最新高考物理曲线运动试题(有答案和解析)
高考必备物理曲线运动技巧全解及练习题(含答案)及解析
高考必备物理曲线运动技巧全解及练习题(含答案)及解析一、高中物理精讲专题测试曲线运动1.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x=v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.2.如图所示,水平实验台A 端固定,B 端左右可调,将弹簧左端与实验平台固定,右端 有一可视为质点,质量为2kg 的滑块紧靠弹簧(未与弹黄连接),弹簧压缩量不同时, 将滑块弹出去的速度不同.圆弧轨道固定在地面并与一段动摩擦因素为0.4的粗糙水平地面相切D 点,AB 段最长时,BC 两点水平距离x BC =0.9m,实验平台距地面髙度h=0.53m ,圆弧半径R=0.4m ,θ=37°,已知 sin37° =0.6, cos37° =0.8.完成下列问題:(1)轨道末端AB 段不缩短,压缩弹黄后将滑块弹出,滑块经过点速度v B =3m/s ,求落到C 点时速度与水平方向夹角;(2)滑块沿着圆弧轨道运动后能在DE 上继续滑行2m,求滑块在圆弧轨道上对D 点的压力大小:(3)通过调整弹簧压缩量,并将AB 段缩短,滑块弹出后恰好无碰撞从C 点进入圆弧 轨道,求滑块从平台飞出的初速度以及AB 段缩短的距离. 【答案】(1)45°(2)100N (3)4m/s 、0.3m 【解析】(1)根据题意C 点到地面高度0cos370.08C h R R m =-=从B 点飞出后,滑块做平抛运动,根据平抛运动规律:212C h h gt -= 化简则0.3t s =根据 BC B x v t = 可知3/B v m s =飞到C 点时竖直方向的速度3/y v gt m s == 因此tan 1y Bv v θ==即落到圆弧C 点时,滑块速度与水平方向夹角为45° (2)滑块在DE 阶段做匀减速直线运动,加速度大小fa g mμ== 根据222E D DE v v ax -=联立两式则4/D v m s =在圆弧轨道最低处2DN v F mg m R-= 则100N F N = ,即对轨道压力为100N .(3)滑块弹出恰好无碰撞从C 点进入圆弧轨道,说明滑块落到C 点时的速度方向正好沿着轨迹该出的切线,即0tan yv v α''= 由于高度没变,所以3/y y v v m s '== ,037α=因此04/v m s '= 对应的水平位移为01.2AC x v t m ='= 所以缩短的AB 段应该是0.3AB AC BC x x x m ∆=-=【点睛】滑块经历了弹簧为变力的变加速运动、匀减速直线运动、平抛运动、变速圆周运动,匀减速直线运动;涉及恒力作用的直线运动可选择牛顿第二定律和运动学公式;而变力作用做曲线运动优先选择动能定理,对匀变速曲线运动还可用运动的分解利用分运动结合等时性研究.3.如图所示,光滑的水平平台上放有一质量M =2kg ,厚度d =0.2m 的木板,木板的左端放有一质量m =1kg 的滑块(视为质点),现给滑块以水平向右、的初速度,木板在滑块的带动下向右运动,木板滑到平台边缘时平台边缘的固定挡板发生弹性碰撞,当木板与挡板发生第二次碰撞时,滑块恰好滑到木板的右端,然后水平飞出,落到水平地面上的A点,已知木板的长度l=10m,A点到平台边缘的水平距离s=1.6m,平台距水平地面的高度h=3m,重力加速度,不计空气阻力和碰撞时间,求:(1)滑块飞离木板时的速度大小;(2)第一次与挡板碰撞时,木板的速度大小;(结果保留两位有效数字)(3)开始时木板右端到平台边缘的距离;(结果保留两位有效数字)【答案】(1) (2)v=0.67m/s (3)x=0.29m【解析】【分析】【详解】(1)滑块飞离木板后做平抛运动,则有:解得(2)木板第一次与挡板碰撞后,速度方向反向,速度大小不变,先向左做匀减速运动,再向右做匀加速运动,与挡板发生第二次碰撞,由匀变速直线运动的规律可知木板两次与挡板碰撞前瞬间速度相等.设木板第一次与挡板碰撞前瞬间,滑块的速度大小为,木板的速度大小为v由动量守恒定律有:,木板第一与挡板碰后:解得:v=0.67m/s(3)由匀变速直线运动的规律:,,由牛顿第二定律:解得:x=0.29m.【点睛】对于滑块在木板上滑动的类型,常常根据动量守恒定律和能量守恒定律结合进行研究.也可以根据牛顿第二定律和位移公式结合求出运动时间,再求木板的位移.4.如图所示,ABCD是一个地面和轨道均光滑的过山车轨道模型,现对静止在A处的滑块施加一个水平向右的推力F,使它从A点开始做匀加速直线运动,当它水平滑行2.5 m时到达B点,此时撤去推力F、滑块滑入半径为0.5 m且内壁光滑的竖直固定圆轨道,并恰好通过最高点C,当滑块滑过水平BD部分后,又滑上静止在D处,且与ABD等高的长木板上,已知滑块与长木板的质量分别为0.2 kg、0.1 kg,滑块与长木板、长木板与水平地面间的动摩擦因数分别为0.3、,它们之间的最大静摩擦力均等于各自滑动摩擦力,取g=10 m/s2,求:(1)水平推力F的大小;(2)滑块到达D点的速度大小;(3)木板至少为多长时,滑块才能不从木板上掉下来?在该情况下,木板在水平地面上最终滑行的总位移为多少?【答案】(1)1N(2)(3)t=1 s ;【解析】【分析】【详解】(1)由于滑块恰好过C点,则有:m1g=m1从A到C由动能定理得:Fx-m1g·2R=m1v C2-0代入数据联立解得:F=1 N(2)从A到D由动能定理得:Fx=m1v D2代入数据解得:v D=5 m/s(3)滑块滑到木板上时,对滑块:μ1m1g=m1a1,解得:a1=μ1g=3 m/s2对木板有:μ1m1g-μ2(m1+m2)g=m2a2,代入数据解得:a2=2 m/s2滑块恰好不从木板上滑下,此时滑块滑到木板的右端时恰好与木板速度相同,有:v共=v D-a1tv共=a2t,代入数据解得:t =1 s此时滑块的位移为:x 1=v D t -a 1t 2,木板的位移为:x 2=a 2t 2,L =x 1-x 2,代入数据解得:L =2.5 m v 共=2 m/s x 2=1 m达到共同速度后木板又滑行x ′,则有:v 共2=2μ2gx ′,代入数据解得:x ′=1.5 m木板在水平地面上最终滑行的总位移为:x 木=x 2+x ′=2.5 m点睛:本题考查了动能定理和牛顿第二定律、运动学公式的综合运用,解决本题的关键理清滑块和木板在整个过程中的运动规律,选择合适的规律进行求解.5.地面上有一个半径为R 的圆形跑道,高为h 的平台边缘上的P 点在地面上P′点的正上方,P′与跑道圆心O 的距离为L (L >R ),如图所示,跑道上停有一辆小车,现从P 点水平抛出小沙袋,使其落入小车中(沙袋所受空气阻力不计).问:(1)当小车分别位于A 点和B 点时(∠AOB=90°),沙袋被抛出时的初速度各为多大? (2)要使沙袋落在跑道上,则沙袋被抛出时的初速度在什么范围内?(3)若小车沿跑道顺时针运动,当小车恰好经过A 点时,将沙袋抛出,为使沙袋能在B 处落入小车中,小车的速率v 应满足什么条件?【答案】(1)()2A gv L R h =-22()2B g L R v h+=(2)0((L R v L R -≤≤+(3)1(41)0,1,2,3...)2v n n π=+= 【解析】 【分析】 【详解】(1)沙袋从P 点被抛出后做平抛运动,设它的落地时间为t ,则h=12gt 2解得t =(1) 当小车位于A 点时,有x A =v A t=L-R (2)解(1)(2)得v A =(L-R当小车位于B 点时,有B B x v t ==3)解(1)(3)得Bv (2)若小车在跑道上运动,要使沙袋落入小车,最小的抛出速度为v 0min =v A =(L-R 4) 若当小车经过C 点时沙袋刚好落入,抛出时的初速度最大,有x c =v 0max t="L+R" (5)解(1)(5)得 v 0max =(L+R所以沙袋被抛出时的初速度范围为(L-R ≤v 0≤(L+R (3)要使沙袋能在B 处落入小车中,小车运动的时间应与沙袋下落时间相同 t AB =(n+14)2Rv π(n=0,1,2,3…)(6)所以t AB解得v=12(4n+1)n=0,1,2,3…). 【点睛】本题是对平抛运动规律的考查,在分析第三问的时候,要考虑到小车运动的周期性,小车并一定是经过14圆周,也可以是经过了多个圆周之后再经过14圆周后恰好到达B 点,这是同学在解题时经常忽略而出错的地方.6.如图所示,粗糙水平地面与半径 1.6m R =的光滑半圆轨道BCD 在B 点平滑连接, O 点是半圆轨道BCD 的圆心, B O D 、、三点在同一竖直线上,质量2kg m =的小物块(可视为质点)静止在水平地面上的A 点.某时刻用一压缩弹簧(未画出)将小物块沿AB 方向水平弹出,小物块经过B 点时速度大小为10m/s (不计空气阻力).已知10m AB x =,小物块与水平地面间的动摩擦因数=0.2μ,重力加速度大小210m/s g =.求:(1)压缩弹簧的弹性势能;(2)小物块运动到半圆轨道最高点时,小物块对轨道作用力的大小; (3)小物块离开最高点后落回到地面上的位置与B 点之间的距离. 【答案】(1)140J (2)25N (3)4.8m 【解析】(1)设压缩弹簧的弹性势能为P E ,从A 到B 根据能量守恒,有212P B AB E mv mgx μ=+ 代入数据得140J P E =(2)从B 到D ,根据机械能守恒定律有2211222B D mv mv mg R =+⋅ 在D 点,根据牛顿运动定律有2Dv F mg m R+=代入数据解得25N F =由牛顿第三定律知,小物块对轨道作用力大小为25N (3)由D 点到落地点物块做平抛运动竖直方向有2122R gt = 落地点与B 点之间的距离为D x v t = 代入数据解得 4.8m x =点睛:本题是动能定理、牛顿第二定律和圆周运动以及平抛运动规律的综合应用,关键是确定运动过程,分析运动规律,选择合适的物理规律列方程求解.7.如图所示,表面光滑的长方体平台固定于水平地面上,以平台外侧的一边为x 轴,在平台表面建有平面直角坐标系xoy ,其坐标原点O 与平台右侧距离为d=1.2m 。
高考物理曲线运动题20套(带答案)及解析
