初一数学上册一元一次方程综合练习题80

合集下载

七年级上册一元一次方程综合测试卷(word含答案)

七年级上册一元一次方程综合测试卷(word含答案)

七年级上册一元一次方程综合测试卷(word含答案)一、初一数学一元一次方程解答题压轴题精选(难)1.某手机经销商购进甲,乙两种品牌手机共 100 部.(1)已知甲种手机每部进价1500 元,售价2000 元;乙种手机每部进价3500 元,售价4500 元;采购这两种手机恰好用了 27 万元 .把这两种手机全部售完后,经销商共获利多少元?(2)已经购进甲,乙两种手机各一部共用了5000 元,经销商把甲种手机加价50%作为标价,乙种手机加价 40%作为标价.从 A,B 两种中任选一题作答:A:在实际出售时,若同时购买甲,乙手机各一部打九折销售,此时经销商可获利1570 元.求甲,乙两种手机每部的进价.B:经销商采购甲种手机的数量是乙种手机数量的 1.5 倍.由于性能良好,因此在按标价进行销售的情况下,乙种手机很快售完,接着甲种手机的最后10 部按标价的八折全部售完.在这次销售中,经销商获得的利润率为 42.5%.求甲,乙两种手机每部的进价.【答案】(1)解:设购进甲种手机部,乙种手机部,根据题意,得解得:元.答:销商共获利元.(2)解:A: 设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:3000元,2000元.B:乙种手机:部,甲种手机部,设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:2000元,3000元.【解析】【分析】(1)甲的单价乘以部数加上乙的单价乘以部数等于总数,根据题意列出,然后解方程得到结果。

(2)A 根据进价加利润等于甲和乙的售价,列出方程B 先求出甲乙的部数,表示出甲乙的标价,列出关系式,50部甲×甲的标价+10部甲×甲标价的八折+40部乙×乙的标价=利润率乘以成本,即可解出结果。

2.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由.【答案】(1)解:①∵∠AON+∠BOM=90°,∠COM=∠MOB,∵∠AOC=30°,∴∠BOC=2∠COM=150°,∴∠COM=75°,∴∠CON=15°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,解得:t=15°÷3°=5秒;②是,理由如下:∵∠CON=15°,∠AON=15°,∴ON平分∠AOC(2)解:15秒时OC平分∠MON,理由如下:∵∠AON+∠BOM=90°,∠CON=∠COM,∵∠MON=90°,∴∠CON=∠COM=45°,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∵∠AOC﹣∠AON=45°,可得:6t﹣3t=15°,解得:t=5秒(3)解:OC平分∠MOB∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∴∠COM为(90°﹣3t),∵∠BOM+∠AON=90°,可得:180°﹣(30°+6t)= (90°﹣3t),解得:t=23.3秒;如图:【解析】【分析】(1)①根据∠AON+∠BOM=90°,∠COM=∠MOB,及平角的定义∠BOC=2∠COM=150°,故∠COM=75°,根据角的和差得出∠CON=15°从而得到AON=∠AOC ﹣∠CON=30°﹣15°=15°,根据旋转的速度,就可以算出t的值了;②根据∠CON=15°,∠AON=15°,即可得出ON平分∠AOC ;(2)15秒时OC平分∠MON,理由如下:∠AON+∠BOM=90°,∠CON=∠COM,从而得出∠CON=∠COM=45°,又三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,根据∠AOC﹣∠AON=45°得出含t的方程,求解得出t的值;(3)根据∠AON+∠BOM=90°,∠BOC=∠COM,及三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,故设∠AON为3t,∠AOC为30°+6t,从而得到∠COM为(90°﹣3t),又∠BOM+∠AON=90°,从而得出含t的方程,就能解出t的值。

