_____奇函数___(填奇函数或偶函数))(x f 是定义在R 上的奇函数,则)0(f =___;若有3)2(=-f ,则=)2(f ___;若7)5(=f ;则=-)5(f ___;已知8)(35-++=bx ax x x f 且10)2(=-f ,那么=)2(f 。
(完整版)函数的奇偶性练习题[(附答案)
(完整版)函数的奇偶性练习题[(附答案)函数的奇偶性1.函数f (x )=x(-1﹤x ≦1)的奇偶性是()A .奇函数⾮偶函数B .偶函数⾮奇函数C .奇函数且偶函数D .⾮奇⾮偶函数2. 已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx 是( )A .奇函数B .偶函数C .既奇⼜偶函数D .⾮奇⾮偶函数 3. 若函数f (x )是定义在R 上的偶函数,在]0,(-∞上是减函数,且f (2)=0,则使得f (x )<0的x 的取值范围是 ( )A.(-∞,2)B. (2,+∞)C. (-∞,-2)?(2,+∞)D. (-2,2) 4.已知函数f (x )是定义在(-∞,+∞)上的偶函数.当x ∈(-∞,0)时,f (x )=x -x 4,则当x ∈(0.+∞)时,f (x )= . 5. 判断下列函数的奇偶性:(1)f (x )=lg (12+x -x ); (2)f (x )=2-x +x -2(3) f (x )=?>+<-).0()1(),0()1(x x x x x x6.已知g (x )=-x 2-3,f (x )是⼆次函数,当x ∈[-1,2]时,f (x )的最⼩值是1,且f (x )+g (x )是奇函数,求f (x )的表达式。
7.定义在(-1,1)上的奇函数f (x )是减函数,且f(1-a)+f(1-a 2)<0,求a 的取值范围8.已知函数21()(,,)ax f x a b c N bx c+=∈+是奇函数,(1)2,(2)3,f f =<且()[1,)f x +∞在上是增函数,(1)求a,b,c 的值;(2)当x ∈[-1,0)时,讨论函数的单调性.9.定义在R 上的单调函数f (x )满⾜f (3)=log 23且对任意x ,y ∈R 都有f (x+y )=f (x )+f (y ). (1)求证f (x )为奇函数;(2)若f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成⽴,求实数k 的取值范围.10下列四个命题:(1)f (x )=1是偶函数;(2)g (x )=x 3,x ∈(-1,1]是奇函数;(3)若f (x )是奇函数,g (x )是偶函数,则H (x )=f (x )·g (x )⼀定是奇函数;(4)函数y =f (|x |)的图象关于y 轴对称,其中正确的命题个数是() A .1B .2C .3D .411下列函数既是奇函数,⼜在区间[]1,1-上单调递减的是( )A.()sin f x x =B.()1f x x =-+C.()1()2x x f x a a -=+ D.2()2xf x lnx-=+ 12若y =f (x )(x ∈R )是奇函数,则下列各点中,⼀定在曲线y =f (x )上的是() A .(a ,f (-a )) B .(-sin a ,-f (-sin a ))C .(-lg a ,-f (lg a1)) D .(-a ,-f (a ))13. 已知f (x )=x 4+ax 3+bx -8,且f (-2)=10,则f (2)=_____________。
函数奇偶性基本题型及求解策略
函数奇偶性基本题型及求解策略函数的奇偶性是函数的重要性质,也是每年的高考重要内容和热点内容之一,函数的奇偶性可以解决下列几类问题。
一.利用奇偶性定义判断例1. 设()f x 是R 上的任意函数,则下列叙述正确的是( )A 、().()f x f x -是奇函数 B. ().|()|f x f x -是奇函数C 、()()f x f x --是偶函数D 、()+()f x f x -是偶函数解:由于()+[()]()()f x f x f x f x ---=-+,所以()+()f x f x -是偶函数,故选择D 。
点评:解抽象函数问题可以通过化抽象为具体的方法,即赋予恰当的数值,利用定义经过运算与推理,最后得出结论。
例2. 已知函数f (x )=1n (x+2)+1n (x ﹣2),则f (x )是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数【分析】根据题意,对于函数f (x ),先分析其定义域可得函数f (x )的定义域为{x|x >2},不关于原点对称,由函数奇偶性的性质可得答案.解:函数f (x )=1n (x+2)+1n (x ﹣2),则有2020x x +>⎧⎨->⎩,解可得x >2, 即函数f (x )的定义域为{x|x >2},不关于原点对称,则f (x )是非奇非偶函数;故选:D .【点评】本题考查函数奇偶性的判定,注意要先分析函数的定义域.定义域不对称,则非奇非偶。
二.利用奇偶性求参数例3设函数()(1)(23)f x x x a =++为偶函数,则a= .解:函数2()(1)(23)=2(32)3f x x x a x a x a =+++++,∵函数()f x 为偶函数,∴222(32)32(32)3x a x a x a x a -++=+++,∴32a +=0,,∴23a =-。