高考物理曲线运动题20套(带答案)及解析一、高中物理精讲专题测试曲线运动1.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x=v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.2.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。
杆静止时,小环靠在杆上,细绳方向竖直;当杆绕竖直轴以角速度ω旋转时,如图所示,小环与Q 点等高,细绳恰好被绷断。
重力加速度g =10m /s 2,忽略一切摩擦。
求:(1)杆静止时细绳受到的拉力大小T ;(2)细绳断裂时杆旋转的角速度大小ω; (3)小环着地点与O 点的距离D 。
【答案】(1)5N (2)53/rad s (3)1.6m 【解析】 【详解】(1)杆静止时环受力平衡,有2T =mg 得:T =5N(2)绳断裂前瞬间,环与Q 点间距离为r ,有r 2+d 2=(L -r )2 环到两系点连线的夹角为θ,有d sin L r θ=-,rcos L rθ=- 绳的弹力为T 1,有T 1sinθ=mg T 1cosθ+T 1=m ω2r 得53/rad s ω=(3)绳断裂后,环做平抛运动,水平方向s =vt竖直方向:212H d gt -=环做平抛的初速度:v =ωr小环着地点与杆的距离:D 2=r 2+s 2 得D =1.6m 【点睛】本题主要是考查平抛运动和向心力的知识,解答本题的关键是掌握向心力的计算公式,能清楚向心力的来源即可。
高考物理曲线运动试题(有答案和解析)含解析
高考物理曲线运动试题(有答案和解析)含解析一、高中物理精讲专题测试曲线运动1.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)42μ-= 【解析】 【分析】 【详解】(1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:212r gt = 解得:a v gr =小滑块在a 点飞出的动能21122k a E mv mgr == (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:2211222m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2m mv F mg r-= 由牛顿第三定律得:F ′=F 解得:F ′=6mg(3)bd 之间长度为L ,由几何关系得:()221L r =从d 到最低点e 过程中,由动能定理21cos 2m mgH mg L mv μα-⋅= 解得4214μ-=2.如图所示,一箱子高为H .底边长为L ,一小球从一壁上沿口A 垂直于箱壁以某一初速度向对面水平抛出,空气阻力不计。
设小球与箱壁碰撞前后的速度大小不变,且速度方向与箱壁的夹角相等。
(1)若小球与箱壁一次碰撞后落到箱底处离C 点距离为,求小球抛出时的初速度v 0;(2)若小球正好落在箱子的B 点,求初速度的可能值。
【答案】(1) (2)【解析】 【分析】(1)将整个过程等效为完整的平抛运动,结合水平位移和竖直位移求解初速度;(2)若小球正好落在箱子的B 点,则水平位移应该是2L 的整数倍,通过平抛运动公式列式求解初速度可能值。
高考历年真题曲线运动(解析版)
10年高考(2011-2020年)全国II卷物理试题分项全解全析专题04 曲线运动1、全国II卷2020年高考使用的省份:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、陕西、重庆等10个省份2、2011-2020年全国II卷分布情况概况:3、2011-2020年全国II卷试题赏析:一、选择题1、(2020·全国II卷·T16)如图,在摩托车越野赛途中的水平路段前方有一个坑,该坑沿摩托车前进方向的水平宽度为3h,其左边缘a点比右边缘b点高0.5h。
若摩托车经过a点时的动能为E1,它会落到坑内c点。
c 与a 的水平距离和高度差均为h ;若经过a 点时的动能为E 2,该摩托车恰能越过坑到达b 点。
21E E 等于( )A. 20B. 18C. 9.0D. 3.0【答案】B【解析】有题意可知当在a 点动能为E 1时,有21112E mv 根据平抛运动规律有2112h gt =11h v t =当在a 点时动能为E 2时,有22212E mv 根据平抛运动规律有221122h gt 223hv t联立以上各式可解得2118E E故选B 。
2、(2019·全国II 卷·T19)如图(a ),在跳台滑雪比赛中,运动员在空中滑翔时身体的姿态会影响其下落的速度和滑翔的距离.某运动员先后两次从同一跳台起跳,每次都从离开跳台开始计时,用v 表示他在竖直方向的速度,其v-t 图像如图(b )所示,t 1和t 2是他落在倾斜雪道上的时刻.则A. 第二次滑翔过程中在竖直方向上的位移比第一次的小 B. 第二次滑翔过程中在水平方向上的位移比第一次的大C. 第二次滑翔过程中在竖直方向上的平均加速度比第一次的大D. 竖直方向速度大小为v 1时,第二次滑翔在竖直方向上所受阻力比第一次的大 【答案】BD 【解析】A .由v -t 图面积易知第二次面积大于等于第一次面积,故第二次竖直方向下落距离大于第一次下落距离,所以,A 错误;B .由于第二次竖直方向下落距离大,由于位移方向不变,故第二次水平方向位移大,故B 正确C .由于v -t 斜率知第一次大、第二次小,斜率越大,加速度越大,或由0v v a t-=易知a 1>a 2,故C 错误 D .由图像斜率,速度为v 1时,第一次图像陡峭,第二次图像相对平缓,故a 1>a 2,由G -f y =ma ,可知,f y 1<f y 2,故D 正确3、(2017·全国II 卷·T17)如图,半圆形光滑轨道固定在水平地面上,半圆的直径与地面垂直。
(物理) 高考物理曲线运动试题(有答案和解析)及解析
(物理) 高考物理曲线运动试题(有答案和解析)及解析一、高中物理精讲专题测试曲线运动1.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)42μ-= 【解析】 【分析】 【详解】(1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:212r gt = 解得:a v gr =小滑块在a 点飞出的动能21122k a E mv mgr == (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:2211222m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2m mv F mg r-= 由牛顿第三定律得:F ′=F 解得:F ′=6mg(3)bd 之间长度为L ,由几何关系得:()221L r =从d 到最低点e 过程中,由动能定理21cos 2m mgH mg L mv μα-⋅= 解得4214μ-=2.如图所示,质量为4kg M =的平板车P 的上表面离地面高0.2m h =,质量为1kg m =的小物块Q (大小不计,可视为质点)位于平板车的左端,系统原来静止在光滑水平地面上,一不可伸长的轻质细绳长为0.9m R =,一端悬于Q 正上方高为R 处,另一端系一质量也为m 的小球(大小不计,可视为质点)。
今将小球拉至悬线与竖直方向成60o 角由静止释放,小球到达最低点时与Q 的碰撞时间极短,且无机械能损失。
高考物理新力学知识点之曲线运动经典测试题及答案解析(3)
高考物理新力学知识点之曲线运动经典测试题及答案解析(3)一、选择题1.如图所示为一个做匀变速曲线运动的质点从A到E的运动轨迹示意图,已知在B点的速度与加速度相互垂直,则下列说法中正确的是( )A.D点的速率比C点的速率大B.A点的加速度与速度的夹角小于90°C.A点的加速度比D点的加速度大D.从A到D速度先增大后减小平面内运动,在x方向的速度图像和y方向的位移图2.有一个质量为4kg的物体在x y像分别如图甲、乙所示,下列说法正确的是()A.物体做匀变速直线运动B.物体所受的合外力为22 NC.2 s时物体的速度为6 m/s D.0时刻物体的速度为5 m/s3.公路在通过小型水库的泄洪闸的下游时,常常要修建凹形桥,如图,汽车通过凹形桥的最低点时()A.车的加速度为零,受力平衡B.车对桥的压力比汽车的重力大C.车对桥的压力比汽车的重力小D.车的速度越大,车对桥面的压力越小4.关于物体的受力和运动,下列说法正确的是()A.物体在不垂直于速度方向的合力作用下,速度大小可能一直不变B.物体做曲线运动时,某点的加速度方向就是通过这一点的曲线的切线方向C.物体受到变化的合力作用时,它的速度大小一定改变D.做曲线运动的物体,一定受到与速度不在同一直线上的合外力作用5.如图所示的皮带传动装置中,轮A和B固定在同一轴上,A、B、C分别是三个轮边缘的质点,且R A=R C=2R B,则三质点的向心加速度之比a A∶a B∶a C等于()A.1∶2∶4B.2∶1∶2C.4∶2∶1D.4∶1∶46.小船横渡一条两岸平行的河流,水流速度与河岸平行,船相对于水的速度大小不变,船头始终垂直指向河岸,小船的运动轨迹如图中虚线所示。
则小船在此过程中()A.无论水流速度是否变化,这种渡河耗时最短B.越接近河中心,水流速度越小C.各处的水流速度大小相同D.渡河的时间随水流速度的变化而改变7.如图所示,两小球从斜面的顶点先后以不同的初速度向右水平抛出,在斜面上的落点分别是a和b,不计空气阻力。
高考物理曲线运动解题技巧讲解及练习题(含答案)含解析