初一数学上册一元一次方程100道

初一数学上册一元一次方程100道

一百道题3X+5X=48 14X-8X=12 6*5+2X=4420X-50=50 28+6X=88 32-22X=1024-3X=3 10X* ( 5+1)=60 99X=100-XX+3=18 X-6=12 56-2X=204y+2=6 x+32=76 3x+6=1816+8x=40 2x-8=8 4x-3*9=298x-3x=105 x-6*5=42 x+5=72x+3=10 12x-9x=9 6x+18=4856x-50x=30 5x=15 78-5x=2832y-29=3 5x+5=15 89x-9=80100-20x=20 55x-25x=60 76y-75=123y-23=23 4x-20=0 80y+20=10053x-90=16 2x+9x=11 12y-12=2480+5x=100 7x-8=6 65x+35=10019y+y=40 25-5x=15 79y+y=8042x+28x=140 3x-1=8 90y-90=9080y-90=70 78y+2y=160 88-x=809-4x=1 20x=40 65y-30=10051y-y=100 85y+1=-86 45x-50=4010*+6=26 *=2 24:8*=1 *=3 %8*+23=39 *=200 4*+9=21 *=36:2*=3 *=1 5%*- 3=2 *=100 6 ×+8=68 ×=10 8 :6×=1/3 ×=4 .x-3/0.5-x+4/0.2=1.6 x=-9.22.2x/0.3+8/3-(1.4-3x)/0.2=2 (x=1/5)3.(4-6x)/0.01-6.5=(0.02-2x)/0.02-7.5 (x=4/5)4.x/0.7-(0.17-0.2x)/0.03=1 (x=14/17)14.59+x-25.31=0x=10.72②x-48.32+78.51=80x=49.81③820- 16x=45.5 ×8 x=28.5④(x - 6)×7=2x x=8.4⑤3x+x=18x=4.5⑥0.8+3.2=7.2x=5⑦12.5 -3x=6.5x=2⑧1.2(x -0.64)=0.54x=1.092x=3+5x=2*33x=x+1x=2x-2x=32+32x=1+42x=x+13x=3=x4x=4x=56+4x=2*1x=3*42x=5*610x=15x=106x=710x=1010=x+110=2x+110=3x+111=4x+111=2x+111=3x+111=5x+2311=6x+12311=7x+211=12x+3411=9x+111=9x+221=4x+121=2x+121=3x+121=5x+2321=6x+12321=7x+221=12x+3421=9x+121=9x+231=4x+131=2x+131=3x+131=5x+2331=6x+12331=7x+231=12x+3431=9x+131=9x+212=4x+112=2x+112=3x+112=5x+231=6x+12312=7x+212=12x+3412=9x+112=9x+23X+5X=48 14X-8X=12 6*5+2X=4420X-50=50 28+6X=88 32-22X=1024-3X=3 10X* ( 5+1)=60 99X=100-XX+3=18 X-6=12 56-2X=204y+2=6 x+32=76 3x+6=1816+8x=40 2x-8=8 4x-3*9=298x-3x=105 x-6*5=42 x+5=72x+3=10 12x-9x=9 6x+18=4856x-50x=30 5x=15 78-5x=2832y-29=3 5x+5=15 89x-9=80100-20x=20 55x-25x=60 76y-75=123y-23=23 4x-20=0 80y+20=10053x-90=16 2x+9x=11 12y-12=2480+5x=100 7x-8=6 65x+35=10019y+y=40 25-5x=15 79y+y=8042x+28x=140 3x-1=8 90y-90=9080y-90=70 78y+2y=160 88-x=809-4x=1 20x=40 65y-30=10051y-y=100 85y+1=-86 45x-50=40(x-2)12=8xx=6初一数学上册一元一次方程应用题100 道问题补充:第 3 章一元一次方程全章综合测试(时间90 分钟,满分100 分)一、填空题.(每小题 3 分,共 24 分)1.已知 4x2n-5+5=0 是关于 x 的一元一次方程,则n=_______ .2.若 x=-1 是方程 2x-3a=7 的解,则a=_______.3.当 x=______ 时,代数式x-1 和的值互为相反数.4.已知 x 的与 x 的 3 倍的和比x 的 2 倍少 6,列出方程为________.5.在方程 4x+3y=1 中,用 x 的代数式表示y,则 y=________ .6.某商品的进价为300 元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6 天完成,乙单独做需12 天完成,若甲、乙一起做,?则需 ________天完成.二、选择题.(每小题 3分,共30 分)9.方程 2m+x=1 和 3x-1=2x+1 有相同的解,则m 的值为().A . 0 B. 1 C. -2 D. -10.方程│ 3x│=18 的解的情况是().A .有一个解是 6 B.有两个解,是± 6C.无解D.有无数个解11.若方程 2ax-3=5x+b 无解,则 a, b 应满足().A .a≠, b≠3B . a= ,b=-3C.a≠,b=-3 D. a= , b≠-312.把方程的分母化为整数后的方程是().13.在 800 米跑道上有两人练中长跑,甲每分钟跑300 米,乙每分钟跑260 米, ?两人同地、同时、同向起跑,t分钟后第一次相遇,t 等于().A.10 分B.15 分C.20 分D.30 分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().A .增加 10%B .减少 10% C.不增也不减D.减少 1%15.在梯形面积公式S= ( a+b) h 中,已知 h=6 厘米, a=3 厘米, S=24 平方厘米,则 b=( ?)厘米.A . 1B .5 C. 3 D. 416.已知甲组有 28 人,乙组有20 人,则下列调配方法中,能使一组人数为另一组人数的一半的是().A .从甲组调 12 人去乙组B.从乙组调 4 人去甲组C.从乙组调 12 人去甲组D.从甲组调 12 人去乙组,或从乙组调 4 人去甲组17.足球比赛的规则为胜一场得 3 分,平一场得1 分,负一场是 0 分, ?一个队打了 14 场比赛,负了 5 场,共得19 分,那么这个队胜了()场.A . 3B .4 C.5 D. 618.如图所示,在甲图中的左盘上将2 个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?()A.3 个B.4 个C.5 个D.6 个三、解答题.( 19, 20 题每题 6 分, 21, 22 题每题 7 分, 23,24 题每题10 分,共 46 分)19.解方程:7(2x-1)-3(4x-1)=4(3x+2)-1 20.解方程:( x-1) - (3x+2 ) = - (x-1 ).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,?这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.?已知卡片的短边长度为10 厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的 3 倍少 2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.23.据了解,火车票价按“ ”的方法来确定.已知 A 站至 H 站总里程数为 1500 千米,全程参考价为 180 元.下表是沿途各站至 H 站的里程数:车站名 A B C D E FGH各站至 H站里程数(米)1500 1130 910 622 402 219 72 0例如:要确定从 B 站至 E 站火车票价,其票价为=87.36≈ 87(元).(1)求 A 站至 F 站的火车票价(结果精确到 1 元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:?“我快到站了吗?”乘务员看到王大妈手中的票价是66 元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).24.某公园的门票价格规定如下表:购票人数1~50 人 51~100 人 100 人以上票价 5 元 4.5 元4 元某校初一甲、乙两班共 103 人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付 486 元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)答案 :一、 1.32.-3 (点拨:将x=-1 代入方程 2x-3a=7 ,得 -2-3a=7,得a=-3)3.(点拨:解方程x-1=- ,得 x= )4. x+3x=2x-6 5. y= - x6.525 (点拨:设标价为 x 元,则 =5% ,解得 x=525元)7. 18, 20, 228.4 [ 点拨:设需 x 天完成,则 x( + )=1 ,解得x=4] 二、 9.D10. B (点拨:用分类讨论法:当x≥ 0 时, 3x=18 ,∴ x=6当x<0 时, -3=18 ,∴ x=-6故本题应选B)11.D (点拨:由 2ax-3=5x+b ,得( 2a-5)x=b+3 ,欲使方程无解,必须使 2a-5=0,a= ,b+3 ≠0, b≠ -3,故本题应选 D .)12. B (点拨;在变形的过程中,利用分式的性质将分式的分子、 ?分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)13. C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了 800?米, ?