【点评】本题考查偶函数的定义,根据偶函数的定义,可得一次项系数为0,从而可得结论。
函数的奇偶性题型及解析
函数的奇偶性题型及解析1.给定四个函数;;y=x 3+1;其中是奇函数的有几个 分析:利用奇函数的定义,对每个函数进行验证,可得结论. 解:∵,∴是奇函数;∵定义域不关于原点对称,∴不是奇函数;∵(﹣x )3+1≠﹣(x 3+1),∴不是奇函数;函数的定义域为{x|x ≠0},=,∴是奇函数综上,奇函数的个数为2个 2.若一个函数图象的对称轴是y 轴,则该函数称为偶函数.那么在下列四个函数:①y=2|x|;②y=6/x ;③y=x 2;④y=(x ﹣1)2+2中,其中是偶函数的有几个分析:对于y=2|x|分类讨论:当x >0,则y=2x ;当x <0,则y=﹣2x ,根据正比例函数的性质可判断y=2|x|的对称轴是y 轴;根据反比例函数得到y=6/x 关于直线y=x 和y=﹣x 对称;根据二次函数的性质得到y=x 2的对称轴为y 轴,y=(x ﹣1)2+2的对称轴为直线x=1,然后根据新定义进行判断.解:y=2|x|,当x >0,则y=2x ;当x <0,则y=﹣2x ,所以y=2|x|的对称轴是y 轴,该函数为偶函数;y=6/x 关于直线y=x 和y=﹣x 对称,所以y=不是偶函数;y=x 2的对称轴为y 轴,所以y=x 2为偶函数;y=(x ﹣1)2+2的对称轴为直线x=1,所以y=(x ﹣1)2+2不是偶函数,偶函数的个数为2个3.函数y=|x+3|﹣|3﹣x|是奇函数还是偶函数分析:根据函数奇偶性的定义进行判断即可.解:∵f (﹣x )=|﹣x+3|﹣|3+x|=﹣(|x+3|﹣|3﹣x|)=﹣f (x ),∴函数f (x )是奇函数,[4.如果函数y=x 2﹣2ax+6是偶函数,求a 的值分析:运用偶函数的定义得出f (﹣x )=f (x ),即x 2+2ax+6=x 2﹣2ax+6恒成立,得出2a=﹣2a ,即可解:∵函数y=x 2﹣2ax+6是偶函数,∴f (﹣x )=f (x ),即x 2+2ax+6=x 2﹣2ax+6恒成立,2a=﹣2a ,解得a=05.①已知函数f (x )=ax 2+2x 是奇函数,求实数分析:由奇函数定义入手寻找特殊值是解决此问题的最简解法解:由奇函数定义有f (﹣x )=﹣f (x ),则f (﹣1)=a ﹣2=﹣f (1)=﹣(a+2),解得a=0②如果函数f (x )=+a 是奇函数,求a 的值分析:函数的定义域为R ,利用奇函数f (0)=0,得到a解:因为函数的定义域为R ,并且函数是奇函数,所以f (0)=0,即1220++a=0,解得a=-1; ③已知f (x )=121-x +a 是奇函数,求a 的值及函数值域 、分析:本题考察函数奇偶性的性质,由题意可得f (﹣1)+f (1)=0,可得a 值,再由定义域和反比例函数以及不等式的性质可得函数的值域解:由2x ﹣1=≠0可得x ≠0,可得函数的定义域为{x|x ≠0},∵f (x )=121-x +a 是奇函数,∴f (﹣1)+f (1)=0,∴1211--+a+1211-+a=0,解得a=,∴f (x )=121-x +,∵x ≠0,∴2x >0且2x ≠1,∴2x ﹣1>﹣1且2x ﹣1≠0,∴121-x >0或121-x <﹣1,∴121-x +>或121-x +<﹣,∴函数的值域为(-∞,-)∪(,+∞)④函数y=f (x )是定义在[2a+1,a+5]上的偶函数,求a 的值分析:由偶函数的定义域关于原点对称得,2a+1+a+5=0,再求出a 的值解:∵偶函数的定义域关于原点对称,∴2a+1+a+5=0,解得a=﹣2,6.①已知函数y=f (x )是奇函数,当x <0时,f (x )=x 2+ax (a ∈R ),f (2)=6,求a分析:先根据函数的奇偶性求出f (﹣2)的值,然后将x=﹣2代入小于0的解析式,建立等量关系,解之即可. 解:∵函数y=f (x )是奇函数,∴f (﹣x )=﹣f (x ),而f (2)=6,则f (﹣2)=﹣f (2)=﹣6,将x=﹣2代入小于0的解析式得f (﹣2)=4﹣2a=﹣6,解得a=5…②已知函数y=f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x 2﹣2x ,求f (﹣2)的值.分析:首先,根据函数y=f (x )是定义在R 上的偶函数,得到f (﹣2)=f (2)=22﹣2×2=0,从而得到结果. 解:∵函数y=f (x )是定义在R 上的偶函数,∴f (-2)=f (2)=22﹣2×2=0,∴f (-2)=0,∴f (-2)的值07.①已知函数f (x )是定义域为R 的奇函数,且当x >0时,f (x )=3x 2﹣5x+2,求f (x )在R 上的表达式. 分析:设x <0,则﹣x >0.利用当x >0时,f (x )=3x 2﹣5x+2,可得f (﹣x )=3x 2+5x+2.再利用奇函数的性质即可得出解:设x <0,则-x >0.∵当x >0时,f (x )=3x 2﹣5x+2,∴f (﹣x )=3x 2+5x+2.∵函数f (x )是定义域为R 的奇函数,∴f (x )=﹣f (﹣x )=﹣3x 2﹣5x ﹣2,又f (0)=0.