高考物理曲线运动解题技巧讲解及练习题(含答案)含解析一、高中物理精讲专题测试曲线运动1.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R =0.6m,平台上静止放置着两个滑块A 、B ,m A =0.1kg,m B =0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M =0.3kg,车面与平台的台面等高,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q 点,小车的上表面左端点P 与Q 点之间是粗糙的,PQ 间距离为L 滑块B 与PQ 之间的动摩擦因数为μ=0.2,Q 点右侧表面是光滑的.点燃炸药后,A 、B 分离瞬间A 滑块获得向左的速度v A =6m/s,而滑块B 则冲向小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s 2.求:(1)滑块A 在半圆轨道最高点对轨道的压力;(2)若L =0.8m,滑块B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块B 既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】(1)1N ,方向竖直向上(2)0.22P E J =(3)0.675m <L <1.35m 【解析】 【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:2211222A A A A m v m v m g R -=⨯ 在最高点由牛顿第二定律:2A N A v m g F m R+=滑块在半圆轨道最高点受到的压力为:F N =1N由牛顿第三定律得:滑块对轨道的压力大小为1N ,方向向上 (2)爆炸过程由动量守恒定律:A AB B m v m v =解得:v B =3m/s滑块B 冲上小车后将弹簧压缩到最短时,弹簧具有最大弹性势能,由动量守恒定律可知:)B B B m v m M v =+共(由能量关系:2211()-22P B B B B E m v m M v m gL μ=-+共解得E P =0.22J(3)滑块最终没有离开小车,滑块和小车具有共同的末速度,设为u ,滑块与小车组成的系统动量守恒,有:)B B B m v m M v =+(若小车PQ 之间的距离L 足够大,则滑块还没与弹簧接触就已经与小车相对静止, 设滑块恰好滑到Q 点,由能量守恒定律得:22111()22B B B B m gL m v m M v μ=-+联立解得:L 1=1.35m若小车PQ 之间的距离L 不是很大,则滑块必然挤压弹簧,由于Q 点右侧是光滑的,滑块必然被弹回到PQ 之间,设滑块恰好回到小车的左端P 点处,由能量守恒定律得:222112()22B B B B m gL m v m M v μ=-+ 联立解得:L 2=0.675m综上所述,要使滑块既能挤压弹簧,又最终没有离开小车,PQ 之间的距离L 应满足的范围是0.675m <L <1.35m2.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gRv =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅ 解得:123gRv =,253gR v =3.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。
高考物理曲线运动题20套(带答案)含解析
高考物理曲线运动题20 套( 带答案 ) 含分析一、高中物理精讲专题测试曲线运动 1. 如图,圆滑轨道abcd 固定在竖直平面内,ab水平,bcd 为半圆,在b 处与 ab 相切.在直轨道 ab 上放着质量分别为 m A =2kg 、 m B =1kg的物块 A 、 B (均可视为质点),用轻质细绳将A 、B 连结在一同,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左边的圆滑水平川面上停着一质量 M =2kg 、长 L=0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,以后A 向左滑上小车,B 向右滑动且恰巧能冲到圆弧轨道的最高点 d 处.已知 A 与小车之间的动摩擦因数μ知足 0.1 ≤μ≤,0.3g 取 10m/ s 2,求( 1) A 、 B 走开弹簧瞬时的速率 v A 、v B ;( 2)圆弧轨道的半径 R ;(3) A 在小车上滑动过程中产生的热量Q (计算结果可含有μ).【答案】( 1) 4m/s ( 2) 0.32m(3) 当知足0.1 ≤μ <0.2 , Q 1μ; 当知足 0.2 ≤μ≤ 0.3时 =10时, 1mA v121(m A M ) v 222【分析】【剖析】(1)弹簧恢复到自然长度时,依据动量守恒定律和能量守恒定律求解两物体的速度; (2)依据能量守恒定律和牛顿第二定律联合求解圆弧轨道的半径R ;( 3)依据动量守恒定律和能量关系求解恰巧能共速的临界摩擦力因数的值,而后议论求解热量 Q.【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为 v A 、 v B , 由动量守恒定律:0= m A v A m B v B 由能量关系: E P =1m A v A 2 1m B v B 222解得 v A =2m/s ;v B =4m/s(2)设 B 经过 d 点时速度为 v d ,在 d 点:m B g m B v d 2R由机械能守恒定律:1m B v B 2 =1m B v d 2 m B g 2R22解得 R=0.32m(3)设 μ =1μv,由动量守恒定律:时 A 恰巧能滑到小车左端,其共同速度为m A v A =(m A M )v 由能量关系: 1m A gL1m A v A 21m A M v 222解得 μ1=0.2议论:(ⅰ)当知足 0.1 ≤μ <0时.2, A 和小车不共速, A 将从小车左端滑落,产生的热量为Q 1 m A gL 10(J )(ⅱ)当知足0.2 ≤μ≤ 0.A3和小车能共速,产生的热量为时, Q 11m A v 121 m A M v2 ,解得 Q 2=2J222. 一质量 M =0.8kg 的小物块,用长 l=0.8m 的细绳悬挂在天花板上,处于静止状态.一质量m=0.2kg 的粘性小球以速度 v 0=10m/s 水平射向小物块,并与物块粘在一同,小球与小物 块互相作用时间极短能够忽视.不计空气阻力,重力加快度g 取 10m/s 2.求:( 1)小球粘在物块上的瞬时,小球和小物块共同速度的大小; ( 2)小球和小物块摇动过程中,细绳拉力的最大值;( 3)小球和小物块摇动过程中所能达到的最大高度.【答案】( 1) v 共 =2.0 m / s ( 2) F=15N (3)h=0.2m 【分析】(1)因为小球与物块互相作用时间极短,因此小球和物块构成的系统动量守恒.mv 0 (Mm)v 共得: v 共 =2.0 m / s(2)小球和物块将以v共开始运动时,轻绳遇到的拉力最大,设最大拉力为F ,F (M m) g ( M m)v 共2L得: F 15N(3)小球和物块将以v 共 为初速度向右摇动,摇动过程中只有重力做功,因此机械能守恒,设它们所能达到的最大高度为h ,依据机械能守恒:( m+M ) gh 1( m M )v 共 22解得 : h 0.2m综上所述本题答案是 : ( 1) v 共 =2.0 m / s ( 2) F=15N (3)h=0.2m点睛 :( 1)小球粘在物块上,动量守恒.由动量守恒,得小球和物块共同速度的大小. ( 2)对小球和物块协力供给向心力,可求得轻绳遇到的拉力( 3)小球和物块上摆机械能守恒.由机械能守恒可得小球和物块能达到的最大高度.3.如下图,在竖直平面内有一绝缘“”型杆放在水平向右的匀强电场中,此中AB、 CD 水平且足够长,圆滑半圆半径为R,质量为 m、电量为 +q 的带电小球穿在杆上,从距 B 点x=5.75R 处以某初速 v0开始向左运动.已知小球运动中电量不变,小球与AB、 CD 间动摩擦因数分别为μ1=0.25、μ2=0.80,电场力Eq=3mg/4,重力加快度为g, sin37 =0°.6, cos37 °=0.8.求:(1)若小球初速度 v0=4 gR,则小球运动到半圆上 B 点时遇到的支持力为多大;(2)小球初速度 v0知足什么条件能够运动过 C 点;(3)若小球初速度v=4 gR,初始地点变成x=4R,则小球在杆上静止时经过的行程为多大.【答案】( 1)5.5mg( 2)v04gR (3) 44R【分析】【剖析】【详解】(1)加快到 B 点:-1mgx qEx 1 mv21mv0222在 B 点:N mg m v2R解得 N=5.5mg(2)在物理最高点F:tan qE mg解得α=370;过 F 点的临界条件: v F=0从开始到 F 点:-1mgx qE (x R sin ) mg ( R R cos ) 01mv02 2解得 v0 4 gR可见要过 C 点的条件为:v04gR(3)因为 x=4R<5.75R,从开始到 F 点战胜摩擦力、战胜电场力做功均小于(2)问,到F 点时速度不为零,假定过 C 点后行进 x1速度变成零,在 CD 杆上因为电场力小于摩擦力,小球速度减为零后不会返回,则:-1mgx2 mgx1-qE( x-x1 ) mg 2R 01mv02 2s x R x1解得: s(44)R4.如下图,在竖直平面内有一倾角θ=37°的传递带BC.已知传递带沿顺时针方向运转的速度 v=4 m/s , B、 C两点的距离 L=6 m。
高中物理曲线运动试题(有答案和解析)含解析