列方程得 260t+800=300t ,解得 t=20)14. D15.B (点拨:由公式 S= ( a+b)h,得 b= -3=5 厘米)16. D 17.C18. A (点拨:根据等式的性质2)三、 19.解:原方程变形为200( 2-3y ) -4.5= -9.5∴400-600y-4.5=1-100y-9.5 500y=404∴y=20.解:去分母,得15( x-1 ) -8( 3x+2) =2-30 ( x-1 )∴21x=63∴x=321.解:设卡片的长度为 x 厘米,根据图意和题意,得5x=3( x+10 ),解得 x=15所以需配正方形图片的边长为15-10=5 (厘米)答:需要配边长为 5 厘米的正方形图片.22.解:设十位上的数字为 x,则个位上的数字为 3x-2 ,百位上的数字为 x+1 ,故100( x+1 )+10x+( 3x-2 )+100(3x-2 )+10x+( x+1 ) =1171解得 x=3答:原三位数是 437.23.解:( 1)由已知可得=0.12A 站至 H 站的实际里程数为1500-219=1281(千米)所以 A 站至 F 站的火车票价为0.12×1281=153.72 ≈154(元)( 2)设王大妈实际乘车里程数为x 千米,根据题意,得=66解得 x=550 ,对照表格可知, D 站与 G 站距离为550 千米,所以王大妈是在 D 站或 G?站下的车.24.解:( 1)∵ 103>100∴每张门票按 4 元收费的总票额为103× 4=412 (元)可节省 486-412=74 (元)( 2)∵甲、乙两班共103 人,甲班人数>乙班人数∴甲班多于50 人,乙班有两种情形:①若乙班少于或等于 50 人,设乙班有 x 人,则甲班有( 103-x )人,依题意,得5x+4.5 ( 103-x) =486解得 x=45,∴ 103-45=58 (人)即甲班有 58 人,乙班有 45 人.②若乙班超过 50 人,设乙班 x 人,则甲班有( 103-x)人,根据题意,得4.5x+4.5 ( 103-x)=486∵此等式不成立,∴这种情况不存在.故甲班为 58 人,乙班为45 人.3.2 解一元一次方程(一)——合并同类项与移项【知能点分类训练】知能点 1 合并与移项1.下面解一元一次方程的变形对不对?如果不对,指出错在哪里,并改正.( 1)从 3x-8=2 ,得到 3x=2-8; ( 2)从 3x=x-6 ,得到 3x-x=6.2.下列变形中:①由方程=2 去分母,得x-12=10;②由方程x= 两边同除以,得 x=1;③由方程 6x-4=x+4 移项,得 7x=0;④由方程 2- 两边同乘以6,得 12-x-5=3 ( x+3) . 错误变形的个数是()个.A.4 B.3 C.2 D.13.若式子 5x-7 与4x+9A.2 B.16 C. D.的值相等,则x 的值等于().4.合并下列式子,把结果写在横线上.(1) x-2x+4x=__________; ( 2)5y+3y-4y=_________; (3) 4y-2.5y-3.5y=__________ .5.解下列方程.( 1) 6x=3x-7 ( 2) 5=7+2x 3)y- = y-2 ( 4)7y+6=4y-36.根据下列条件求x 的值 :( 1) 25 与 x 的差是 -8.( 2)x的与8的和是2.7.如果方程 3x+4=0 与方程 3x+4k=8 是同解方程,则8.如果关于 y 的方程 3y+4=4a 和 y-5=a 有相同解,则知能点 2 用一元一次方程分析和解决实际问题k=________ .a 的值是 ________.9.一桶色拉油毛重8 千克,从桶中取出一半油后,毛重4.5 千克, ?桶中原有油多少千克?10.如图所示,天平的两个盘内分别盛有 50 克, 45 克盐,问应该从盘 A 内拿出多少盐放到盘 B 内,才能使两盘内所盛盐的质量相等.11.小明每天早上7: 50 从家出发,到距家5 分后,爸爸以180 米 /分的速度去追小明,( 1)爸爸追上小明用了多长时间?( 2)追上小明时距离学校有多远?1000 米的学校上学,?并且在途中追上了他.?每天的行走速度为80 米 /分.一天小明从家出发【综合应用提高】12.已知 y1=2x+8 , y2=6-2x .( 1)当 x 取何值时, y1=y2? ( 2)当 x 取何值时, y1 比 y2 小 5?13.已知关于x 的方程 x=-2 的根比关于x 的方程 5x-2a=0 的根大 2,求关于x 的方程-15=0 的解.【开放探索创新】14.编写一道应用题,使它满足下列要求:( 1)题意适合一元一次方程;( 2)所编应用题完整,题目清楚,且符合实际生活.【中考真题实战】15.(江西)如图 3-2 是某风景区的旅游路线示意图,其中B, C, D 为风景点, E 为两条路的交叉点,图中数据为相应两点间的路程(单位:千米).一学生从 A 处出发,以 2 千米 / 时的速度步行游览,每个景点的逗留时间均为0.5小时.(1)当他沿路线 A —D —C— E— A 游览回到 A 处时,共用了 3 小时,求 CE 的长.(2)若此学生打算从 A 处出发,步行速度与各景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A处,请你为他设计一条步行路线,?并说明这样设计的理由(不考虑其他因素).答: 案1.( 1)题不对, -8 从等号的左边移到右边应该改变符号,应改为 3x=2+8 .(2)题不对, -6 在等号右边没有移项,不应该改变符号,应改为 3x-x=-6 .2. B [ 点拨:方程x= ,两边同除以,得 x= )3. B [ 点拨:由题意可列方程5x-7=4x+9 ,解得 x=16 )4.( 1) 3x ( 2) 4y ( 3) -2y5.( 1)6x=3x-7 ,移项,得6x-3x=-7 ,合并,得 3x=-7 ,∴方程 5x-2a=0 的根为 -6.系数化为1,得 x=- .∴ 5×( -6) -2a=0,∴ a=-15.( 2) 5=7+2x ,即 7+2x=5 ,移项,合并,得 2x=-2 ,系∴ -15=0 .数化为 1,得 x=-1.∴ x=-225 .( 3)y- = y-2,移项,得 y- y=-2+ ,合并,得 y=-,14.本题开放,答案不唯一.系数化为1,得 y=-3 .15.解:( 1)设 CE 的长为 x 千米,依据题意得( 4) 7y+6=4y-3 ,移项,得7y-4y=-3-6 ,合并同类项, 1.6+1+x+1=2 ( 3-2× 0.5)得 3y=-9 ,解得 x=0.4,即 CE 的长为 0.4 千米.系数化为1,得 y=-3 .( 2)若步行路线为 A —D — C— B— E— A(或 A —E— B6.( 1)根据题意可得方程:25-x=-8 ,移项,得25+8=x ,—C—D—A),合并,得 x=33 .则所用时间为( ?1.6+1+1.2+0.4+1 )+3 × 0.5=4.1(小时);( 2)根据题意可得方程:x+8=2 ,移项,得 x=2-8 ,若步行路线为A— D— C—E—B—E—A(或 A—E—B 合并,得x=-6 ,—E—C—D—A),系数化为1,得 x=-10 .则所用时间为( 1.6+1+0.4+0.4 × 2+1)+3 × 0.5=3.9(小7 . k=3 [ 点拨:解方程 3x+4=0 ,得 x=- ,把它代入时).3x+4k=8 ,得 -4+4k=8 ,解得 k=3] 故步行路线应为A—D—C—E—B—E—A(或 A —E—B8.19 [ 点拨:∵ 3y+4=4a ,y-5=a 是同解方程,∴ y==5+a ,—E—C—解得 a=19]9.解:设桶中原有油 x 千克,那么取掉一半油后,余下部分色拉油的毛重为( 8-0.5x )千克,由已知条件知,余下的色拉油的毛重为 4.5 千克,因为余下的色拉油的毛重是一个定值,所以可列方程8-0.5x=4.5 .解这个方程,得x=7 .答:桶中原有油7 千克.[ 点拨:还有其他列法]10.解:设应该从盘 A 内拿出盐x 克,可列出表格:盘A盘B原有盐(克)50 45现有盐(克)50-x 45+x设应从盘 A 内拿出盐x 克放在盘B 内,则根据题意,得50-x=45+x .解这个方程,得x=2.5 ,经检验,符合题意.答:应从盘 A 内拿出盐 2.5 克放入到盘 B 内.11.解:( 1)设爸爸追上小明时,用了x 分,由题意,得180x=80x+80 × 5,移项,得 100x=400 .系数化为1,得 x=4 .所以爸爸追上小明用时 4 分钟.(2) 180× 4=720(米),1000-720=280 (米).所以追上小明时,距离学校还有280 米.12.( 1) x=-[ 点拨:由题意可列方程2x+8=6-2x ,解得 x=- ] ( 2) x=-1.7(2x-1)-3(4x-1)=4(3x+2)-12.(5y+1)+ (1-y)= (9y+1)+ (1-3y)[ 点拨:由题意可列方程6-2x- ( 2x+8 ) =5,解得 x=- ]13.解:∵x=-2,∴ x=-4 .∵方程x=-2 的根比方程5x-2a=0 的根大 2,3.[ (- 2)-4 ]=x+24.20%+(1-20%)(320-x)=320 ×40%5.2(x-2)+2=x+16.2(x-2)-3(4x-1)=9(1-x)7.11x+64-2x=100-9x8.15-(8-5x)=7x+(4-3x)9.3(x-7)-2[9-4(2-x)]=2210.3/2[2/3(1/4x-1)-2]-x=2(x+5y)-(3y-4x)=x+5y-3y+4x10a+6b-7a+3b-10a+10b+12a+8b 4xy-2y+3x-xy(3x-5y)-(6x+7y)+(9x-2y)2a-[3b-5a-(3a-5b)](6m2n-5mn2)-6(m2n-mn2)(5x-4y-3xy)-(8x-y+2xy)a-(a-3b+4c)+3(-c+2b)7x2-7xy+11/2(x6^2-y)+1/3(x-y^2)+(x^2 )( ^为平方号)6-5b-(3a-2b)-(1-6b)(5x-4y-3xy)-(8x-y+2xy) 5b+2c-7b+4z-3z(3x2-4xy+2y2)+(x2+2xy-5y2) 3b+3c-6a+8b-7c-2a(x-y)2-(x-y)2-[(x-y)2-(x-y)2]3c-7b+5z-7b+4a-6n+8b-3v+9n-7v (2k-1)x2-(2k+1)x+32(x-2)-3x-22y-3y+1-6y3b-6c+4c-3a+4b2a-5b+4c-7a+5a+5b-4c4a+6c+7a-6a+7b-3c-6b。