∴f (x )=⎪⎩⎪⎨⎧---=+-025300025322 x x x x x x x ②已知函数y=f (x )是偶函数,当x ≥0时,f (x )=x ﹣1,求f (x ﹣1)<0的解集分析:由函数y=f (x )为偶函数可得f (﹣x )=f (x ),由x ≥0时,f (x )=x ﹣1可得x <0,f (x )=﹣x ﹣1即f (x )=,而f (x ﹣1)<0时,有﹣1<x ﹣1<1,解不等式可得解:由函数y=f (x )为偶函数可得f (﹣x )=f (x ),∵x ≥0时,f (x )=x ﹣1,设x <0,则﹣x >0,f (﹣x )=﹣x ﹣1=f (x ),f (x )=,当f (x ﹣1)<0时,有﹣1<x ﹣1<1,∴0<x <28.(1)定义在[﹣1,1]上的奇函数y=f (x )是增函数,若f (a ﹣1)+f (4a ﹣5)>0,求a 的取值范围 "(2)定义在[﹣2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1﹣m )<f (m ),求m 的取值范围 分析:(1)利用函数的奇偶性可把不等式f (a ﹣1)+f (4a ﹣5)>0化为f (a ﹣1)>f (5﹣4a ),根据单调性可去掉符号“f”,考虑到定义域即可求出a 的范围;(2)利用偶函数的性质,可得f (|1﹣m|)<f (|m|),根据定义在[﹣2,2]上的偶函数f (x )在区间[0,2]上单调递减,可得不等式组,即可得出结论.解:(1)∵函数y=f (x )是奇函数,f (a ﹣1)+f (4a ﹣5)>0,∴f (a ﹣1)>f (5﹣4a ),∵定义在[﹣1,1]上的函数y=f (x )是增函数,∴,∴;(2)∵偶函数f (x ),f (1﹣m )<f (m ),∴f (|1﹣m|)<f (|m|),∵定义在[﹣2,2]上的偶函数f (x )在区间[0,2]上单调递减,∴,∴9.(1)已知定义在[﹣2,2]上的奇函数,f (x )在区间[0,2]上单调递减,若f (m )+f (m ﹣1)>0,求实数m 的取值范围;(2)已知定义在[﹣2,2]上的偶函数,f (x )在区间[0,2]上单调递减,若f (1﹣m )<f (m ),求实数m 的取值范围.分析:(1)根据定义域得出m 的范围为﹣1≤m ≤2,由奇函数的性质,结合单调性可知m <1﹣m ,得出m 的范围;(2)根据定义域得出m 的范围为﹣1≤m ≤2,由偶函数的性质可知距离y 轴越进,函数值越大,得出|1﹣m|>|m|,进而求出m 的范围.解:(1)定义在[﹣2,2]上的奇函数,∴﹣1≤m ≤2,∵f (m )+f (m ﹣1)>0,∴f (m )>﹣f (m ﹣1)=f (1﹣m ),∴m <1﹣m ,∴m <,∴﹣1≤m <(2)已知定义在[﹣2,2]上的偶函数,f(x)在区间[0,2]上单调递减,∴﹣1≤m≤2,∵f(1﹣m)<f(m),∴|1﹣m|>|m|,∴m<,∴﹣1≤m<[10.函数y=﹣x2+2ax+1在﹣1≤x≤2上的最大值是4,求a的值分析:二次函数y=﹣x2+2ax+1 的对称轴方程为x=a,分对称轴在闭区间的左侧、中间、右侧三种情况,分别求得函数的最大值.解:二次函数y=﹣x2+2ax+1 的对称轴方程为x=a,当a<﹣1时,函数y=﹣x2+2ax+1在区间[﹣1,2]上单调递减,故函数的最大值为f(﹣1)=﹣1﹣2a+1=4,解得a=﹣2;当﹣1≤a≤2时,函数的最大值为f(a)=a2+1=4,解得a=;当a≥2时,函数y=﹣x2+2ax+1在区间[﹣1,2]上单调递增,故函数的最大值为f(2)=﹣4+4a+1=4,解得a=,舍去.综合知:a的值为﹣2或.11.已知函数f(x)的定义域是一切实数,对定义域内的任意x1,x2,都有f(x1+x2)=f(x1)+f(x2),且当x>0时f(x)>0.(1)试判断f(x)的奇偶性;(2)试判断f(x)的单调性,并证明.分析:(1)利用赋值法先求出f(0)=0,然后根据函数奇偶性的定义进行判断即可得到f(x)的奇偶性;(2)结合函数单调性的定义即可判断f(x)的单调性.解:(1)令x1=0,x2=0,则f(0)=f(0)+f(0),解得f(0)=0,令x1=x,x2=﹣x,则f(x﹣x)=f(x)+f(﹣x)=f(0)=0,即f(﹣x)=﹣f(x),则函数为奇函数.(2)函数在定义域上为增函数.证明:当x1<x2时,则x2﹣x1>0,此时f(x2﹣x1)>0则f(x2)﹣f(x1)=f (x2)+f(﹣x1)=f(x2﹣x1)>0,可得f(x2)>f(x1)由此,得到y=f(x)是R上的增函数12.已知函数f(x)的定义域是x≠0的一切实数,对定义域内的任意x1、x2,都有f(x1•x2)=f(x1)+f(x2),且当x>1时f(x)>0,f(2)=1,(1)求证:f(x)是偶函数;(2)证明f(x)在(0,+∞)上是增函数;分析:(1)先令x1=x2=1,得到f(1)=0,再令x1=x2=﹣1,得f(﹣1)=0.然后用主条件证明f(﹣x)=f(﹣1•x)=f(﹣1)+f(x)=f(x)得证.(2)先任取两个变量,界定大小,再作差变形看符号.(解:(1)证明:令x1=x2=1,得f(1)=2f(1),∴f(1)=0.