高中物理曲线运动试题( 有答案和分析 ) 含分析一、高中物理精讲专题测试曲线运动1. 有一水平搁置的圆盘,上边放一劲度系数为 k 的弹簧,如下图,弹簧的一端固定于轴O 上,另一端系一质量为m 的物体 A ,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为 l .设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω 多大时,物体 A 开始滑动?(2)当转速迟缓增大到2 ω 时, A 仍随圆盘做匀速圆周运动,弹簧的伸长量△x 是多少?【答案】( 1)g 3 mgl ( 2) 4 mglkl 【分析】【剖析】(1)物体 A 随圆盘转动的过程中,若圆盘转速较小,由静摩擦力供给向心力;当圆盘转速较大时,弹力与摩擦力的协力供给向心力.物体A 刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力供给向心力,依据牛顿第二定律求解角速度 ω0 .( 2)当角速度达到 2 ω0 时,由弹力与摩擦力的协力供给向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量 △x . 【详解】若圆盘转速较小,则静摩擦力供给向心力,当圆盘转速较大时,弹力与静摩擦力的协力供给向心力.( 1)当圆盘转速为 n 0 时, A 马上开始滑动,此时它所受的最大静摩擦力供给向心力,则有:μmg = ml ω02,解得: ω0=g .l即当 ω0g时物体 A 开始滑动.=l( 2)当圆盘转速达到 2 ω0 时,物体遇到的最大静摩擦力已不足以供给向心力,需要弹簧的弹力来增补,即: μmg +k △x = mr ω12, r=l+△x解得: Vx =3 mglkl 4 mg【点睛】当物体相关于接触物体刚要滑动时,静摩擦力达到最大,这是常常用到的临界条件.此题重点是剖析物体的受力状况.2.如下图 ,固定的圆滑平台上固定有圆滑的半圆轨道,轨道半径R=0.6m, 平台上静止搁置着两个滑块A、B,m A=0.1kg,m B=0.2kg,两滑块间夹有少许炸药,平台右边有一带挡板的小车,静止在圆滑的水平川面上.小车质量为M=0.3kg,车面与平台的台面等高,小车的上表面的右边固定一根轻弹簧 ,弹簧的自由端在Q 点,小车的上表面左端点 P 与 Q 点之间是粗拙的,PQ 间距离为 L 滑块 B 与 PQ 之间的动摩擦因数为μ=0.2,Q 点右边表面是圆滑的.点燃炸药后,A、B 分别瞬时 A 滑块获取向左的速度v A=6m/s, 而滑块 B 则冲向小车.两滑块都能够看作质点,炸药的质量忽视不计 ,爆炸的时间极短 ,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s2.求 :(1)滑块 A 在半圆轨道最高点对轨道的压力;(2)若 L=0.8m, 滑块 B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块 B 既能挤压弹簧 ,又最后没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】( 1) 1N,方向竖直向上(2)E P0.22 J (3)0.675m<L<1.35m【分析】【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:1m A v A21m A v2m A g 2R22在最高点由牛顿第二定律:m A g F N m A滑块在半圆轨道最高点遇到的压力为:F N=1N v2 R由牛顿第三定律得:滑块对轨道的压力大小为1N,方向向上(2)爆炸过程由动量守恒定律:m A v A m B v B解得: v B=3m/s滑块 B 冲上小车后将弹簧压缩到最短时,弹簧拥有最大弹性势能,由动量守恒定律可知:m B v B( m B M )v共由能量关系:E P 1m B v B21(m B M )v共2 - m BgL22解得 E P=0.22J(3)滑块最后没有走开小车,滑块和小车拥有共同的末速度,设为u,滑块与小车构成的系统动量守恒,有:m B v B( m B M )v若小车 PQ 之间的距离 L 足够大,则滑块还没与弹簧接触就已经与小车相对静止,设滑块恰巧滑到 Q 点,由能量守恒定律得:m B gL11m B v B21(m B M )v2 22联立解得:L1=1.35m若小车 PQ 之间的距离 L 不是很大,则滑块必定挤压弹簧,因为Q 点右边是圆滑的,滑块必定被弹回到PQ 之间,设滑块恰巧回到小车的左端P 点处,由能量守恒定律得:2 m B gL21m B v B21(m B M )v2 22联立解得:L2=0.675m综上所述,要使滑块既能挤压弹簧,又最后没有走开小车,PQ 之间的距离L 应知足的范围是 0.675m <L< 1.35m3.如下图,水平长直轨道AB 与半径为R=0.8m 的圆滑1 竖直圆轨道BC 相切于B, BC 4与半径为r=0.4m 的圆滑1 竖直圆轨道CD相切于C,质量m=1kg 的小球静止在 A 点,现用4F=18N 的水平恒力向右拉小球,在抵达AB 中点时撤去拉力,小球恰能经过球与水平面的动摩擦因数μ=0.2,取 g=10m/s 2.求:D 点.已知小(1)小球在 D 点的速度 v D大小;(2)小球在 B 点对圆轨道的压力 N B大小;(3) A、B 两点间的距离 x.【答案】 (1) v D2m / s( 2)45N (3)2m【分析】【剖析】【详解】(1)小球恰巧过最高点D,有:mg m v D2r解得: v D2m/s(2)从 B 到 D ,由动能定理:mg(R r )1mv D 21mv B 222设小球在 B 点遇到轨道支持力为 N ,由牛顿定律有:N mgmN B =Nv 2BR联解③④⑤得: N=45N(3)小球从 A 到 B ,由动能定理:Fxmgx1mv B 222解得: x 2m故此题答案是: (1) v D 2m / s ( 2) 45N (3)2m 【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加快阶段的位移,4. 如下图,在圆滑的圆锥体顶部用长为的细线悬挂一质量为 的小球, 因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加快度 g 取 若北小球运动的角速度,求此时细线对小球的拉力大小。
高考物理曲线运动试题(有答案和解析)
高考物理曲线运动试题(有答案和解析)一、高中物理精讲专题测试曲线运动1.一质量M =0.8kg 的小物块,用长l =0.8m 的细绳悬挂在天花板上,处于静止状态.一质量m =0.2kg 的粘性小球以速度v 0=10m/s 水平射向小物块,并与物块粘在一起,小球与小物块相互作用时间极短可以忽略.不计空气阻力,重力加速度g 取10m/s 2.求:(1)小球粘在物块上的瞬间,小球和小物块共同速度的大小; (2)小球和小物块摆动过程中,细绳拉力的最大值; (3)小球和小物块摆动过程中所能达到的最大高度. 【答案】(1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 【解析】(1)因为小球与物块相互作用时间极短,所以小球和物块组成的系统动量守恒.0)(mv M m v =+共得:=2.0/v m s 共(2)小球和物块将以v 共 开始运动时,轻绳受到的拉力最大,设最大拉力为F ,2()()v F M m g M m L-+=+共 得:15F N =(3)小球和物块将以v 共为初速度向右摆动,摆动过程中只有重力做功,所以机械能守恒,设它们所能达到的最大高度为h ,根据机械能守恒:21+)()2m M gh m M v =+共(解得:0.2h m =综上所述本题答案是: (1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 点睛:(1)小球粘在物块上,动量守恒.由动量守恒,得小球和物块共同速度的大小. (2)对小球和物块合力提供向心力,可求得轻绳受到的拉力(3)小球和物块上摆机械能守恒.由机械能守恒可得小球和物块能达到的最大高度.2.如图所示,一箱子高为H .底边长为L ,一小球从一壁上沿口A 垂直于箱壁以某一初速度向对面水平抛出,空气阻力不计。
设小球与箱壁碰撞前后的速度大小不变,且速度方向与箱壁的夹角相等。
(1)若小球与箱壁一次碰撞后落到箱底处离C 点距离为,求小球抛出时的初速度v 0;(2)若小球正好落在箱子的B 点,求初速度的可能值。
高考物理曲线运动常见题型及答题技巧及练习题(含答案)及解析
高考物理曲线运动常见题型及答题技巧及练习题(含答案)及解析一、高中物理精讲专题测试曲线运动1.一质量M =0.8kg 的小物块,用长l =0.8m 的细绳悬挂在天花板上,处于静止状态.一质量m =0.2kg 的粘性小球以速度v 0=10m/s 水平射向小物块,并与物块粘在一起,小球与小物块相互作用时间极短可以忽略.不计空气阻力,重力加速度g 取10m/s 2.求:(1)小球粘在物块上的瞬间,小球和小物块共同速度的大小; (2)小球和小物块摆动过程中,细绳拉力的最大值; (3)小球和小物块摆动过程中所能达到的最大高度. 【答案】(1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 【解析】(1)因为小球与物块相互作用时间极短,所以小球和物块组成的系统动量守恒.0)(mv M m v =+共得:=2.0/v m s 共(2)小球和物块将以v 共 开始运动时,轻绳受到的拉力最大,设最大拉力为F ,2()()v F M m g M m L-+=+共 得:15F N =(3)小球和物块将以v 共为初速度向右摆动,摆动过程中只有重力做功,所以机械能守恒,设它们所能达到的最大高度为h ,根据机械能守恒:21+)()2m M gh m M v =+共(解得:0.2h m =综上所述本题答案是: (1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 点睛:(1)小球粘在物块上,动量守恒.由动量守恒,得小球和物块共同速度的大小. (2)对小球和物块合力提供向心力,可求得轻绳受到的拉力(3)小球和物块上摆机械能守恒.由机械能守恒可得小球和物块能达到的最大高度.2.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求:(1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)4214μ-= 【解析】 【分析】 【详解】(1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:212r gt = 解得:a v gr =小滑块在a 点飞出的动能21122k a E mv mgr == (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:2211222m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2m mv F mg r-= 由牛顿第三定律得:F ′=F 解得:F ′=6mg(3)bd 之间长度为L ,由几何关系得:()221L r = 从d 到最低点e 过程中,由动能定理21cos 2m mgH mg L mv μα-⋅= 解得42μ-=3.如图所示,一箱子高为H .底边长为L ,一小球从一壁上沿口A 垂直于箱壁以某一初速度向对面水平抛出,空气阻力不计。