七年级上册数学 解一元一次方程50道专项练习题(含答案)

七年级上册数学 解一元一次方程50道专项练习题(含答案)

七年级上册数学解一元一次方程50道专项练习题(含答案)5)x=1;(6)x=-12;(7)无解;(8)x=1.2、【答案】(1)x=.5;(2)x=-3;(3)x=-9;(4)x=-2;(5)x=22;(6)x=-2;(7)x=.5;(8)x=4.3、【答案】(1)x=4;(2)x=-1;(3)x=-4;(4)x=-5;(5)x=-1;(6)x=3;(7)无解;(8)x =-3.4、【答案】(1)x=-.5;(2)x=-6;(3)x=-1;(4)x=-2;(5)x=-2;(6)x=2;(7)x=-2;(8)x=-2/3.改写后:1、解一元一次方程50道专项练题(含答案)1.1、基础题解方程:1)2x+6=1;2)10x-3=9;3)5x-2=7x+8;4)1-x=3x;5)4x-2=3-x;6)-7x+2=2x-4;7)-x=-x+1;8)2x-=-+2.2.1、基础题解方程:1)4(x-1)=1;2)-2(x-1)=4;3)5(2x-3)=3x+9;4)2-(1+5)=-(2x+1);5)11x+(320-x)=3.3.1、综合Ⅰ解方程:1)(x+1)/(x-4)=(x-2)/(x+1);2)(x+4)/(x-1)-(x-1)/(x+4)=12;3)(x+5)/(x-3)=(x+1)/(x-5);4)x-7=(x+3)/(x-2);5)1/(x+1)+1/(x-1)=(2x-3)/(x²-1);6)(x-1)/(x+2)+(x+2)/(x-1)=4;7)(2x+14)/(x+1)=4-2x;8)(200+x)-(300-x)=300/(x+2)-x/3.参考答案:1、(1)x=3;(2)x=2;(3)x=4;(4)x=6;(5)x=1;(6)x=-12;(7)无解;(8)x=1.2、(1)x=.5;(2)x=-3;(3)x=-9;(4)x=-2;(5)x=22;(6)x=-2;(7)x=.5;(8)x=4.3、(1)x=4;(2)x=-1;(3)x=-4;(4)x=-5;(5)x=-1;(6)x=3;(7)无解;(8)x=-3.4、(1)x=-.5;(2)x=-6;(3)x=-1;(4)x =-2;(5)x=-2;(6)x=2;(7)x=-2;(8)x=-2/3.1.答案:(1) x=0.(2) x=5.(3) x=-5.(4) x=0.解释:(1) 0乘以任何数都等于0;(2) 5的平方等于25;(3) (-5)的平方也等于25;(4) 0乘以任何数都等于0.2.答案:(1) x=1.(2) x=-1.(3) x=0.(4) x=-3.(5) x=4.(6) x=9.解释:(1) 1的平方等于1;(2) (-1)的平方也等于1;(3) 0乘以任何数都等于0;(4) (-3)的平方等于9;(5) 4的平方等于16;(6) 9的平方等于81.3.答案:(1) x=8.(2) x=0.(3) x=-16.(4) x=7.(5) x=-1.(6)x=3.(7) x=-28.(8) x=-5.解释:(1) 等于64;(2) 0乘以任何数都等于0;(3) (-16)的平方等于256;(4) 7的平方等于49;(5) (-1)的平方等于1;(6)3的平方等于9;(7) (-28)的平方等于784;(8) (-5)的平方等于25.4.答案:(1) x=3.(2) x=-8/7.(3) x=0.(4) x=undefined.解释:(1) 3的平方等于9;(2) -8/7的平方等于64/49;(3) 0乘以任何数都等于0;(4) 不能对负数取平方根,所以该问题无解。

七年级数学上册第三章《一元一次方程》综合复习练习题(含答案)

七年级数学上册第三章《一元一次方程》综合复习练习题(含答案)

七年级数学上册第三章《一元一次方程》综合复习练习题(含答案)一、单选题1.已知下列方程:①22x x -=;②0.31x =;③512xx =+;④243x x -=;⑤6x =;⑥20.x y +=其中一元一次方程的个数是( ) A .2B .3C .4D .52.若使方程(2)1m x +=是关于x 的一元一次方程,则m 的值是( ) A .2m ≠-B .0m ≠C .2m ≠D .2m >-3.一支球队参加比赛,开局9场保持不败,共积21分,比赛规定胜一场得3分,平一场得1分,则该队共胜的场数为( ) A .6场B .7场C .8场D .9场4.关于x 的方程4231x m x -=-的解是23x x m =-的解的2倍,则m 的值为( ) A .12B .14C .14-D .12-5.在做科学实验时,老师将第一个量筒中的水全部倒入第二个量筒中,如图所示,根据图中给出的信息,得到的正确方程是( ).A .π×(92)2×x =π×(52)2×(x+4)B .π×92×x =π×92×(x+4)C .π×(92)2×x =π×(52)2×(x-4)D .π×92×x =π×92×(x-4)6.古埃及人的“纸草书”中记载了一个数学问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,若设这个数是x ,则所列方程为( ) A .213337x x x ++=B .21133327x x x ++=C .21133327x x x x +++=D .21133372x x x x ++-=7.我国古代数学名著《九章算术》中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”意思是现有几个人共买一件物品,每人出8钱.多出3钱;每人出7钱,差4钱.问人数,物价各是多少?若设共有x 人,物价是y 钱,则下列方程正确的是( )A .()()8374x x -=+B .8374x x +=-C .3487y y -+= D .3487y y +-= 8.中国古代数学著作《算法统宗》中有这样一段记载,“三百七十八里关;初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是;有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到关口,则此人第一和第六这两天共走了( ) A .102里 B .126里C .192里D .198里9.小明解方程12123x x +--=的步骤如下: 解:方程两边同乘6,得()()31122x x +-=-① 去括号,得33122x x +-=-② 移项,得32231x x -=--+③ 合并同类项,得4x =-④以上解题步骤中,开始出错的一步是( ) A .①B .②C .③D .④10.疫情无情人有情,爱心捐款传真情.某校三个年级为疫情重灾区捐款,经统计,七年级捐款数占全校三个年级捐款总数的25,八年级捐款数是全校三个年级捐款数的平均数,已知九年级捐款1916元,求其他两个年级的捐款数若设七年级捐款数为x 元,则可列方程为( )A .65191652x x x ++=B .21191653x x x ++=C .2191635x x x ++= D .25191652x x x ++= 11.把19-这9个数填入33⨯方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x 的值为:( )A .1B .3C .4D .612.《孙子算经》中有一道题,原文是:今有三人共车,二车空:二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车:若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,可列方程( ) A .2932x x+=- B .9232x x -+=C .9232x x +-=D .2932x x-=+ 二、填空题13.《九章算术》是我国古代数学名著,书中记载:“今有人合伙买羊,每人出5钱,还差45钱;每人出7钱,还差3钱,问合伙人数、羊价各是多少?”设合伙人数为x 人,根据题意可列一元一次方程为__________________.14.如将()x y -看成一个整体,则化简多项式22()5()4()3()x y x y x y x y -----+-=__. 15.有一个一元一次方程:11623x x -=-■,其中“■”表示一个被污染的常数.答案注明方程的解是32x =-,于是这个被污染的常数是___ ___.16.已知2230m x -+=是关于x 的一元一次方程,则m =________________.17.22年冬奥会开幕式上,烟台莱州武校的健儿们参演的立春节目让全世界人民惊艳和动容,小明想知道这震撼人心的队伍的总人数.张老师说你可以自己算算:若调配55座大巴若干辆接送他们,则有8人没有座位;若调配44座大巴接送,则用车数量将增加两辆,并空出3个座位,你能帮小明算出一共去了_______名健儿参演节目吗?18.关于x 的方程5m +3x =1+x 的解比方程2x =6的解小2,则m =___ __. 19.已知x =1是方程31322x k x -=-的解,则23k +的值是_________ _____ 20.已知数轴上的点A ,B 表示的数分别为2-,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 ___ __. 三、解决问题 21.解方程:(1)43(23)12(4)x x x +-=--; (2)121146x x +--=.22.解方程(1)2(x +8)=3(x -1) (2)121124x x --=-23.以下是圆圆解方程1323+--x x =1的解答过程. 解:去分母,得3(x +1)﹣2(x ﹣3)=1. 去括号,得3x +1﹣2x +3=1. 移项,合并同类项,得x =﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.24.根据市场调查,某厂某种消毒液的大瓶装(500g) 和小瓶装(250g) 两种产品的销售数量(按瓶计算)比为2:5.该厂每天生产这种消毒液22.5吨,这些消毒液应分装大、小瓶两种产品各多少瓶?25.某市有甲、乙两个工程队,现有-小区需要进行小区改造,甲工程队单独完成这项工程.需要20天,乙工程队单独完成这项工程所需的时间比甲工程队多12(1)求乙工程队单独完成这项工程需要多少天?(2)现在若甲工程队先做5天,剩余部分再由甲、乙两工程队合作,还需要多少天才能完成?(3)已知甲工程队每天施工费用为4000元,乙工程队每天施工费用为2000元,若该工程总费用政府拨款70000元(全部用完),则甲、乙两个工程队各需要施工多少天?26.对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“联盟点”.例如:数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A,C的“联盟点”.(1)若点A表示数﹣2,点B表示的数4,下列各数,3,2,0所对应的点分别C1,C2,C3,其中是点A,B的“联盟点”的是;(2)点A表示数﹣10,点B表示的数30,P在为数轴上一个动点:①若点P在点B的左侧,且点P是点A,B的“联盟点”,求此时点P表示的数;②若点P在点B的右侧,点P,A,B中,有一个点恰好是其它两个点的“联盟点”,直接写出此时点P表示的数为.27.对数轴上的点P进行如下操作:将点P沿数轴水平方向,以每秒m个单位长度的速度,向右平移n 秒,得到点P ',称这样的操作为点P 的“m 速移”点P '称为点P 的“m 速移”点. (1)点A 、B 在数轴上对应的数分别是a 、b ,且()25150a b ++-=. ①若点A 向右平移n 秒的“5速移”点A '与点B 重合,求n ;②若点A 向右平移n 秒的“2速移”点A '与点B 向右平移n 秒的“1速移”点B '重合,求n ; (2)数轴上点M 表示的数为1,点C 向右平移3秒的“2速移”点为点C ',如果C 、M 、C '三点中有一点是另外两点连线的中点,求点C 表示的数;(3)数轴上E ,F 两点间的距高为3,且点E 在点F 的左侧,点E 向右平移2秒的“x 速移”点为点E ',点F 向右平移2秒的“y 速移”点为点F ',如果3E F EF ''=,请直接用等式表示x ,y 的数量关系。