令x1=x2=﹣1,得f(﹣1)=0.∴f(﹣x)=f(﹣1•x)=f(﹣1)+f(x)=f(x),∴f(x)是偶函数(2)证明:设x2>x1>0,则f(x2)﹣f(x1)=f(x1•)﹣f(x1)=f(x1)+f()﹣f(x1)=f().∵x2>x1>0,∴>1.∴f()>0,即f(x2)﹣f(x1)>0.∴f(x2)>f(x1).∴f(x)在(0,+∞)上是增函数13.已知定义域为x∈R|x≠0的函数f(x)满足;①对于f(x)定义域内的任意实数x,都有f(﹣x)+f(x)=0;②当x>0时,f(x)=x2﹣2.(Ⅰ)求f(x)定义域上的解析式;(Ⅱ)解不等式:f(x)<x.分析:(I)根据条件①变形,得到f(x)在定义域内是奇函数,设x小于0,得到﹣x大于0,代入②中f(x)的解析式中化简后即可得到x小于0时f(x)的解析式,综上,得到f(x)在x大于0和小于0上的分段函数解析式;(II)当x大于0时和小于0时,把(I)得到的相应的解析式代入不等式中,分别求出相应的解集,然后求出两解集的并集即为原不等式的解集解:(I)∵对于f(x)定义域内的任意实数x,都有f(﹣x)+f(x)=0,∴f(﹣x)=﹣f(x),故f(x)在其定义域为{x∈R|x≠0}内是奇函数,∵当x>0时,f(x)=x2﹣2,设x<0,所以﹣x>0,∴f(﹣x)=﹣f(x)=x2﹣2,即f(x)=2﹣x2,则;(II)∵当x>0时,x2﹣2<x,化简得(x﹣2)(x+1)<0,解得:﹣1<x<2,所以不等式的解集为0<x<2;当x<0时,2﹣x2<x,化简得:(x﹣1)(x+2)>0,解得:x>1或x<﹣2,所以不等式的解集为x<﹣2,综上,不等式f(x)<x的解集为{x|0<x<2或x<﹣2}14. 已知定义域为R的函数f(x)满足:①f(x+y)=f(x)•f(y)对任何实数x、y都成立;②存在实数x1、x2使,f(x1)≠f(x2),求证:(1)f(0)=1;(2)f(x)>0.分析:(1)令x=y=0,求出f(0),注意条件②的运用,舍去一个;(2)将x,y均换成,得到f(x)=f2()即f(x)≥0,注意运用条件②,舍去f(x)=0,即可得证.证明:(1)令x=y=0则f(0)=f2(0),∴f(0)=0或f(0)=1,若f(0)=0则令y=0,即有f(x)=f(x)•f(0)=0对x∈R均成立,与②矛盾,故f(0)≠0,若f(0)=1,则f(x)=f(x)成立,∴f(0)=1;(2)将x,y均换成,则f(x)=f2()即f(x)≥0,若f(x)=0这与②矛盾,∴f(x)>0成立。
函数的奇偶性典型例题及练习
2.4 函数的奇偶性典型例题及练习●知识梳理1.奇函数:对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x )〔或f (x )+ f (-x )=0〕,则称f (x )为奇函数.2.偶函数:对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x )〔或f (x )-f (-x )=0〕,则称f (x )为偶函数.3.奇、偶函数的性质 (1)具有奇偶性的函数,其定义域关于原点对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称).(2)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称.(3)若奇函数的定义域包含数0,则f (0)=0. (4)奇函数的反函数也为奇函数.(5)定义在(-∞,+∞)上的任意函数f (x )都可以唯一表示成一个奇函数与一个偶函数之和.●点击双基1.下面四个结论中,正确命题的个数是①偶函数的图象一定与y 轴相交 ②奇函数的图象一定通过原点 ③偶函数的图象关于y 轴对称 ④既是奇函数,又是偶函数的函数一定是f (x )=0(x ∈R )A.1B.2C.3D.42.已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx 是A.奇函数B.偶函数C.既奇且偶函数D.非奇非偶函数3.若偶函数f (x )在区间[-1,0]上是减函数,α、β是锐角三角形的两个内角,且α≠β,则下列不等式中正确的是A.f (cos α)>f (cos β)B.f (sin α)>f (cos β)C.f (sin α)>f (sin β)D.f (cos α)>f (sin β)4.已知f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则a =______,b =_____5.给定函数:①y =x1(x ≠0);②y =x 2+1;③y =2x ;④y =log 2x ;⑤y =log 2(x +12+x ).在这五个函数中,奇函数是_________,偶函数是_________,非奇非偶函数是__________.