高考物理曲线运动解题技巧及练习题(含答案)含解析
高考物理曲线运动解题技巧及练习题(含答案)含解析一、高中物理精讲专题测试曲线运动1.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R =0.6m,平台上静止放置着两个滑块A 、B ,m A =0.1kg,m B =0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M =0.3kg,车面与平台的台面等高,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q 点,小车的上表面左端点P 与Q 点之间是粗糙的,PQ 间距离为L 滑块B 与PQ 之间的动摩擦因数为μ=0.2,Q 点右侧表面是光滑的.点燃炸药后,A 、B 分离瞬间A 滑块获得向左的速度v A =6m/s,而滑块B 则冲向小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s 2.求:(1)滑块A 在半圆轨道最高点对轨道的压力;(2)若L =0.8m,滑块B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块B 既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】(1)1N ,方向竖直向上(2)0.22P E J =(3)0.675m <L <1.35m 【解析】 【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:2211222A A A A m v m v m g R -=⨯ 在最高点由牛顿第二定律:2A N A v m g F m R+=滑块在半圆轨道最高点受到的压力为:F N =1N由牛顿第三定律得:滑块对轨道的压力大小为1N ,方向向上 (2)爆炸过程由动量守恒定律:A AB B m v m v =解得:v B =3m/s滑块B 冲上小车后将弹簧压缩到最短时,弹簧具有最大弹性势能,由动量守恒定律可知:)B B B m v m M v =+共(由能量关系:2211()-22P B B B B E m v m M v m gL μ=-+共解得E P =0.22J(3)滑块最终没有离开小车,滑块和小车具有共同的末速度,设为u ,滑块与小车组成的系统动量守恒,有:)B B B m v m M v =+(若小车PQ 之间的距离L 足够大,则滑块还没与弹簧接触就已经与小车相对静止, 设滑块恰好滑到Q 点,由能量守恒定律得:22111()22B B B B m gL m v m M v μ=-+联立解得:L 1=1.35m若小车PQ 之间的距离L 不是很大,则滑块必然挤压弹簧,由于Q 点右侧是光滑的,滑块必然被弹回到PQ 之间,设滑块恰好回到小车的左端P 点处,由能量守恒定律得:222112()22B B B B m gL m v m M v μ=-+ 联立解得:L 2=0.675m综上所述,要使滑块既能挤压弹簧,又最终没有离开小车,PQ 之间的距离L 应满足的范围是0.675m <L <1.35m2.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。
高考物理一轮复习《曲线运动》练习题(含答案)
高考物理一轮复习《曲线运动》练习题(含答案)一、单选题1.在弯道上高速行驶的汽车,后轮突然脱离赛车,关于脱离了的后轮的运动情况,以下说法正确的是()A.仍然沿着汽车行驶的弯道运动B.沿着与弯道垂直的方向飞出C.沿着脱离时轮子前进的方向做直线运动,离开弯道D.上述情况都有可能2.“旋转纽扣”是一种传统游戏。
如图,先将纽扣绕几圈,使穿过纽扣的两股细绳拧在一起,然后用力反复拉绳的两端,纽扣正转和反转会交替出现。
拉动多次后,纽扣绕其中心的转速可达50r/s,此时纽扣上距离中心1cm处的点向心加速度大小约为()A.10m/s2B.100m/s2C.1000m/s2D.10000m/s23.如图所示,A、B两篮球从相同高度同时抛出后直接落入篮筐,落入篮筐时的速度方向相同,下列判断正确的是()A.A比B先落入篮筐B.A、B运动的最大高度相同C.A在最高点的速度比B在最高点的速度小D.A、B上升到某一相同高度时的速度方向相同4.无人配送小车某次性能测试路径如图所示,半径为3m的半圆弧BC与长8m的直线路径AB相切于B点,与半径为4m的半圆弧CD相切于C点。
小车以最大速度从A点驶入路径,到适当位置调整速率运动到B点,然后保持速率不变依次经过BC和CD。
为保证安全,小车速率最大为4m/s。
在ABC段的加速度最大为21m/s。
小车2m/s,CD段的加速度最大为2视为质点,小车从A 到D 所需最短时间t 及在AB 段做匀速直线运动的最长距离l 为( )A .7π2s,8m 4t l ⎛⎫=+= ⎪⎝⎭B .97πs,5m 42⎛⎫=+= ⎪⎝⎭t lC .576π26s, 5.5m 126⎛⎫=++= ⎪⎝⎭t lD .5(64)π26s, 5.5m 122⎡⎤+=++=⎢⎥⎣⎦t l 5.如图所示,某同学用一个小球在O 点对准前方的一块竖直放置的挡板,O 与A 在同一高度,小球的水平初速度分别是123v v v 、、,不计空气阻力。
高考物理曲线运动常见题型及答题技巧及练习题(含答案)
高考物理曲线运动常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试曲线运动1.如图所示,在风洞实验室中,从A 点以水平速度v 0向左抛出一个质最为m 的小球,小球抛出后所受空气作用力沿水平方向,其大小为F ,经过一段时间小球运动到A 点正下方的B 点 处,重力加速度为g ,在此过程中求(1)小球离线的最远距离; (2)A 、B 两点间的距离; (3)小球的最大速率v max .【答案】(1)202mv F(2)22022m gv F (3)2220 4v F m g F【解析】 【分析】(1)根据水平方向的运动规律,结合速度位移公式和牛顿第二定律求出小球水平方向的速度为零时距墙面的距离;(2)根据水平方向向左和向右运动的对称性,求出运动的时间,抓住等时性求出竖直方向A 、B 两点间的距离;(3)小球到达B 点时水平方向的速度最大,竖直方向的速度最大,则B 点的速度最大,根据运动学公式结合平行四边形定则求出最大速度的大小; 【详解】(1)将小球的运动沿水平方向沿水平方向和竖直方向分解 水平方向:F =m a x v 02=2a x x m解得:202m mv x F= (2)水平方向速度减小为零所需时间01xv t a = 总时间t =2t 1竖直方向上:22202212m gv y gt F== (3)小球运动到B 点速度最大 v x =v 0 V y =gt222220max 4x y v v v v F m g F==++【点睛】解决本题的关键将小球的运动的运动分解,搞清分运动的规律,结合等时性,运用牛顿第二定律和运动学公式进行求解.2.光滑水平面AB 与一光滑半圆形轨道在B 点相连,轨道位于竖直面内,其半径为R ,一个质量为m 的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力作用下获得一速度,当它经B 点进入半圆形轨道瞬间,对轨道的压力为其重力的9倍,之后向上运动经C 点再落回到水平面,重力加速度为g .求:(1)弹簧弹力对物块做的功;(2)物块离开C 点后,再落回到水平面上时距B 点的距离;(3)再次左推物块压紧弹簧,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为多少? 【答案】(1) (2)4R (3)或【解析】 【详解】(1)由动能定理得W =在B 点由牛顿第二定律得:9mg -mg =m解得W =4mgR(2)设物块经C 点落回到水平面上时距B 点的距离为S ,用时为t ,由平抛规律知 S=v c t 2R=gt 2从B 到C 由动能定理得联立知,S= 4 R(3)假设弹簧弹性势能为EP,要使物块在半圆轨道上运动时不脱离轨道,则物块可能在圆轨道的上升高度不超过半圆轨道的中点,则由机械能守恒定律知 EP≤mgR若物块刚好通过C点,则物块从B到C由动能定理得物块在C点时mg=m则联立知:EP≥mgR.综上所述,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为EP≤mgR 或EP≥mgR.3.如图所示,光滑的水平地面上停有一质量,长度的平板车,平板车左端紧靠一个平台,平台与平板车的高度均为,一质量的滑块以水平速度从平板车的左端滑上平板车,并从右端滑离,滑块落地时与平板车的右端的水平距离。
高考物理曲线运动题20套(带答案)及解析
高考物理曲线运动题20套(带答案)及解析一、高中物理精讲专题测试曲线运动1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω0多大时,物体A开始滑动?(2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少?【答案】(1)glμ(2)34mglkl mgμμ-【解析】【分析】(1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0.(2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.【详解】若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.(1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有:μmg=mlω02,解得:ω0=g l μ即当ω0=glμA开始滑动.(2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12,r=l+△x解得:34mgl xkl mgμμ-V=【点睛】当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.2.如图所示,一箱子高为H.底边长为L,一小球从一壁上沿口A垂直于箱壁以某一初速度向对面水平抛出,空气阻力不计。