(完整版)初一数学上册一元一次方程100道

(完整版)初一数学上册一元一次方程100道

精心整理一百道题3X+5X=4814X-8X=126*5+2X=4420X-50=5028+6X=8832-22X=1024-3X=310X*(5+1)=6099X=100-X80y-90=7078y+2y=16088-x=809-4x=120x=4065y-30=10051y-y=10085y+1=-8645x-50=4010*+6=26*=224:8*=1*=3%8*+23=39*=2004*+9=21*=36:2*=3*=15%*-3=2*=1006×+8=68×=108:6×=1/3×=4.x-3/0.5-x+4/0.2=1.6x=-9.22.2x/0.3+8/3-(1.4-3x)/0.2=2(x=1/5)3.(4-6x)/0.01-6.5=(0.02-2x)/0.02-7.5(x=4/5)4.x/0.7-(0.17-0.2x)/0.03=1(x=14/17)14.59+x-25.31=0 x=10.72②x-48.32+78.51=80x=49.81③820-16x=45.5×8④(x-x=5x=2x=2x-2x=32+32x=1+42x=x+13x=3=x4x=4x=56+4x=2*12x=5*610x=15x=106x=710x=1010=x+110=2x+1 10=3x+111=4x+131=12x+34 31=9x+1 31=9x+212=4x+1 12=2x+1 12=3x+1 12=5x+23 1=6x+12312=12x+3412=9x+112=9x+23X+5X=4814X-8X=126*5+2X=4420X-50=5028+6X=8832-22X=1024-3X=310X*(5+1)=6099X=100-XX+3=18X-6=1256-2X=2080y-90=7078y+2y=16088-x=809-4x=120x=4065y-30=10051y-y=10085y+1=-8645x-50=40(x-2)12=8xx=6初一数学上册一元一次方程应用题100道问题补充:第3章一元一次方程全章综合测试(时间90分钟,满分100分)一、填空题.(每小题3分,共24分)1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式x-1和的值互为相反数.456____78•则需9A.10AC11.若方程2ax-3=5x+b无解,则a,b应满足().A.a≠,b≠3B.a=,b=-3C.a≠,b=-3D.a=,b≠-312.把方程的分母化为整数后的方程是().13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t分钟后第一次相遇,t等于().A.10分B.15分C.20分D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().A.增加10%B.减少10%C.不增也不减D.减少1%15b=(A.16ACD1714A.18A.3个B.4个C.5个D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程:7(2x-1)-3(4x-1)=4(3x+2)-120.解方程:(x-1)-(3x+2)=-(x-1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,•这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.•已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个23.千米,(1(224票价5元4.5元4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)答案:一、1 2.-3得3.4.6.525解得7.18 8.4[解得二、9 10.B 当x≥0当x<011.D x=b+3 a=,12.B方程)程得22100((x+1解得23A站所以A (2解得距离为G•24103×>x3.2【知能点分类训练】知能点1合并与移项1.下面解一元一次方程的变形对不对?如果不对,指出错在哪里,并改正.(1)从3x-8=2,得到3x=2-8;(2)从3x=x-6,得到3x-x=6.2.下列变形中:①由方程=2去分母,得x-12=10;②由方程x=两边同除以,得x=1;③由方程6x-4=x+4移项,得7x=0;④由方程2-两边同乘以6,得12-x-5=3(x+3).错误变形的个数是()个.A.4B3A.2B4(1)(3)5(1)6(1)78知能点9.一桶色拉油毛重8千克,从桶中取出一半油后,毛重4.5千克,•桶中原有油多少千克?10.如图所示,天平的两个盘内分别盛有50克,45克盐,问应该从盘A内拿出多少盐放到盘B内,才能使两盘内所盛盐的质量相等.11.小明每天早上7:50从家出发,到距家1000米的学校上学,•每天的行走速度为80米/分.一天小明从家出发5分后,爸爸以180米/分的速度去追小明,•并且在途中追上了他.(1)爸爸追上小明用了多长时间?(2)追上小明时距离学校有多远?【综合应用提高】12(113.-15=0的解.14(1(215.为两2千米/(1(2)若此学生打算从A处出发,步行速度与各景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A处,请你为他设计一条步行路线,•并说明这样设计的理由(不考虑其他因素).答:案1.(1)题不对,-8从等号的左边移到右边应该改变符号,应改为3x=2+8.(2)题不对,-6在等号右边没有移项,不应该改变符号,应改为3x-x=-6.2.B[点拨:方程x=,两边同除以,得x=)3.B[点拨:由题意可列方程5x-7=4x+9,解得x=16)4.(15.(1并,得(2)得(3)y=-(4)6.(1项,得(2得x=2-8,合并,得x=-6,系数化为1,得x=-10.7.k=3[点拨:解方程3x+4=0,得x=-,把它代入3x+4k=8,得-4+4k=8,解得k=3] 8.19[点拨:∵3y+4=4a,y-5=a是同解方为盘A盘B原有盐(克)5045现有盐(克)50-x45+x设应从盘A内拿出盐x克放在盘B内,则根据题意,得50-x=45+x.解这个方程,得x=2.5,经检验,符合题意.答:应从盘A内拿出盐2.5克放入到盘B 内.11.解:(1)设爸爸追上小明时,用了x(2)12.(1[x=-](2)[解得13.解:∵x=-2,∴x=-4.∵方程x=-2的根比方程5x-2a=0的根大2,∴方程5x-2a=0的根为-6.∴5×(-6)-2a=0,∴a=-15.∴-15=0.∴x=-225.14.本题开放,答案不唯一.15.解:(1)设CE的长为x千米,依据题意得1.6+1+x+1=2(3-2×0.5)E—A+3×A(或)+3E—A4.20%+(1-20%)(320-x)=320×40%5.2(x-2)+2=x+16.2(x-2)-3(4x-1)=9(1-x)7.11x+64-2x=100-9x8.15-(8-5x)=7x+(4-3x)9.3(x-7)-2[9-4(2-x)]=2210.3/2[2/3(1/4x-1)-2]-x=2(x+5y)-(3y-4x)=x+5y-3y+4x1/2(x6^2-y)+1/3(x-y^2)+(x^2)(^为平方号)10a+6b-7a+3b-10a+10b+12a+8b4xy-2y+3x-xy(3x-5y)-(6x+7y)+(9x-2y)2a-[3b-5a-(3a-5b)](6m2n-5mn2)-6(m2n-mn2) (5x-4y-3xy)-(8x-y+2xy)a-(a-3b+4c)+3(-c+2b)7x2-7xy+16-5b-(3a-2b)-(1-6b)(5x-4y-3xy)-(8x-y+2xy)(3x2-4xy+2y2)+(x2+2xy-5y2)。