●典例剖析【例1】 已知函数y =f (x )是偶函数,y =f (x -2)在[0,2]上是单调减函数,则A.f (0)<f (-1)<f (2)B.f (-1)<f (0)<f (2)C.f (-1)<f (2)<f (0)D.f (2)<f (-1)<f (0)【例2】 判断下列函数的奇偶性:(1)f (x )=|x +1|-|x -1|; (2)f (x )=(x -1)·xx-+11; (3)f (x )=2|2|12-+-x x ;(4)f (x )=⎩⎨⎧>+<-).0()1(),0()1(x x x x x x【例3】 (2005年北京东城区模拟题)函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1、x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明;(3)如果f (4)=1,f (3x +1)+f (2x -6)≤3,且f (x )在(0,+∞)上是增函数,求x 的取值范围.深化拓展已知f (x )、g (x )都是奇函数,f (x )>0的解集是(a 2,b ),g (x )>0的解集是(22a ,2b ),2b >a 2,那么f (x )·g (x )>0的解集是A.(22a ,2b) B.(-b ,-a 2)C.(a 2,2b )∪(-2b,-a 2)D.(22a ,b )∪(-b 2,-a 2)【例4】已知函数f (x )=x +xp+m (p ≠0)是奇函数. (1)求m 的值. (2)(理)当x ∈[1,2]时,求f (x )的最大值和最小值.(文)若p >1,当x ∈[1,2]时,求f (x )的最大值和最小值. 深化拓展f (x )=x +xp的单调性也可根据导函数的符号来判断,本题如何用导数来解?●闯关训练 夯实基础1.定义在区间(-∞,+∞)上的奇函数f (x )为增函数,偶函数g (x )在区间[0,+∞)上的图象与f (x )的图象重合,设a <b <0,给出下列不等式,其中成立的是①f (b )-f (-a )>g (a )-g (-b ) ②f (b )-f (-a )<g (a )-g (-b ) ③f (a )-f (-b )>g (b )-g (-a )④f (a )-f (-b )<g (b )-g (-a ) A.①④ B.②③ C.①③ D.②④2.(2003年北京海淀区二模题)函数f (x )是定义域为R 的偶函数,又是以2为周期的周期函数.若f (x )在[-1,0]上是减函数,那么f (x )在[2,3]上是A.增函数 B .减函数C.先增后减的函数D.先减后增的函数3.已知f (x )是奇函数,当x ∈(0,1)时,f (x )=lgx+11,那么当x ∈(-1,0)时,f (x )的表达式是_____.4.(2003年北京)函数f (x )=lg (1+x 2),g (x )=⎪⎩⎪⎨⎧>+-≤-<+.12,1||0,12x x x x x h (x )=tan2x 中,_________是偶函数. 5.若f (x )=1222+-+⋅xx a a 为奇函数,求实数a 的值. 6.(理)定义在[-2,2]上的偶函数g (x ),当x ≥0时,g (x )单调递减,若g (1-m )<g (m ),求m 的取值范围.(文)定义在R 上的奇函数f (x )在(0,+∞)上是增函数,又f (-3)=0,则不等式xf (x )<0的解集为A.(-3,0)∪(0,3)B.(-∞,-3)∪(3,+∞)C.(-3,0)∪(3,+∞)D.(-∞,-3)∪(0,3)培养能力7.已知f (x )=x (121-x +21).(1)判断f (x )的奇偶性; (2)证明f (x )>0. 探究创新8.设f (x )=log 21(11--x ax)为奇函数,a 为常数, (1)求a 的值;(2)证明f (x )在(1,+∞)内单调递增;(3)若对于[3,4]上的每一个x 的值,不等式f (x )>(21)x+m 恒成立,求实数m 的取值范围. ●思悟小结1.函数的奇偶性是函数的整体性质,即自变量x 在整个定义域内任意取值.2.有时可直接根据图象的对称性来判断函数的奇偶性.拓展题例【例1】 已知函数f (x )=cbx ax ++12(a 、b 、c ∈Z )是奇函数,又f (1)=2,f (2)<3,求a 、b 、c 的值.【例2】 已知函数y =f (x )的定义域为R ,对任意x 、y ∈R 均有f (x +y )=f (x )+f (y ),且对任意x >0,都有f (x )<0,f (3)=-3.(1)试证明:函数y =f (x )是R 上的单调减函数; (2)试证明:函数y =f (x )是奇函数; (3)试求函数y =f (x )在[m ,n ](m 、n ∈Z ,且mn <0)上的值域.。
函数的奇偶性问题练习题(含答案)
函数的奇偶性问题一、选择题1.已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx () A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数 解析:f (x )=ax 2+bx +c 为偶函数,x x =)(ϕ为奇函数,∴g (x )=ax 3+bx 2+cx =f (x )·)(x ϕ满足奇函数的条件. 答案:A2.已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则() A .31=a ,b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =0 解析:由f (x )=ax 2+bx +3a +b 为偶函数,得b =0. 