设小球与箱壁碰撞前后的速度大小不变,且速度方向与箱壁的夹角相等。
(1)若小球与箱壁一次碰撞后落到箱底处离C点距离为,求小球抛出时的初速度v0;(2)若小球正好落在箱子的B点,求初速度的可能值。
高考物理新力学知识点之曲线运动基础测试题附答案(4)
高考物理新力学知识点之曲线运动基础测试题附答案(4)一、选择题1.如图所示,物体A和B的质量均为m,且分别与跨过定滑轮的轻绳连接(不计绳与滑轮、滑轮与轴之间的摩擦),在用水平变力F拉物体B沿水平方向向右做匀速直线运动的过程中,下列说法正确的是A.物体A也做匀速直线运动B.物体A做匀加速直线运动C.绳子对物体A的拉力等于物体A的重力D.绳子对物体A的拉力大于物体A的重力2.光滑水平面上,小球m的拉力F作用下做匀速圆周运动,若小球运动到P点时,拉力F发生变化,下列关于小球运动情况的说法正确的是()A.若拉力突然消失,小球将沿轨迹Pb做离心运动B.若拉力突然变小,小球将沿轨迹Pa做离心运动C.若拉力突然变大,小球将可能沿半径朝圆心运动D.若拉力突然变大,小球将可能沿轨迹Pc做近心运动3.如图所示,两根长度不同的细绳,一端固定于O点,另一端各系一个相同的小铁球,两小球恰好在同一水平面内做匀速圆周运动,则()A.A球受绳的拉力较大B.它们做圆周运动的角速度不相等C.它们所需的向心力跟轨道半径成反比D.它们做圆周运动的线速度大小相等4.公路在通过小型水库的泄洪闸的下游时,常常要修建凹形桥,如图,汽车通过凹形桥的最低点时()A.车的加速度为零,受力平衡B.车对桥的压力比汽车的重力大C.车对桥的压力比汽车的重力小D.车的速度越大,车对桥面的压力越小5.质量为m的小球在竖直平面内的圆管轨道内运动,小球的直径略小于圆管的直径,如v 图所示.已知小球以速度v通过最高点时对圆管的外壁的压力恰好为mg,则小球以速度2通过圆管的最高点时().A.小球对圆管的内、外壁均无压力mgB.小球对圆管的内壁压力等于2mgC.小球对圆管的外壁压力等于2D.小球对圆管的内壁压力等于mg6.如图所示,人用轻绳通过定滑轮拉穿在光滑竖直杆上的物块A,人以速度v0向左匀速拉绳,某一时刻,绳与竖直杆的夹角为,与水平面的夹角为,此时物块A的速度v1为A. B.C. D.7.某质点同时受到在同一平面内的几个恒力作用而平衡,某时刻突然撤去其中一个力,以后这物体将()①可能做匀加速直线运动;②可能做匀速直线运动;③其轨迹可能为抛物线;④可能做匀速圆周运动.A.①③B.①②③C.①③④D.①②③④8.下列与曲线运动有关的叙述,正确的是A.物体做曲线运动时,速度方向一定时刻改变B.物体运动速度改变,它一定做曲线运动C.物体做曲线运动时,加速度一定变化D.物体做曲线运动时,有可能处于平衡状态9.一条小河宽90 m,水流速度8 m/s,一艘快艇在静水中的速度为6 m/s,用该快艇将人员送往对岸,则该快艇()A.以最短位移渡河,位移大小为90 mB.渡河时间随河水流速加大而增长C.渡河的时间可能少于15 sD.以最短时间渡河,沿水流方向位移大小为120 m10.如图,abc是竖直面内的光滑固定轨道,ab水平,长度为2R:bc是半径为R的四分之一的圆弧,与ab相切于b点.一质量为m的小球.始终受到与重力大小相等的水平外力的作用,自a点处从静止开始向右运动,重力加速度大小为g.小球从a点开始运动到其他轨迹最高点,机械能的增量为A.2mgRB.4mgRC.5mgRD.6mgR11.小明玩飞镖游戏时,从同一位置先后以速度v A和v B将飞镖水平掷出,依次落在靶盘上的A、B两点,如图所示,飞镖在空中运动的时间分别t A和t B.不计空气阻力,则()A.v A<v B,t A<t BB.v A<v B,t A>t BC.v A>v B,t A>t BD.v A>v B,t A<t B12.如图为一皮带传动装置,右轮的半径为r,a是它边缘上的一点。
2025年高考物理复习之小题狂练600题(选择题):曲线运动(10题)
2025年高考物理复习之小题狂练600题(选择题):曲线运动(10题)一.选择题(共10小题)1.(2024•东湖区校级一模)如图,2023年8月27日发生了土星冲日现象,土星冲日是指土星、地球和太阳三者近似排成一条直线,地球位于太阳与土星之间。
已知地球和土星绕太阳公转的方向相同,轨迹均近似为圆,土星绕太阳公转周期约30年。
下次出现土星冲日现象应该在()A.2024年B.2038年C.2050年D.2053年2.(2024•海安市校级模拟)如图所示,一个半径为R的半圆形凹槽固定在地面上,一个半径为kR(k<1)的圆柱体从凹槽的右端静止释放。
假设凹槽内表面足够粗糙,圆柱体在滚动时不会打滑。
刚释放时,圆柱体表面的箭头指向凹槽中心O,当k=18时,圆柱体滚动到凹槽最低点时的箭头指向为()A.水平向右B.水平向左C.竖直向上D.竖直向下3.(2024•江苏一模)如图所示是物体做斜抛运动的轨迹,C点是轨迹的最高点,A、B是轨迹上等高的两个点。
下列叙述中正确的是(不计空气阻力)()A.物体在C点速度为零B.物体在A点速度与物体在B点速度相同C.物体在A点、B点的水平速度均大于物体在C点的速度D .物体在A 到C 和C 到B 速度的变化相同4.(2024•宁波二模)如图所示,厨师在展示厨艺时,将蛋糕放置在一水平托盘上,并控制托盘做竖直平面内半径为R 的匀速圆周运动,托盘始终保持水平。
蛋糕可视为质点,与托盘之间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力,重力加速度为g 。
若蛋糕始终与托盘保持相对静止,则托盘做匀速圆周运动的最大速率为( )A .√1√B .√μ√C .√1√D .√μ√5.(2024•吉林一模)如图所示的圆盘,半径为R ,可绕过圆心O 的水平轴转动,在圆盘的边缘沿同一直径方向固定两根长为R 的轻杆,杆的端点各有一可视为质点的小球A 、B ,在圆盘上缠绕足够长的轻绳。
轻绳的另一端拴接一小球C 。
高考物理曲线运动试题(有答案和解析)
高考物理曲线运动试题(有答案和解析)一、高中物理精讲专题测试曲线运动1.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gRv =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅ 解得:123gRv =253gR v =2.如图所示,水平长直轨道AB 与半径为R =0.8m 的光滑14竖直圆轨道BC 相切于B ,BC 与半径为r =0.4m 的光滑14竖直圆轨道CD 相切于C ,质量m =1kg 的小球静止在A 点,现用F =18N 的水平恒力向右拉小球,在到达AB 中点时撤去拉力,小球恰能通过D 点.已知小球与水平面的动摩擦因数μ=0.2,取g =10m/s 2.求: (1)小球在D 点的速度v D 大小;(2)小球在B 点对圆轨道的压力N B 大小; (3)A 、B 两点间的距离x .【答案】(1)2/D v m s = (2)45N (3)2m 【解析】 【分析】 【详解】(1)小球恰好过最高点D ,有:2Dv mg m r=解得:2m/s D v = (2)从B 到D ,由动能定理:2211()22D B mg R r mv mv -+=- 设小球在B 点受到轨道支持力为N ,由牛顿定律有:2Bv N mg m R-=N B =N联解③④⑤得:N =45N (3)小球从A 到B ,由动能定理:2122B x Fmgx mv μ-= 解得:2m x =故本题答案是:(1)2/D v m s = (2)45N (3)2m 【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加速阶段的位移,3.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】 【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v gR =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min 2x R R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max 2D v gR = 小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max 22x R =故落点与B 点水平距离d 的范围为:()()21221R d R -≤≤-4.如图所示,一轨道由半径2R m =的四分之一竖直圆弧轨道AB 和水平直轨道BC 在B 点平滑连接而成.现有一质量为1m Kg =的小球从A 点正上方2R处的O '点由静止释放,小球经过圆弧上的B 点时,轨道对小球的支持力大小18N F N =,最后从C 点水平飞离轨道,落到水平地面上的P 点.已知B 点与地面间的高度 3.2h m =,小球与BC 段轨道间的动摩擦因数0.2μ=,小球运动过程中可视为质点. (不计空气阻力, g 取10 m/s 2). 求:(1)小球运动至B 点时的速度大小B v(2)小球在圆弧轨道AB 上运动过程中克服摩擦力所做的功f W (3)水平轨道BC 的长度L 多大时,小球落点P 与B 点的水平距最大.【答案】(1)4?/B v m s = (2)22?f W J = (3) 3.36L m = 【解析】试题分析:(1)小球在B 点受到的重力与支持力的合力提供向心力,由此即可求出B 点的速度;(2)根据动能定理即可求出小球在圆弧轨道上克服摩擦力所做的功;(3)结合平抛运动的公式,即可求出为使小球落点P 与B 点的水平距离最大时BC 段的长度.(1)小球在B 点受到的重力与支持力的合力提供向心力,则有:2BN v F mg m R-=解得:4/B v m s =(2)从O '到B 的过程中重力和阻力做功,由动能定理可得:21022f B R mg R W mv ⎛⎫+-=- ⎪⎝⎭解得:22f W J =(3)由B 到C 的过程中,由动能定理得:221122BC C B mgL mv mv μ-=- 解得:222B C BCv v L gμ-= 从C 点到落地的时间:020.8ht s g== B 到P 的水平距离:2202B CC v v L v t gμ-=+ 代入数据,联立并整理可得:214445C C L v v =-+ 由数学知识可知,当 1.6/C v m s =时,P 到B 的水平距离最大,为:L=3.36m【点睛】该题结合机械能守恒考查平抛运动以及竖直平面内的圆周运动,解题的关键就是对每一个过程进行受力分析,根据运动性质确定运动的方程,再根据几何关系求出最大值.5.如图所示,光滑的水平地面上停有一质量,长度的平板车,平板车左端紧靠一个平台,平台与平板车的高度均为,一质量的滑块以水平速度从平板车的左端滑上平板车,并从右端滑离,滑块落地时与平板车的右端的水平距离。