初一数学上册一元一次方程100道

初一数学上册一元一次方程100道

一百道题3X+5X=48 14X-8X=12 6*5+2X=4420X-50=50 28+6X=88 32-22X=1024-3X=3 10X*(5+1)=60 99X=100-X X+3=18 X-6=12 56-2X=204y+2=6 x+32=76 3x+6=1816+8x=40 2x-8=8 4x-3*9=298x-3x=105 x-6*5=42 x+5=72x+3=10 12x-9x=9 6x+18=4856x-50x=30 5x=15 78-5x=2832y-29=3 5x+5=15 89x-9=80100-20x=20 55x-25x=60 76y-75=1 23y-23=23 4x-20=0 80y+20=10053x-90=16 2x+9x=11 12y-12=2480+5x=100 7x-8=6 65x+35=10019y+y=40 25-5x=15 79y+y=8042x+28x=140 3x-1=8 90y-90=9080y-90=70 78y+2y=160 88-x=809-4x=1 20x=40 65y-30=10051y-y=100 85y+1=-86 45x-50=4010*+6=26 *=2 24:8*=1 *=3 %8*+23=39 *=200 4*+9=21 *=3 6:2*=3 *=1 5%*-3=2 *=100 6×+8=68 ×=10 8:6×=1/3 ×=4 .x-3/+4/= x=+8/3-/=2 (x=1/5)3.(4-6x)/ (x=4/5)(x=14/17)+=0x=②+=80x=③820-16x=×8x=④(x-6)×7=2xx=⑤3x+x=18 x=⑥+=x=5⑦=x=2⑧=x=2x=3+5 x=2*33x=x+1 x=2x-2 x=32+3 2x=1+4 2x=x+1 3x=3=x 4x=4x=56+4x=3*42x=5*610x=15x=106x=710x=1010=x+110=2x+1 10=3x+111=4x+1 11=2x+1 11=3x+1 11=5x+23 11=6x+123 11=7x+2 11=12x+34 11=9x+1 11=9x+221=4x+1 21=2x+1 21=3x+1 21=5x+23 21=6x+123 21=7x+2 21=12x+34 21=9x+131=4x+131=2x+131=3x+131=5x+2331=6x+12331=7x+231=12x+3431=9x+131=9x+212=4x+112=2x+112=3x+112=5x+231=6x+12312=7x+212=12x+3412=9x+112=9x+23X+5X=48 14X-8X=12 6*5+2X=4420X-50=50 28+6X=88 32-22X=1024-3X=3 10X*(5+1)=60 99X=100-X X+3=18 X-6=12 56-2X=204y+2=6 x+32=76 3x+6=1816+8x=40 2x-8=8 4x-3*9=298x-3x=105 x-6*5=42 x+5=72x+3=10 12x-9x=9 6x+18=4856x-50x=30 5x=15 78-5x=2832y-29=3 5x+5=15 89x-9=80100-20x=20 55x-25x=60 76y-75=1 23y-23=23 4x-20=0 80y+20=100 53x-90=16 2x+9x=11 12y-12=24 80+5x=100 7x-8=6 65x+35=10019y+y=40 25-5x=15 79y+y=8042x+28x=140 3x-1=8 90y-90=90 80y-90=70 78y+2y=160 88-x=80 9-4x=1 20x=40 65y-30=10051y-y=100 85y+1=-86 45x-50=40(x-2)12=8xx=6初一数学上册一元一次方程应用题100道问题补充:第3章一元一次方程全章综合测试(时间90分钟,满分100分)一、填空题.(每小题3分,共24分)1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式 x-1和的值互为相反数.4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x的代数式表示y,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题.(每小题3分,共30分)9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为().A.0 B.1 C.-2 D.-10.方程│3x│=18的解的情况是().A.有一个解是6 B.有两个解,是±6C.无解 D.有无数个解11.若方程2ax-3=5x+b无解,则a,b应满足().A.a≠,b≠3 B.a= ,b=-3C.a≠,b=-3 D.a= ,b≠-312.把方程的分母化为整数后的方程是().13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t分钟后第一次相遇,t等于().A.10分 B.15分 C.20分 D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().A.增加10% B.减少10% C.不增也不减 D.减少1%15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( •)厘米.A.1 B.5 C.3 D.416.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是().A.从甲组调12人去乙组 B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了()场.A.3 B.4 C.5 D.618.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡()A.3个 B.4个 C.5个 D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程:7(2x-1)-3(4x-1)=4(3x+2)-1 20.解方程:(x-1)- (3x+2)= - (x-1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,•这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.•已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.23.据了解,火车票价按“”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名 A B C D E F G H各站至H站里程数(米) 1500 1130 910 622 402 219 72 0例如:要确定从B站至E站火车票价,其票价为 =≈87(元).(1)求A站至F站的火车票价(结果精确到1元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:•“我快到站了吗”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).24.某公园的门票价格规定如下表:购票人数 1~50人 51~100人 100人以上票价 5元元 4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱(2)两班各有多少名学生(提示:本题应分情况讨论)答案:一、1.32.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3.(点拨:解方程 x-1=- ,得x= )4. x+3x=2x-6 5.y= - x6.525 (点拨:设标价为x元,则 =5%,解得x=525元)7.18,20,228.4 [点拨:设需x天完成,则x( + )=1,解得x=4]二、9.D10.B (点拨:用分类讨论法:当x≥0时,3x=18,∴x=6当x<0时,-3=18,∴x=-6故本题应选B)11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、•分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800•米,•列方程得260t+800=300t,解得t=20)14.D15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)16.D 17.C18.A (点拨:根据等式的性质2)三、19.解:原方程变形为 200(2-3y)=∴=500y=404∴y=20.解:去分母,得15(x-1)-8(3x+2)=2-30(x-1)∴21x=63∴x=321.解:设卡片的长度为x厘米,根据图意和题意,得 5x=3(x+10),解得x=15所以需配正方形图片的边长为15-10=5(厘米)答:需要配边长为5厘米的正方形图片.22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171解得x=3答:原三位数是437.23.解:(1)由已知可得 =A站至H站的实际里程数为1500-219=1281(千米)所以A站至F站的火车票价为×1281=≈154(元)(2)设王大妈实际乘车里程数为x千米,根据题意,得 =66解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G•站下的车.24.解:(1)∵103>100∴每张门票按4元收费的总票额为103×4=412(元)可节省486-412=74(元)(2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班多于50人,乙班有两种情形:①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得5x+(103-x)=486解得x=45,∴103-45=58(人)即甲班有58人,乙班有45人.②若乙班超过50人,设乙班x人,则甲班有(103-x)人,根据题意,得+(103-x)=486∵此等式不成立,∴这种情况不存在.故甲班为58人,乙班为45人.解一元一次方程(一)——合并同类项与移项【知能点分类训练】知能点1 合并与移项1.下面解一元一次方程的变形对不对如果不对,指出错在哪里,并改正.(1)从3x-8=2,得到3x=2-8; (2)从3x=x-6,得到3x-x=6.2.下列变形中:①由方程 =2去分母,得x-12=10;②由方程 x= 两边同除以,得x=1;③由方程6x-4=x+4移项,得7x=0;④由方程2- 两边同乘以6,得12-x-5=3(x+3).错误变形的个数是()个.A.4 B.3 C.2 D.13.若式子5x-7与4x+9的值相等,则x的值等于().A.2 B.16 C. D.4.合并下列式子,把结果写在横线上.(1)x-2x+4x=__________; (2)5y+3y-4y=_________;(3)5.解下列方程.(1)6x=3x-7 (2)5=7+2x 3)y- = y-2 (4)7y+6=4y-36.根据下列条件求x的值:(1)25与x的差是-8.(2)x的与8的和是2.7.如果方程3x+4=0与方程3x+4k=8是同解方程,则k=________.8.如果关于y的方程3y+4=4a和y-5=a有相同解,则a的值是________.知能点2 用一元一次方程分析和解决实际问题9.一桶色拉油毛重8千克,从桶中取出一半油后,毛重千克,•桶中原有油多少千克10.如图所示,天平的两个盘内分别盛有50克,45克盐,问应该从盘A内拿出多少盐放到盘B内,才能使两盘内所盛盐的质量相等.11.小明每天早上7:50从家出发,到距家1000米的学校上学,•每天的行走速度为80米/分.一天小明从家出发5分后,爸爸以180米/分的速度去追小明,•并且在途中追上了他.(1)爸爸追上小明用了多长时间(2)追上小明时距离学校有多远【综合应用提高】12.已知y1=2x+8,y2=6-2x.(1)当x取何值时,y1=y2 (2)当x取何值时,y1比y2小513.已知关于x的方程 x=-2的根比关于x的方程5x-2a=0的根大2,求关于x的方程 -15=0的解.【开放探索创新】14.编写一道应用题,使它满足下列要求:(1)题意适合一元一次方程;(2)所编应用题完整,题目清楚,且符合实际生活.【中考真题实战】15.(江西)如图3-2是某风景区的旅游路线示意图,其中B,C,D为风景点,E为两条路的交叉点,图中数据为相应两点间的路程(单位:千米).一学生从A处出发,以2千米/时的速度步行游览,每个景点的逗留时间均为0.5小时.(1)当他沿路线A—D—C—E—A游览回到A处时,共用了3小时,求CE的长.(2)若此学生打算从A处出发,步行速度与各景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A 处,请你为他设计一条步行路线,•并说明这样设计的理由(不考虑其他因素).答: 案1.(1)题不对,-8从等号的左边移到右边应该改变符号,应改为3x=2+8.(2)题不对,-6在等号右边没有移项,不应该改变符号,应改为3x-x=-6.2.B [点拨:方程 x= ,两边同除以,得x= )3.B [点拨:由题意可列方程5x-7=4x+9,解得x=16)4.(1)3x (2)4y (3)-2y5.(1)6x=3x-7,移项,得6x-3x=-7,合并,得3x=-7,系数化为1,得x=- .(2)5=7+2x,即7+2x=5,移项,合并,得2x=-2,系数化为1,得x=-1.(3)y- = y-2,移项,得y- y=-2+ ,合并,得 y=- ,系数化为1,得y=-3.(4)7y+6=4y-3,移项,得7y-4y=-3-6,合并同类项,得3y=-9,系数化为1,得y=-3.6.(1)根据题意可得方程:25-x=-8,移项,得25+8=x,合并,得x=33.(2)根据题意可得方程: x+8=2,移项,得 x=2-8,合并,得 x=-6,系数化为1,得x=-10.7.k=3 [点拨:解方程3x+4=0,得x=- ,把它代入3x+4k=8,得-4+4k=8,解得k=3] 8.19 [点拨:∵3y+4=4a,y-5=a是同解方程,∴y= =5+a,解得a=19]9.解:设桶中原有油x千克,那么取掉一半油后,余下部分色拉油的毛重为()千克,由已知条件知,余下的色拉油的毛重为千克,因为余下的色拉油的毛重是一个定值,所以可列方程=.解这个方程,得x=7.答:桶中原有油7千克.[点拨:还有其他列法]10.解:设应该从盘A内拿出盐x克,可列出表格:盘A 盘B原有盐(克) 50 45现有盐(克) 50-x 45+x设应从盘A内拿出盐x克放在盘B内,则根据题意,得50-x=45+x.解这个方程,得x=,经检验,符合题意.答:应从盘A内拿出盐克放入到盘B内.11.解:(1)设爸爸追上小明时,用了x分,由题意,得180x=80x+80×5,移项,得100x=400.系数化为1,得x=4.所以爸爸追上小明用时4分钟.(2)180×4=720(米),1000-720=280(米).所以追上小明时,距离学校还有280米.12.(1)x=-[点拨:由题意可列方程2x+8=6-2x,解得x=- ](2)x=-[点拨:由题意可列方程6-2x-(2x+8)=5,解得x=- ] 13.解:∵ x=-2,∴x=-4.∵方程 x=-2的根比方程5x-2a=0的根大2,∴方程5x-2a=0的根为-6.∴5×(-6)-2a=0,∴a=-15.∴ -15=0.∴x=-225.14.本题开放,答案不唯一.15.解:(1)设CE的长为x千米,依据题意得+1+x+1=2(3-2×)解得x=,即CE的长为千米.(2)若步行路线为A—D—C—B—E—A(或A—E—B—C —D—A),则所用时间为(•+1+++1)+3×=(小时);若步行路线为A—D—C—E—B—E—A(或A—E—B—E—C—D—A),则所用时间为(+1++×2+1)+3×=(小时).故步行路线应为A—D—C—E—B—E—A(或A—E—B—E —C—1. 7(2x-1)-3(4x-1)=4(3x+2)-12. (5y+1)+ (1-y)= (9y+1)+ (1-3y)3 .[ (- 2)-4 ]=x+24. 20%+(1-20%)(320-x)=320×40%5. 2(x-2)+2=x+16. 2(x-2)-3(4x-1)=9(1-x)7. 11x+64-2x=100-9x8. 15-(8-5x)=7x+(4-3x)9. 3(x-7)-2[9-4(2-x)]=2210. 3/2[2/3(1/4x-1)-2]-x=2(x+5y)-(3y-4x)=x+5y-3y+4x1/2(x6^2-y)+1/3(x-y^2)+(x^2)(^为平方号)10a+6b-7a+3b-10a+10b+12a+8b4xy-2y+3x-xy (3x-5y)-(6x+7y)+(9x-2y) 2a-[3b-5a-(3a-5b)](6m2n-5mn2)-6(m2n-mn2) (5x-4y-3xy)-(8x-y+2xy) a-(a-3b+4c)+3(-c+2b)7x2-7xy+16-5b-(3a-2b)-(1-6b)(5x-4y-3xy)-(8x-y+2xy)(3x2-4xy+2y2)+(x2+2xy-5y2)(x-y)2-(x-y)2-[(x-y)2-(x-y)2] (2k-1)x2-(2k+1)x+32(x-2)-3x-22y-3y+1-6y3b-6c+4c-3a+4b2a-5b+4c-7a+5a+5b-4c4a+6c+7a-6a+7b-3c-6b5b+2c-7b+4z-3z 3b+3c-6a+8b-7c-2a3c-7b+5z-7b+4a-6n+8b-3v+9n-7v。