又定义域为[a -1,2a ],∴a -1=2a ,∴31=a .故选A . 3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的表达式是( )A .y =x (x -2)B .y =x (|x |-1)C .y =|x |(x -2)D .y =x (|x |-2) 解析:由x ≥0时,f (x )=x 2-2x ,f (x )为奇函数,∴当x <0时,f (x )=-f (-x )=-(x 2+2x )=-x 2-2x =x (-x -2). ∴(2)(0)()(2)(0),,x x x f x x x x ⎧⎨⎩-≥=--<即f (x )=x (|x |-2)答案:D4.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于( ) A .-26 B .-18 C .-10 D .10 解析:f (x )+8=x 5+ax 3+bx 为奇函数,f (-2)+8=18,∴f (2)+8=-18,∴f (2)=-26. 答案:A5.函数1111)(22+++-++=x xx x x f 是()A .偶函数B .奇函数C .非奇非偶函数D .既是奇函数又是偶函数 解析:此题直接证明较烦,可用等价形式f (-x )+f (x )=0. 答案:B 6.若)(x ϕ,g (x )都是奇函数,2)()(++=x bg a x f ϕ在(0,+∞)上有最大值5,则f (x )在(-∞,0)上有( )A .最小值-5B .最大值-5C .最小值-1D .最大值-3 解析:)(x ϕ、g (x )为奇函数,∴()2()()f x a x bg x φ-=+为奇函数. 又f (x )在(0,+∞)上有最大值5, ∴f (x )-2有最大值3. ∴f (x )-2在(-∞,0)上有最小值-3, ∴f (x )在(-∞,0)上有最小值-1. 答案:C 二、填空题 7.函数2122)(xx x f ---=的奇偶性为____奇函数____(填奇函数或偶函数) .8.若y =(m -1)x 2+2mx +3是偶函数,则m =____0_____. 解析:因为函数y =(m -1)x 2+2mx +3为偶函数,∴f (-x )=f (x ),即(m -1)(-x )2+2m (-x )+3=(m —1)x 2+2mx +3,整理,得m =0.9.已知f (x )是偶函数,g (x )是奇函数,若11)()(-=+x x g x f ,则f (x )的解析式为____11)(2-=xx f ___.解析:由f (x )是偶函数,g (x )是奇函数,可得11)()(--=-x x g x f ,联立11)()(-=+x x g x f ,∴11)1111(21)(2-=----=x x x x f . 10.已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和为___0 _____. 三、解答题11.设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),求实数m 的取值范围.(21<m ) 12.已知函数f (x )满足f (x +y )+f (x -y )=2f (x )·f (y )(x ∈R ,y ∈R ),且f (0)≠0,试证f (x )是偶函数.证明:令x =y =0,有f (0)+f (0)=2f (0)·f (0),又f (0)≠0,∴可证f(0)=1.令x =0,∴f (y )+f (-y )=2f (0)·f (y )⇒f (-y )=f (y ),故f (x )为偶函数.13.已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2—1,求f (x )在R上的表达式.解析:本题主要是培养学生理解概念的能力.f (x )=x 3+2x 2-1.因f (x )为奇函数,∴f (0)=0.当x <0时,-x >0,f (-x )=(-x )3+2(-x )2-1=-x 3+2x 2-1,∴f (x )=x 3-2x 2+1.因此,.)0()0()0(12012)(,,2323<=>+--+=⎪⎩⎪⎨⎧x x x x x x x x f 点评:本题主要考查学生对奇函数概念的理解及应用能力.(x )是定义在(-∞,-5] [5,+∞)上的奇函数,且f (x )在[5,+∞)上单调递减,试判断f (x )在(-∞,-5]上的单调性,并用定义给予证明. 解析:任取x 1<x 2≤-5,则-x 1>-x 2≥-5.因f (x )在[5,+∞]上单调递减,所以f (-x 1)<f (-x 2)⇒f (x 1)<-f (x 2)⇒f (x 1)>f (x 2),即单调减函数.点评:此题要注意灵活运用函数奇偶性和单调性,并及时转化.15.设函数y =f (x )(x ∈R 且x ≠0)对任意非零实数x 1、x 2满足f (x 1·x 2)=f (x 1)+f (x 2),求证f (x )是偶函数.解析:由x 1,x 2∈R 且不为0的任意性,令x 1=x 2=1代入可证,f (1)=2f (1),∴f (1)=0.又令x 1=x 2=-1,∴f [-1×(-1)]=2f (1)=0,∴(-1)=0.又令x 1=-1,x 2=x ,∴f (-x )=f (-1)+f (x )=0+f (x )=f (x ),即f (x )为偶函数.点评:抽象函数要注意变量的赋值,特别要注意一些特殊值,如,x 1=x 2=1,x 1=x 2=-1或x1=x2=0等,然后再结合具体题目要求构造出适合结论特征的式子即可.。