高考物理曲线运动试题(有答案和解析)含解析
高考物理曲线运动试题(有答案和解析)含解析一、高中物理精讲专题测试曲线运动1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω0多大时,物体A开始滑动?(2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少?【答案】(1)glμ(2)34mglkl mgμμ-【解析】【分析】(1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0.(2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.【详解】若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.(1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有:μmg=mlω02,解得:ω0=g l μ即当ω0=glμA开始滑动.(2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12,r=l+△x解得:34mgl xkl mgμμ-V=【点睛】当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.2.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==3.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.【答案】(1)2038mv (2) 2164mv mg R+(3)042v gR ≤或04582gR v gR ≤≤【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111422Q mv mv =-⨯ 代入数值解得:2038Q mv =(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得211(3)(3)m m v F m m g R+-+=以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2木板对水平面的压力的大小202164mv F mg R=+(3)小球不脱离圆形轨有两种可能性:①若小球滑行的高度不超过圆形轨道半径R由机械能守恒定律得:()()211332m m v m m gR +≤+ 解得:042v gR ≤②若小球能通过圆形轨道的最高点小球能通过最高点有:22(3)(3)m m v m m g R++≤由机械能守恒定律得:221211(3)2(3)(3)22m m v m m gR m m v +=+++ 代入数值解得:045v gR ≥要使木板不会在竖直方向上跳起,木板对球的压力:312F mg ≤在最高点有:233(3)(3)m m v F m m g R+++=由机械能守恒定律得:221311(3)2(3)(3)22m m v m m gR m m v +=+++ 解得:082v gR ≤综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是042v gR ≤或04582gR v gR ≤≤4.如图所示,水平屋顶高H =5 m ,围墙高h =3.2 m ,围墙到房子的水平距离L =3 m ,围墙外空地宽x =10 m ,为使小球从屋顶水平飞出落在围墙外的空地上,g 取10 m/s 2.求: (1)小球离开屋顶时的速度v 0的大小范围; (2)小球落在空地上的最小速度.【答案】(1)5 m/s≤v 0≤13 m/s ; (2)55m/s ; 【解析】 【分析】 【详解】(1)若v 太大,小球落在空地外边,因此,球落在空地上,v 的最大值v max 为球落在空地最右侧时的平抛初速度,如图所示,小球做平抛运动,设运动时间为t 1. 则小球的水平位移:L+x=v max t 1, 小球的竖直位移:H=gt 12 解以上两式得 v max =(L+x )=(10+3)×=13m/s .若v 太小,小球被墙挡住,因此, 球不能落在空地上,v 的最小值v min为球恰好越过围墙的最高点P 落在空地上时的平抛初速度,设小球运动到P 点所需时间为t 2,则此过程中小球的水平位移:L=v min t 2 小球的竖直方向位移:H ﹣h=gt 22解以上两式得v min =L =3×=5m/s因此v0的范围是v min≤v0≤v max,即5m/s≤v0≤13m/s.(2)根据机械能守恒定律得:mgH+=解得小球落在空地上的最小速度:v min ′===5m/s5.如图是节水灌溉工程中使用喷水龙头的示意图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新高考物理曲线运动试题(有答案和解析)一、高中物理精讲专题测试曲线运动1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα=35,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR(223m gR (3355R g 【解析】试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力.解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有tan F mgα=① 2220()F mg F =+②设小球到达C 点时的速度大小为v ,由牛顿第二定律得2v F m R=③由①②③式和题给数据得034F mg =④5gRv =(2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥(1cos CD R α=+)⑦由动能定理有22011122mg CD F DA mv mv -⋅-⋅=-⑧由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232m gR p mv ==⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有212v t gt CD ⊥+=⑩ sin v v α⊥=由⑤⑦⑩式和题给数据得355R t g=点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新.2.如图所示,一根长为0.1 m 的细线,一端系着一个质量是0.18kg 的小球,拉住线的另一端,使球在光滑的水平桌面上做匀速圆周运动,当小球的转速增加到原转速的3倍时,细线断裂,这时测得线的拉力比原来大40 N .求: (1)线断裂的瞬间,线的拉力; (2)这时小球运动的线速度;(3)如果桌面高出地面0.8 m ,线断裂后小球沿垂直于桌子边缘的方向水平飞出去落在离桌面的水平距离.【答案】(1)线断裂的瞬间,线的拉力为45N ; (2)线断裂时小球运动的线速度为5m/s ;(3)落地点离桌面边缘的水平距离2m . 【解析】 【分析】 【详解】(1)小球在光滑桌面上做匀速圆周运动时受三个力作用;重力mg 、桌面弹力F N 和细线的拉力F ,重力mg 和弹力F N 平衡,线的拉力提供向心力,有: F N =F =mω2R ,设原来的角速度为ω0,线上的拉力是F 0,加快后的角速度为ω,线断时的拉力是F 1,则有: F 1:F 0=ω2: 20ω=9:1, 又F 1=F 0+40N ,所以F 0=5N ,线断时有:F 1=45N .(2)设线断时小球的线速度大小为v ,由F 1=2v m R,代入数据得:v =5m /s .(3)由平抛运动规律得小球在空中运动的时间为:t =220.810h s g ⨯==0.4s , 则落地点离桌面的水平距离为:x =vt =5×0.4=2m .3.如图所示,一位宇航员站一斜坡上A 点,沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点B ,斜坡倾角为α,已知该星球的半径为R ,引力常量为G ,求:(1)该星球表面的重力加速度g ; (2)该星球的密度ρ . 【答案】(1)02tan v t α (2)03tan 2v RtGαπ 【解析】试题分析:平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度.根据万有引力等于重力求出星球的质量,结合密度的公式求出星球的密度.(1)小球做平抛运动,落在斜面上时有:tanα===所以星球表面的重力加速度为:g=.(2)在星球表面上,根据万有引力等于重力,得:mg=G解得星球的质量为为:M=星球的体积为:V=πR 3. 则星球的密度为:ρ= 整理得:ρ=点晴:解决本题关键为利用斜面上的平抛运动规律:往往利用斜面倾解的正切值进行求得星球表面的重力加速度,再利用mg=G和ρ=求星球的密度.4.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x =v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.5.