初一数学上册一元一次方程100道

初一数学上册一元一次方程100道

一百道题3X+5X=48 14X-8X=12 6*5+2X=4420X-50=50 28+6X=88 32-22X=1024-3X=3 10X*(5+1)=60 99X=100-XX+3=18 X-6=12 56-2X=204y+2=6 x+32=76 3x+6=1816+8x=40 2x-8=8 4x-3*9=298x-3x=105 x-6*5=42 x+5=72x+3=10 12x-9x=9 6x+18=4856x-50x=30 5x=15 78-5x=2832y-29=3 5x+5=15 89x-9=80100-20x=20 55x-25x=60 76y-75=123y-23=23 4x-20=0 80y+20=10053x-90=16 2x+9x=11 12y-12=2480+5x=100 7x-8=6 65x+35=10019y+y=40 25-5x=15 79y+y=8042x+28x=140 3x-1=8 90y-90=9080y-90=70 78y+2y=160 88-x=809-4x=1 20x=40 65y-30=10051y-y=100 85y+1=-86 45x-50=4010*+6=26 *=2 24:8*=1 *=3 %8*+23=39 *=200 4*+9=21 *=3 6:2*=3 *=1 5%*-3=2 *=100 6×+8=68 ×=10 8:6×=1/3 ×=4 .x-3/0.5-x+4/0.2=1.6 x=-9.22.2x/0.3+8/3-(1.4-3x)/0.2=2 (x=1/5)3.(4-6x)/0.01-6.5=(0.02-2x)/0.02-7.5 (x=4/5)②x-48.32+78.51=80x=49.81③820-16x=45.5×8 x=28.5④(x-6)×7=2xx=8.4⑤3x+x=18x=4.5⑥0.8+3.2=7.2x=5⑦12.5-3x=6.5x=2⑧1.2(x-0.64)=0.54x=1.092x=3+5x=2*33x=x+1x=2x-2x=32+32x=1+42x=x+13x=3=x4x=4x=56+4x=2*1x=3*42x=5*610x=15x=106x=710=3x+111=4x+111=2x+111=3x+111=5x+2311=6x+12311=7x+211=12x+3411=9x+111=9x+221=4x+121=2x+121=3x+121=5x+2321=6x+12321=7x+221=12x+3421=9x+121=9x+231=4x+131=2x+131=3x+131=5x+2331=6x+12331=7x+231=12x+3431=9x+131=9x+212=4x+112=2x+112=3x+112=5x+231=6x+12312=7x+212=12x+3412=9x+112=9x+23X+5X=48 14X-8X=12 6*5+2X=44 20X-50=50 28+6X=88 32-22X=10X+3=18 X-6=12 56-2X=204y+2=6 x+32=76 3x+6=1816+8x=40 2x-8=8 4x-3*9=298x-3x=105 x-6*5=42 x+5=72x+3=10 12x-9x=9 6x+18=4856x-50x=30 5x=15 78-5x=2832y-29=3 5x+5=15 89x-9=80100-20x=20 55x-25x=60 76y-75=123y-23=23 4x-20=0 80y+20=10053x-90=16 2x+9x=11 12y-12=2480+5x=100 7x-8=6 65x+35=10019y+y=40 25-5x=15 79y+y=8042x+28x=140 3x-1=8 90y-90=9080y-90=70 78y+2y=160 88-x=809-4x=1 20x=40 65y-30=10051y-y=100 85y+1=-86 45x-50=40(x-2)12=8xx=6初一数学上册一元一次方程应用题100道问题补充:第3章一元一次方程全章综合测试(时间90分钟,满分100分)一、填空题.(每小题3分,共24分)1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式x-1和的值互为相反数.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题.(每小题3分,共30分)9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为().A.0 B.1 C.-2 D.-10.方程│3x│=18的解的情况是().A.有一个解是6 B.有两个解,是±6C.无解D.有无数个解11.若方程2ax-3=5x+b无解,则a,b应满足().A.a≠,b≠3 B.a= ,b=-3C.a≠,b=-3 D.a= ,b≠-312.把方程的分母化为整数后的方程是().13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t 分钟后第一次相遇,t等于().A.10分B.15分C.20分D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().A.增加10% B.减少10% C.不增也不减D.减少1%15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=(•)厘米.A.1 B.5 C.3 D.416.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是().A.从甲组调12人去乙组B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了()场.A.3 B.4 C.5 D.618.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?()A.3个B.4个C.5个D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程:7(2x-1)-3(4x-1)=4(3x+2)-1 20.解方程:(x-1)- (3x+2)= - (x-1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,•这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.•已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠23.据了解,火车票价按“”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名 A B C D E F G H各站至H站里程数(米)1500 1130 910 622 402 219 72 0例如:要确定从B站至E站火车票价,其票价为=87.36≈87(元).(1)求A站至F站的火车票价(结果精确到1元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:•“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).24.某公园的门票价格规定如下表:购票人数1~50人51~100人100人以上票价5元 4.5元4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)答案:一、1.32.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3.(点拨:解方程x-1=- ,得x= )4.x+3x=2x-6 5.y= - x 8.4 [点拨:设需x天完成,则x(+ )=1,解得x=4] 二、9.D10.B (点拨:用分类讨论法:当x≥0时,3x=18,∴x=6当x<0时,-3=18,∴x=-6故本题应选B)12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、•分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800•米,•列方程得260t+800=300t,解得t=20)14.D15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)16.D 17.C18.A (点拨:根据等式的性质2)三、19.解:原方程变形为200(2-3y)-4.5= -9.5∴400-600y-4.5=1-100y-9.5500y=404∴y=20.解:去分母,得15(x-1)-8(3x+2)=2-30(x-1)∴21x=63∴x=321.解:设卡片的长度为x厘米,根据图意和题意,得5x=3(x+10),解得x=15所以需配正方形图片的边长为15-10=5(厘米)答:需要配边长为5厘米的正方形图片.22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171解得x=3答:原三位数是437.23.解:(1)由已知可得=0.12A站至H站的实际里程数为1500-219=1281(千米)所以A站至F站的火车票价为0.12×1281=153.72≈154(元)(2)设王大妈实际乘车里程数为x千米,根据题意,得=66解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G•站下的车.24.解:(1)∵103>100∴每张门票按4元收费的总票额为103×4=412(元)可节省486-412=74(元)(2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班多于50人,乙班有两种情形:①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得5x+4.5(103-x)=486解得x=45,∴103-45=58(人)即甲班有58人,乙班有45人.②若乙班超过50人,设乙班x人,则甲班有(103-x)人,根据题意,得4.5x+4.5(103-x)=486∵此等式不成立,∴这种情况不存在.故甲班为58人,乙班为45人.3.2 解一元一次方程(一)——合并同类项与移项【知能点分类训练】知能点1 合并与移项1.下面解一元一次方程的变形对不对?如果不对,指出错在哪里,并改正.(1)从3x-8=2,得到3x=2-8; (2)从3x=x-6,得到3x-x=6.2.下列变形中:①由方程=2去分母,得x-12=10;②由方程x= 两边同除以,得x=1;③由方程6x-4=x+4移项,得7x=0;④由方程2- 两边同乘以6,得12-x-5=3(x+3).错误变形的个数是()个.A.4 B.3 C.2 D.13.若式子5x-7与4x+9的值相等,则x的值等于().A.2 B.16 C.D.4.合并下列式子,把结果写在横线上.(1)x-2x+4x=__________; (2)5y+3y-4y=_________;(3)4y-2.5y-3.5y=__________.5.解下列方程.(1)6x=3x-7 (2)5=7+2x 3)y- = y-2 (4)7y+6=4y-36.根据下列条件求x的值:(1)25与x的差是-8.(2)x的与8的和是2.7.如果方程3x+4=0与方程3x+4k=8是同解方程,则k=________.8.如果关于y的方程3y+4=4a和y-5=a有相同解,则a的值是________.知能点2 用一元一次方程分析和解决实际问题9.一桶色拉油毛重8千克,从桶中取出一半油后,毛重4.5千克,•桶中原有油多少千克?10.如图所示,天平的两个盘内分别盛有50克,45克盐,问应该从盘A内拿出多少盐放到盘B内,才能使两盘内所盛盐的质量相等.11.小明每天早上7:50从家出发,到距家1000米的学校上学,•每天的行走速度为80米/分.一天小明从家出发5分后,爸爸以180米/分的速度去追小明,•并且在途中追上了他.(1)爸爸追上小明用了多长时间?(2)追上小明时距离学校有多远?【综合应用提高】12.已知y1=2x+8,y2=6-2x.(1)当x取何值时,y1=y2? (2)当x取何值时,y1比y2小5?13.已知关于x的方程x=-2的根比关于x的方程5x-2a=0的根大2,求关于x的方程-15=0的解.【开放探索创新】14.编写一道应用题,使它满足下列要求:(1)题意适合一元一次方程;(2)所编应用题完整,题目清楚,且符合实际生活.【中考真题实战】15.(江西)如图3-2是某风景区的旅游路线示意图,其中B,C,D为风景点,E为两条路的交叉点,图中数据为相应两点间的路程(单位:千米).一学生从A处出发,以2千米/时的速度步行游览,每个景点的逗留时间均为0.5小时.(1)当他沿路线A—D—C—E—A游览回到A处时,共用了3小时,求CE的长.(2)若此学生打算从A处出发,步行速度与各景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A 处,请你为他设计一条步行路线,•并说明这样设计的理由(不考虑其他因素).答: 案1.(1)题不对,-8从等号的左边移到右边应该改变符号,应改为3x=2+8.3.B [点拨:由题意可列方程5x-7=4x+9,解得x=16)4.(1)3x (2)4y (3)-2y5.(1)6x=3x-7,移项,得6x-3x=-7,合并,得3x=-7,系数化为1,得x=- .(2)5=7+2x,即7+2x=5,移项,合并,得2x=-2,系数化为1,得x=-1.(3)y- = y-2,移项,得y- y=-2+ ,合并,得y=- ,系数化为1,得y=-3.(4)7y+6=4y-3,移项,得7y-4y=-3-6,合并同类项,得3y=-9,系数化为1,得y=-3.6.(1)根据题意可得方程:25-x=-8,移项,得25+8=x,合并,得x=33.(2)根据题意可得方程:x+8=2,移项,得x=2-8,合并,得x=-6,系数化为1,得x=-10.7.k=3 [点拨:解方程3x+4=0,得x=- ,把它代入3x+4k=8,得-4+4k=8,解得k=3]8.19 [点拨:∵3y+4=4a,y-5=a是同解方程,∴y= =5+a,解得a=19]9.解:设桶中原有油x千克,那么取掉一半油后,余下部分色拉油的毛重为(8-0.5x)千克,由已知条件知,余下的色拉油的毛重为4.5千克,因为余下的色拉油的毛重是一个定值,所以可列方程8-0.5x=4.5.解这个方程,得x=7.答:桶中原有油7千克.[点拨:还有其他列法]10.解:设应该从盘A内拿出盐x克,可列出表格:盘A 盘B原有盐(克)50 45现有盐(克)50-x 45+x设应从盘A内拿出盐x克放在盘B内,则根据题意,得50-x=45+x.解这个方程,得x=2.5,经检验,符合题意.答:应从盘A内拿出盐2.5克放入到盘B内.11.解:(1)设爸爸追上小明时,用了x分,由题意,得180x=80x+80×5,移项,得100x=400.系数化为1,得x=4.所以爸爸追上小明用时4分钟.(2)180×4=720(米),1000-720=280(米).所以追上小明时,距离学校还有280米.12.(1)x=-[点拨:由题意可列方程2x+8=6-2x,解得x=- ](2)x=- ∴方程5x-2a=0的根为-6.∴5×(-6)-2a=0,∴a=-15.∴-15=0.∴x=-225.14.本题开放,答案不唯一.15.解:(1)设CE的长为x千米,依据题意得1.6+1+x+1=2(3-2×0.5)解得x=0.4,即CE的长为0.4千米.(2)若步行路线为A—D—C—B—E—A(或A—E—B —C—D—A),则所用时间为(•1.6+1+1.2+0.4+1)+3×0.5=4.1(小时);若步行路线为A—D—C—E—B—E—A(或A—E—B —E—C—D—A),则所用时间为(1.6+1+0.4+0.4×2+1)+3×0.5=3.9(小时).故步行路线应为A—D—C—E—B—E—A(或A—E—B —E—C—1. 7(2x-1)-3(4x-1)=4(3x+2)-12. (5y+1)+ (1-y)= (9y+1)+ (1-3y)4. 20%+(1-20%)(320-x)=320×40%5. 2(x-2)+2=x+16. 2(x-2)-3(4x-1)=9(1-x)7. 11x+64-2x=100-9x8. 15-(8-5x)=7x+(4-3x)9. 3(x-7)-2[9-4(2-x)]=2210. 3/2[2/3(1/4x-1)-2]-x=2(x+5y)-(3y-4x)=x+5y-3y+4x1/2(x6^2-y)+1/3(x-y^2)+(x^2)(^为平方号)10a+6b-7a+3b-10a+10b+12a+8b 4xy-2y+3x-xy(3x-5y)-(6x+7y)+(9x-2y)2a-[3b-5a-(3a-5b)](6m2n-5mn2)-6(m2n-mn2)(5x-4y-3xy)-(8x-y+2xy)a-(a-3b+4c)+3(-c+2b)7x2-7xy+16-5b-(3a-2b)-(1-6b)(5x-4y-3xy)-(8x-y+2xy)(3x2-4xy+2y2)+(x2+2xy-5y2) (x-y)2-(x-y)2-[(x-y)2-(x-y)2] (2k-1)x2-(2k+1)x+32(x-2)-3x-22y-3y+1-6y3b-6c+4c-3a+4b2a-5b+4c-7a+5a+5b-4c4a+6c+7a-6a+7b-3c-6b 5b+2c-7b+4z-3z3b+3c-6a+8b-7c-2a3c-7b+5z-7b+4a-6n+8b-3v+9n-7v。