函数奇偶性各种题型及方法
函数奇偶性(一) 函数的奇偶性的判断判断函数的奇偶性大致有下列两种方法:第一种方法:利用奇、偶函数的定义,主要考查)(x f 是否与)(x f -、)(x f 相等,判断步骤如下:①、 定义域是否关于原点对称;②、 数量关系)()(x f x f ±=-哪个成立;例1:判断下列各函数是否具有奇偶性⑴、x x x f 2)(3+= ⑵、2432)(x x x f += ⑶、1)(23--=x x x x f ⑷、2)(x x f = []2,1-∈x ⑸、x x x f -+-=22)( ⑹、2211)(x x x f -+-=解:⑴为奇函数 ⑵为偶函数 ⑶为非奇非偶函数⑷为非奇非偶函数 ⑸为非奇非偶函数 ⑹既是奇函数也是偶函数例2:判断函数⎩⎨⎧<≥-=)0()0()(22x x x x x f 的奇偶性。
.)(),()()()()()(,0,0)()()(,0,0)(0)0(:22222为奇函数故总有有时即当有时即当解x f x f x f x f x x x f x x x f x x x f x x x f f =-∴-=--=-=->-<-=-=--=-<->-==第二种方法:利用一些已知函数的奇偶性及下列准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和是奇函数;两个偶函数的和是偶函数;奇函数与偶函数的和既不非奇函数也非偶函数;两个奇函数的积为偶函数;两个偶函数的积为偶函数;奇函数与偶函数的积是奇函数。
(二) 关于函数按奇偶性的分类全体实函数可按奇偶性分为四类:①奇偶数、②偶函数、③既是奇函数也是偶函数、④非奇非偶函数。
(三) 关于函数奇偶性的简单应用1、利用奇偶性求函数值例1:已知8)(35-++=bx ax x x f 且10)2(=-f ,那么=)2(f练习题:1、已知为奇函数,,则= .2、若)(x ϕ,g (x )都是奇函数,2)()()(++=x bg x a x f ϕ在(0,+∞)上有最大值5,则f (x )在(-∞,0)上有( )A .最小值-5B .最大值-5C .最小值-1D .最大值-3()()()()()()().21,3213123=+++=--+-=f f f f f f x f y 则是奇函数,若、设函数2、利用奇偶性比较大小例2:已知偶函数)(x f 在()0,∞-上为减函数,比较)5(-f ,)1(f ,)3(f 的大小。
归纳函数奇偶性题型及解法
归纳函数奇偶性题型及解法我们知道,如果对于函数()x f 的定义域内的任意一个x ,都有()()x f x f =-,则称函数()x f y =是偶函数;如果对于函数()x f 的定义域内的任意一个x ,都有()()x f x f -=-,则称函数()x f y =是奇函数.下面来谈谈典型问题:题型一:一般函数奇偶性的判断与证明例1:判断函数()2212---=x x x f 的奇偶性. 分析:应该首先判断函数的定义域是否关于原点对称,在定义域关于原点对称的情况下,利用奇偶函数的定义判断.解:函数的定义域为⎪⎩⎪⎨⎧≠--≥-022012x x ,得到为01<≤-x 或10≤<x ,定义域关于原点对称,∵()2212---=x x x f =x x --21,此时有()()()x f x x x f -=--=-21,则函数()x f 为奇函数.点评:在判断一个函数的奇偶性之前,要先求定义域,看其是否关于原点对称,其次,能将解析式化简的则需要化简好再作判断.题型二:抽象函数奇偶性的判断例2:已知函数()x f ,R x ∈,若对于任意实数a 、b ,都有()()()b f a f b a f +=+,求证:()x f 为奇函数.分析:因为对于任意的实数a 、b ,都有()()()b f a f b a f +=+,则可以令a 、b 为某些特殊值,得出()x f -()x f -=.解:设0=a ,则()()()b f f b f +=0,则()00=f .又设x a -=,x b =,则()()()x f x f f +-=0,∴()x f -()x f -=.∴()x f 是奇函数.点评:涉及抽象函数的奇偶性证明,通常用赋值法,结合条件中恒成立的式子,通过赋值,令解析式满足的式子中出现x 和x -,依据函数奇偶性的定义进行证明.题型三:分段函数奇偶性的判断例3:判断函数()()()⎩⎨⎧<-≥+=0)1(0)1(x x x x x x x f 的奇偶性. 分析:对于本题中,要注意分段来考虑函数的奇偶性,特别需要注意的是在奇偶性的定义中,涉及到()x f -与()x f 的关系时,都是以对方的存在为前提.解:当0>x 时,有0<-x ,所以())()1(x f x x x f -=+-=-;当0<x 时,有0>-x ,所以())()1(x f x x x f -=--=-;当0=x 时,()0=x f 显然有()()x f x f -==-0,综合上面所述,对任意的R x ∈,都有()()x f x f -=-成立,所以()x f 是奇函数.