光滑水平面AB 与一光滑半圆形轨道在B 点相连,轨道位于竖直面内,其半径为R ,一个质量为m 的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力作用下获得一速度,当它经B点进入半圆形轨道瞬间,对轨道的压力为其重力的9倍,之后向上运动经C点再落回到水平面,重力加速度为g.求:(1)弹簧弹力对物块做的功;(2)物块离开C点后,再落回到水平面上时距B点的距离;(3)再次左推物块压紧弹簧,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为多少?【答案】(1)(2)4R(3)或【解析】【详解】(1)由动能定理得W=在B点由牛顿第二定律得:9mg-mg=m解得W=4mgR(2)设物块经C点落回到水平面上时距B点的距离为S,用时为t,由平抛规律知S=v c t2R=gt2从B到C由动能定理得联立知,S= 4 R(3)假设弹簧弹性势能为EP,要使物块在半圆轨道上运动时不脱离轨道,则物块可能在圆轨道的上升高度不超过半圆轨道的中点,则由机械能守恒定律知EP≤mgR若物块刚好通过C点,则物块从B到C由动能定理得物块在C点时mg=m则联立知:EP≥mgR.综上所述,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为EP≤mgR 或EP≥mgR.6.如图所示,在平面直角坐标系xOy内,第Ⅰ象限的等腰直角三角形MNP区域内存在垂直于坐标平面向外的匀强磁场,y<0的区域内存在着沿y轴正方向的匀强电场22mvEqh=.一质量为m、电荷量为q的带电粒子从电场中Q点以速度v0水平向右射出,经坐标原点O射入第Ⅰ象限.已知粒子在第Ⅲ象限运动的水平方向位移为竖直方向位移的2倍,且恰好不从PN边射出磁场.已知MN平行于x轴,N点的坐标为(2h,2h),不计粒子的重力,求:⑴入射点Q的坐标;⑵磁感应强度的大小B;⑶粒子第三次经过x轴的位置坐标.【答案】(1)()2,h h--(2))221mvqh(3)(20262,0v ghg⎡⎤--⎢⎥-⎢⎥⎣⎦【解析】【分析】带电粒子从电场中Q点以速度v0水平向右射出,在第Ⅲ象限做的是类平抛运动,在第I象限,先是匀速直线运动,后是圆周运动,最后又在电场中做类斜抛运动.【详解】(1)带电粒子在第Ⅲ象限做的是类平抛运动,带电粒子受的电场力为1F运动时间为1t,有1F qE=22mvh=由题意得11F qEam m==101x v t=21112y at =解得201mv x Eq =2012mv y Eq=202mv E qh=Q 的坐标()2,h h --(2) 带电粒子经坐标原点O 射入第Ⅰ象限时的速度大小为1v0x v v =1y v at =1mv t Eq=联立解得0y v v =102v v =由带电粒子在通过坐标原点O 时,x 轴和y 轴方向速度大小相等可知,带电粒子在第I 象02v 速度大小,垂直MP 射入磁场,并在洛伦兹力作用下做匀速圆周运动,且恰好不从PN 边射出磁场.如下图所示,设圆周的半径为R ,由牛顿第二定律则有20022mv q v B R= 02R qB =由图知EC 是中位线,O 1是圆心,D 点是圆周与PN 的切点,由几何知识可得,圆周半径22R =+ 解得)0221B mv qh=(3) 02v ,且抛 射角是045,如下图所示,根据斜抛运动的规律,有202x v v =cos450202y v v =sin450带电粒子在电场中飞行时间为2t 则有10222y v v t gg==带电粒子在电场中水平方向飞行距离为2x 有202222x v x v t g==带电粒子在2p 点的坐标 由几何知识可知2p 点的坐标是222h +,0)带电粒子在1p 点的坐标是()22642,0v ghg⎡⎤--⎢⎥-⎢⎥⎣⎦【点睛】带电粒子在不同场中运动用不同的物理公式以及利用几何知识来计算.7.如图所示,物体A置于静止在光滑水平面上的平板小车B的左端,物体在A的上方O 点用细线悬挂一小球C(可视为质点),线长L=0.8m.现将小球C拉至水平无初速度释放,并在最低点与物体A发生水平正碰,碰撞后小球C反弹的速度为2m/s.已知A、B、C的质量分别为m A=4kg、m B=8kg和m C=1kg,A、B间的动摩擦因数μ=0.2,A、C碰撞时间极短,且只碰一次,取重力加速度g=10m/s2.(1)求小球C与物体A碰撞前瞬间受到细线的拉力大小;(2)求A、C碰撞后瞬间A的速度大小;(3)若物体A未从小车B上掉落,小车B的最小长度为多少?【答案】(1)30 N (2)1.5 m/s (3)0.375 m【解析】【详解】(1)小球下摆过程机械能守恒,由机械能守恒定律得:m0gl12=m0v02代入数据解得:v0=4m/s,对小球,由牛顿第二定律得:F﹣m0g=m02vl代入数据解得:F=30N(2)小球C与A碰撞后向左摆动的过程中机械能守恒,得:212Cmv mgh=所以:22100.22Cv gh==⨯⨯=m/s小球与A碰撞过程系统动量守恒,以小球的初速度方向为正方向,由动量守恒定律得:m0v0=﹣m0v c+mv A代入数据解得:v A=1.5m/s(3)物块A与木板B相互作用过程,系统动量守恒,以A的速度方向为正方向,由动量守恒定律得:mv A=(m+M)v代入数据解得:v=0.5m/s由能量守恒定律得:μmgx 12=mv A 212-(m+M )v 2 代入数据解得:x =0.375m ;8.游乐场正在设计一个全新的过山车项目,设计模型如图所示,AB 是一段光滑的半径为R 的四分之一圆弧轨道,后接一个竖直光滑圆轨道,从圆轨道滑下后进入一段长度为L 的粗糙水平直轨道BD ,最后滑上半径为R 圆心角060θ=的光滑圆弧轨道DE .现将质量为m 的滑块从A 点静止释放,通过安装在竖直圆轨道最高点C 点处的传感器测出滑块对轨道压力为mg ,求:(1)竖直圆轨道的半径r .(2)滑块在竖直光滑圆弧轨道最低点B 时对轨道的压力.(3)若要求滑块能滑上DE 圆弧轨道并最终停在平直轨道上(不再进入竖直圆轨道),平直轨道BD 的动摩擦因数μ需满足的条件. 【答案】(1)3R (2)7mg (3)2R RL L μ<≤ 【解析】(1) 对滑块,从A 到C 的过程,由机械能守恒可得:21(2)2C mg R r mv -=22Cv mg m r=解得:3R r =; (2) 对滑块,从A 到B 的过程,由机械能守恒可得:212B mgR mv =在B 点,有:2Bv N mg m r-=可得:滑块在B 点受到的支持力 N=7mg ;由牛顿第三定律可得,滑块在B 点对轨道的压力7N N mg '==,方向竖直向下;(3) 若滑块恰好停在D 点,从B 到D 的过程,由动能定理可得:2112B mgL mv μ-=- 可得:1R Lμ= 若滑块恰好不会从E 点飞出轨道,从B 到E 的过程,由动能定理可得:221(1cos )2B mgL mgR mv μθ---=- 可得:22R Lμ= 若滑块恰好滑回并停在B 点,对于这个过程,由动能定理可得:231·22B mg L mv μ-=- 综上所述,μ需满足的条件:2R R L Lμ<<.9.如图所示,半径R=0.40m 的光滑半圆环轨道处于竖起平面内,半圆环与粗糙的水平地面相切于圆环的端点A .一质量m=0.10kg 的小球,以初速度V 0=7.0m/s 在水平地面上向左做加速度a=3.0m/s 2的匀减速直线运动,运动4.0m 后,冲上竖直半圆环,最后小球落在C 点.求(1)小球到A 点的速度(2)小球到B 点时对轨道是压力(3)A 、C 间的距离(取重力加速度g=10m/s 2).【答案】(1) 5/A V m s = (2) 1.25N F N = (3)S AC =1.2m【解析】【详解】(1)匀减速运动过程中,有:2202A v v as -=解得:5/A v m s =(2)恰好做圆周运动时物体在最高点B 满足: mg=m 21B v R,解得1B v =2m/s 假设物体能到达圆环的最高点B ,由机械能守恒:12mv 2A =2mgR+12mv 2B联立可得:v B =3 m/s因为v B >v B1,所以小球能通过最高点B . 此时满足2N v F mg m R+= 解得 1.25N F N =(3)小球从B 点做平抛运动,有:2R=12gt 2 S AC =v B ·t 得:S AC =1.2m .【点睛】解决多过程问题首先要理清物理过程,然后根据物体受力情况确定物体运动过程中所遵循的物理规律进行求解;小球能否到达最高点,这是我们必须要进行判定的,因为只有如此才能确定小球在返回地面过程中所遵循的物理规律.10.摄制组在某大楼边拍摄武打片,要求特技演员从地面飞到屋顶,为此导演在某房顶离地高H=8m 处架设了轻质轮轴.如题图所示,连汽车的轻质钢缆绕在轴上,连演员的轻质钢缆绕在轮上,轮和轴固连在一起可绕中心固定点无摩擦转动.汽车从图中A 处由静止开始加速运动,前进s=6m 到B 处时速度为v=5m/s .人和车可视为质点,轮和轴的直径之比为3:1,轮轴的大小相对于H 可忽略,钢缆与轮轴之间不打滑,g 取10m/s 2.提示:连接汽车的钢缆与连接演员的钢缆非同一根钢缆.试求:(1)汽车运动到B 处时演员的速度大小:(2)汽车从A 运动到B 的过程演员上升的高度;(3)若汽车质量M=1500kg ,特技演员的质量m=60kg ,且在该过程中汽车受地面阻力大小恒为1000N ,其余阻力不计,求汽车从A 运动到B 的过程中汽车发动机所做的功.【答案】(1)9m/s (2)6m (3)30780J【解析】(1)将汽车的速度v 分解为如图所示的情况,有:,解得:α=37°则得绳子的伸长速度v1=vsin37°=5×0.6=3m/s,由于轮轴的角速度相等.设人的上升速度为v3,轮的半径为R,轴的半径为r,则有,得v3==9 m/s;(2)由图可知,在这一过程中,连接轨道车的钢丝上升的距离为:△l=-H=2m轮和轴的直径之比为3:1.所以演员上升的距离为h=3×2m=6m.(3)汽车发动机所做的功转化为人的动能,人的重力势能,车的动能,及车与地面的摩擦力生热.因此:W=mv人2+mg△h+Mv2+fs=30780J;点睛:考查运动的合成与分解,掌握角速度与线速度的关系,理解功能关系的应用,同时注意:轮和轴的角速度相同,根据轮和轴的直径之比知道线速度关系.掌握速度分解找出分速度和合速度的关系.。