初一数学上册一元一次方程100道

初一数学上册一元一次方程100道

一百道题3X+5X=48 14X-8X=12 6*5+2X=4420X-50=50 28+6X=88 32-22X=1024-3X=3 10X*(5+1)=60 99X=100-XX+3=18 X-6=12 56-2X=204y+2=6 x+32=76 3x+6=1816+8x=40 2x-8=8 4x-3*9=298x-3x=105 x-6*5=42 x+5=72x+3=10 12x-9x=9 6x+18=4856x-50x=30 5x=15 78-5x=2832y-29=3 5x+5=15 89x-9=80100-20x=20 55x-25x=60 76y-75=123y-23=23 4x-20=0 80y+20=10053x-90=16 2x+9x=11 12y-12=2480+5x=100 7x-8=6 65x+35=10019y+y=40 25-5x=15 79y+y=8042x+28x=140 3x-1=8 90y-90=9080y-90=70 78y+2y=160 88-x=809-4x=1 20x=40 65y-30=10051y-y=100 85y+1=-86 45x-50=4010*+6=26 *=2 24:8*=1 *=3 %8*+23=39 *=200 4*+9=21 *=3 6:2*=3 *=1 5%*-3=2 *=100 6×+8=68 ×=10 8:6×=1/3 ×=4 .x-3/0.5-x+4/0.2=1.6 x=-9.22.2x/0.3+8/3-(1.4-3x)/0.2=2 (x=1/5)3.(4-6x)/0.01-6.5=(0.02-2x)/0.02-7.5 (x=4/5)4.x/0.7-(0.17-0.2x)/0.03=1 (x=14/17)14.59+x-25.31=0②x-48.32+78.51=80x=49.81③820-16x=45.5×8 x=28.5④(x-6)×7=2xx=8.4⑤3x+x=18x=4.5⑥0.8+3.2=7.2x=5⑦12.5-3x=6.5x=2⑧1.2(x-0.64)=0.54x=1.092x=3+5x=2*33x=x+1x=2x-2x=32+32x=1+42x=x+13x=3=x4x=4x=56+4x=2*1x=3*42x=5*610x=15x=106x=710x=1010=x+110=3x+111=4x+111=2x+111=3x+111=5x+2311=6x+12311=7x+211=12x+3411=9x+111=9x+221=4x+121=2x+121=3x+121=5x+2321=6x+12321=7x+221=12x+3421=9x+121=9x+231=4x+131=2x+131=3x+131=5x+2331=6x+12331=7x+231=12x+3431=9x+131=9x+212=4x+112=2x+112=3x+112=5x+231=6x+12312=7x+212=12x+3412=9x+112=9x+23X+5X=48 14X-8X=12 6*5+2X=4420X-50=50 28+6X=88 32-22X=1024-3X=3 10X*(5+1)=60 99X=100-XX+3=18 X-6=12 56-2X=204y+2=6 x+32=76 3x+6=1816+8x=40 2x-8=8 4x-3*9=298x-3x=105 x-6*5=42 x+5=72x+3=10 12x-9x=9 6x+18=4856x-50x=30 5x=15 78-5x=2832y-29=3 5x+5=15 89x-9=80100-20x=20 55x-25x=60 76y-75=123y-23=23 4x-20=0 80y+20=10053x-90=16 2x+9x=11 12y-12=2480+5x=100 7x-8=6 65x+35=10019y+y=40 25-5x=15 79y+y=8042x+28x=140 3x-1=8 90y-90=9080y-90=70 78y+2y=160 88-x=809-4x=1 20x=40 65y-30=10051y-y=100 85y+1=-86 45x-50=40(x-2)12=8xx=6初一数学上册一元一次方程应用题100道问题补充:第3章一元一次方程全章综合测试(时间90分钟,满分100分)一、填空题.(每小题3分,共24分)1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式x-1和的值互为相反数.4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x的代数式表示y,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题.(每小题3分,共30分)9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为().A.0 B.1 C.-2 D.-10.方程│3x│=18的解的情况是().A.有一个解是6 B.有两个解,是±6C.无解D.有无数个解11.若方程2ax-3=5x+b无解,则a,b应满足().A.a≠,b≠3 B.a= ,b=-3C.a≠,b=-3 D.a= ,b≠-312.把方程的分母化为整数后的方程是().13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t 分钟后第一次相遇,t等于().A.10分B.15分C.20分D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().A.增加10% B.减少10% C.不增也不减D.减少1%15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=(•)厘米.A.1 B.5 C.3 D.416.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是().A.从甲组调12人去乙组B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了()场.A.3 B.4 C.5 D.618.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?()A.3个B.4个C.5个D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程:7(2x-1)-3(4x-1)=4(3x+2)-1 20.解方程:(x-1)- (3x+2)= - (x-1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,•这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.•已知卡片的短边长度为10厘米,想要配三图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.23.据了解,火车票价按“”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名 A B C D E F G H各站至H站里程数(米)1500 1130 910 622 402 219 72 0例如:要确定从B站至E站火车票价,其票价为=87.36≈87(元).(1)求A站至F站的火车票价(结果精确到1元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:•“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).24.某公园的门票价格规定如下表:购票人数1~50人51~100人100人以上票价5元 4.5元4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)答案:一、1.32.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3.(点拨:解方程x-1=- ,得x= )4.x+3x=2x-6 5.y= - x6.525 (点拨:设标价为x元,则=5%,解得x=525元)7.18,20,22 8.4 [点拨:设需x天完成,则x(+ )=1,解得x=4] 二、9.D10.B (点拨:用分类讨论法:当x≥0时,3x=18,∴x=6当x<0时,-3=18,∴x=-6故本题应选B)11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、•分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800•米,•列方程得260t+800=300t,解得t=20)14.D15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)16.D 17.C18.A (点拨:根据等式的性质2)三、19.解:原方程变形为200(2-3y)-4.5= -9.5∴400-600y-4.5=1-100y-9.5500y=404∴y=20.解:去分母,得15(x-1)-8(3x+2)=2-30(x-1)∴21x=63∴x=321.解:设卡片的长度为x厘米,根据图意和题意,得5x=3(x+10),解得x=15所以需配正方形图片的边长为15-10=5(厘米)答:需要配边长为5厘米的正方形图片.22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171解得x=3答:原三位数是437.23.解:(1)由已知可得=0.12A站至H站的实际里程数为1500-219=1281(千米)所以A站至F站的火车票价为0.12×1281=153.72≈154(元)(2)设王大妈实际乘车里程数为x千米,根据题意,得=66解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G•站下的车.24.解:(1)∵103>100∴每门票按4元收费的总票额为103×4=412(元)可节省486-412=74(元)(2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班多于50人,乙班有两种情形:①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得5x+4.5(103-x)=486解得x=45,∴103-45=58(人)即甲班有58人,乙班有45人.②若乙班超过50人,设乙班x人,则甲班有(103-x)人,根据题意,得4.5x+4.5(103-x)=486∵此等式不成立,∴这种情况不存在.故甲班为58人,乙班为45人.3.2 解一元一次方程(一)——合并同类项与移项【知能点分类训练】知能点1 合并与移项1.下面解一元一次方程的变形对不对?如果不对,指出错在哪里,并改正.(1)从3x-8=2,得到3x=2-8; (2)从3x=x-6,得到3x-x=6.2.下列变形中:①由方程=2去分母,得x-12=10;②由方程x= 两边同除以,得x=1;③由方程6x-4=x+4移项,得7x=0;④由方程2- 两边同乘以6,得12-x-5=3(x+3).错误变形的个数是()个.A.4 B.3 C.2 D.13.若式子5x-7与4x+9的值相等,则x的值等于().A.2 B.16 C.D.4.合并下列式子,把结果写在横线上.(1)x-2x+4x=__________; (2)5y+3y-4y=_________;(3)4y-2.5y-3.5y=__________.5.解下列方程.(1)6x=3x-7 (2)5=7+2x 3)y- = y-2 (4)7y+6=4y-36.根据下列条件求x的值:(1)25与x的差是-8.(2)x的与8的和是2.7.如果方程3x+4=0与方程3x+4k=8是同解方程,则k=________.8.如果关于y的方程3y+4=4a和y-5=a有相同解,则a的值是________.知能点2 用一元一次方程分析和解决实际问题9.一桶色拉油毛重8千克,从桶中取出一半油后,毛重4.5千克,•桶中原有油多少千克?10.如图所示,天平的两个盘分别盛有50克,45克盐,问应该从盘A拿出多少盐放到盘B,才能使两盘所盛盐的质量相等.11.小明每天早上7:50从家出发,到距家1000米的学校上学,•每天的行走速度为80米/分.一天小明从家出发5分后,爸爸以180米/分的速度去追小明,•并且在途中追上了他.(1)爸爸追上小明用了多长时间?(2)追上小明时距离学校有多远?【综合应用提高】12.已知y1=2x+8,y2=6-2x.(1)当x取何值时,y1=y2? (2)当x取何值时,y1比y2小5?13.已知关于x的方程x=-2的根比关于x的方程5x-2a=0的根大2,求关于x的方程-15=0的解.【开放探索创新】14.编写一道应用题,使它满足下列要求:(1)题意适合一元一次方程;(2)所编应用题完整,题目清楚,且符合实际生活.【中考真题实战】15.()如图3-2是某风景区的旅游路线示意图,其中B,C,D为风景点,E为两条路的交叉点,图中数据为相应两点间的路程(单位:千米).一学生从A处出发,以2千米/时的速度步行游览,每个景点的逗留时间均为0.5小时.(1)当他沿路线A—D—C—E—A游览回到A处时,共用了3小时,求CE的长.(2)若此学生打算从A处出发,步行速度与各景点的逗留时间保持不变,且在最短时间看完三个景点返回到A处,请你为他设计一条步行路线,•并说明这样设计的理由(不考虑其他因素).答: 案1.(1)题不对,-8从等号的左边移到右边应该改变符号,应改为3x=2+8.(2)题不对,-6在等号右边没有移项,不应该改变符号,应改为3x-x=-6.2.B [点拨:方程x= ,两边同除以,得x= )3.B [点拨:由题意可列方程5x-7=4x+9,解得x=16)4.(1)3x (2)4y (3)-2y5.(1)6x=3x-7,移项,得6x-3x=-7,合并,得3x=-7,系数化为1,得x=- .(2)5=7+2x,即7+2x=5,移项,合并,得2x=-2,系数化为1,得x=-1.(3)y- = y-2,移项,得y- y=-2+ ,合并,得y=- ,系数化为1,得y=-3.(4)7y+6=4y-3,移项,得7y-4y=-3-6,合并同类项,得3y=-9,系数化为1,得y=-3.6.(1)根据题意可得方程:25-x=-8,移项,得25+8=x,合并,得x=33.(2)根据题意可得方程:x+8=2,移项,得x=2-8,合并,得x=-6,系数化为1,得x=-10.7.k=3 [点拨:解方程3x+4=0,得x=- ,把它代入3x+4k=8,得-4+4k=8,解得k=3]8.19 [点拨:∵3y+4=4a,y-5=a是同解方程,∴y= =5+a,解得a=19]9.解:设桶中原有油x千克,那么取掉一半油后,余下部分色拉油的毛重为(8-0.5x)千克,由已知条件知,余下的色拉油的毛重为4.5千克,因为余下的色拉油的毛重是一个定值,所以可列方程8-0.5x=4.5.解这个方程,得x=7.答:桶中原有油7千克.[点拨:还有其他列法]10.解:设应该从盘A拿出盐x克,可列出表格:盘A 盘B原有盐(克)50 45现有盐(克)50-x 45+x设应从盘A拿出盐x克放在盘B,则根据题意,得50-x=45+x.解这个方程,得x=2.5,经检验,符合题意.答:应从盘A拿出盐2.5克放入到盘B.11.解:(1)设爸爸追上小明时,用了x分,由题意,得180x=80x+80×5,移项,得100x=400.系数化为1,得x=4.所以爸爸追上小明用时4分钟.(2)180×4=720(米),1000-720=280(米).所以追上小明时,距离学校还有280米.12.(1)x=-[点拨:由题意可列方程2x+8=6-2x,解得x=- ](2)x=-[点拨:由题意可列方程6-2x-(2x+8)=5,解得x=- ] 13.解:∵x=-2,∴x=-4.∵方程x=-2的根比方程5x-2a=0的根大2,∴方程5x-2a=0的根为-6.∴5×(-6)-2a=0,∴a=-15.∴-15=0.∴x=-225.14.本题开放,答案不唯一.15.解:(1)设CE的长为x千米,依据题意得1.6+1+x+1=2(3-2×0.5)解得x=0.4,即CE的长为0.4千米.(2)若步行路线为A—D—C—B—E—A(或A—E—B —C—D—A),则所用时间为(•1.6+1+1.2+0.4+1)+3×0.5=4.1(小时);若步行路线为A—D—C—E—B—E—A(或A—E—B —E—C—D—A),则所用时间为(1.6+1+0.4+0.4×2+1)+3×0.5=3.9(小时).故步行路线应为A—D—C—E—B—E—A(或A—E—B —E—C—1. 7(2x-1)-3(4x-1)=4(3x+2)-12. (5y+1)+ (1-y)= (9y+1)+ (1-3y)3 .[ (- 2)-4 ]=x+24. 20%+(1-20%)(320-x)=320×40%5. 2(x-2)+2=x+16. 2(x-2)-3(4x-1)=9(1-x)7. 11x+64-2x=100-9x8. 15-(8-5x)=7x+(4-3x)9. 3(x-7)-2[9-4(2-x)]=2210. 3/2[2/3(1/4x-1)-2]-x=2(x+5y)-(3y-4x)=x+5y-3y+4x1/2(x6^2-y)+1/3(x-y^2)+(x^2)(^为平方号)10a+6b-7a+3b-10a+10b+12a+8b 4xy-2y+3x-xy(3x-5y)-(6x+7y)+(9x-2y)2a-[3b-5a-(3a-5b)](6m2n-5mn2)-6(m2n-mn2)(5x-4y-3xy)-(8x-y+2xy)a-(a-3b+4c)+3(-c+2b)7x2-7xy+16-5b-(3a-2b)-(1-6b)(5x-4y-3xy)-(8x-y+2xy)(3x2-4xy+2y2)+(x2+2xy-5y2) (x-y)2-(x-y)2-[(x-y)2-(x-y)2] (2k-1)x2-(2k+1)x+32(x-2)-3x-22y-3y+1-6y3b-6c+4c-3a+4b2a-5b+4c-7a+5a+5b-4c4a+6c+7a-6a+7b-3c-6b 5b+2c-7b+4z-3z3b+3c-6a+8b-7c-2a3c-7b+5z-7b+4a-6n+8b-3v+9n-7v。

(2021年整理)(完整)七年级上:一元一次方程50道练习题(含答案)

(2021年整理)(完整)七年级上:一元一次方程50道练习题(含答案)

(完整)七年级上:一元一次方程50道练习题(含答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)七年级上:一元一次方程50道练习题(含答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)七年级上:一元一次方程50道练习题(含答案)的全部内容。

一元一次方程50道练习题(1)42112+=+x x ; (2)7.05.01.08.0-=-x x(3)x x x 2532421-+=-; (4)67313x x +=+;(5)31632141+++=--x x x ; (6)x x 2332]2)121(32[23=-++(7))33102(21)]31(311[2x x x x --=+--(8))62(51)52(41)42(31)32(21+++=+++x x x x(9)5x +2=7x -8; (10)()()()01232143127=+-+---x x x(11)37615=-x ; (12)()()()123221211227-=-+-y y y ;(13)2162612-=+--x x ; (14)()22123223=-⎥⎦⎤⎢⎣⎡--x x(15)1212321321xx x =⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--; (16)123]8)4121(34[43+=--x x(17))96(328)2135(127--=--x x x (18)296182+=--xx x(19)x x x 52%25)100(%30)1(=⨯-+⨯+; (20)2435232-=+--x x x(21)153121314161=⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-x (22)2(2x-1)-4(4x —1)-5(2x+1)-19=0(23)212644531313---+=+-x x x (24)03.002.003.02.05.01.05.09.04.0xx x +=--+(25)32212]2)141(32[23x x =-++ (26)2{3[4(5x-1)-8]—20}-7=1(27)2(0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档