点评:本题中除了要分段进行考虑之外,还需要注意的是不要漏掉了对0=x 的判断. 题型四:利用函数的奇偶性求函数解析式例4:已知()x f 是奇函数,且当0>x 时,()2-=x x x f ,求0<x 时()x f 的表达式. 分析:求0<x 的解析式,将自变量转化为其相反数的范围,即得0>-x ,由0>x 的解析式及()x f 是奇函数的性质求出()x f .解:设0<x ,且满足表达式()2-=x x x f ,∴()2---=-x x x f =2+-x x ,又()x f 是奇函数,则()()x f x f -=-, ∴()2+-=-x x x f ,∴()2+=x x x f ,则当0<x 时()2+=x x x f .点评:(1)在哪个区间求解析式,就设在哪个区间里;(2)转化为已知的解析式进行代入;(3)利用()x f 的奇偶性把()x f -写成()x f -或()x f ,从而求出()x f .题型五:函数单调性和奇偶性综合性问题例5:设函数()x f 在R 上是偶函数,在区间()0,∞-上递增,且()<++122a a f ()3222+-a a f ,求a 的取值范围.分析:要求a 的取值范围,就要列关于a 的不等式组,因而利用函数的单调性,奇偶性化“抽象的不等式”为具体的代数不等式则是关键.解:由于()x f 在R 上是偶函数,()x f 在R 上是偶函数,则()x f 在()+∞,0上递减, ∵874121222+⎪⎭⎫ ⎝⎛+=++a a a 0>,025********>+⎪⎭⎫ ⎝⎛-=+-a a a , 且()<++122a a f ()3222+-a a f ,∴3221222+->++a a a a ,即023>-a ,解之得32>a . 点评:给出函数的奇偶性及y 轴一侧的单调性,结合函数奇偶性的性质,可得到其关于y 轴对称区间上的单调性,由此可以脱掉函数符号“f ”,则问题可以迎刃而解. 对于奇偶性问题,理解了定义的特征,掌握了判断的方法,则不论题型如何变化,则始终能轻松解决.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数f x满足f x 1 f x 2x且f 0 1 1求f x的解析式;
2在区间1,1上,y f x的图像恒在y 2x m
的图像上方,试确定实数m的取值范围
例6.利用奇偶性和单调性求范围
定义在1,1上的奇函数f x是减函数,且
f 1 a f 1 a2 0,求a的取值范围
• 变式一:
设f
x是定义在0, 上的增函数,且f
x y
f
x
f
y
1求f 1
2 若f
6
1, 解不等式f
x
3
f
1 x
2
• 变式二:
设f
x是定义在0, 上的增函数,且f
x y
f
x
f
y
1求f 1
2 若f
6
1, 解不等式f
x
3
f
1 x
2
函数奇偶性的应用
例1.抽象函数奇偶性(赋值法)
已知函数f x 对任意x, y R,都有 f x y f x y 2 f x f y 且f 0 0.求证:f x是偶函数
• 变式:
函数f x的定义域为0, ,且对一切x 0, y 0都有
例3.利用奇偶和单调性比较大小
已知偶函数f x在1,5上单调递减,试比较
f 1, f , f 5的大小关系
• 变式:
已知奇函数f x在3,7上单调递增,且有最小值5,
那么f x在3,7上一定是( )函数,且有最( )值( )
例4.抽象函数的单调性与抽象不 等式(数形结合)
设f x是奇函数,且在0, 内是增函数, 又f 3 0,则xf x 0的解集是( )
f x 0,则函数f x在a,b上有最( )值( )
已知函数f x x x3, x1、x2、x3 R,且
x1+x2 0, x2 +x3 0, x1+x3 0则
f x1 f x2 f x3 的值( )
A.一定大于零 B.一定小于零 C.等于零 D.正负都有可能
如果函数f x =x2 +bx+c对于任意实数t,都有 f2 t =f2 t ,那么比较f1、f2、f4的大小
设f x是偶函数,且在0, 内是减函数, 又f 2 0,则 f x f x 0的解集是( )
x
例5.半区间求解析式
设f x是R上的奇函数,当x 0时,f x x 1 x 求f x的表达式?
设f x是R上的奇函数,且当x 0,8时,f x x 1+x3
那么当x 8,0时,求f x的表达式?
f
x y
f
x
f
y且当x>1时,f x
0
1求f 1的值;
2 判断的单调性并加以证明;
3若f 4 =2,求f x在1,16上的值域.
例2.含参数的问题
1.若函数f
x
=
2x
x
1
x
a
为奇函数,则a=
• 变式
若函数f x=ax2+bx是定义在a 1, 2a上的偶函数,
则a+b=
2.定义在R上的函数f x满足 f (x y) f x f y,当x 0时,
1.3.2函数的奇偶性几 种类型题
例1.判断函数奇偶性
1
f
x
3x4
1 x2
2 x x 1 1 x
4 f x x2 1 1 x2
•
变式:判断
f x 9 x2 的奇偶性
x4 x
例2.利用奇偶性质(条件等价 变形)
已知f x x5 ax3 bx 8,且f 2 10,求f 2